
Metaheuristic Approach for Solving
Scheduling and Financial Derivative

Problems

A thesis submitted

for the degree of Doctor of Philosophy

by

Nareyus I Lawrance Amaldass

Supervisor

Dr. Cormac A Lucas

Department of Mathematics, College of Engineering, Design and Physical Sciences

BRUNEL UNIVERSITY

September 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362653858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
Department or School Web Site URL Here (include http://www.brunel.ac.uk)
University Web Site URL Here (include http://www.brunel.ac.uk)

Certificate

It is certified that the work contained in this thesis entitled ”Metaheuristic Approach for

Solving Scheduling and Financial Derivative Problems” by ”Nareyus I Lawrance Amal-

dass” has been carried out under my supervision and that it has not been submitted

elsewhere for a degree.

September 2019

Dr. Cormac A Lucas

Senior Lecturer

Department of Mathematics, College of Engineering,

Design and Physical Sciences

Brunel University

i

Department or School Web Site URL Here (include http://www.iitk.ac.in/ce)
Department or School Web Site URL Here (include http://www.iitk.ac.in/ce)
http://www.brunel.ac.uk

Abstract

The objective of this thesis is to implement metaheuristic approaches to solve different

types of combinatorial problems. The thesis is focused on neighborhood heuristic optimi-

sation techniques such as Variable Neighborhood Search (VNS) and Ant Colony Optimi-

sation (ACO) algorithms. The thesis will focus on two diverse combinatorial problems.

A job shop scheduling problem, and a financial derivative matching problem. The first

is a NP-hard 2-stage assembly problem, where we will be focussing on the first stage. It

consists of sequencing a set of jobs having multiple components to be processed. Each job

has to be worked on independently on a specific machine. We consider these jobs to form

a vector of tasks. Our objective is to schedule jobs on the particular machines in order

to minimise the completion time before the second stage starts. In this thesis, we have

constructed a new hybrid metaheuristic approach to solve this unique job shop scheduling

problem.

The second problem has arisen in the financial sector, where the financial regulators collects

transaction data across regulated assets classes. Our focus is to identify any unhedged

derivative, Contract for Difference (CFD), with its corresponding underlying asset that

has been reported to the corresponding component authorities. The underlying asset

and CFD transaction contain different variables, like volume and price. Therefore, we are

looking for a combination of underlying asset variables that may hedge the equivalent CFD

variables. Our aim is to identify unhedged or unmatched CFD’s with their corresponding

underlying asset. This problem closely relates to the goal programming problem with

variable parameters. We have developed two new local search methods and embedded the

newly constructed local search methods with basic VNS, to attain a new modified variant

of the VNS algorithm. We then used these newly constructed VNS variants to solve this

financial matching problem.

In tackling the Vector Job Scheduling problem, we developed a new hybrid optimisation

heuristic algorithm by combining VNS and ACO. We then compared the results of this

iii

hybrid algorithm with VNS and ACO on their own. We found that the hybrid algorithm

performance is better than the other two independent heuristic algorithms. In tackling

the financial derivative problem, our objective is to match the CFD trades with their

corresponding underlying equity trades. Our goal is to identify the mismatched CFD

trades while optimising the search process. We have developed two new local search

techniques and we have implemented a VNS algorithm with the newly developed local

search techniques to attain better solutions.

Keywords: Scheduling, Variable Neighborhood Search, Any Colony Optimisation, Vector

Job Scheduling, Contract for Difference, Equity

Acknowledgements

I sincerely express my gratitude to my supervisor, Dr. Cormac Lucas, for his enormous

support, encouragement and the incredible knowledge that he has provided throughout

my research. I am fortunate to have Dr. Cormac, for providing me with his invaluable

time, and especially in agreeing to meet me during late evenings. His motivation, patience

and guidance has helped me so much in completion of my Ph.D.

Further, I would like to thank Dr. Nenad Mladenovic, for his valuable knowledge, sugges-

tions, his time and tremendous support during my Ph.D. His reviews and helpful comments

have been a key indicator for the success of my Ph.D.

My sincere thanks to Dr. Paresh Date and Dr. Diana Roman, for their comments,

suggestions and feedback during the annual review progress. Their reviews have shaped

the progress of my Ph.D completion. Also, I would like to thank the administrative staff

for their help and support.

Finally, I thank my parents and sister for their great support. They are the most impor-

tant people and I dedicate this thesis to them. Also, special thank to my uncle Vincent

Jayakumar Thambuswamy, for his phenomenal help and motivation during my education.

Above all, I thank Almighty God for giving me the courage and wisdom to undertake this

research, and strength to help me through its completion.

iv

Publications

1. Amaldass, N.I.L., Lucas, C., and Mladenovic, N., ”A heuristic hybrid framework for

vector job scheduling”, Yugoslav Journal of Operations Research,27(2017) 31-45.

2. Amaldass, N.I.L., Lucas, C., and Mladenovic, N., ”Variable Neighborhood Search for

financial derivative problem”, Yugoslav Journal of Operations Research, 29(3)(2019).

v

Contents

Certificate i

Acknowledgements iv

Publications v

Contents vi

List of Figures ix

List of Tables x

Abbreviations xii

Symbols xiii

1 Introduction 1

1.1 Introduction . 1

1.2 Problem Description . 2

1.3 Motivation . 3

1.3.1 Vector Job Scheduling . 3

1.3.2 Financial Derivative Matching . 3

1.4 Contribution . 4

1.4.1 Vector Job Scheduling . 4

1.4.2 Financial Derivative Matching . 4

1.4.3 Application of the Heuristics Method 4

1.4.4 Benefits and Application . 4

1.5 Thesis Outline . 5

2 Literature Review 6

2.1 Metaheuristic . 6

2.1.1 Introduction . 6

2.1.2 Local Search . 7

vi

Contents vii

2.1.3 Basic Local Search . 7

2.1.4 Simulated Annealing . 8

2.1.5 Tabu Search . 10

2.1.6 Variable Neighborhood Search . 11

2.1.6.1 Variable Neighborhood Descent 15

2.1.6.2 Reduced Variable Neighborhood Search 15

2.1.6.3 Basic Variable Neighborhood Search 17

2.1.6.4 General Variable Neighborhood Search 18

2.1.6.5 Skewed Variable Neighborhood Search 19

2.1.6.6 Variable Neighborhood Decomposition Search 20

2.1.6.7 Primal-Dual VNS . 21

2.1.6.8 Summary and Conclusion 22

2.1.7 The Ant Colony Optimization Algorithm 23

2.1.7.1 Characteristics of ACO . 26

2.1.7.2 The Ant System . 27

2.1.7.3 Elitist Ant System . 29

2.1.7.4 Rank-Based Ant System 29

2.1.7.5 The Max-Min Ant System 30

2.1.7.6 Best-Worst Ant System . 31

2.1.7.7 The Ant Colony System . 32

2.1.7.8 Hyper-Cube Framework (HCF) 33

2.1.7.9 Applications of ACO . 33

2.1.7.10 Summary and Conclusion 34

2.2 Scheduling Problems . 35

2.2.1 Introduction . 35

2.2.2 Taxonomy of Scheduling . 36

2.2.3 Single Machine Scheduling . 36

2.2.4 Flow Shop Scheduling . 38

2.2.5 Job shop scheduling . 40

2.2.6 Open Shop Scheduling . 42

2.2.7 Vector Job Scheduling . 44

2.2.8 Financial Derivative Problem . 45

2.2.9 Performance Measures in Scheduling 46

2.2.10 Summary and Conclusion . 47

3 Vector Job Scheduling 48

3.1 Introduction . 48

3.2 Mathematical Programming Formulation 48

3.3 Construction for VJS . 50

3.3.1 ACO . 50

3.3.2 Solution Construction . 50

3.3.3 Pheromone Update . 52

3.3.4 Variable Neighborhood Search (VNS) 54

3.3.5 Hybrid Algorithm . 56

Contents viii

3.4 Computational Results . 57

3.4.1 Setting Parameter Values for ACO 58

3.4.2 Results . 59

3.5 Summary . 63

4 Financial Derivative Hedging 64

4.1 Introduction . 64

4.2 Problem Example . 66

4.3 Data . 68

4.4 Mathematical Programming Formulation 69

4.5 Basic Variable Neighborhood Search (BVNS) 70

4.5.1 Neighborhood Structure . 71

4.5.2 Local Search Neighborhood . 71

4.5.3 Search Type-1 (STYPE-1) . 72

4.5.4 Search Type-2 (STYPE-2) . 73

4.6 Numerical Results . 74

4.7 Summary and Conclusion . 77

5 Conclusion 78

5.0.1 Overview . 78

5.0.2 The Hybrid Algorithms . 78

5.0.3 VNS Variants . 79

5.0.4 Future Work . 79

A Results ACO for VJS 81

B Results ACOVNS for VJS 86

C Results Financial Derivative Problem 91

Bibliography 93

List of Figures

2.1 VNS Flowchart . 14

2.2 Ant Nest Graph . 24

2.3 Basic Ant Construction . 25

2.4 Ant Pheromone Exploration . 27

2.5 Single Machine Job . 37

2.6 Flow Shop Scheduling . 38

2.7 Job Shop Scheduling . 41

2.8 Open Shop Scheduling . 43

3.1 3 set job sequence for machine 1(i1) . 51

4.1 CFD Structure(ws-alerts.com) . 65

4.2 Example Trade and CFD’s . 66

4.3 Example . 67

4.4 Unmatched . 68

ix

List of Tables

3.1 m machines and n jobs . 50

3.2 [20]× [5] ACO . 60

3.3 [20]× [5] ACOVNS . 61

3.4 Best solutions for VJS instances . 62

4.1 Best Solution for CFD-Trades Matching . 75

4.2 new-CFD-2 . 76

4.3 new-CFD-11 . 76

A.1 [10]× [10] ACO . 81

A.2 [15]× [10] ACO . 81

A.3 [15]× [15] ACO . 82

A.4 [20]× [10] ACO . 82

A.5 [20]× [15] ACO . 82

A.6 [20]× [20] ACO . 83

A.7 [30]× [10] ACO . 83

A.8 [50]× [10] ACO . 83

A.9 [100]× [5] ACO . 84

A.10 [100]× [10] ACO . 84

A.11 [100]× [20] ACO . 84

A.12 [200]× [10] ACO . 85

A.13 [500]× [20] ACO . 85

B.1 [10]× [10] ACOVNS . 86

B.2 [15]× [10] ACOVNS . 86

B.3 [15]× [15] ACOVNS . 87

B.4 [20]× [10] ACOVNS . 87

B.5 [20]× [15] ACOVNS . 87

B.6 [20]× [20] ACOVNS . 88

B.7 [30]× [10] ACOVNS . 88

B.8 [50]× [10] ACOVNS . 88

B.9 [100]× [5] ACOVNS . 89

B.10 [100]× [10] ACOVNS . 89

B.11 [100]× [20] ACOVNS . 89

B.12 [200]× [10] ACOVNS . 90

B.13 [500]× [20] ACOVNS . 90

x

List of Tables xi

C.1 new-CFD-3 . 91

C.2 new-CFD-5 . 91

C.3 new-CFD-1 . 92

C.4 new-CFD-7 . 92

C.5 new-CFD-4 . 92

C.6 new-CFD-6 . 92

C.7 new-CFD-6 . 92

C.8 CFD-9 . 92

Abbreviations

VNS Variable Neighbourhood Search

ACO Ant Colony Optimization

CFD Contract for Difference

LS Local Search

SA Simulated Annealing

TS Tabu Search

VND Variable Neighbourhood Descent

RVNS Reduced Variable Neighbourhood Search

BVNS Basic Variable Neighbourhood Search

GVNS General Variable Neighbourhood Search

SVNS Skewed Variable Neighbourhood Search

VNDS Variable Neighbourhood Decomposition Search

AS Ant System

EAS Elitist Ant System

RBAS Rank Based Ant System

MMAS Max Min Ant System

BWAS Best Worst Ant System

ACS Ant Colony System

HCF Hyper Cube Framework

VJS Vector Job Scheduling

xii

Symbols

N(s) neighborhood solution

s initial solution

ṡ new solution

s̈ improved new solution

k number of ants

J set of jobs

M set of machines

tij time spend on machine i by job j

Cj time when job j is completed

λ(i, j) pheromone deposit on the edge (i, j)

ρ pheromone evaporation parameter

α level of pheromone scent deposited by the current ants

β heuristic information determined by the ants

η(y) heuristic information stored at node y

N set of all nodes

V visited nodes

U unvisited nodes

Vt volume of trades

Pt price of trades

Vc volume of CFD

Pc price of CFD

V̇c over volume of CFD

V̈c under volume of CFD

xiii

Symbols xiv

Ṗc over price of CFD

P̈c under price of CFD

Chapter 1

Introduction

1.1 Introduction

Optimisation problems play a vital role in our day-to-day life. For instance, planning a

travel route to reach a destination in the least possible time constitutes solving an optimi-

sation problem. These informal problems are solved by individuals every day. Organisa-

tions, on the other hand, have a more formal optimisation problem, which is solved using

mathematical modelling with precise constraints and dependent variables, so that their

objective can be either maximised or minimised. Different approaches are used to solve

optimisation problems, depending on the area, such as scheduling, timetabling, pricing,

routing, logistics, supply chain management, financial planning, etc.

In complex optimisation problems, finding the global optimum is quite a daunting process.

There may be many reasons, but one of the key issues is the size of the search space,

which constitutes the computation time and cost. Heuristic methods can help to resolve

these complex problems, leading to efficient computational time and cost. They can be

categorised into various approaches, such as local search, global search, neighborhood

search, biological, or nature-inspired methods. A heuristic method is successful if it can

perform an efficient and swift search of the solution space.

In this thesis, we focus on two key heuristic approaches that are considered to be efficient

and successful:

• Ant Colony Optimisation (ACO), [39], a biological metaheuristic method inspired

by the characteristic of real ants. The exploration of the search space is well utilised

by the construction of artificial ants that have the ability to produce good solutions.

1

Chapter 1. Introduction 2

• Variable Neighborhood Search (VNS), [90], a relatively new solution approach, which

searches for a near or global optimum by constantly exploring local neighborhoods.

As part of the thesis, we have:

• Combined these two approaches to construct a new hybrid heuristic approach.

• Constructed two new variants of the VNS algorithms.

We have implemented our newly constructed approaches for two types of problems:

• A Vector Job Scheduling problem, in which the objective is to minimise the process-

ing time of the job.

• A Financial Derivative Matching problem, where our aim is to match the corre-

sponding underlying assets to identify the unmatched assets with their respective

Contract for Difference (CFD).

Our results shows that our newly constructed hybrid and variants of VNS approaches have

produced efficient solutions and could be used in other realted applications.

1.2 Problem Description

In this thesis, we present two unique problems:

• A Vector Job Scheduling problem, which is a variant of the job shop scheduling

problem. While this is a two stage problem, we consider only the first stage - to

schedule the jobs on their respective machines. Each job has multiple components,

which have to be processed on a particular machine. Our objective is to schedule

these jobs on their respective machines in a way that minimises their completion

time. We have implemented our newly constructed hybrid approach, which combines

a biologically inspired algorithm, ACO with VNS, to solve this. Further details about

the problem, our approach, and its implementation, is provided in chapter 3.

• A Financial Derivative Matching problem that has arisen in the current financial

regulatory framework. The objective of the problem is to find the unhedged under-

lying derivatives by matching the derivatives with their corresponding underlying

Chapter 1. Introduction 3

asset. These problems are similar to the goal programming [139]. We have con-

structed a new local search algorithm that has been embedded in a VNS, which led

to the development of a new VNS variant. Our new constructed VNS variant has

produced good solutions. Further details about the problem, our approach, and its

implementation, is provided in chapter 4.

In both problems, VNS investigates the neighborhood of a feasible local minimum in search

of the global minimum, where neighboring solutions are obtained by shaking. Local Search

(LS) then searches the solution set in order to obtain the best solution.

1.3 Motivation

1.3.1 Vector Job Scheduling

The Vector Job Scheduling problem is a distinct type of scheduling problem with distinct

characteristics. It is faced by various industries, for example, in manufacturing products

can be manufactured by only a particular machine, while assembling of these products

constitutes a new end product (i.e., computers, automobile vehicles, etc.). Scheduling

these products in an optimal computational time will ensure time and cost reduction, and

customer satisfaction.

1.3.2 Financial Derivative Matching

The financial Derivative Matching problem has arisen due to increasingly stringent finan-

cial regulations in the European Union. Since the recent financial crisis, regulation has

become a vital component of the financial industry. Organisations working in the finance

sector have an obligation to report all their traded transactions to their corresponding

component authority. Financial regulation authorities collect and analyse huge volumes

of data to identify suspicious market behaviour. One of the most challenging areas is

the matching of financial derivatives with their underlying asset, which regulators are

particularly keen on identifying. Resolving this problem helps regulators to identify any

suspicious behaviour, and to understand the market behaviour. This in return assists with

construction of new policies to support and promote economic growth.

Chapter 1. Introduction 4

1.4 Contribution

1.4.1 Vector Job Scheduling

The vector job scheduling is an NP (Non-deterministic Polynomial-time) hard optimisation

problem. The search for a local optimum is time consuming, hence the problem is quite

challenging. Since a job consists of multiple components being processed by its unique

machine, scheduling these jobs by its respective component(s)/machine(s) and identifying

the best solution is a difficult process.

1.4.2 Financial Derivative Matching

This is a goal programming problem. The quantity of trades is large, and the trades

that are used to match one derivative cannot be used to match another derivative. The

combination of various trades with its matching derivative trades increases the search

space, which creates further challenges to the problem by making it difficult to attain the

best solution.

1.4.3 Application of the Heuristics Method

Solving these unique problems through non-linear programming solvers is, generally, not

ideal and takes a long computational time. Most solvers are not geared towards identifying

the global optima. The problem can be solved by a mixture of search heuristics with local

exhaustive (exact) searches of the local minima, or their approximations. This thesis

follows this line of research.

1.4.4 Benefits and Application

The results and findings extracted from this research are beneficial to academia and in-

dustry. We have developed three new metaheuristic approaches. These approaches can be

implemented in solving other problems and may be able to provide solutions to problems

in a larger context too. Similarly, application in an industrial setting can greatly reduce

computational time; thus, reducing the operational cost, while also being able to detect

any discrepancy, especially in the financial markets.

Chapter 1. Introduction 5

Our newly constructed hybrid and VNS variants can be applied to other problems with

high industrial relevance such as vehicle routing, manufacturing, financial surveillance,

macroeconomics, and transportation. Thus, this research may contribute towards the

mainstream applications of economic and market-oriented strategies.

1.5 Thesis Outline

In this thesis, we discuss two types of combinatorial optimisation problems - a Vector Job

Scheduling that has been reported in Chen et al [28], and a Financial Matching problem

that has been currently faced in the financial regulator sector.

A major aspect of this thesis focuses on the metaheuristic approaches. Chapter 2 provides

the literature review, the first sections in this chapter provides details about optimisation

technique focussing on metahueristics. We have used VNS as our base metaheuristic

algorithm, which was introduced by Mladenovic et al. [90], and we also used ACO, which

was introduced by Dorigo [37], which is discussed in detail in these sections. While,

the later sections in this chapter, discusses about various scheduling problems an details

about vector job scheduling and financial derivative problems and their literature reviews

are described in this sections.

Chapter 3 illustrates our newly constructed hybrid metaheuristic algorithm, VNS-ACO,

which is a combination of VNS and ACO that has been implemented to solve our Vector

Job Scheduling problem. The mathematical model of our Vector Job Scheduling, as well as

computational results with conclusions, are also discussed in this chapter. Further results

are available in Appendix A and B.

The Financial Derivative Matching Problem with its mathematical model is presented

in chapter 4. It further discusses VNS implementation with our newly constructed local

search algorithms while exploring solutions to matching problems. Results and a conclu-

sion are also provided in this chapter.

Finally, Chapter 5 presents our thesis, conclusions, and future work in this area of study.

Chapter 2

Literature Review

2.1 Metaheuristic

2.1.1 Introduction

The word ”metaheuristic” is derived from two Greek words ’meta’ meaning ”beyond in

the upper level” and heuristic meaning ”to find”. Osman et al. [100], formally defined

metaheuristis as an iterative generation process, which guides a subordinate heuristic by

intelligently combining different concepts for exploring and exploiting the search space.

Learning strategies are used to structure information, in order to efficiently find near-

optimal solutions. In his book on heuristic search, Salhi [119], presented the basic steps

of the most popular heuristics, and stressed their hidden difficulties as well as opportu-

nities. It provides a comprehensive understanding of heuristic search, the applications of

which are now widely used in a variety of industries, including engineering, finance, sport,

management and medicine. Blum and Roli [21], discuss the fundamental properties of

metaheuristics. Some of the properties are:

• Metaheuristics are strategies that ”guide” the search process.

• The goal is to explore the search space efficiently in order to find (near-)optimal

solutions.

• Metaheuristic techniques range from simple local search procedures to complex learn-

ing processes.

6

Chapter 2. Literature Review 7

• Metaheuristic algorithms are approximate and usually non-deterministic. They have

integrated mechanisms to avoid getting trapped in confined areas of the search space.

• The basic concepts of metaheuristics permit an abstract level description.

• Metaheuristics are not problem specific.

• Metaheuristics use domain specific knowledge in the form of heuristics that are con-

trolled by the upper level strategy.

• Advanced metaheuristics use search experience (embodied in some form of memory)

to guide the search.

Metaheuristics can be classified into nature inspired and non-nature inspired, or popu-

lation based single start and multiple start. In some metaheurisitic search approaches,

the objective functions are altered during the search process in order to escape from local

minima. This type of approach is known as a dynamic objective function, and in the event

that the objective function is fixed, it is deemed a static objective function. A metaheuris-

tic is successful if it balances the intensification and diversification of the search within

the neighborhoods of the search space [150].

2.1.2 Local Search

Local search methods are classical methods used by metaheuristics. They are considered

as a basic principle for optimisation strategies, according to Johnson et al. [70]. The local

search method will try to discover the local optimum by starting with the initial solution

and improving gradually at each iteration. The search processes that are characterised by a

trajectory in a search space are called trajectory methods. The characteristic of trajectory

provides the behaviour and effectiveness of the algorithm. Bar-Yam [15], sees the search

process of trajectory methods as the evolution in (discrete) time of a discrete dynamical

system. Their algorithm starts with the initial solution and describes a trajectory in the

state space. We will discuss some of the local search based heuristic methods.

2.1.3 Basic Local Search

The basic local search is also known as iterative improvement. It performs minor changes

inside the neighborhood to attain a better solution. At each iteration, if the current

solution is better than the previous one, the changes are retained, if not, the changes are

Chapter 2. Literature Review 8

modified to get a better solution. This process is continued until no further improvements

can be made. Below is the basic local search pseudo code with solution s.

Algorithm 1: Local Search

1 Generate a random initial solution s;

2 repeat

3 s← ImproveN(s);

4 until no improvement is possible;

N(s) is the neighborhood for solution s. The function Improve N(s) is the improvement

function to attain the new solution. This function can be the best improvement in an iso-

lated instance or based on several instances of improvements, until no further improvement

is possible. The method explores the neighborhood N(s) and returns one of the solutions

with the lowest objective function value, then stops at a local minima. Therefore, their

performance strongly depends on the definition of N . The performance of iterative im-

provement procedures on combinatorial problems is usually quite inefficient due to time

constraints.

2.1.4 Simulated Annealing

Simulated Annealing (SA) is one of the oldest metaheuristic algorithms, introduced by

Kirkpatrick et al. [73] and Cerny [24], as a search algorithm for combinatorial optimisation

problems. The basic idea is to allow hill climbing moves resulting in a worse solution than

the current one, in order to escape local optima, and find the global optimum. The pseudo

Chapter 2. Literature Review 9

code of the algorithm is given below [58]:

Algorithm 2: SA

1 T ← T0 ;

2 s← starting − state ;

3 E ← C(s) ;

4 while not stopping-criteria do

5 ṡ← generate(s) with probability Gsṡ ;

6 Ė ← C(ṡ) ;

7 Λ← Ė − E ;

8 if (Λ ≤ 0)V (random() < e−Λ/T) ;

9 s← ṡ ;

10 E ← Ė ;

11 T ← reduce− temperature(T) ;

12 end

Line 1 sets the initial temperature to T0. Lines 2 and 3 set the current state s and its cost

E. The loop at lines 4-12 generates a trial state ṡ, evaluates the change in cost Λ. It selects

the next current state and reduces the temperature until the stopping criteria is met. Line

8 shows how stimulated annealing accepts a trial state. The first term (Λ ≤ 0), express

greed. It always accepts lower cost trail state. The random function returns a uniformly

distributed random value between 0 and 1. The second term of line 8, (random() < e−/T),

expresses the likelihood of accepting a costlier trail state. When the stopping criteria is

met, simulated annealing returns current state s as its outcome.

At high temperature, the second term of line 8, lets the algorithm to explore the entire

state space. It accepts almost all cost increase as the temperature decreases, it explores

big valleys, then smaller sub valleys to reach the outcome. This allows it to escape local

minima.

Simulated annealing has a useful property. At a fixed temperature, it equilibrates, i.e, it

approaches a stationary probability distribution. Temperature changes are usually chosen

to keep transient distributions close to equilibrium. Simulated annealing equilibrium is the

Boltzmann distribution, a probability distribution dependent solely on the cost function.

SA has been used in may applications. Osman [99], has provided an oscillation balance

of cooling schedule. In Aarts et al. [2], have used a function of the control parameter

to the cooling schedule to analyse the variance and expectation of the cost to solve a

traveling salesman’s problem. VanLaarhoven et al. [144], used SA to solve a job shop

Chapter 2. Literature Review 10

scheduling problem and shown the algorithm asymptotically converges in probability to a

globally minimal solution. Goffe et al. [56], used SA for econometric problems and found

the global optimum for four different econometric problems. Currently, SA is used as a

component in a metaheuristic rather than a stand alone search algorithm [21].

2.1.5 Tabu Search

Tabu Search (TS) was introduced by Glover [55], and is one of the most commonly used

metaheuristics for solving various combinatorial optimisation problems. It is an effective

algorithm to solve difficult problems. It uses a strategy of avoiding certain moves to

prevent cycling, while providing the ability to escape from local optima. The pseudo code

of the algorithm is given below:

Algorithm 3: TS

1 Generate Initial Solution s;

2 Initialize Tabu lists (TL1, TL2,, TLr);

3 ṡ = s;

4 repeat

5 Find the best admissible solution s1 ;

6 if f(s1) > f(ṡ) then ṡ = s1;

7 else s = s1 update Tabu list TL ;

8 until stopping criteria;

TS uses a short term memory, called the tabu list, that keeps track of the most recently

visited solutions and forbids any moves towards them, it helps to escape local minima. The

tabu list prevents cyclic moves and also prevents the moves from being reversed. Hence,

the neighborhood of the current solution is restricted to the solution that does not belong

to the tabu list. These solutions are classified as allowed sets.

At each iteration, the best solution from the allowed set is chosen as a new solution. This

solution is added to the tabu list by removing the oldest solution that already exists in the

list. The FIFO (First In First Out) technique is used to eliminate the old solution in the

tabu list. The algorithm is terminated if the allowed sets are empty, or the termination

condition is met.

The length of the tabu list is called tabu tenure that controls the memory of the search

process. A large tabu tenure will force the search on large regions. Contrary, a small

tabu tenure will enforce the search on small regions. TS can be made robust by varying

Chapter 2. Literature Review 11

the tabu tenure. Talliard [136], varied the tabu tenure periodically at random intervals to

attain the best results. Battiti and Tecchiolli [14], presented a dynamic tabu tenure.

There is a possibility that tabu might lose some unvisited good solutions due to its powerful

nature. To overcome this issue, an aspiration criteria is used. The basic idea of the

aspiration criteria is to allow a move, even if it gives a solution with a better objective

value than the current best known one.

More recently, TS has been modified with other metaheuristic approaches to solve com-

binatorial problems. Teh and Rangaiah [140], have developed a new TS called enhanced

continuous TS to solve many problems. Chelouah and Siarry [26], have concluded that

there is some similarity between TS and GA and shown TS converges faster than GA in

their application. Nowicki and Smutnicki [97], have implemented a TS technique with a

specific neighborhood that employs a critical path method to solve the job shop schedul-

ing problem. It finds a shorter makespan than other approximation approaches in shorter

time. Drezner et al. [45], have efficiently applied a tabu search variable selection model

within finance problems to predict corporate bankruptcy.

So far, we have discussed some basic metaheuristic approaches used to solve combinatorial

optimization problems. With the idea of metaheuristic researchers have developed various

effective metaheurisitc approaches that can be implemented in solving complex combina-

torial optimisation problems. Two relatively new metaheuristic approaches are Variable

Neighborhood Search (VNS) and Ant Colony Optimisation (ACO).

The VNS searches for a near global optimum, starting from several initial solutions, and

changes the size or structure of the neighborhood of the current local optimum whenever

its search stagnates. The ACO uses the characteristics of real ants to construct the solution

guided by pheromone trails and heuristic information. The idea leads to the importance

of the shortest path. We will discuss VNS and ACO in detail in the next sections.

2.1.6 Variable Neighborhood Search

Variable Neighborhood Search (VNS) was first introduced by Mladenovic and Hansen [90].

VNS is a metaheuristic that exhibits systematic change in the neighborhood during the

search process. The initial solution is changed each time during the local search until a

local optimum is reached. VNS is based on three major principles:

Chapter 2. Literature Review 12

• A local optimal solution of one neighborhood structure is not necessary for that of

another neighborhood structure;

• A global optimal solution is a local minimum with respect to all neighborhood struc-

tures;

• Local optimal solutions with respect to different neighborhoods are relatively close

to each other.

Let us assume there are k neighbors structures Nk, k = 1, ..., kmax. The process starts with

the initial solution, we obtain the next solution, from the neighborhood N(s). Performing

local changes in the neighborhood, we can obtain a best solution ṡ from N(s) Mladenovic

and Hansen, [90], described VNS that performs several local searches with different neigh-

borhoods until a local optimum is obtained. Below is the general working pseudo code for

VNS:

Algorithm 4: VNS

1 Initialization: Select the set of neighborhood structures Nk for k = 1, ..., kmax that will

be used in the search;

2 Generate a random initial solution s;

3 Set k = 1;

4 Repeat the following steps until k = kmax;

5 Shaking: generate a point ṡ randomly from Nk(s);

6 Local Search: implement Local search method to obtain local optimum s̈ from ṡ;

7 if s̈ is better than ṡ then set s = s̈ and k = 1;

8 else k = k + 1 ;

9 stop ;

In the above pseudo code:

• Line 1: Selects the neighborhood structure set Nk.

• Line 2: The Algorithm starts by generating a random initial solution s.

• Line 3: Initialising the value k = 1.

• Line 5: The algorithm executes the shaking steps by generating a new solution ṡ.

Various neighborhood structures could be used in the shaking step to generate this

new solution.

Chapter 2. Literature Review 13

• Line 6: The new solution, ṡ, from the shaking step is improved by using local search.

This local search step can use one or more neighborhood structures in order to

improve the solution, s̈.

• Line 7: This step represents move or not, in case the new solution s̈ is better than

the old solution s, then s̈ will become the new solution, s. Otherwise the old solution

will remain as s. If the stopping criteria are not met, the algorithm repeats from the

shaking step line 5 until the stopping condition is met.

VNS is a simple and effective metaheuristic approach to solve difficult optimisation prob-

lems. The idea of using more than one neighborhood in the search process has gained

interest among various researchers and has been used in a variety of applications. De-

pending on the complexity of the problem and adaptability nature, VNS has led to several

variants of VNS. In the following sections we will discuss some of the most often used VNS

variants that have distinctive characteristics.

Chapter 2. Literature Review 14

Figure 2.1: VNS Flowchart

Chapter 2. Literature Review 15

2.1.6.1 Variable Neighborhood Descent

Variable neighborhood descent (VND) is a variant of VNS that explores the complete

neighborhood and makes changes in a deterministic manner. Due to this process, VND

results in large computation time. A frequent implementation consists of ranking moves

by order of complexity of their application. This is often the same as by size of their

neighborhood Ni(s), and returning to the first one each time a direction of descent is

found, and a step made in that direction. Alteratively, all moves may be applied in

sequence as long as descent is made for some neighborhood in the series. The pseudo code

is given below:

Algorithm 5: VND

1 Initialization: Select the set of neighborhood structures Nk,for k = 1, ..., kmax, that will

be used in the descent;

2 Find an initial solution s (or apply the rules to a given s);

3 Repeat the following sequence until no improvement is obtained:;

4 (l)Set k = 1;

5 (2) Repeat the following steps until k = kmax;

6 (a) Exploration of neighborhood: Find the best neighbor ṡ of s (ṡεNk(s));

7 (b) Move or not: If the solution ṡ thus obtained is better than s, set s =ṡ and k = 1 ,

otherwise, set k=k + l;

The computational time in VND is very high, and for that reason, it is used in larger-

size combinatorial problems where the application uses more computational time. Rong

and Kendall [114], investigated VND for the delay-constrained least cost (DCLC) multi-

cast routing problem, and showed that VND outperforms other existing algorithms. The

neighborhood structures they designed in the VND approaches are based on the idea of

path replacement in trees. Liang and Wu [81], have implemented VND in the Redundancy

Allocation Problem (RAP) and showed that VND overcame the limitation, and offered a

practical way to solve large instances of the relaxed RAP where different components can

be used in parallel.

2.1.6.2 Reduced Variable Neighborhood Search

Reduced Variable Neighborhood Search (RVNS) is another variant of VNS. It is mostly

based on the third principal of VNS, a global optimum is the best solution across all

neighborhoods. Hence, in a specific neighborhood a solution is randomly selected. This

Chapter 2. Literature Review 16

random selection constitutes a stochastic search, and it does not use a local search to

improve the solution. Below is the pseudo code for RVNS:

Algorithm 6: RVNS

1 Select the set of neighborhood structures Nk for k = 1, ..., kmax that will be used in the

search;

2 Find an initial solution s;

3 Choose a stopping condition;

4 Repeat the following sequence until the stopping condition is met;

5 (1) Set k = 1;

6 (2) Repeat the following steps until k = kmax;

7 (a) Shaking: Generate a point ṡ at random from the kth neighborhood of s(ṡNk(s));

8 (b) Move or not: If this point is better than the incumbent, move there s = ṡ, and

continue the search with k = 1; otherwise, set k = k + 1;

A set of neighborhoods N1(s), N2(s), , .., Nkmax(s) is considered around the current point s

(which may be or not a local optimum). Usually, these neighborhoods are nested, i.e. each

one contains the previous. Then a point is chosen at random in the first neighborhood. If

its value is better than that of the incumbent (i.e. f(ṡ) < f(s)), the search is reentered

there (s = ṡ). Otherwise, one proceeds to the next neighborhood. After all neighborhoods

have been considered, one begins again with the first, until a stopping condition is satisfied

(usually it will be maximum computing time since the last improvement, or maximum

number of iterations). Due to the nestedness property, the size of successive neighborhoods

is increasing. Therefore, one will explore more thoroughly close neighborhoods of s than

further ones, but nevertheless search within these, when no further improvements are

observed within the first, smaller ones.

The RVNS can be applied to large instances where the elimination of local search may

improve the computational time. Crainic et al. [34], provide additional performance

analysis of a parallel implementation of the RVNS. Hansen et al. [62], have described

the speed of RVNS. They have compared the performance of RVNS with other faster

heuristics. Maric et al. [87], have implemented a hybrid version of RVNS to solve a bi-

level incapacitated location problem with clients. They have shown that the RVNS hybrid

performs better than swarm optimisation and simulated annealing.

Chapter 2. Literature Review 17

2.1.6.3 Basic Variable Neighborhood Search

The basic variable neighborhood search (BVNS) is a variant of VNS. So far, we have seen

VND, where the computational time is high as it searches every neighborhood and RVNS,

that randomly chooses the solution which may not provide a good quality solution. BVNS

is a hybrid of VND and RVNS. Thus, the BVNS uses a process to find the next optimal

solution from the most fitting neighborhood structure, then the solution is further refined

and improved by using a local search technique. This improved solution is the current

solution from the neighborhood in the iteration. The process provides a good solution and

save computational time without analysing the full neighborhood structure. The pseudo

code for the BVNS is given below:

Algorithm 7: BVNS

1 Initialization: Select the set of neighborhood structures Nk, for k = 1, ..., kmax that will

be used in the search; Find an initial solution s;

2 choose a stopping condition;

3 Repeat the following sequence until the stopping condition is met:;

4 (1)Set k = 1;

5 (2) Repeat the following steps until k = kmax;

6 (a) Shaking: Generate a point ṡ at random from the kth neighborhood of s(ṡεNk(s));

7 (b) Local search: Apply some local search method with ṡ as initial solution; denote with

s̈, the so obtained local optimum;

8 (c) Move or not. If the local optimum s̈ is better than the incumbent s, move there

(s = s̈), and continue the search with k = 1; otherwise, set k = k + 1;

A series of neighborhood structures, which define neighborhoods around any point sεs̈ of

the solution space, are first selected. Then the local search is used and leads to a local

optimum s. A point ṡ is selected at random within the first neighborhood N1(s) of s and

a descent from ṡ is done with the local search routine. This leads to a new local minimum

s̈. At this point, three outcomes are possible:

• s̈ = s, i.e., one is again at the bottom of the same valley. In this case, the procedure

is iterated using the next neighborhood Nk(s), k > 2.

• s̈ 6= s but f(s̈) > f(s) ,i.e., another local optimum has been found, which is not better

than the previous best solution (or incumbent). In this case, too the procedure is

iterated using the next neighborhood.

Chapter 2. Literature Review 18

• s̈ 6= s and f(s̈) < f(s), and another local optimum, better than the incumbent has

been found. In this case, the search is reentered around s̈ and begins again with the

first neighborhood.

Should the last neighborhood is reached without a solution better than the incumbent

being found, the search begins again at the first neighborhood N1(s) until a stopping

condition, e.g., a maximum time or maximum number of iterations, or maximum number

of iterations since the last improvement, is satisfied.

The BVNS is a commonly used VNS variant in many combinatorial optimisation problems

by combining the deterministic and stochastic way of changing the neighborhood, and

performing local search to improve the solutions. Sevkli and Aydin, [124], have proposed

BVNS for job shop scheduling, compared the results and shown BVNS performs better

than other published work in quality solutions. Amaldass et al. [7], have proposed a

hybrid algorithm that combines VNS and ACO for the vector job scheduling problem.

They have showed that the hybrid algorithm outperforms standalone VNS and ACO in

solution quality.

2.1.6.4 General Variable Neighborhood Search

The general variable neighborhood search (GVNS) is a hybrid of VND and RVNS with

BVNS. Initially, it explores RVNS to get the solution, then applies local search to get the

Chapter 2. Literature Review 19

improved solution. Here, the local search of BVNS is replaced by a VND procedure:

Algorithm 8: GVNS

1 Initialization: Select the set of neighborhood structures Nk, for k = 1, ..., kmax that will

be used in the shaking phase, and the set of neighborhood structures Nl, for

l = 1, ..., lmax, that will be used in the local search; find an initial solution s and improve

it by using RVNS; choose a stopping condition;

2 Repeat the following sequence until the stopping condition is met:; (1)Set k = 1;

3 (2) Repeat the following steps until k = kmax;

4 (a) Shaking: Generate a point ṡ at random from the kth neighborhood Nk(s) of s;

5 (b) Local search by VND ;

6 (b1) Set l = 1;

7 (b2) Repeat the following steps until l = lmax;

8 Exploration of neighborhood: Find the best neighbor s̈ of ṡ in Nl(ṡ);

9 Move or not: If f(s̈) < f(ṡ) st ṡ = s̈ and l = 1

10 otherwise set l = l + 1;

11 (c) Move or not: If this local optimum is better than the incumbent, move there (s = s̈),

and continue the search with k = 1; otherwise, set k = k + 1;

In the above GVNS pseudo code, we obtain a feasible solution by RVNS. In step 4, we

perform the shaking procedure to attain the current best solution by the random process.

In the next step we improve this current best solution by implementing VND as our local

search.

GVNS has been applied to various large-sized problems. Mladenovic et al. [92], have

implemented GVNS for the travelling salesman’s problem, and provided the upper bounds

in more than half of the existing benchmark instances. Andreatta and Ribeiro [8], have

listed many applications where they have used GVNS.

2.1.6.5 Skewed Variable Neighborhood Search

The Skewed Variable Neighborhood Search (SVNS) is motivated by the topology of the

search space and is a modified version of BVNS. The basic idea is to explore larger neigh-

borhoods to escape from local optimum in order to move towards a global optimum. This

characteristic has the advantage of permitting the solution to move to a worse solution

Chapter 2. Literature Review 20

than the previous one. But this process could be extremely time consuming. The pseudo

code of SVNS is given below:

Algorithm 9: SVNS

1 Initialization: Select the set of neighborhood structuresNk, for k = 1, ..., kmax used in the

search;

2 find an initial solution s and its value f(s);

3 set sopt = s, fopt = f(s);

4 choose a stopping condition and a parameter value α;

5 Repeat the following until the stopping condition is met:;

6 (1) Set k = 1;

7 (2) Repeat the following steps until k = kmax;

8 (a) Shaking: Generate a point ṡ at random from the kth neighborhood of s;

9 (b) Local search: Apply some local search method with ṡ as initial solution; denote with

s̈ the so obtained local optimum;

10 (c) Improvement or not: If f(s̈) < fopt; set fopt = f(s) and sopt = s̈;

11 (d) Move or not: If f(s̈) - αρ(s, s̈) < f(s);

12 set s = s̈ and k = 1; otherwise set k = k + 1;

The relaxed rule for recentering uses an evaluation function linear in the distance from

the incumbent: i.e., f(s̈) is replaced by f(s̈) - αρ(s, s̈), where ρ(s, s̈) is the distance from

s to s̈, and α a parameter. A metric for the distance between solutions is usually easy to

find, e.g. the Hamming distance when solutions are described by Boolean vectors, or the

Euclidean distance in the continuous case.

Mladenovic and Hansen [90], have demonstrated SVNS for the weighted maximum satis-

fiability of logic problem. They have shown SVNS has performed better than tabu search

for large and medium size problems.

2.1.6.6 Variable Neighborhood Decomposition Search

The Variable Neighborhood decomposition search (VNDS) was introduced by Mladenovic

et al. [62]. It is a two level VNS that resolves the problem based on decomposition. The

VNDS is an extension of BVNS. VNDS divides the search space into subspaces, and a

local search method is used to analyze these subspaces. At each level, the local optimum

is varied if there is an improvement in the solution. The VNDS exhibits the most reliable

and effective local search tool that uses the idea of reducing the search process into subsets

Chapter 2. Literature Review 21

of the whole space, and then it analyses more efficiently, in less computational time, to

obtain good solutions, unlike a simple VNS. Below is the pseudo code for VNDS:

Algorithm 10: VNDS

1 Initialization. Select the set of neighborhood structures Nk, for k = 1, ..., kmax used in

the search;

2 Find an initial solution s choose a stopping condition;

3 Repeat the following until the stopping condition is met:;

4 (1) Set k = 1;

5 (2) Repeat the following steps until k = kmax;

6 (a) Shaking: Generate a point ṡ at random from the kth neighborhood of s(ṡεNk(s)) in

other words, let y be a set of k solution attributes present in ṡ but not in (y = ṡ/s);

7 (b) Local search: Find a local optimum in the space of y either by inspection or by some

heuristic; denote the best solution found with ý and with s̈ the corresponding solution in

the whole space s(s̈ = (ṡ/y)Uý;

8 (c) Move or not: If the solution thus obtained is better than the incumbent, move there

(s < −s̈),and continue the search with N1(k = 1); otherwise, set k = k + 1;

VNDS has been used in a number of applications. Lazic et al. [78], have implemented

VNDS in 0 − 1 mixed integer programs and shown its performance is better than other

measurable approaches, and further used a special VNDS variant for the same problem and

improved the lower and upper bounds, thus, reducing the optimality gaps. Their approach

yields the best average optimality gap and running time for binary multi-dimensional

knapsack benchmark instances.

2.1.6.7 Primal-Dual VNS

Generally, in a heuristic approach, the solution obtained may not be an optimal solution

or near optimal, since the optimal solution is unknown. However, there are certain tech-

niques that are able to attain the optimal solution. For instance, if the lower bounds

of the objective function is known, then we may be able to obtain the optimal solution.

Hence, mathematical programming is applied on primal variables to relax the integrality

constraints. If the problem has a large instance, then the solver may not be able to find

the best solution. To overcome this issue, we can solve a dual relaxed problem with the

primal one. Primal-dual VNS has been successfully implemented on large problems to find

the exact solution and guaranteed bound.

Chapter 2. Literature Review 22

Hansen et al. [60], have implemented the primal dual VNS for the simple plant location

problem. They have reduced the dual by exploiting the complementary slackness condi-

tions. They have further implemented the primal dual VNS in solving p-median clustering

problems and shown that the primal-dual VNS was able to tackle large datasets directly

without the need for data reduction or sampling as employed in certain popular methods.

Their computation results show that the primal-dual VNS outperforms other local search

methods.

2.1.6.8 Summary and Conclusion

In this section, we have reviewed several variants of VNS that can be used to solve combi-

natorial optimisation problems. They explore distant neighborhoods in search of a global

optimum. VNS uses a simple technique that requires few parameters. VNS can be hybrid

with other heuristic approaches. Amaldass et al. [7], constructed a hybrid VNS with ACO

for vector job scheduling and showed that the hybrid approach had better solutions than

applying either VNS or ACO only. Kandavanam et al.[72], hybridise VNS with a genetic

algorithm for multi-class network communication planning problem in order to satisfy

service quality. They applied the hybrid heuristic to maximise the residual bandwidth

of all links in the network and met the requirements of the expected quality of service.

Palomo-Martinez et al. [102], implemented general VNS and a reactive Greedy Randomize

Adaptive Search Procedure (GRASP), hybrid algorithm for an orienteering problem with

mandatory visits and exclusionary constraints. Their computational results showed the

efficiency of their hybrid when using large data instances. Irawan et al. [67], implemented

hybrid metaheuristic technique by hybrid with VNS and Exact Methods for application

to large unconditional and conditional vertex p-centre problems. Mladenovic et al. [91],

implemented a new variant variable neighborhood search, called two level general variable

neighborhood search (GVNS), for solving traveling salesman problems. They used GNVS

as a local search and showed that it outperformed the tabu search heuristics. Seda [121],

constructed a mathematical model for flow and job shop problems, where he proposed

different methods for small and large problem instances.

Sevkli and Aydin [123], have proposed VNS for a job shop scheduling problem with make-

span criterion. They have compared their results with the best known results in the

literature, and concluded that VNS provides better quality solutions. Zhang at el. [153],

have proposed a hybrid algorithm, combining VNS with a genetic algorithm, for flexible

job shop scheduling problems. They have used VNS to improve the quality of the indi-

vidual in the GA by strengthening the local search ability. Liao and Cheng [82], proposed

Chapter 2. Literature Review 23

a new hybrid metaheuristic, which uses tabu search within VNS to minimise the total

weighted earliness and tardiness with a restrictive common due date in a single machine

environment. They examined 280 benchmark problem instances and showed that their

algorithm produced a better quality solution and faster computational time.

• VND: Determines the change in neighborhoods, more likely to reach a global mini-

mum if any neighborhood structures are used.

• RVNS: Useful for very large instances, for which local search is cost.

• BVNS: Deterministic and stochastic changes of neighborhoods, and systematic

change in neighborhoods.

• GVNS: VND is used as local search within the BVNS, and very effective and useful

for low level hybridisation.

• SVNS: Useful for clustering, local optima.

• VNDS: A two level VNS (decomposition at the first level) and useful for the last

instance.

The above table summarises the main characteristic of various VNS variants we have dis-

cussed in this section. Depending on the specific optimisation problem, a VNS variant can

be implemented. The optimal solution, or near optimal, can be attained by clever selection

of neighborhood structures and the local search strategy. The local search strategy could

vary from various local search techniques. Likewise, other heuristic approaches could be

used as local search, which may lead to hybridisation.

In the next section, we will give a detail description of ACO and its corresponding variants.

2.1.7 The Ant Colony Optimization Algorithm

The development of ACO was inspired by the behaviour of real ants. Ants communicate

with each other by a chemical substance produced by them, called pheromone. Ants

explore the space in search for food, during this exploration they lay pheromone trails

on the ground that mark the path from their nest to the foods, and vice versa. Ants

smell pheromones that are laid by other ants. Ants follows the path that has the stronger

pheromone concentration. Thus, the ants are able to find their way back to the nest or to

the food source

Chapter 2. Literature Review 24

The idea of ACO is to make the ants walk on the paths and construct a feasible solution.

Each ant has a memory that records the movements on the paths. The construction of the

solution is based on existing pheromone trails and heuristic information depending on the

optimisation problem. Once the ants construct a feasible solution, pheromone is added to

the path represented by each ant. Thus, solutions are stored for the pheromone trails and

considered for the construction phase of the next iteration. To eliminate any bad path, a

small amount of pheromone is deducted as an evaporation factor.

Figure 2.2: Ant Nest Graph

Deneubourg et al. [36], developed a double-bridge experiment that demonstrated the

foraging of a colony of ants. In these experiments, the nest and the food sources are

connected via two different path. Further, the behaviour is examined by varying the ratio

between the lengths of the two paths as shown in the above Figure (2.2).

Following the idea of real ants, Dorigo et al. [42], constructed some key components in the

design of artificial ants. One of them is to store the path of the ants while they construct

a solution. The pheromone amount deposited on the path plays a vital role on the quality

of the solution. The higher the strength of the pheromone deposit, the higher chances that

the path will be followed. The pheromone evaporation is added to improve the search to

escape from local optimum. The movement of the artificial ants depends both on some

heuristic information and the pheromone trails.

Chapter 2. Literature Review 25

Figure 2.3: Basic Ant Construction

Figure (2.3) shows the basic principle of ACO [20], consists of two steps: a solution

component that has to be derived to construct the solution, and the pheromone model

that consists of pheromone values associated with the solution construction and are used

to parameterise the probabilistic model. Dorigo and Stutzle [44], have constructed the

ACO metaheuristc in three major phases, solution construction, pheromone updates, and

Chapter 2. Literature Review 26

daemon action as an optional phase. Below is the basic pseudo code for ACO:

Algorithm 11: ACO

1 Initialize all edges to pheromone level λ0 = 1;

2 Place each ant k on a randomly chosen node j;

3 for each iteration t do

4 while each ant k has not completed its set of nodes J do

5 for each ant k do

6 Move ant k to the next node j by the probability function Pk;

7 end

8 for each ant k with a complete set of nodes J do

9 Evaporate pheromone ρ;

10 Apply pheromone updates;

11 if ant k time is the shortest then

12 global pheromone update;

13 Update global solution;

14 end

15 end

16 end

17 end

The solution construction phase is a probabilistic construction that is associated with

pheromone trail, heuristic information, and the constraints of the specific optimisation

problems. The pheromone update phase improves the search space to gain a better quality

solution. An evaporation function is used to decrease the pheromone in order to attain a

good solution.

2.1.7.1 Characteristics of ACO

The ACO metaheuristic can be represented in a graph G = (V,E), where V is a set of

nodes and E is a set of edges connecting these nodes. The path in G corresponds to the

set of solutions s. Pheromone trails are associated with either the nodes or the edges,

although the latter is more common.

The Graph G represents an ant starting at node V and moving along the edges E, and

storing the visited nodes within its path in its memory in a sequential order. The ants

explore the graph G from each node in search of the solution using the pheromone trails,

Chapter 2. Literature Review 27

which contain the heuristics and problem constraints. Once the tour is completed by

visiting all the nodes, the ants calculate the best solution by tracing its best path depending

on the pheromone it deposited.

Figure 2.4: Ant Pheromone Exploration

Many researchers have used ACO metaheuristics on various combinatorial problems. Some

have classified the behavior of ACO as an evolutionary algorithm as the ants communicate

through pheromone trails. Some disagree that ACO is an Evolutionary Algorithm (EA)

because of the lack of selection and cross over. However, the characteristic of ACO and

EA are similar as both are population based and use adaptive memory. Dorigo et al.

[42], have developed various ACO variants to improve the performance of the basic ACO

framework. In the following sections, we will discuss various variants of ACO [88].

2.1.7.2 The Ant System

Dorigo et al. [42], introduced the ant system (AS) as the first ACO algorithm. The AS

consists of an initial phase, where the pheromones are initialised, a construction phase,

where the solution is constructed, and finally, a pheromone update phase. In the initial

phase, the pheromone trails are set with an equal amount λ, such that ∀ (i, j), λij = λ0 =

k/ω, where i and j are the nodes, k is the number of ants and ω is some greedy constructive

heuristic depending on the optimization problem, e.g., for the TSP the nearest-neighbor

heuristic may be used, where a salesperson starts at a random city i and repeatedly visits

the nearest unvisited city j, until all cities have been visited.

Chapter 2. Literature Review 28

In the graph G = (V,E), the solution, s may be associated with the set of vertices V

with the pheromone trails λ on the edges E. Solutions are constructed at every stage

along the path G. The choice of the solution depends on the probabilistic selection at each

construction step. The probabilistic step may vary depending upon the ACO algorithm

variants.

Considering the TSP example, at each iteration each ant k starts from a randomly chosen

city. Each ant k builds a solution from one city to another by using a probabilistic decision

rule. At each construction step the city visited is added to the partial solution of the ant.

The probability that ant k chooses the next city j depends on the below probabilistic

equation:

P k(i, j) =

[λ(i,j)]α.η(j)β∑
jεNk

i
[λ(i,j)]α.η(j)β

if jεNk
i ,

0 otherwise.
(2.1)

where λij and ηij are the pheromone trails and heuristic information respectively, α and β

are the constant parameters of pheromone trail and the heuristic information, respectively,

Nk
i is the set of unvisited cities of ant k with i as the current city. The heuristic in the

TSP problem is defined as ηij = 1/dij , the distance between cities i and j are inversely

proportional.

Once a feasible solution is built by the ants, the pheromone trails T k are updated. We

use a constant evaporation rate ρ to eliminate pheromone trails that impact the feasible

solution. The pheromone evaporation factor is given by the following equation:

λi,j = (1− ρ)λi,j , ∀(i, j) (2.2)

where 0 < ρ is the evaporation rate. Once bad pheromone trails are eliminated, the

pheromone deposited on the arc by the ants is given by the following equation:

λi,j = λi,j +
∑µ

k=1 ∆λi,j
k,∀(i, j) (2.3)

Chapter 2. Literature Review 29

∆λki,j =

{
1
Ck

if (i, j)εT k,

0 otherwise.
(2.4)

where ∆λkij is the amount of pheromone deposited by ant k between the cities i and j. T k

is the tour constructed by ant k and Ck is the cost. The solution depends on the amount

of pheromone deposited by each ant k, the increase in the amount of pheromone deposited

by the ant will yield a better ant tour, and thereby, produce better quality solutions.

The solution depends on the ant tour and the amount of pheromone deposited by the ants.

This has led researchers to construct various techniques for the pheromone deposit that

lead into different ACO algorithm variants. We discuss some of the AS variants in the

next sections.

2.1.7.3 Elitist Ant System

The Elitist Ant System (EAS) is a modification of the AS where the best ant deposits

an additional pheromone. It was introduced by Dorgio et al. [42]. The initial phase

and the solution construction phase are similar to the AS algorithm. However, there are

modifications on pheromone trails and pheromone evaporation rate:

λi,j = λi,j +
∑µ

k=1 ∆λki,j + e∆λbsi,j , ∀(i, j) (2.5)

∆λbsi,j =

{
1
Cbs

if (i, j)εT bs,

0 otherwise.
(2.6)

Where ∆λkij is the amount of pheromone deposited by ant k that has been defined in

equation (2.4). e is the additional pheromone trail for the best ant. ∆λbsi,j is the amount of

pheromone deposited by the best ant at a given time known as the ’best-so-far’ ant. T bs

is the tour constructed by the best-so-far ant k and Cbs is the cost.

2.1.7.4 Rank-Based Ant System

Bullnheimer et al. [16], proposed an improvement of the EAS, called the Rank-Based Ant

System (RAS). In the RAS, each ant deposits an amount of pheromone proportional to its

Chapter 2. Literature Review 30

rank. In addition, the best-so-far ant will always deposit a higher amount of pheromone

than the other ants as in EAS.

The initial phase and the solution construction are the same as in the AS algorithm. All the

ants are ranked according to the solution they produced after the pheromone evaporation

rate. Once ranked, only, the w− 1 best-ranked ants and the best-so-far ant are allowed to

deposit pheromone.

The best-so-far ant receives the highest weight to deposit pheromone, i.e., w, whereas the

rth best ant of the iteration has weight max(0, w − r). Formally, the pheromone update

in RAS is defined as follows:

λi,j = λi,j +
∑w−1

r=1 (w − r)∆λri,j + wλbsi,j ,∀(i, j) (2.7)

∆λri,j =

{
1
Cr if (i, j)εT r,

0 otherwise.
(2.8)

where ∆λkij is the amount of pheromone deposited by ant k and defined in equation (2.4).

∆λbsi,j is the amount of pheromone deposited by the best so far ant defined by equation

(2.6). ∆λrij is the amount of pheromone deposited by the rank best ant. T r is the tour

constructed by the rank best ant k and Cr is the cost of the rth ranked best ant.

2.1.7.5 The Max-Min Ant System

The Max-Min Ant System (MMAS) is considered as one of the most efficient ACO variants

and was introduced by Stutzle and Hoos [133]. One of the key characteristics of the MMAS

is to define the quantity of pheromone trails on each edge between the range [λmin, λmax].

This helps to prevent the search being stagnated. Further the MMAS allows only the

best-so-far ant or iteration best-ant to deposit the pheromone. The construction phase

and initialization phase are similar to the AS.

λi,j = λi,j + ∆λbesti,j εT
best ,∀(i, j) (2.9)

Chapter 2. Literature Review 31

∆λbsi,j =

{
1

Cbest
if (i, j)εT best,

0 otherwise.
(2.10)

Equation (2.9) gives the pheromone update, where λbesti,j is the pheromone deposit by the

best-so-far ant and the cost is Cbest. If we consider, the Cbest to be the iteration best then

Cbest will be Cib, the iteration best ant. If we consider, the Cbest to be the best-so-far ant

then Cbest will be Cbs, the best-so-far ant.

The key principle of the MMAS is the pheromone trails that are bounded within the

interval [λmin, λmax], whereλmin, and λmax are the lower and upper limits, respectively.

This principle would generate suboptimal solutions by high intensity of pheromone by the

best ant. This characteristic eliminates stagnation behaviour. If there is any stagnation,

or there is no improvement in the solution, the pheromone trails can be re-initialised to

re-estimate the upper limit and start exploring in a much wider space.

2.1.7.6 Best-Worst Ant System

The Best-Worst Ant System (BWAS) was first introduced by Cordon et al. [33]. In the

BWAS, the pheromone updates are updated only by the best-so-far and the iteration worst

ant. The initial phase and the construction of solutions phase are kept similar to the AS

algorithm. The pheromone updates are defined as follows:

λi,j = λi,j + ∆λbsi,j , ∀(i, j)εT bs (2.11)

where, ∆λbsi,j is the amount of pheromone deposited by the best-so-far ant that has been

defined in equation (2.6). T bs is the tour constructed by the best-so- far ant k and Cbs is

the cost. The BWAS will penalise the iteration’s worst ant, if they are not present in the

T bs, where T iw is the solution of the iteration worst ant.

λi,j = (1− ρ)λi,j ,∀(i, j)εT iw, (i, j) /∈ T bs (2.12)

The re-initialisation of pheromone trail in the BWAS is different from the MMAS, where

all pheromone trails are set to the initial pheromone value λ0 only if for a given number

Chapter 2. Literature Review 32

of algorithmic iterations no improvement is found. Furthermore, the BWAS uses concepts

from evolutionary computation and introduces pheromone mutation to enhance the explo-

ration. Therefore, for each iteration t, the pheromone trails are mutated with probability

as follows:

λi,j =

{
λi,j +mut(it, λthreshoold) if R = 0,

λi,j −mut(it, λthreshoold) if R 6= 0.
(2.13)

where, R is a random value in (0, 1), it being the current iteration, λthreshold being the

average of the pheromone trail in the edges composing the global best solution and with

mut() being a function making a stronger mutation as the iteration counter increases.

2.1.7.7 The Ant Colony System

In the previous ACO variant, we have seen the variant differ only in the pheromone

updates, with initialisation and solution construction as in the AS. The Ant Colony System

(ACS) is different from other variants. The ACS was first introduced by Dorgio and

Gambardella [41]. Considering the TSP problem, the ACS is the first algorithm that

restricts the neighborhood of unvisited cities using candidate lists. In the AS, and its

variant Nk
i was defined as all the cities that have not been visited by ant k yet. In the

ACS, the unvisited cities are ranked with respect to the heuristic information η, and Nk
i

contains only the best-ranked cities. The ACS uses more aggressive decision rules for

construction of a solution, and during exploration than the AS:

j =

{
MAXlεNikλil[ηil]

β if R ≤ q0,

J otherwise.
(2.15)

where R is a uniform random number in the interval [0, 1], 0 ≤ q0 ≤ 1 is a parameter of the

decision rule, called pseudo random proportional rule, and J is the random proportional

rule defined in equation (2.1). In other words, with probability q0 the ants make the best

possible move, whereas with probability (1− q0) they make a move probabilistically. The

pheromone update of the ants from city i to j is given below:

λi,j = (1− ξ)λi,j + ξλ0, (2.16)

Chapter 2. Literature Review 33

where, 0 < ξ < 1 is a constant parameter and λ0 is the initial pheromone value. When

all ants construct their solution, the best-so-far ant is allowed to deposit pheromone as

follows:

λi,j = (1− ρ)λi,j + ρ∆λbsi,j ,∀(i, j)εT bs (2.17)

where ρ is the evaporation rate which is performed only to the pheromone trails that

belong to the best-so-far solution T bs, and ∆bs
ij is defined as in equation (2.6). The ACS

has similar concepts of pheromone limit similar to MMAS but their limits are implicitly

bounded in [λ0, (1/C
bs)], while the MMAS are explicitly bounded.

2.1.7.8 Hyper-Cube Framework (HCF)

The hyper-cube framework is the most recent development in the ACO algorithms. It was

introduced by Dorigo and Blum [38]. The HCF acts like a framework rather than a new

variant. The HCF is a paradigm to implement ACO algorithms. The ACO variants such

as the AS, the ACS or the MMAS can be implemented in the HCF.

The HCF has several benefits. One of the key benefits is the automatic handling of

scaling of the objective function values, and it limits the pheromone value within the

interval [0, 1]. Another key benefit is that the framework improves the average quality of

the solutions produced continuously, and increases asymptotically in the case of the AS

algorithm applied to unconstrained problems.

2.1.7.9 Applications of ACO

In recent years, researchers have shown that the ACO, a metaheuristic algorithm, is a

competitive technique in terms of performance and time efficiency and used for various

combinatorial optimisation problems. ACO was initially proposed by Dorigo and Caro

[39], and has been successfully implemented to solve many NP-hard problems, like the

TSP [40], network routing. Furthermore, Dorigo and Stutzle [43], suggested various ACO

approaches for quadratic assignment problems (QAP), e.g. AS, RAS, MMAS and com-

pared the results. Other researchers have implemented these ant based algorithms for

various optimisation problems like scheduling, vehicle routing, networking, option pricing,

etc. Colorni et al. [31], implement ACO for the job shop scheduling problem. Rajendran

Chapter 2. Literature Review 34

and Ziegler [117], proposed ACO for permutation flow shop scheduling to minimise the

make-span/total flow time of jobs. Huang and Liao [65], presented a hybrid algorithm,

combining an ACO algorithm with a tabu search algorithm to improve the solution quality

for the job shop problem . Zhang et al. [154], implemented an ant system for a small job

shop problem, and compared it with traditional optimisation methods. Eswaramurthy and

Tamilarasi [49], proposed tabu search with ant colony optimisation for job shop scheduling.

They used dynamic tabu search strategies with neighborhood search depending on the ant

colony. Surekha and Sumathi [135], used a genetic algorithm and ant colony optimization

for solving fuzzy-based job shop problems, so that the sequence of jobs are scheduled us-

ing fuzzy logic and optimized using a genetic algorithm and ACO. Ponnambalam et al.

[111], proposed an ACO algorithm for flexible job shop scheduling problems. It focuses on

scheduling tasks for the manufacturing industry to improve machine utilisation or reducing

time.

ACO variants have performed well in many combinatorial problems, especially in specific

problems where heuristic information is available, such as the TSP and its variations.

Zecchin et al. [152], have implemented ACO in solving water distribution systems. They

have made a comparative study of five algorithms. Gajapal et al. [52], have implemented

ACO for solving flow shop scheduling problems. They have developed and implemented a

new ant colony algorithm to solve the flow shop scheduling problem with the consideration

of sequence-dependent setup times of jobs. Their proposed ant colony algorithm gives

promising and better results, as compared to those solutions given by the existing ant

colony algorithm and the existing heuristics. Gao et al. [53], have implemented ACO in

max-cut problems and introduced an antcut algorithm and showed their algorithm can

solve max-cut problems in an efficient and effective way.

2.1.7.10 Summary and Conclusion

In this section, we have presented a biological metaheuristic ACO algorithm that was

inspired by the behaviour of real ants. The construction of artificial ants led to three

key phases, initialisation, construction, and update of the pheromone trails. The ACO

was first implemented for the TSP by Dorgio et al.[42]. Since then, the development and

implementation of the ACO algorithm has grown rapidly in various areas especially in

combinatorial optimization problems.

Depending on the problem, many researchers have developed various ACO variants that

have produced efficient results for their respective problems. When compared to other

Chapter 2. Literature Review 35

meta-heuristic algorithms. ACO metaheuristics may have a some advantage in the com-

binatorial problems that have known heuristic information.

2.2 Scheduling Problems

2.2.1 Introduction

Scheduling is one of the key processes that allocates resources to tasks over a certain period

of time. Scheduling occurs in various industries, and plays an important role to improve

the productivity and efficiency. It is a decision-making process with the aim to optimise

one or more objectives Pinedo [106].

In production, scheduling deals with allocation of operations on machines (i.e., a sequence

of operations on machines) to minimise some performance issues, such as flow time, tardi-

ness, lateness and makespan [107]. Scheduling problems deal with optimisation that may

have many different performance measures. For example, to shorten completion time of

a given last job, to minimise a number of jobs to be completed after their respective due

dates [155], or to reduce total completion time for all jobs. This means that there could be

various measures to optimise. Various scheduling problems have been, and a wide range

of methodologies have been proposed. In this chapter, we will review some of the key

literature describing scheduling problems and their classification [129].

Scheduling problems are classified depending on the resources and tasks. For example,

if a job or a set of jobs has to be processed on one machine, then it has only one stage.

These problems are identified as single machine stage scheduling problems. If a set of

jobs has to be processed on multiple machines, there are multiple stages, and these are

classified as multiple machine stages scheduling problems. In addition, if all jobs are

available at the beginning of the scheduling process, then the scheduling is static. If the

jobs are continuously changing over time, the scheduling problem is dynamic. The general

parameters of the jobs are release times, routings and processing times. If these parameters

are unknown in advance, they are referred to as stochastic parameters. If the parameters

are known with certainty, it is a deterministic, while if there is an uncertainty about any

parameter, it is stochastic [64].

In most scheduling problems, it is assumed that the setup times are negligible or a part of

the processing time. However, if the set up times are considered, it is known as scheduling

with sequence dependent setup times. Another characteristic of scheduling problems is

Chapter 2. Literature Review 36

no-wait or blocking constraints between consecutive operations of the jobs. A no-wait

constraint occurs when two consecutive operations must be performed without any inter-

ruption.

2.2.2 Taxonomy of Scheduling

There are different kind of scheduling problems, depending on their application and objec-

tives. Manufacturing industry would focus on completion times, to ensure efficient produc-

tion and ability to deliver customer orders. Scheduling a timetable for students or project

management plan to complete the project on time are further examples of scheduling

problems. Scheduling problems can also be very complex depending on their constraints -

the classic challenging scheduling problems are shop scheduling problems. The basic shop

scheduling model comprises a set of jobs and machines, and deals with determining an

optimal or near optimal job sequence on each machine under some constraints. All shop

scheduling problems belong to the NP-hard class [10] [59].

The basic taxonomy of scheduling problems are as follows:

• Single machine scheduling.

• Flow shop scheduling.

• Job shop scheduling.

• Open shop scheduling.

• Vector job scheduling.

2.2.3 Single Machine Scheduling

The jobs may be dependent or independent. If a set of jobs is independent and processed

on a single machine, the problems are identified as Single Machine Scheduling problems

(SMS) with independent jobs. If the jobs are dependent, it is classified as a Single Machine

Scheduling problem (SMS) with dependent jobs.

In general, SMS problems consist of a set of jobs J where, J = j1, j2, ..jn jobs that has a

single operations or tasks that has to be processed by a single machine M . The objective

would be to minimize the completion time and find the best job sequence.

Chapter 2. Literature Review 37

Figure 2.5: Single Machine Job

In general, SMS is NP-complete, see Pinedo, [106], has discussed the importance of theoret-

ical models for scheduling. However, there are numerous complexity results on refinements

of the SMS problem see Durr and Hurrand [47] and Sgall [125].

More generally, a valid schedule can be found in quasilinear time when the processing

times are identical Simons [128], Garey et al. [54], and in polynomial time when the

processing times are restricted to be either one or some arbitrary but fixed constant Sgall

[125]. When the processing times are restricted to two fixed constants greater than one,

SMS remains NP-complete [48]. Selvarajah, et al. [122], have used the polynomial time

solution and have given the preemptive version of the problem. They have also presented

an evolutionary metaheuristic algorithm for the general case for single machine batch

scheduling with release times Lu, et al. [85], have minimized the makespan, i.e., the

maximum delivery completion time of the jobs. When preemptions are allowed to all jobs,

they have given a polynomial-time algorithm for this problem. Barzokia, et al. [13], have

implemented and investigated and used to devise a branch-and-bound solution method by

scheduling a set of jobs on a single machine for delivery in batches to one customer or to

another machine for further processing and have minimized the sum of the total weighted

number of tardy jobs and delivery costs. They have further investigated the structural

properties of the problem for a single machine and special cases of the two-machine flow

shop problem and used them to set up a new branch and bound algorithm.

Chapter 2. Literature Review 38

2.2.4 Flow Shop Scheduling

Flow shop scheduling problems (FSP) consist of jobs j1, j2, ..., jn and machinesM1,M2, ...,Mm.

The objective is to find the optimal sequence of n jobs on m machines. Each job has to be

processed on all machines, and the machines are sequenced as per the problem constraints.

Once a job is processed on one machine, it is placed into a queue to be processed on the

next machine. Depending on the problem constraints, the job can be scheduled ahead

before the actual job queue depending on its priority. In general, the sequence of the jobs

are first-in, first-out (FIFO) basis.

Figure 2.6: Flow Shop Scheduling

Figure 2.6, is an example, where jobs j1, j2, ..., jn are ordered in a series that has to be

processed on machines M1,M2, ...,Mm. The machines are order in their respective series,

so that each job is processed on each machine and moved to the next one either sequentially

or as per a priority defined by the job order.

The FSP has been an interesting area of research for more than three decades, ever since

Johnson, [71], anticipated a two stage scheduling problem with the makespan as an ob-

jective. Earlier, the FSP research is mostly based on Johnson’s theory that provides a

procedure to obtain an optimal solution with two or three machines with certain char-

acteristics. Palmer, [101], has proposed a slope index based on the processing time to

sequence the jobs on the available machines. Campbell and Smith [22], have proposed a

heuristic by extending Johnson’s theory. Their algorithm splits into a series of an equiva-

lent to two machine FSP for the M machine problem, and solves each equivalent problem

by Johnson’s theory. Gupta [59], has recommended a new heuristic approach, similar to

Chapter 2. Literature Review 39

Palmer’s, [101], considering some exciting facts about optimality of Johnson’s rule. Nawaz

et al. [96], introduced a heuristic approach that was based on the assumption that a job

with the highest processing time on all machines should be given a higher priority than a

job with low total processing time.

Solimanpur et al. [131], implemented tabu search combined with neural networks for

permutation FSP. They have used the modified NEH algorithm, proposed by Taillard

[138], to generate the initial solution. They have used the insertion mechanism to generate

the neighborhood structure, as it was found to be more effective than a random swap

mechanism. Santos et al. [120], have implemented an exchange heuristic to improve the

makespan of the multi-stage parallel FSP. Lian et al. [80], have proposed a particle swarm

optimisation algorithm for solving the permutation FSP in relation to minimisation of

makespan. Computational experiments show that it is more efficient than GA. Kuo et al.

[76], have recommended a new hybrid particle swarm optimisation model that combines the

random-key encoding scheme (RK), individual enhancement scheme, and particle swarm

optimisation to solve the FSP and obtain a sequence of jobs that minimises the makespan.

The experimental results indicate that the FSP based on the proposed HPSO produces a

better solution when compared with GA. Wang et al. [146], proposed a hybrid approach of

ordinal optimisation and a genetic algorithm called order based genetic algorithm to solve

FSP. They have also tested various parameters of OGA and provided statistical results.

Rajendran and Ziegler [117], have proposed a tabu search algorithm, along with neural

networks, and considered the permutation FSP by using ACO algorithms, with the objec-

tive to reduce the sum of the total flow time of jobs and makespan. The efficiency of the

recommended ACO algorithm was assessed by considering the benchmark problems and

upper bound values for makespan given by Taillard [138]. Shyu et al. [127], have developed

the ACO algorithm to solve the two machine FSP with no waiting between operations,

including the setup time. They have randomly chosen job processing times between 0 to

100. They have shown that the ACO algorithms outperform other algorithms.

Pan et al. [103], have proposed a discrete particle swarm optimisation algorithm for solv-

ing the no-wait FSP with both makespan and total flow time criteria. Solution quality

was improved by hybridizing the DPSO algorithm with the variable neighborhood descent

(VND) algorithm. A hybrid genetic algorithm for the FSP was proposed by Tseng and

Lin, [143]. A modified version of NEH was used to generate the initial population, and

a new orthogonal array crossover was developed as the crossover operator of the genetic

algorithm. Hsu [66], has implemented an approximation algorithm for the assembly line

crew scheduling problem in order to minimise the row sum by independently permuting the

Chapter 2. Literature Review 40

elements in the column. Chong et al. [30], compared random generated populations and

heuristic created populations with a genetic algorithm for assembly line balancing prob-

lems. Webster and Azizgolu [147], used dynamic programming algorithms for scheduling

parallel machines, incorporating a family setup time. In this approach, jobs are partitioned

into families, where setup time is required for the first job of each family but not for the

latter jobs of the same family. Ishibuchi et al. [68], implemented genetic algorithms with

neighborhood search algorithms for fuzzy FSP.

2.2.5 Job shop scheduling

In a basic job shop scheduling problem (JSP), each job is processed on its corresponding

machines in their respective order with a given processing time, and each machine can

process only one job at a time. The objective is to find the optimal ordering of all jobs

with respect to their order requirements. Each job must visit the machine in a sequence.

The difference between job shop and flow shop is that this sequence might differ for each

job (multidirectional flow).

Figure 2.7 illustrates an example with j1, j2, ..., jn jobs are processed through various

machines M1,M2, ...,Mm. The corresponding jobs are routed to their respective machines.

In other words, in machine Mik, the i represent the set of jobs 1, 2, ..., i and k represent

a set of machine 1, 2, ..., k. For example, M11 means job 1 is processed on machine 1 and

M21 represents job 2 processed on machine 1. All jobs may not require the same number

of machines. In order to show that each route may have a different number of machines,

each route ends with a different variable for k. Each row represents the ordering of a job

with respect to the same m number of machines.

Chapter 2. Literature Review 41

Figure 2.7: Job Shop Scheduling

The JSP is a classical NP-hard problem, especially difficult to solve even in relatively small

instances [79]. Carlier and Pinson [23], have solved problem instances of 10 machines and

10 job. It was unsolved for nearly 20 years, and their work led to more research in the

job scheduling field. Choi and Choi [29], introduced a mixed integer program integrated

with local search scheme to study JSP with alternative operations and sequence-dependent

setup times. Artigues and Roubellat [9], have proposed a polynomial insertion algorithm

for multi-resource job-shop JSP with sequence-dependent setup times to minimise maxi-

mum lateness. First, they described the algorithm for pure JSP and then multi-resource

requirements were introduced for the operations.

Low et al. [84], have developed a mathematical programming approach with the objective

to reduce the sum material processing cost, setup time cost and inventory cost. Subra-

Maniam et al. [134], have developed a framework to solve and optimize JSP problem with

uncertain processing times, in which imprecise processing times are modeled as triangular

fuzzy numbers. Fandel and Stammen-Hegene [50], have investigated an integrated job

shop production planning and scheduling problem. Heinonen and Pettersson [63], solved

JSP by using four different variants of the ACO algorithm. They further implemented a

hybrid model which uses a postprocessing algorithm to improve the resulting schedule.

Yang et al. [151] introduced a new probabilistic model to solve JSP. Yamada and Nakano

[149], have proposed a GA that uses problem-specific representation of solutions with

crossover and mutation which are based on the Giffler and Thompson algorithm. Jaszkiewicz

Chapter 2. Literature Review 42

[69], has proposed genetic local search (GLS) which is a hybridization of GA and local

search.

The first ACO algorithm was proposed by Colorni et al. [31]. The performance of ACO

algorithm was unsatisfactory due to slow convergence, long computing time and falling into

a local optimum easily. Steinhofel et al. [130], have presented simulated annealing based

algorithms for the classical JSP problem where the objective is to minimise the makespan.

Kolonko, [74], has proposed a new approach that used a small population of SA embedded

with the GA framework. Moreover, SA algorithm was used in three schemes, i.e., pairwise

exchange, insertion, and random insertion.

2.2.6 Open Shop Scheduling

In the open shop, there are m machines, and each job has to be processed again on each

one of the m machines. However, some of these processing times may be zero. There are

no restrictions with regard to the routing of each job through the machine environment.

The scheduler is allowed to determine the route for each job, and different jobs may

have different routes [27]. The basic assumptions are that each job may visit a certain

machines at most once. The processing times are independent of the sequence. There is

no randomness; all data is known and fixed. All jobs are ready for processing at time

zero, in which machines are idle and immediately available for work. No pre-emption is

allowed, i.e., once an operation is started, it must be completed before another operation

can be started on that machine. Machines never breakdown and are available throughout

the scheduling period. There is only one of each type of machine.

In figure 2.8, jobs j1, j2, ..., jn are to be sequenced for processing by machinesM1,M2, ...,Mm.

Chapter 2. Literature Review 43

Figure 2.8: Open Shop Scheduling

Akker et al. [3], studied two machine open shop scheduling problems and proposed two

non-dominated points D1 and D2 and a feasible schedule. The objective of this study

was to minimise the makespan. They considered the algorithm by Gonzalez and Sahni

[57], as a pre-requisite to the conditions that are proposed in their research. Kubale and

Nadolski [95], compared the computational complexity results of cyclic open shop problem

and compact cyclic open shop problem by considering the computational complexity of a

cyclic open shop scheduling problem, and also a modification of cyclic open shop called as

compact cyclic open shop with the objective of minimizing the makespan. Brasel et al. [18],

reduced the sum of completion times or mean flow times by proposing several constructive

algorithms, like matching algorithm, beam insert and beam append procedures with beam

search, and generated active and non-active delay schedules.

Naderi et al. [95], explored scheduling open shops with parallel machines at each stage

of processing. The objective was to shorten the total completion time. They proposed a

Mixed-Integer Linear Programming (MILP) model to formulate an open shop with parallel

machine. Also, they developed a hybrid of genetic algorithm. Sha et al. [126], proposed

a multi-objective particle swarm optimisation technique with modified parameters like

particle position, particle movement and particle velocity. They conducted experiments

and reported their results. This algorithm has not been compared with any of the existing

algorithms.

Chapter 2. Literature Review 44

2.2.7 Vector Job Scheduling

Vector scheduling (VJS) is a multi-dimensional extension of traditional machine scheduling

problems. Whereas in traditional machine scheduling a job only uses a single resource,

normally, time, in vector scheduling a job uses several resources. In traditional scheduling,

the load of a machine is the total resource consumption by the jobs that it serves [145].

In vector scheduling, we define the load of a machine as the maximum resource usage

over all resources of the jobs that are served by this machine [11]. In the setting that

we consider here, the makespan, which is normally defined to be the time by which all

jobs are completed, is equal to the maximum machine load [12]. Al-Anzi and Allahverdi

[4], implemented a hybrid tabu search algorithm to minimise the completion time for two

stage assembly problems.

In recent years, VJS has become a complex combinatorial problem faced by different

industries. Several researchers have implemented various tools for these kind of complex

scheduling problems [17] [25].

VJS problem is one of the key studies in our thesis. Our focus is on solving separately

the first stage of the two stage assembly scheduling problems [109, 110]. This problem

is, for example, faced by the computer hardware industry. Computers are produced by

assembling various components depending on customer specifications. These components

are monitors, hard disks, CD/DVD ROM’s, keyboards, mouse etc. Each component,

having its own specifications, is made separately by an appropriate machine. As computers

are manufactured based on specific requirements, a variety of computers are needed, which

can be managed by combining the components in many different ways. When all of

the components are ready, they are sent to a customer who does the second stage of

assembling. Our objective is to minimise customer’s waiting time. The specific components

are considered to be a vector of jobs, which are independent and manufactured on a specific

machine.

The two stage models have been studied in Potts et al. [110]. The results of Chen and

Hall [28], give the lower bound of the performance guarantee, whereas we study upper

bounds by using metaheuristic approaches. Potts et al. [110], investigated the second

stage objective function to minimise the makespan, including the time for assembling. The

assembly departments are spread out, and they are not implicitly included in our model.

The completion time of a job is defined as the maximum time undertaken to complete the

manufacturing of all of its components. The problem is to schedule the vector of jobs such

that the sum of the completion times of all the jobs is minimised. This way, the assembling

Chapter 2. Literature Review 45

of all final products will be completed as early as possible. We consider a deterministic

formulation of the VJS. Chen and Hall [28], have already shown the NP hardness of the

problem. Therefore, to solve this problem, it is natural to apply ACO and VNS, and

general heuristic approaches. In Chapter 3, we have defined our mathematical model for

the VJS problem and provided a solution to resolve these problems, and discussed the

results.

2.2.8 Financial Derivative Problem

Financial market surveillance has become one of the key focus areas for financial regula-

tors. Various techniques have been used to detect market abuse behaviour in the financial

markets. Punnuyamoorthy et al. [113], introduced a hybrid data mining technique for

detection of stock price manipulation. They used GA with an Artificial Neural Network

technique to classify activities that would have potential manipulation. Pirrong [108],

examined the Ferruzi Soy bean episode of 1989 and demonstrated how to detect manipu-

lation in the commodity market. He concluded that the regulation in the US market was

complex, confusing, and inefficient in futures and securities. It means that the market

relies on costly preventative measures rather than ex post deterrence. Ogut et al. [98],

investigated the best technique to detect stock price manipulation. They developed a

data mining technique (ANN and SVM), and multivariate statistical technique (discrim-

inant analysis, logistic regression) for the Istanbul stock market. They concluded that

the performance of the data mining technique in terms of total classification accuracy and

sensitivity statistics was better than those of the multivariate techniques. Comerton-Forde

et al. [32], demonstrated the impact on an equity market by using the close price manip-

ulation cases. They further constructed an index to measure the probability and intensity

of closing price manipulation and estimated its classification accuracy. David et al. [35],

modeled cross-border market surveillance activities as service systems that interact in a

service oriented economy. In the paper, the market surveillance activities are described as

user or customer driven service value networks. The cases were considered as configuration

of value networks and value propositions in which the provider and the customers of the

service are assumed to be the regulator.

Toumi et al. [142], proposed an efficient method using two variants of the VNS heuristic to

solve the (0-1) quadratic knapsack problem. They compared large size instance with 1000

and 2000 binary variables, and compared the results with other results in the literature.

Pererira al et. [105], investigated a test assembly design problem. They solved the problem

by implementing various neighborhood and variable neighborhood search methods, and

Chapter 2. Literature Review 46

found their results outperformed the results obtained in the previous literature. Puchinger

et al. [112], proposed Relaxation guided variable neighborhood search. That is based on

a general VNS scheme and a new variable neighborhood descent (VND) algorithm. The

relaxations are used as an indicator for the potential gains of searching the corresponding

neighborhood. The algorithm was tested on multiple dimensional knapsack problems and

achieved promising results. Durate et al. [46], explored the adaptation of VNS to solve

multi-objective combinatorial optimisation problems. They described how to design the

shake procedures, the improvement methods and acceptance criteria for different VNS

algorithms with more than one objective. They validated their proposed design on multi-

objective combinatorial problems.

In chapter 4, we have introduced a unique financial derivative problem, that is currently

being faced by financial regulators around the world. The logic of the problem is to match

the trades with the corresponding CFD’s. We have defined the mathematical model and

have implemented the variants of VNS, and have discussed the results.

2.2.9 Performance Measures in Scheduling

Performance measures have become a vital issue in scheduling problems. Stating an objec-

tive for a scheduling problem is not complex as it has various parameter and the industrial

requirement varies depending on their needs. A large number of scheduling problems have

been studied with regular performance measures. The most widely considered regular

performance measures are [94].

• Makespan: The objective is to minimize the maximum completion time of the sched-

ule.

• Mean flow time: The objective is to minimise the average time spent by a job in the

system. Flow time is defined as the elapsed time from when the job is ready to be

processed until it has finished.

• Total tardiness: The objective is to minimise the summed lateness of all jobs in the

system. Lateness is defined by how much later a job has finished after its deadline.

Makespan play a key role in maximising the productivity and resources. Makespan and

total flow time are the key measure for maximising the system utilisation and work in

progress, while the tardiness is related to job due dates. In recent times, delivery has

Chapter 2. Literature Review 47

become a significant factor while industries offer a variety of products to their customers.

The need of efficient delivery has become a key issue as delay in delivery may result in

loss of customers. Hence, scheduling problems with due dates have become an important

parameter in most industries and areas looked at by researchers.

Most of the research reported in the literature is focused on the single objective case of

shop scheduling problems, in which the makespan is minimized, while fewer researchers

have investigated multi-objective scheduling problems. However, multi-objective prob-

lems have become an important factor in the current dynamic competitive environment.

Some researchers have considered the multi-objective nature of scheduling problems but

restricted to two or three criteria of performance measures. Most of the research work

tends to be based on highly unrealistic assumptions, implementing it is almost infeasible,

to deal with scheduling problems in a real world manufacturing environment. This envi-

ronment is complex, dynamic, and stochastic, and subjected to different disruptions due

to a wide range of stochastic uncertainties.

2.2.10 Summary and Conclusion

From our study of the existing literature, we see that the scheduling problem is a complex

and important field of research with different areas of application in the industrial sectors.

We can see that the scheduling problem has become more complex due to the current

requirements and evolution of the industry.

Despite the relative implementation of exact algorithms and heuristic methods, they are

still incapable of solving medium and large instances. It is essential to study non-exact

but efficient heuristics [[116],[86], [5]]. Therefore, efficient metaheuristic procedures, such

as local search methods, simulated annealing (SA), tabu search (TS), ant colony optimiza-

tion (ACO) and variable neighborhood search system (VNS), particle swarm optimization

(PSO) and genetic algorithm (GA), have been proposed to find an approximate solution,

close to the optimum, with considerably less computational time.

We have found from the literature that the VJS problems are the least explored and require

more focus. Therefore, our attention in this research is focused on the VJS problems. We

have used metaheuristic neighborhood and biological algorithm with hybrid solution to

resolve these scheduling problems. Details of our research is provided in Chapter 3.

Chapter 3

Vector Job Scheduling

3.1 Introduction

In this chapter, we first describe the mathematical formulation of the problem, then, we

implement biological algorithm, ACO, proposed by Dorigo and Caro [39], and then VNS

proposed by Mladenovic and Hansen [90]. We, propose a hybrid algorithm that combines

ACO and VNS for vector job scheduling problem. Finally, we compare our results with

an integer programming solver, CPLEX.

3.2 Mathematical Programming Formulation

The vector job shop problem (VJS) is to schedule the jobs on the corresponding machines

so that the time of the assembly machine to process the jobs is minimizsed. The processing

of the jobs should remain in the same sequence on each machine, and no job is allowed to

be interrupted. The mathematical programming formulation is given below:

Indices

• J = {1, 2, . . . , j, . . . , n} denotes a set of jobs,

• M = {1, 2, .., i, .,m} denotes a set of machines.

Data

48

Chapter 3. Vector Job Scheduling 49

• tij be the time spent on machine i by job j. ∀ i εJ , jεM

Variables

• Cj be the time when job j is completed, ∀j εM

• xjk a binary variable that gets value 1 if job j is performed before job k.

xjk =

{
1 if job j is performed before k

0 otherwise.

The complete mathematical programming formulation can be written as:

minimise

n∑
j=1

Cj (3.1)

subject to

Cj ≥ tij +

n∑
k=1k 6=j

tikxkj , ∀ j ∈ J, ∀ i ∈M (3.2)

xjk + xkj = 1, ∀ j, k ∈ J, j 6= k (3.3)

xjk + xkl + xlj ≤ 2, ∀ j, k, l ∈ J, j 6= l 6= k (3.4)

xjk ∈ {0, 1},∀ j, k ∈ J. (3.5)

The objective function is to minimise the total completion time. The constraint group

(3.2) determines the earliest completion time of each job by considering the time of its

completion on every machine. The summation term ensures that all earlier tasks on this

machine are completed before this task. The constraint group (3.3) ensures that job j is

performed always before job k, or job k is completed before job j. If job j is before job

k then, it must be true for all machines. The constraint group (3.4) is a cycle breaking

constraint, i.e., it ensures that the ordering of jobs does not fall into a cycle. Thus, if job

j is before job k and job k is before job l, then job j must be before job l.

Chapter 3. Vector Job Scheduling 50

3.3 Construction for VJS

To solve the VJS problem, in this section we first present two metaheuristic based ap-

proaches, ACO and VNS, and later we propose a hybrid heuristic ACOVNS, that combines

the both ACO and VNS approaches.

3.3.1 ACO

The ACO [39], was discussed in detail in Chapter 2 of this thesis. We use this approach

in our Vector Job Scheduling (VJS) problem.

In our VJS problem, we establish the sequence of jobs in order to minimise the completion

time. We could formulate the VJS problem by constructing an edge between the jobs,

only if the corresponding job can be performed by the corresponding machine component.

This process could be modelled in the form of a matrix, where Table 3.1 is a sample of

the constructed matrix with m machines and n jobs, and the rows represent the machines

and the columns represent the jobs. Each matrix cell represents the processing time tij .

Our objective is to sequence the jobs to minimise the total processing time C is minimized.

Machine/Job 1 2 3 4 .. j .. n

1 t11 t12 t13 t14 .. t1j .. t1n
2 t21 t22 t23 t24 .. t2j .. t2n
3 t31 t32 t33 t34 .. t3j .. t3n
4 t41 t42 t43 t44 .. t4j .. t4n
. t..

i ti1 ti2 ti3 ti4 .. tij .. tin
. t..

m tm1 tm2 tm3 tm4 .. tmj .. tmn

Table 3.1: m machines and n jobs

3.3.2 Solution Construction

We construct a disjunctive graph G = (N,E) where N is the set of nodes that represent

processing times tij , job j on machine i. The initial node N0 and the final node Nn+1 are

considered dummy nodes that are used to indicate the start and the end node for the ants.

E is a set of edges. Each edge has a measure associated with the amount of pheromone

Chapter 3. Vector Job Scheduling 51

λ scent deposited, while the heuristic information is the inverse of processing time on the

nodes. For example, In Figure 3.1, we consider 3 set of jobs, J1, J2, J3 to be processed

on a machine i1. Each set of job consists of permutation of jobs j′1, j′2, j′3. The circle

represents the processing time tij in which a job j is performed on a machine i. An ant k

starts from the initial node, finds its own path and creates a solution by forming a sequence

of visiting nodes. We have to verify that the ants do not violate any of the constraints

such as maintaining the correct job ordering on each machine. The visiting of nodes is in

sequential ordering. Each path on the graph from node N0 to node N10, which does not

violate any of the constraints, represents one permutation of jobs, i.e., one solution of the

problem. Thus, if the first node is job j1 on machine i1 then the ant k might have a choice

of choosing j2 or j3 on machine i1, allocating all corresponding jobs in machine i1. The

same job sequence is followed on all other machines.

Figure 3.1: 3 set job sequence for machine 1(i1)

Initially, the memory is empty and is updated according to the ants movements through

different nodes. The ant memory can be separated into three parts. Part one is the set

of nodes not yet visited. Part two consists of the set of nodes that the ants are able to

visit in the current iteration, to satisfy the constraints, and finally, part three contains a

set of all nodes that have been visited so far. When the ant is placed at the initial node,

it travels accordingly after completion of one cycle, each ant should have a sequence of

nodes in group three that satisfies the constraints of visiting one node only, and the job

machine ordering constraints too. The parameters for the ACO are as follows:

• k: The number of ants,

Chapter 3. Vector Job Scheduling 52

• λ(i, j): The pheromone deposit on the edge (i, j),

• ρ: The pheromone evaporation parameter,

• α: The level of pheromone scent deposited by the current ants,

• β: The heuristic information determined by the ants,

• η(j): The heuristic information stored at node j,

• N : The set of all nodes,

• V : The set of visited nodes,

• U : The set of unvisited nodes.

Starting from the initial node, each ant chooses the next node by using the transition

probability rule, which uses the amount of pheromone deposited on its path and the

heuristic information. Given U is the set of unvisited nodes, we consider an ant that has

travelled to node i. The probability of choosing the next node j is given by;

Pk(i, j) =

[λ(i,j)]α.η(j)β∑
jεU [λ(i,j)]α.η(j)β

if jεU,

0 otherwise.

where Pk(i, j) is the probability with which ant k chooses to move from node i to node j;

η(j) = 1/p(j), which is the inverse of the processing time of operations j, p(j) = tij and j

represents job j on machine i.

3.3.3 Pheromone Update

We have discussed the pheromone in chapter 2 under ACO section. Here we extend

the pheromone update for the VJS problem. Once the ant completes the tour we use a

procedure called pheromone update. The pheromone trail updates globally and locally.

A global pheromone update, focuses on edges belonging to the trail traveled by the ant

within the shortest time. Once the time is completed, the best ant deposits pheromone

on visited edges, while the other edges remain unchanged. The amount of pheromone

deposited, ∆ λ(i, j), on each visited edge (i, j) by the best ant is inversely proportional

to the length of the time of the tour. The shorter the time, the greater the amount of

pheromone deposited on the edges. The global updating of pheromone is given by:

Chapter 3. Vector Job Scheduling 53

λ(i, j) = (1− ρ)λ(i, j) + ρ∆λ(i, j)best

where,

∆λ(i, j)best =

{
1

Lbest
if the best ant uses the edge (i,j) in its sequence,

0 otherwise.

where ρ is the evaporating parameter, 0 < ρ < 1. Lbest is the length of the best sequence in

the current iteration. The best sequence determines the amount of pheromone deposited

in each iteration. Searching continues while the current pheromone level is below the

previous value. The local pheromone update helps to avoid a strong edge being chosen by

all the ants. This is done by changing the amount of pheromone update when an edge is

chosen by a specific ant. The local update is given by

∆λ(i, j) = (1− ρ)λ(i, j) + ρ∆λ0

Chapter 3. Vector Job Scheduling 54

where, ∆λ0 is a parameter which is set to 1.

Algorithm 12: ACO

1 Initialize all edges to pheromone level λ0 = 1;

2 Place each ant k on a randomly chosen job j on a particular machine i;

3 for each iteration t do

4 while each ant k has not completed its set of jobs J do

5 for each ant k do

6 Move ant k to the next job j by the probability function Pk;

7 end

8 for each ant k with a complete set of jobs J do

9 Evaporate pheromone ρ;

10 Apply pheromone updates;

11 if ant k time is the shortest then

12 global pheromone update;

13 Update global solution;

14 end

15 end

16 end

17 end

3.3.4 Variable Neighborhood Search (VNS)

Variable Neighborhood Search (VNS) have been discussed in detail in Chapter 2, under

VNS section in this thesis. For more details about VNS and its applications see e.g.

[61, 19, 93, 91]. Here implement VNS for the VJS problem.

In our implementation, the solution of the problem is represented by two arrays:

• A sequence of jobs j1, j2, ..., jn.

• The sequence of corresponding completion times, Cj .

Therefore, we present a solution s as s = (J́ , C). Our proposed algorithm is based on

general VNS that comprises shaking and local search techniques. The proposed algorithm

uses three neighborhood structures. The first is the 1-opt moves, the second is the insertion,

Chapter 3. Vector Job Scheduling 55

and the third is the swap. Below is the description of all these operations. Let s be the

initial solution and s̈ the new solution after applying the respective neighborhoods, then:

• 1-Opt neighborhood: A new solution is reached by interchanging two consecutive

elements in the current array (J́ , C).

• Insert neighborhood: A new sequence is generated by inserting one job between any

two other jobs. For example job 7 is inserted between jobs 4 and 5 to get a new

sequence of jobs,J́ .

Initial solution 3 4 5 6 7 1

After Insert 3 4 7 5 6 1

• Swap neighborhood structure: A new sequence is generated by interchanging the

position of jobs in the sequence of jobs J́ . For example, job 6 in the 4th position is

interchanged with job 3 which is in the 1st position.

Initial Solution 3 4 5 6 7 1

After Swap 6 4 5 3 7 1

The swap neighborhood structure is used in the shaking step to improve the initial so-

lution s i.e., neighborhood Nk(s) is defined by consecutive swaps of jobs J́ followed by

updating its corresponding values of Cj to get a better solution ṡ. In order to improve the

solution ṡ, we use a local search step, consisting of a one opt neighborhood, by changing

the consecutive jobs J́ ; then, we change the neighborhood to insertion by inserting job ji

between any two jobs ju, jv in the job sequence J́ . At each neighborhood, a solution s̈ is

generated and the best solution, if improved, is updated. The process of VNS pseudo code

is presented below. The shaking is executed in step 4 with local search in steps in 5-16,

Chapter 3. Vector Job Scheduling 56

which are used to improve the solution; n represents the maximum number of loops.

Algorithm 13: VNS

1 Generate an initial solution s randomly;

2 Iteration t← 0;

3 do

4 ṡ = Swap(s);

5 loop← 0;

6 do

7 count← 0;

8 max← 2;

9 do

10 if count← 0 then s̈ = Swap(ṡ);

11 if count← 1 then s̈ = Insert(one−Opt(ṡ));
12 if f(s̈) ≤ f(ṡ) then count← 0; ṡ← s̈ ;

13 else count+ +;

14 while count < max;

15 loop+ +;

16 while loop < n(n− 1);

17 if (f(ṡ) ≤ f(s)) then s← ṡ ;

18 t+ +;

19 while stopping condition is not met ;

3.3.5 Hybrid Algorithm

We propose a hybrid approach, ACO-VNS, that uses the ACO algorithm to generate the

best/good solution, and then VNS to improve that solution.

We have proposed this approach because of the distinct features of the ACO and VNS. As

discussed, ACO uses ants to construct a solution by exploring a search space and updating

its pheromone using existing heuristic information. The wider,the ant explores the better

the solution. It does not require any initial solution - ants are able to explore in the search

space without it. But, on contrary, VNS requires an initial solution - it is able to find a

better solution each time during a local search until a local optimum is reached. Hence,

it would be beneficial to use an ACO-VNS approach, where ACO initially generates a

good or best solution, which is then used as the initial solution for VNS. Since ACO does

Chapter 3. Vector Job Scheduling 57

not require an initial solution, a VNS-ACO approach may not be helpful as ants would

still explore a search space discarding the initial solution produced by VNS. Therefore,

it is better to use ACO first, and then improve initially by using various metaheuristic

algorithms, such as VNS. This is the reason why we are not exploring VNS-ACO approach,

and are focusing on the ACO-VNS approach.

Algorithm 14: Hybrid ACO+VNS

1 Generate solution from ACO algorithm 1;

2 Iteration t← 0;

3 do

4 ṡ = Swap(s);

5 loop← 0;

6 do

7 count← 0;

8 max← 2;

9 do

10 if count← 0 then s̈ = Swap(ṡ);

11 if count← 1 then s̈ = Insert(one−Opt(ṡ));
12 if f(S̈) ≤ f(ṡ) then count← 0; ṡ← s̈ ;

13 else count+ +;

14 while count < max;

15 loop+ +;

16 while loop < n(n− 1);

17 if (f(ṡ) ≤ f(s)) then s← ṡ ;

18 t+ +;

19 while stopping condition is not met ;

3.4 Computational Results

We have used an Intel core dual i7 processor, 3.4GHz with windows 7, 64-bit operating

system with 16GB RAM. The ACO and VNS have been developed in the C++ language.

As, our problem is new, we are unable to find any benchmark instances.

We have used instances from other scheduling problems used by various researchers. As

discussed in chapter 2, the scheduling problem can be classified into various types. We

have carefully chosen 14 benchmark instances from different types of scheduling problems

Chapter 3. Vector Job Scheduling 58

so that our results are constructed in a efficient way. We have restricted ourselves to basic

scheduling problems, the processing times are fixed, there are neither set-up times nor due

dates nor release dates, etc. The selected instances are used in other scheduling problems.

• Fisher and Thompson [51], have used a genetic algorithm that focuses on initial

population to obtain an optimal or near optimal solution. They have introduced 66

benchmark instances. We have chosen the 10x10 instance.

• Lawrence instances [77], have investigated heuristic scheduling techniques for con-

strained project scheduling problems. He has given various benchmark instances.

We have chosen 15x15, 30x10, 15x10, 20x5 of his instance for our problem.

• Storer, Wu and Vaccari [132], have proposed two methods both of which are based

on novel definitions of solution spaces and of neighborhoods in these spaces. The

proposed methodology are developed for job shop scheduling problems. They have

further given various benchmark instances and we have chosen 20x10, 20x15, 50x10

instances.

• Talliard [137], have proposed 260 randomly generated scheduling problems, their size

is greater than that of the rare examples published. These sizes correspond with real

dimensions of industrial problems. The types of problems that are proposed are: the

permutation flow shop, the job shop and the open shop scheduling problems. We

have chosen 100x5,100x10, 100x20, 200x10, 500x20 instances.

• Yamada and Nakano [148], have implemented genetic algorithm to solve large scale

scheduling problems and have given various benchmark instances. We have chosen

20x20 instance.

The following section contains the parameter setting for the ant system and the results

discussion.

3.4.1 Setting Parameter Values for ACO

The choice of parameter values of the ACO algorithm play an important role in the quality

of thefinal solution. The ACO algorithm literature proposed by Liouane et al. [83], reviews

various parameter values. In VJS we set various parameter values accordingly to obtain

the best solution. We only consider the values in the range detailed in [83].

Chapter 3. Vector Job Scheduling 59

• α determines the quantity of pheromone deposited by the ants when they build their

solution. The higher the value, the more restrictive the ants ability becomes to

exploring new sequences. The lower the value, the more the ant is able to travel to

more unvisited edges, but it uses more computational time. From literature, it has

been found the value to be in the range of 1-10, and overall, the algorithm performs

best with a value of approximately 1 depending on the problem. We have used 1.

[83].

• β determines the heuristic information used by the ants. The value ranges between

1- 4. It has been observed from the literature review the value 1 might give the best

results. [83].

• ρ is the pheromone evaporation parameter. A higher value enables the ants to carry

out more searches. It has been noted that the value ranges between 0.1 - 0.7 for

obtaining good solutions. we have used 0.7 [83].

• k defines the number of ants belonging to the colony. There is a trade-off between

creating too many sequences, namely too many ants, versus fewer sequences namely

fewer ants. If the number of ants is low, the algorithm speeds up because of fewer

searches; in contrast, if the number of ants is high, the algorithm slows down because

of more search, but many more sequences are created with the scope of finding a

better solution. Our experiments suggest that the number of ants in the colony is

best to be between the ranges of 8 - 10. We have used 10 ants for our entire job

instances [83].

3.4.2 Results

We have computed the solutions for ACO, VNS, ACO+VNS and CPLEX. Three heuristic

methods are run for 1000 iterations and the best solution obtained is reported in the

Table 3.4, with computational time in brackets. We have computed the results for the

ACO parameters α and β parameter while ρ and the number of ants are kept constant at

0.7 and 10 respectively. The results are computed for each 14 benchmark instances that

has been selected through various literatures.

Chapter 3. Vector Job Scheduling 60

Parameter α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 11392 11505 12657 14175 15876 17781 19915 22305 24982 27980

(sec) 331 328 311 296 281 235 254 241 229 217

β=2 12759 12887 14175 15876 17781 19915 22305 24982 27980 31337

(sec) 291 288 274 260 247 235 223 212 201 191

β=3 14290 14433 15876 17781 19915 22305 24982 27980 31337 35098

(sec) 326 323 307 291 277 263 250 237 226 214

β=4 16005 16165 17781 19915 22305 24982 27980 31337 35098 39309

(sec) 365 362 344 326 310 295 280 266 253 240

Table 3.2: [20]× [5] ACO

Table 3.2 represents the ACO results for various values of α and β. The solutions are

reported for each β value in the row and its corresponding computational times are reported

in sec. In this table, we clearly see that the best solution is when α and β are 1. In this

case, the pheromone trail α is less and the evaporation rate ρ is set constant at 0.7. The

pheromones are evaporated in such a way that the ants are able to explore more search

space, because of less pheromone attraction to the ants, while the available heuristic

information β is less. Further, because of the ants exploration in the wider search space,

the computation time is high. We can see that the worst solution is when α and β are 10

and 4 respectively. In this case, the pheromone trail α is high and the evaporation rate ρ is

set constant at 0.7. The pheromones are evaporated in such a way that the ants are unable

to explore more search space, because of more pheromone attraction to the ants, while the

available heuristic information β is high. Further, the ants exploration is minimised in the

search space, meaning less exploration resulting in less computational time.

When α is less and β increases, we see that the solution and the computational time

increase. This is because the ants may not be able to explore the wider search space, as

the heuristic information have increased, even though the pheromone rate is less. This has

resulted in more computational time and high solution. But on the contrary, when β is

less and α increases, we see the computational time decreases and the solution increases.

In this case, the ants are restricted to less exploration in the search space because of high

concentration of pheromone, which leads to high solution and less computational time.

Please refer, Appendix A for further results on other 13 benchmarks.

Chapter 3. Vector Job Scheduling 61

Parameter α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 10883 10992 12091 13300 14630 16093 17702 19473 21420 23562

(sec) 9844 9746 9063 8429 7839 7290 6780 6305 5864 5453

β=2 12080 12201 13421 14763 16239 17863 19650 21615 23776 26154

(sec) 8860 8771 8157 7586 7055 6561 6102 5675 5278 4908

β=3 13530 13665 15032 16535 18188 20007 22008 24208 26629 29292

(sec) 9923 9824 9136 8496 7902 7349 6834 6356 5911 5497

β=4 15153 15305 16835 18519 20371 22408 24649 27113 29825 32807

(sec) 11113 11002 10232 9516 8850 8230 7654 7118 6620 6157

Table 3.3: [20]× [5] ACOVNS

Table 3.3 represents the ACOVNS results for various values of α and β for 20×5 instance.

For other instance please refer, appendix B. In the hybrid algorithms ACOVNS, we use

the ACO results as the initial solution for VNS. The shaking logic explores the local

neighborhood to improve the initial solution or to obtain the best solution, if there is any

improvement then the initial solution is replace by new solution and further exploration is

done to obtain any new solution that is better than the pervious solution. This exploration

in the neighborhood find the best solution and as a result increases the computational time.

In table 3.3, we clearly see, the solution improves at every stage of α and β, when compared

with Table 3.2, this is because of VNS shaking trying to find the best solution. Further,

we see the computational time increase when α and β increases when compared to Table

3.2. This is because when α and β increases, the initial solution given by ant may not be

the best solution, and VNS take significant computational time to find the best solution.

Chapter 3. Vector Job Scheduling 62

Constraint Variable Instance ACO VNS ACO+VNS CPLEX

7320 400 [20]× [5] 11392 10883 10883 10883

(331) (9654) (9844) (46020)

910 100 [10]× [10] 3211 3205 3205 3205

(30) (9321) (9735) (1170)

3090 225 [15]× [10] 7637 7530 7530 7530

(35) (9638) (9975) (25522)

3165 225 [15]× [15] 6958 6870 6870 6870

(96) (9644) (9980) (31278)

7420 400 [20]× [10] 11794 11341 11341 11341

(238) (9875) (10677) (2067290)

7520 400 [20]× [15] 12402 12021 12021 NA

(351) (9967) (10831)

7620 400 [20]× [20] 6664 6486 6486 NA

(181) (9998) (11456)

25530 900 [30]× [10] 24824 23268 23268 NA

(461) (14771) (16543)

120550 2500 [50]× [10] 68243 62841 62781 NA

(2538) (65244) (68022)

980600 10000 [100]× [5] 263505 233971 233944 NA

(13205) (302640) (351108)

982100 10000 [100]× [10] 267499 242959 242930 NA

(20193) (1041607) (1053421)

981100 10000 [100]× [20] 274356 248109 248025 NA

(16010) (566441) (598007)

7922200 40000 [200]× [10] 1056487 931889 931429 NA

(122576) (4930348) (5035668)

124510500 250000 [500]× [20] 6418210 5847759 5846398 NA

(672757) (19968785) (20851539)

Table 3.4: Best solutions for VJS instances

In Table 3.4, we have provided the best solution from ACO and ACOVNS. We have also

produced the solution from VNS and Cplex.

(i) In terms of solution quality, it is clear that ACO + VNS performs better than the

other algorithms, especially for larger problem instances. However, it uses more

computational effort than our general VNS algorithm;

(ii) CPLEX is unable to find results for large instances;

(iii) VNS outperforms ACO in all instances significantly,but uses more cpu time.

Chapter 3. Vector Job Scheduling 63

The result shows the computation time is high. One of the reasons could be our computer

system that has basic configuration with basic RAM and processing speed. we believe an

higher processing speed will definitely improve the computation time. Further, we have

used a single thread processing, if we were able to use the additional cores by developing

parallel processing this may reduce the computation time.

3.5 Summary

In this chapter, we observed that the first phase of the known assembly scheduling problem

[110], may have its own practical implementation, i.e., when the second assembly phase

is omitted. We call the first phase, proposed by Patkar et al. [104], a vector scheduling

problem. We have proposed a new mathematical programming formulation and solved

it with a commercial solver CPLEX. Further, we have presented four different types of

computational techniques to solve the VJS problem: (i) an exact method based on our

mathematical programming formulation; (ii) a heuristic method based on ACO meta-

heuristic; (iii) a heuristic method based on VNS and finally (iv) as a hybrid of ACO that

uses VNS as the local search method. Our goal was to identify the performance of these

techniques for the vector job scheduling problem. The performance analysis was carried

out by using the proposed method with our data sets and the results were compared. Our

results show that our newly constructed hybrid algorithm ACOVNS that uses ACO to

identify the best solution, which is used as an initial solution for VNS. Then, VNS uses

shaking logic to find the best solution in their respective neighborhoods when compared

to standalone algorithms liks ACO and VNS. Even though ACOVNS performs well, it

depends upon setting the right parameter values and selecting the number of ants for each

colony. From our analysis, we have shown that the pheromone trail updates between the

nodes plays a vital role in constructing the best solution.

Chapter 4

Financial Derivative Hedging

4.1 Introduction

A CFD, or Contract for Difference, is a leverage derivative product that allows specula-

tion/trade on price movements of the underlying instruments such as commodities, market

indices, shares etc. It is initiated by entering into a contract at an opening price of an

underlying instrument and betting on whether the price of that instrument increases or

decreases. To bet that the price increases then you would ’go long’ by buying the CFD

expecting the underlying instrument price to gain in value. If you are betting that the

price decreases then you would ’go short’ by selling the CFD expecting the underlying

instrument price to lose its value. In, either case when the contract is closed, depending

on the price difference between the open and close of the contract you make either a profit

or a loss.

CFD is a leveraging product. A contract can be bought for a fraction of the market value

of the underlying instrument. This fraction can be as small as 1%. The rest is covered by

the CFD broker. Even though only a fraction of the market value has been deposited it

can still be possible to gain 100% profit or loss when closing the contract if bought.

For example, Company A share price is x. If a buyer, buy a long CFD, say N shares of

company A, then the buyer pays a fraction (1 %) of N.x, with an expectation the share

price of company A increases. If the price increases from x to x+ u, then the seller of the

CFD will pay the buyer the price difference u.N . However, if the price decreases then the

buyer pay the seller at the close of the contract.

64

Chapter 4. Financial Derivative Hedging 65

Figure 4.1: CFD Structure(ws-alerts.com)

The buyer and seller of the CFD will enter into a contract. The buyer of the CFD is gener-

ally classified as the counter party (client) and the seller as a broker. In theory, a contract

is opened when the broker sells a CFD to the counterparty/client. The broker (seller)

is expected to buy or hold the equivalent number of shares (underlying). Similarly, the

contract is closed when the counterparty (buyer) sells back the CFD to the broker. When

the broker buys the CFD, the broker can go and sell the equivalent share (underlying) in

the market.

Regulators around the world especially in Europe have an objective to ensure the financial

market works well and to improve market integrity. European regulation has established

market abuse regulation to increase market integrity and investor protection. As a result

monitoring the market across all regulated asset classes has been a key functionality for

regulators.

In this chapter, we will be analyzing the CFD derivatives for underlain equity market.

We use intraday transaction data from January 2013 until January 2015 that has been

reported to one of the key European regulators. The transaction report contains all in-

traday transactions that have taken place across various trading platforms. Our aim is to

establish the corresponding match for CFD with its underlying equity hence to detect any

Chapter 4. Financial Derivative Hedging 66

unhedged CFD with its underlying equity. We have developed two different local search

methods and embedded them into BVNS to generate new variants, BVNS-LS- Type1 and

BVNS-LS-Type2 to find a better solution.

4.2 Problem Example

We illustrate our problem with a simple example. In figure 4.2, we have 6 trades and 5

CFD’s that contains volumes and prices. Our aim is to match all the 5 CFD with the

trades and list all the unmatched CFDs, in case, the trades are not matched. Once trades

are matched to a CFD they cannot be reused for any other CFD.

Figure 4.2: Example Trade and CFD’s

In our illustrative example, we generate an initial solution set of trades with volume

and price. We then use the first and the second neighborhood structure as our shaking

procedure. In figure 4.3, We can see Volume 1000 and 3000 are removed and volume 200

and 100 are added. Similarly, their corresponding prices 5.35 are removed and 5.10 are

added. We calculate the trade volume 300 by adding trade volumes 200 and 100 since

their mean price is 5.10, which exactly matches the first CFD volume 300 and price 5.10.

Therefore, the trade volume 100, 200 and their corresponding price 5.10 will be matched

against CFD volume 300 and price 5.10. But our aim is to find the unmatched CFD, hence

the matched volume and price for trades are removed, and the rest of the trade volume

and price are considered for the next CFDs.

Chapter 4. Financial Derivative Hedging 67

Figure 4.3: Example

By repeating the above shaking procedure for each CFD’s in our example we get the below

results, after the shaking procedure.

• CFD volume 300 and price 5.10 are matched with two TRADE volume (100 + 200)

and its price 5.10.

• CFD volume 1500 and price 5.35 are matched with one TRADE volume 1500 and

its price 5.35.

• CFD volume 1100 and price 5.35 are unmatched with any TRADE, even though the

price 5.35 matches with the CFD price but the volume 1000 and 3000 do not match.

• CFD volume 200 and price 5.11 are unmatched with any TRADE, even though the

volume 200 matches with the volume of CFD, the price 5.12 does not match.

• CFD volume 3000 and price 5.45 are unmatched with any TRADE, even though the

volume 3000 matches with the volume of CFD, the price 5.45 does not match.

In order to improve our solution for the shaking procedure, we use our two newly developed

algorithms as our local search procedure. We concentrate more on the unmatched CFD’s.

We have tuned our local search algorithm to identify the reason for the unmatched CFD’s.

This reason could be either an over/under volume or over/under price. Further, we would

match the best possible trades in order to have the minumum mismatch value for the

unmatched CFD’s. Our example Figure 4.4, represents the list of unmatched CFD’s and

the best possible trade match that has minimum mismatch value with the reason for the

unmatch.

Chapter 4. Financial Derivative Hedging 68

Figure 4.4: Unmatched

• In the above table,CFD volume 1100 is unmatched, the reason is the under volume

trade of 1000. Hence, the minimum difference is 100 or the match is missed by 100.

• In the above table, CFD price 5.11 is unmatched, the reason is the over price trade

of 5.12. Hence, the minimum difference is 0.01 or the match is missed by 0.01.

• In the above table, CFD price 5.45 is unmatched, the reason is the under price trade

of 5.35. Hence, the minimum difference is 0.10 or the match is missed by 0.10.

4.3 Data

The data used is provided by one of the key European regulators. The transaction data

is the implementation of transaction reporting that has been described in the Markets in

Financial Instruments Directive (MiFID). It is an obligation for trading firms to report

their trades to their local regulators that have been set out in the office of the journal of the

European Union, Commission Regulation EC No. 1287/2006 (Article 13/Annex 1). Firms

must report transactions when they execute a trade that is reportable. The report must

contain mandatory details of their transactions by the end of the following business day

(T+1) as specified in (Article 13/Annex 1). Transaction reports received from firms are

loaded into the transaction monitoring system. The purpose of the transaction reporting

is to detect and investigate suspected market abuse and also to maintain confidence in

financial markets and reduce financial crimes.

Our primary analysis is based on intraday transaction data for all the FTSE 100 stocks

over the period January 2013 until January 2015 in the UK equity market. For our analysis

we have considered only the CFD transaction data. The transaction data is reported on

a stock-by-stock basis that consists of all the executed trades across multiple regulated

Chapter 4. Financial Derivative Hedging 69

platforms and are reported in seconds. Further, we have used the price mode function

that would convert the price currency to GBP in case they were reported in a different

currency.

4.4 Mathematical Programming Formulation

Our problem is to find the mismatch CFD’s from a given set of CFD with its corresponding

trades. We structure our mathematical model in a way, to identify the mismatch CFD that

has the minimum cost in a given set of CFD’s with its respective trades. The identified

minimum cost CFD’s may not be the actual mismatch but it gives a guarantee result that

there is an unmatched CFD in the given CFD set.

Sets

• C = {1, 2, . . . , c, . . . , n} denotes a set of CFD’s,

• T = {1, 2, .., i, ., t} denotes a set of trades.

Data

• Vt be the volume of trades.

• Pt be the price of trades.

• V́c be the volume of CFD.

• Ṕc be the price of CFD.

• W+ be the weights on volume of CFD.

• W− be the weights on price of CFD.

Variables

• V̇c be the over volume of CFD.

• V̈c be the under volume of CFD.

• Ṗc be the over price of CFD.

• P̈c be the under price of CFD.

Ytc =

{
1 if trade t is used in balancing CFD c, t εT , cεC

0 otherwise.

Chapter 4. Financial Derivative Hedging 70

The complete mathematical programming formulation can be written as:

Minimize
c∑
c=1

(V̇cW
+ + V̈cW

+ + ṖcW
− + P̈cW

−) (4.1)

subject to ∑
t

VtYtc = V́c + V̇c − V̈c, ∀ c (4.2)

∑
t

VtPtYtc = V́c(Ṕc + Ṗc − P̈c), ∀ c (4.3)

∑
c

Ytc 6 1, ∀ t (4.4)

The objective function is to minimize the total CFD mismatch. The constraint group(4.2)

determines the over and under volume.(4.3) determines the over and under volume with

price of the CFD and (4.4) specifies that a trade can be used for at most one CFD.

4.5 Basic Variable Neighborhood Search (BVNS)

We have discussed several variants of VNS in Chapter 2. In our matching problem, we will

be using Basic Variable Neighborhood Search (BVNS) [90]. It uses a process to find the

next optimal solution from the most fitting neighborhood structure, then the solution is

further refined and improved by using a local search technique. This improved solution will

be the current solution from the neighborhood in the iteration. This process will provide

a good solution and save computational time without analysing the full neighborhood

structure.

Our proposed BVNS initially generates a random solution s, then it uses two neighborhood

structures namely Remove Fill and Add Remove as a shaking procedure to generate a

solution ṡ, and a local search to improve the shaking solution ṡ as input solution to get

a newly improved solution s̈. We then compare s̈ solution with the s in term of objective

function. If there is an improvement, we replace the current solution s with s̈. We define

the stopping criteria as a maximum number of iterations as 500 for shaking and local

search.

Let us assume k neighborhood structures N1, N2, ., Nkmax. The process starts with the

initial solution s. Performing the shaking procedure for local changes in the neighborhood

Chapter 4. Financial Derivative Hedging 71

we can obtain a better solution ṡ from N(s). Later, we perform a local search procedure

with a different neighborhood until a local optimum is obtained. Below is the general

working algorithm for BVNS:

Algorithm 15: BVNS

1 Initialization: select the neighborhood structure sets Nk, k = 1, 2, ..., kmax;

2 Generate a random initial solution s;

3 Set k = 1;

4 Repeat the following steps until k = kmax;

5 Shaking: generate a point ṡ randomly from Nk(s);

6 LS: implement Local search method to obtain local optimum s̈ from ṡ;

7 if s̈ is better than ṡ then set s = s̈ and k = 1 ;

8 else k = k + 1 ;

9 stop ;

4.5.1 Neighborhood Structure

Initially, group the trades into various random subsets. We match these subset groups to

the CFD. We define C as the set of trades that are considered to match each CFD and

C is its complement. We remove and add certain trades to match the CFD in order to

obtain the solution s. We use two type of neighborhoods to perform the shaking.

• The First neighborhood N1k, Remove and Fill, here trade volume Vt and trade price

Pt, are removed from C and Vt, Pt are added to C to get a better match.

• In the second neighborhood N2k, , Add and Remove, here trade volume Vt, trade

price Pt that are not in C are added to match the CFD by removing the combination

of trades Vt, Pt from C.

4.5.2 Local Search Neighborhood

We construct two new search algorithms in order to improve the solution. We implement

these algorithms as local search procedures in BVNS. We then compare the results of these

two local searches and report the solutions in the results.

Chapter 4. Financial Derivative Hedging 72

4.5.3 Search Type-1 (STYPE-1)

In this approach, we improve the solution by matching the trades to the CFDs to generate

new solutions that contain various CFD mismatches. We weight these mismatches with

a cost function. Later, we start with the worst CFD cost to re-match the CFD with the

trades, to either attain a better solution or achieve the same solution. Below is the pseudo

code for the STYPE-1.

Algorithm 16: STYPE-1

1 Initialize Set T = 0;

2 Set T́ =∞;

3 Set Oi = i;

4 for each i in CFDs do

5 solve(Oi);

6 Let EOi = Z;

7 T = T + Z;

8 end

9 if T ≥ T́ then break ;

10 else T́ = T ;

11 Let Ói, Éi = sort(Ei)and Oi;

12 Let Oi = Ói;

13 Display T́ ;

• Line 1: Initialise set T = 0,

• Line 2: Initialise all set of trades T́ to maximum,

• Line 3: Oi is the ordering of disaggregated sequence of each CFD’s.

• Line 4-8: For each CFD, i, we solve to match the corresponding CFD to the set of

trades. we capture the mismatch CFD and its corresponding trades in the new order

sequence Ei

• Line 9-10: We break, if there is no mismatch.

• Line 11-13: Depending on the mismatch cost, we sort and rematch the trades T to

CFD’s, in order to obtain a better sequence Ei or to minimise the CFD mismatch

cost.

Chapter 4. Financial Derivative Hedging 73

Algorithm 17: BVNS-STYPE-1

1 Initialization: select the neighborhood structure sets Nk, k = 1, 2, ..., kmax;

2 Generate a random initial solution s;

3 Set k = 1;

4 Repeat the following steps until k = kmax;

5 Shaking: N1k, N2k, ;

6 Local Search: STYPE-1;

7 if s̈ is better than ṡ then set s = s̈ and k = 1 ;

8 else k = k + 1 ;

9 stop ;

4.5.4 Search Type-2 (STYPE-2)

We reconstruct another search algorithm, STYPE-2, to solve each CFD independently.

Any trades used in matching the CFD are not available for the next CFD. If no mismatch

is found we exit otherwise, we sort the CFD mismatch from the largest to the smallest.

This constitutes the new ordering. This process is repeated until either no mismatch is

achieved or the current sequence has occurred previously. In which case, we know that we

have a mismatch and we also know its minimum value. Below is the pseudo code for the

STYPE-2.

Algorithm 18: STYPE-2

1 Initialize Set c = 0;

2 for each i in COi do

3 Z= solve(COi);

4 CSi = Z;

5 end

6 if
∑c

j=1CSi = 0 then break ;

7 else sort(CSi, COi) ;

8 for k in 1 to c− 1 do

9 if COi = OOk then break ;

10 else sort(CSi, COi) ;

11 end

Chapter 4. Financial Derivative Hedging 74

• Line 2-5: COi is the ordering of disaggregated sequence of each CFD’s. Z is the

objective function of solving the disaggregated CFD’s. For each CFDs, We solve

COi to get the unmatched CFD and its corresponding trades, CSi

• Line 6-7: If CSi is zero we break and exit the loop. We then sort the CSi to find

the worst cost of the unmatched CFD.

• Line 8-10: If there is a match we break, if not we repeat the process until we find a

better solution.

Algorithm 19: BVNS-STYPE-2

1 Initialization: select the neighborhood structure sets Nk, k = 1, 2, ..., kmax;

2 Generate a random initial solution s;

3 Set k = 1;

4 Repeat the following steps until k = kmax;

5 Shaking: N1k, N2k, ;

6 Local Search: STYPE 2;

7 if s̈ is better than ṡ then set s = s̈ and k = 1 ;

8 else k = k + 1 ;

9 stop ;

4.6 Numerical Results

Our experiment is performed on an Intel core i5 processor, 3.20GHZ, windows 7 with 64 bit

operating system. We collected the transaction data from the European regulator. Clearly,

we are only interested in solving the problem with more than one CFD. The reason for

including a problem set with one CFD is to validate our results. We deliberately included

data sets that contain unhedged data and grouped the data to increase the trade size. We

used AMPL as our coding language and our intention was to solve these problems using

solver.

Chapter 4. Financial Derivative Hedging 75

Constraint Variable Problem Instance Trades CFD BVNS-STYPE-1 BVNS-STYPE-2 CPLEX

26847 214680 new − CFD − 1 26831 8 0.00249122 0.00444 0.00444

(68.569) (39.39) (2278.63)

11996 47968 new − CFD − 2 11988 4 0.00084 0.00084 0.00084

(25.191) (8.127) (727.511)

6634 39756 new − CFD − 3 6622 6 0.067 0.0622 0.0622

(18.928) (13.135) (10687.1)

12485 112239 new − CFD − 4 12467 9 0.0417 0.0415 0.0418

(48.4523) (68.843) (10803)

53659 321906 new − CFD − 5 53647 6 0 0 0.00025

(34.32094) (13.712) (10378.1)

10454 114796 new − CFD − 6 10432 11 0.00476 0.00279 0.01016

(36.959) (72.228) (10197.5)

1146 7952 new − CFD − 7 1132 7 0 0 0.0000

(10.5535) (4.992) (10408.2)

598096 2392368 CFD − 9 598088 4 0.00044 0.000346 0.000946

(2973.8) (1258.66) (3859.59)

9219 46065 CFD − 6 9209 5 0 0 0.00515

(702.8) (702.8) (10659.8)

629 1881 CFD − 11 623 3 0.000485 0.000485 0.000485

(12.4937) (7.846) (655.625)

Table 4.1: Best Solution for CFD-Trades Matching

Table 4.1, contains the results which represents the problem size, the total number of

trades in an instance, the total number of CFD, the optimal CFD error cost for each

problem instance and the CPU seconds are given in brackets for BVNS-STYPE-1, BVNS-

STYPE-2,CPLEX with variable and constraints. We have compared the results between

two different search approaches. We found that type 2 search is more efficient than type

1 search. In all instances, we have validated our results in the following ways. For every

problem we have fixed the binary variables to the values determined by our algorithm and

then solved. After this solve, we unfix our assignments and resolve using the previous

optimal basis as a warm start for this resolve. For all the problems these two separate

solutions have produced the same results as our local search STYPE-2 algorithm produced.

Because of the combinatorial nature of these problems we decided not to parameterize

benchmark results. We report the best solution found by CPLEX. The stopping criteria

is a mixed integer solution limit of 100 and a default time limit. In the majority of cases

CPLEXwas unable to find a better solution, in case if a solution is found the time is

extensive.

Chapter 4. Financial Derivative Hedging 76

CFD Match Trades

1 Y 11

2 Y 22

3 Y 1

4 Y 7

Table 4.2: new-CFD-2

CFD Match Trades

1 Y 11

2 N 5

3 Y 5

Table 4.3: new-CFD-11

Table 4.2 and 4.3 contains the results of individual problem instance. The ’CFD’ column

represent the number of CFD to be matched. The ’Match’ column represent whether the

CFD volume and price are matched with its corresponding trades, Y indicates a successful

match and N indicates an unsuccessful match. The ’Trade’ column represent the total

trades used to match the CFD. In case, they are unmatched, the trades represents the

closed mismatch of the CFD.

In table 4.1 , we see that the BVNS STYPE-2 produces a better solution and efficient

computational time when compared to BVNS STYPE-1. This is because BVNS STYPE-

1 matches the trade to each CFD from its corresponding CFD set. If any of the CFDs are

mismatched, the process of rematching all trades to their CFDs restarts, and continues

until all CFDs are matched or the CFD mismatch cost has a better solution. But, on

the contrary, using BVNS STYPE-2, if we match the trades to corresponding CFDs, we

discard the matched trades and its corresponding CFDs from their respective sets. We

then, continue to match the remaining trades to the remaining mismatch CFDs, and repeat

this process the mismatch CFD cost is minimised.

Let us consider Table 4.2, where all CFD is matched. We see that there are 4 CFDs with

total number of trades 11988. Using BVNS STYPE-1, we consider all 11988 trades to

match with each CFD. In the table, we see the CFD1 is matched with 11 trades. We now

discard this CFD1 and the 11 trades, and choose CFD2 and try to find the match with

the remaining 11977 trades. As there are 22 trades being matched, we further discard

these 22 trades and CFD2. We now select CFD3 and match with the remaining 11955,

as there is match with one trade, we discard this trade and its corresponding CFD3.

We finally select CFD4 and match with the remaining 11954 trades which matches with

seven trades. Now, considering BVNS STYPE-2, it follows the same process as for BVNS

STYPE-2. Hence, if all CFDs are matched, the processes of BVNS STYPE-1 and BVNS

STYPE-2 are the same as mismatch cost function is not involved.

Chapter 4. Financial Derivative Hedging 77

lets us consider Table 4.3, where there is one mismatched CFD. In this table, we see that

there are three CFDs with the total number of trades 623. Using BVNS STYPE-1, we

consider all the 623 trades to match with each CFD. In the table, we see that CFD1

is matched with 11 trades. We now discard this CFD1 and the 11 trades, and consider

CFD2 and try to find the match with the remaining 612 trades. We see that we are unable

to match this CFD2, which is a mismatch, and a mismatch cost is associated with this

CFD2 mismatch. In this scenario, the previous matched trades and CFD1 is discarded

and CFD2 is considered with all trades, 623 to be matched. But, still CFD2 would not be

able to match, which would give a mismatch cost. CFD2 with minimum mismatch cost

is considered, that are associated with five trades which will be discarded, when CFD3 is

considered, which is matched with 6 trades and, similarly, CFD1, which has been matched

with 11 trades.

Now, using BVNS STYPE-2, we consider all 623 trades to match with each CFD. In the

table, we see that CFD1 is matched with 11 trades. We now discard this CFD1 and

these 11 trades. We then consider CFD2 and try to find the match with the remaining

612 trades. We see that we are unable to match this CFD2, which is a mismatch and a

mismatch cost is associated with this CFD2 that consist of 5 trades. Further, we try to

match CFD3 with the remaining 607 trades. We see that 6 trades are matched, and we

discard CFD3 with six trades. We reconsider the mismatch CFD2 and try to match with

the remaining trades 606, where we have eliminated the trades that matched CFD1 and

CFD2. If CFD2 is still mismatch, there will be a cost associated with it, we will choose

the minimum cost associated trades, which is 5 in this case.

4.7 Summary and Conclusion

We have introduced a neighborhood structure for shaking and two different local search

approaches for the local search technique. We have combined each of these local search

types with our shaking neighborhood and attained two new Variable Neighborhood Search

(VNS) variants for these types of matching problems. We further compared the results

of these two search methods. From our comparison the STYPE-2 local search approach

identifies the most optimal CFD-trades mismatch and minimise the cost with efficient

computational time. While STYPE-1 has taken significant time to find the solution, this

is because of the continuous rematching of the trades with the CFD’s.

Chapter 5

Conclusion

5.0.1 Overview

This thesis focuses on the metaheuristic algorithms used to resolve complex combina-

torial problems. During the research, wehave concentrated on two major metaheuristic

algorithms:

• Ant Colony Optimization (ACO).

• Variable Neighbourhood Search (VNS).

We have derived the problems from the manufacturing/scheduling and financial sectors,

and they are relevant to current real-time application in these industries.

Our research have introduced three new algorithms metaheurisitc algorithms. We have

implemented our newly developed algorithms to address two different combinatorial prob-

lems,and compared our results with other metaheuristic algorithms. Our results, shows

that our newly constructed algorithms, produced more efficient results in solving these

type of complex combinatorial problems that have multiple constraints when compared to

the stand-alone metaheuristic algorithms such as VNS and ACO.

5.0.2 The Hybrid Algorithms

In this thesis, we described a complex combinatorial problem VJS, and implemented bio-

logical algorithm ACO and neighborhood algorithm VNS. These two algorithms have their

78

Chapter 5. Conclusion 79

own unique features - ACO uses ant to explore the space and VNS needs a random initial

solution, and then uses shaking logic that performs local changes in the neighborhood to

obtain the best solution.

We combined these two unique features of ACO and VNS into one hybrid algorithm. To

construct this hybrid algorithm, we used ACO feature to find the initial solution, for VNS,

then later VNS uses shaking principle to find the best solution

The results indicate clearly that the hybrid algorithm ACOVNS is more effective than

stand alone algorithms such as VNS, ACO. The VJS is a complex scheduling problem

faced by various manufacturing industries. Our research provides a new hybrid algorithm

that achieves the best solution to resolve similar combinatorial problems faced by various

scheduling industries.

5.0.3 VNS Variants

Further in our research, we have considered a financial derivative problem. It is similar to

a goal programming problem that has been faced recently faced by financial regulators.

Our aim was to identity the mismatch between the trades and CFD’s. We have used

VNS as our base algorithm, and further extended by constructing two new local search

methods. This led to construction of two new VNS variant algorithms.

Our newly constructed VNS variant algorithms, has been implemented in the financial sec-

tor. Our results show that our algorithms are able to provide best solutions by identifying

mismatch trades, and, further, are able to find the closest mismatch. These algorithms

could solve similar combinatorial problems faced by organisations in the financial sector,

especially that focus on market surveillance and monitoring area in order to maintain

market integrity.

5.0.4 Future Work

There are so many challenges to address these kind of combinatorial problems,especially in

the scheduling and financial derivatives sectors. To expand several new research directions

and further developments, these are the possible proposals that could be considered and

investigated:

Chapter 5. Conclusion 80

• To further analyse, the ACO parameters α, β, ρ and to explore the heuristic infor-

mation could help in more efficient exploration by ants through local and global

pheromone updates.

• To investigate other optimisation algorithms such as Partial Swarm Optimization

(PSO) algorithms, which could be combined with VNS to construct a new hybrid

algorithm that may be able to reduce the computational time by exploring the search

space in an efficient manner.

• To explore other variants of VNS, especially Parallel Variable Neighborhood search

(PVNS) that may be able to reduce computational time or may increase exploration

in the search space especially for large contraint scheduling job shop problems.

• To examine the new VNS variant, Variable Neighborhood Program(VNP), that acts

like an artificial intelligence algorithm similar to machine learning algorithm. The

VNP could be able to understand the characteristic of data and may be able to

generate/determine some key relationship among the data, that could enable to

solve the problem, especially in financial sector that deals with high volume of data.

Appendix A

Results ACO for VJS

The results of ACO for parameter α and β

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 3211 3275 3668 4105 4603 5162 5789 6491 7279 8163

(sec) 30 27 26 24 22 21 19 18 17 15

β=2 3596 3668 4108 4597 5156 5782 6483 7270 8153 9142

(sec) 27 26 25 22 21 19 18 17 15 14

β=3 4028 4108 4601 5149 5774 6475 7261 8143 9131 10239

(sec) 26 23 22 20 19 17 15 13 12 11

β=4 4511 4601 5154 5767 6467 7252 8133 9120 10227 11468

(sec) 24 22 21 19 18 16 14 13 11 10

Table A.1: [10]× [10] ACO

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 7637 7828 8957 10467 12226 14275 16660 19438 22671 26434

(sec) 35 33 31 30 28 25 23 21 20 18

β=2 8783 9002 10262 11800 13784 16096 18789 21924 25573 29821

(sec) 33 31 30 29 27 24 21 22 19 15

β=3 9836 10082 11494 13216 15439 18028 21044 24555 28642 33399

(sec) 32 29 29 28 25 21 19 20 17 13

β=4 11017 11292 12873 14802 17291 20191 23569 27501 32079 37407

(sec) 31 28 27 25 23 20 17 16 14 12

Table A.2: [15]× [10] ACO

81

ACO Results on VJS. ACO Results 82

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 6958 7062 8192 9175 10339 11815 13502 15430 17631 20146

(sec) 96 94 91 88 85 82 77 72 67 61

β=2 7932 8051 9339 10460 11786 13470 15393 17590 20099 22966

(sec) 95 93 89 87 83 76 74 68 63 59

β=3 8884 9017 10460 11715 13200 15086 17240 19701 22511 25722

(sec) 93 91 88 86 81 73 71 64 61 55

β=4 9950 10099 11715 13121 14784 16896 19309 22065 25213 28809

(sec) 91 89 86 84 78 72 69 61 59 45

Table A.3: [15]× [15] ACO

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 11794 12065 13573 15338 17332 19585 22131 25008 28259 31933

(sec) 238 235 230 228 224 220 215 209 201 199

β=2 13681 13996 15745 17792 20105 22719 25672 29009 32781 37042

(sec) 233 231 228 221 219 218 210 207 197 194

β=3 15323 15675 17635 19927 22518 25445 28753 32491 36714 41487

(sec) 231 229 225 219 215 211 205 201 195 189

β=4 17161 17556 19751 22318 25220 28498 32203 36389 41120 46466

(sec) 229 226 220 214 210 208 203 199 191 183

Table A.4: [20]× [10] ACO

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 12402 12638 14393 16860 19749 23133 27097 31739 37177 43545

(sec) 351 345 338 330 325 318 313 305 300 295

β=2 14262 14533 16552 19389 22712 26603 31162 36500 42753 50077

(sec) 343 339 336 326 321 312 309 301 295 286

β=3 15974 16277 18539 21716 25437 29796 34901 40880 47884 56086

(sec) 340 335 330 321 318 309 303 299 292 281

β=4 17891 18231 20763 24322 28489 33371 39089 45786 53630 62817

(sec) 339 330 325 319 315 305 301 295 291 279

Table A.5: [20]× [15] ACO

ACO Results on VJS. ACO Results 83

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 6664 6844 7994 9605 11539 13863 16655 20009 24038 28878

(sec) 181 174 169 165 159 151 147 141 138 130

β=2 7997 8213 9584 11416 13715 16478 19796 23783 28572 34326

(sec) 172 170 168 160 155 150 144 138 135 126

β=3 8956 9198 10734 12786 15361 18455 22172 26637 32001 38445

(sec) 168 166 165 157 152 148 142 135 131 121

β=4 10031 10302 12022 14320 17204 20670 24833 29833 35841 43058

(sec) 165 161 159 152 149 145 140 133 128 119

Table A.6: [20]× [20] ACO

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 24824 25296 29242 33920 40042 47819 57100 68176 81392 97162

(sec) 461 457 450 445 440 435 428 425 418 410

β=2 30037 30608 35383 41044 47611 56774 67798 80954 96653 115387

(sec) 455 452 448 441 436 432 421 417 415 405

β=3 33641 34281 39628 45969 53324 63587 75933 90668 108252 129233

(sec) 451 449 443 439 431 429 419 413 409 401

β=4 37678 38394 44384 51485 59723 71217 85045 101548 121242 144741

(sec) 450 445 439 433 429 423 415 410 405 395

Table A.7: [30]× [10] ACO

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 68243 69881 82180 96972 114427 135024 160060 192527 231570 278517

(sec) 2538 2530 2523 2520 2514 2510 2495 2490 2485 2475

β=2 81209 83158 97794 115397 136168 160679 189601 223729 264000 312481

(sec) 2533 2529 2519 2515 2511 2503 2493 2484 2479 2467

β=3 90954 93137 109529 129245 152509 179960 212353 250577 295680 349979

(sec) 2529 2521 2511 2505 2501 2498 2491 2481 2475 2461

β=4 101869 104314 122673 144754 170810 201555 237835 280646 331162 391976

(sec) 2525 2520 2509 2501 2497 2491 2487 2478 2469 2451

Table A.8: [50]× [10] ACO

ACO Results on VJS. ACO Results 84

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 263505 267194 317159 377737 449885 535812 638153 760040 905207 1078102

(sec) 13205 13194 13185 13173 13157 13151 13147 13142 13137 13133

β=2 318841 323305 383763 457062 544360 648333 772165 919648 1095301 1304503

(sec) 13200 13189 13181 13170 13151 13142 13139 13137 13134 13125

β=3 357102 362101 429814 511909 609684 726133 864824 1030006 1226737 1461044

(sec) 13195 13181 13174 13165 13146 13140 13131 13128 13121 13117

β=4 399954 405554 481392 573338 682846 813269 968603 1153607 1373946 1636369

(sec) 13191 13175 13170 13161 13139 13133 13129 13125 13111 13101

Table A.9: [100]× [5] ACO

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 267499 275256 333060 419656 528767 666246 839470 1057732 1332742 1679255

(sec) 20193 20188 20181 20175 20167 20161 20151 20146 20137 20125

β=2 326349 335813 406334 511980 645095 812820 1024153 1290433 1625946 2048691

(sec) 20189 20184 20175 20169 20163 20152 20146 20138 20131 20128

β=3 365511 376110 455094 573418 722507 910358 1147052 1445285 1821059 2294534

(sec) 20185 20176 20164 20155 20151 20147 20141 20131 20125 20115

β=4 409372 421244 509705 642228 809207 1019601 1284698 1618719 2039586 2569879

(sec) 20179 20171 20161 20149 20146 20141 20133 20128 20119 20100

Table A.10: [100]× [10] ACO

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 274356 280117 333340 423342 537644 682808 867166 1101300 1398651 1776287

(sec) 16010 15990 15981 15973 15964 15955 15932 15926 15914 15902

β=2 331971 338942 403341 512243 650549 826197 1049270 1332573 1692368 2149308

(sec) 16001 15985 15975 15969 15959 15943 15923 15917 15904 15893

β=3 371807 379615 451742 573712 728615 925341 1175183 1492482 1895452 2407225

(sec) 15991 15981 15971 15965 15953 15932 15921 15910 15899 15887

β=4 416424 425169 505951 642558 816049 1036382 1316205 1671580 2122907 2696092

(sec) 15985 15979 15964 15962 15942 15923 15919 15901 15890 15876

Table A.11: [100]× [20] ACO

ACO Results on VJS. ACO Results 85

Parameter α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 1056487 1080786 1296943 1673057 2158244 2784134 3591533 4633078 5976670 7709905

(sec) 122576 122563 122548 122528 122502 122471 122454 122434 122409 122374

β=2 1267784 1296943 1556332 2007668 2589892 3340961 4309840 5559693 7172004 9251886

(sec) 122566 122549 122530 122514 122478 122439 122430 122405 122373 122324

β=3 1419919 1452577 1743092 2248589 2900679 3741876 4827021 6226857 8032645 10362112

(sec) 122551 122532 122522 122503 122453 122410 122399 122368 122334 122267

β=4 1590309 1626886 1952263 2518419 3248761 4190902 5406263 6974079 8996562 11605565

(sec) 122533 122513 122496 122484 122430 122382 122376 122335 122278 122201

Table A.12: [200]× [10] ACO

Parameter α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 6418210 6597920 8115441 10793537 14355404 19092688 25393275 33773056 44918164 59741158

(sec) 672757 672719 672671 672611 672530 672418 672285 672140 671971 671767

β=2 7766034 7983483 9819684 13060180 17370039 23102152 30725863 40865397 54350978 72286801

(sec) 672731 672688 672638 672578 672492 672374 672230 672068 671879 671651

β=3 8697958 8941501 10998046 14627402 19454444 25874411 34412966 45769245 60873096 80961217

(sec) 672704 672657 672605 672547 672461 672336 672186 672021 671827 671592

β=4 9741713 10014481 12317812 16382690 21788977 28979340 38542522 51261554 68177867 90676563

(sec) 672676 672624 672569 672499 672399 672258 672088 671899 671680 671407

Table A.13: [500]× [20] ACO

Appendix B

Results ACOVNS for VJS

The results of ACOVNS for parameter α and β

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 3205 3269 3661 4101 4593 5144 5761 6453 7227 8094

(sec) 9735 9871 10464 11091 11757 12462 13210 14003 14843 15733

β=2 3590 3661 4101 4593 5144 5761 6453 7227 8094 9065

(sec) 11501 11674 12376 13142 13949 14809 15838 16804 17841 18930

β=3 4020 4101 4593 5144 5761 6453 7227 8094 9065 10153

(sec) 12911 13125 13950 14816 15747 16727 17780 18888 20056 21299

β=4 4503 4593 5144 5761 6453 7227 8094 9065 10153 11372

(sec) 14494 14740 15669 16650 17701 18818 20009 21269 22613 24034

Table B.1: [10]× [10] ACOVNS

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 7530 7718 8953 10386 12047 13975 16211 18805 21813 25304

(sec) 9975 10145 10804 11506 10758 11458 12202 12996 13840 14740

β=2 8509 8722 10117 11736 13614 15792 18318 21249 24649 28593

(sec) 11787 11999 12788 13638 14541 15512 16397 17479 18641 19869

β=3 9530 9768 11331 13144 15247 17687 20517 23799 27607 32024

(sec) 13230 13491 14407 15370 16415 17519 18700 19958 21294 22711

β=4 10674 10940 12691 14721 17077 19809 22979 26655 30920 35867

(sec) 14854 15153 16186 17280 18460 19719 21070 22490 24013 25623

Table B.2: [15]× [10] ACOVNS

86

AppendixB. ACOVNS Results 87

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 6870 6973 7949 9062 10331 11777 13426 15306 17448 19891

(sec) 9980 10170 10932 11752 12634 13581 14600 15695 16872 18137

β=2 7832 7949 9062 10331 11777 13426 15306 17448 19891 22676

(sec) 10991 11211 12064 12993 13986 15062 16062 17286 18606 20015

β=3 8772 8903 10150 11571 13190 15037 17142 19542 22278 25397

(sec) 12331 12602 13588 14643 15788 17010 18322 19745 21228 22852

β=4 9824 9972 11368 12959 14773 16842 19199 21887 24952 28445

(sec) 13849 14159 15272 16466 17759 19142 20642 22243 23975 25801

Table B.3: [15]× [15] ACOVNS

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 11341 11602 11718 11835 11953 12073 12194 12316 12439 12563

(sec) 10677 10901 11664 12481 13354 14289 15290 16360 17505 18730

β=2 13156 13458 13593 13729 13866 14005 14145 14286 14429 14573

(sec) 12086 12400 13278 14226 15237 16332 17560 18815 20153 21574

β=3 14734 15073 15224 15376 15530 15685 15842 16000 16160 16322

(sec) 13555 13881 14895 15975 17127 18364 19695 21112 22630 24251

β=4 16502 16882 17051 17221 17393 17567 17743 17920 18100 18281

(sec) 15223 15591 16737 17960 19269 20683 22199 23815 25560 27417

Table B.4: [20]× [10] ACOVNS

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 12021 12249 14332 16768 19619 22954 26856 31422 36763 43013

(sec) 10831 11102 11979 12925 13946 15048 16237 17519 18904 20397

β=2 13824 14087 16482 19283 22562 26397 30885 36135 42278 49465

(sec) 12369 13421 14482 15653 16890 18249 19779 21360 23066 24906

β=3 15483 15777 18459 21597 25269 29565 34591 40471 47351 55401

(sec) 13885 14264 15434 16689 18042 19508 21093 22788 24643 26628

β=4 17341 17670 20674 24189 28301 33113 38742 45328 53033 62049

(sec) 15588 16027 17351 18776 20319 21987 23795 25744 27822 28867

Table B.5: [20]× [15] ACOVNS

AppendixB. ACOVNS Results 88

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 6486 6661 7993 9592 11510 13813 16575 19890 23868 28642

(sec) 11456 11742 12564 13444 14385 15392 16469 17622 18856 20176

β=2 7718 7927 9512 11414 13697 16437 19724 23669 28403 34084

(sec) 12726 13019 13936 14939 16005 17190 18542 19859 21266 22773

β=3 8645 8878 10654 12784 15341 18409 22091 26509 31811 38174

(sec) 14292 14686 15755 16888 18108 19408 20809 22314 23933 25650

β=4 9682 9943 11932 14318 17182 20618 24742 29691 35629 42754

(sec) 16042 16494 17708 19007 20397 21894 23499 25208 27029 28990

Table B.6: [20]× [20] ACOVNS

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 23268 23710 28215 33576 39955 47547 56581 67331 80124 95347

(sec) 16543 16146 17454 18868 20396 22048 23834 25764 27851 30107

β=2 27689 28215 33576 39955 47547 56581 67331 80124 95347 113463

(sec) 19201 19758 21365 23122 21266 22563 24581 26592 28757 31111

β=3 31012 31601 37605 44750 53252 63370 75411 89739 106789 127079

(sec) 21538 22084 23917 25887 28022 30324 32832 35542 38479 41640

β=4 34733 35393 42118 50120 59643 70975 84460 100507 119604 142329

(sec) 24161 24793 26863 29091 31513 34130 36972 40038 43357 47946

Table B.7: [30]× [10] ACOVNS

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 62781 64288 77145 92574 111089 133307 159968 191962 230355 276426

(sec) 68022 69859 75657 81936 88737 96102 104079 112717 122073 132205

β=2 70943 72645 87174 104609 125531 150637 180764 216917 260301 312361

(sec) 77563 79425 86029 93190 100944 104275 112767 122154 132306 143316

β=3 79456 81363 97635 117162 140595 168713 202456 242947 291537 349844

(sec) 86912 89286 96736 104792 113529 122990 133251 144366 156407 160955

β=4 88990 91126 109351 131222 157466 188959 226751 272101 326521 391825

(sec) 97385 100069 108439 117490 127305 137940 149468 161950 165440 179436

Table B.8: [50]× [10] ACOVNS

AppendixB. ACOVNS Results 89

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 233944 237219 282291 335926 399752 475705 566089 673646 801639 953950

(sec) 351108 357779 382824 409621 380948 407614 436147 466677 499345 534299

β=2 266696 270430 321812 382956 455717 542304 645341 767956 913868 1087503

(sec) 386238 392804 420321 449767 481279 519300 558790 597924 639796 684610

β=3 298700 302881 360429 428910 510403 607380 722782 860111 1023532 1218003

(sec) 432637 440884 471784 504835 540214 578068 618587 661946 708342 757967

β=4 334544 339227 403680 480380 571652 680266 809516 963324 1146356 1364164

(sec) 484601 493865 528503 565541 605198 647623 693028 741613 793585 849216

Table B.9: [100]× [5] ACOVNS

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 248025 253234 306413 370759 448619 542829 656823 794755 961654 1163601

(sec) 1053421 1083970 1180444 1285503 1399913 1524505 1660186 1807943 1968849 2144077

β=2 287709 293751 355439 430081 520398 629681 761914 921916 1115519 1349777

(sec) 1211446 1247790 1358866 1237954 1348160 1481627 1598697 1741005 1895975 2064744

β=3 322234 329001 398091 481690 582845 705243 853344 1032546 1249381 1511751

(sec) 1356881 1396256 1520560 1655922 1803341 1963882 2138714 2329112 2536465 2762259

β=4 360902 368481 445862 539493 652787 789872 955745 1156452 1399306 1693161

(sec) 1519748 1563879 1703133 1854768 2019904 2199741 2395593 2608880 2841149 3094098

Table B.10: [100]× [10] ACOVNS

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 242930 249975 304969 372063 453917 553778 675609 824243 1005577 1226804

(sec) 598007 615947 671382 731807 797669 869460 947711 1033005 1125976 1227313

β=2 269652 277472 338516 412990 503847 614694 749926 914910 1116190 1361752

(sec) 705658 724711 789964 860288 937738 1003379 1100732 1199825 1307835 1425566

β=3 302011 310769 379138 462548 564309 688457 839918 1024699 1250133 1525163

(sec) 790369 814113 887417 967317 1054425 1149368 1252856 1365665 1488630 1622647

β=4 338252 348061 424635 518054 632026 771072 940708 1147663 1400149 1708182

(sec) 885262 911878 994013 1083536 1181122 1287476 1403421 1529800 1667549 1817695

Table B.11: [100]× [20] ACOVNS

AppendixB. ACOVNS Results 90

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 931429 952852 1181536 1465105 1816730 2252745 2793404 3463821 4295139 5325972

(sec) (sec) 5035688 5191794 4828369 5166355 5527999 5914959 6329006 6772037 7246079 7753305

β=2 1127029 1152951 1429659 1772777 2198244 2725822 3380019 4191224 5197118 6444426

(sec) 5639980 5848659 6258090 6696171 7164924 7809767 8426775 9016674 9647869 10323237

β=3 1262273 1291305 1601218 1985510 2462033 3052921 3785622 4694171 5820772 7217757

(sec) 6316818 6512678 6968615 7456459 7978461 8537004 9134634 9774113 10458367 11190502

β=4 1413745 1446261 1793364 2223772 2757477 3419271 4239896 5257471 6519264 8083888

(sec) 7074877 7294258 7804916 8351313 8935968 9561554 10230943 10947183 11713545 12533584

Table B.12: [200]× [10] ACOVNS

Instance α=1 α=2 α=3 α=4 α=5 α=6 α=7 α=8 α=9 α=10

β=1 5846398 6010097 7512621 9390777 11738471 14673089 18341361 22926701 28658376 35822971

(sec) 20851539 21581343 23631570 25876570 28334844 31026654 33974186 37201734 40735898 44605809

β=2 7132606 7332319 9165398 11456748 14320935 17901168 22376460 27970575 34963219 43704024

(sec) 25021859 25997711 28467515 31171941 34133286 37034615 40552934 44405487 48624027 53243340

β=3 7988518 8212197 10265246 12831557 16039447 20049308 25061636 31327044 39158806 48948507

(sec) 28024529 29005431 31760995 34778337 38082328 41700204 45661772 49999698 54749736 59951022

β=4 8947140 9197660 11497075 14371344 17964180 22455225 28069032 35086290 43857862 54822328

(sec) 31387521 32486146 35572380 38951823 42652311 46704341 51141310 55999804 61319863 67145328

Table B.13: [500]× [20] ACOVNS

Appendix C

Results Financial Derivative

Problem

The results of Financial Derivative Problem for individual problem instances.

CFD Match Trades

1 Y 23

2 N 73

3 N 11

4 N 5

5 Y 1

6 Y 1

Table C.1: new-CFD-3

CFD Match Trades

1 Y 25

2 Y 16

3 Y 15

4 Y 8

5 Y 19

6 Y 14

Table C.2: new-CFD-5

91

AppendixC. FDP Results 92

CFD Match Trades

1 Y 19

2 Y 22

3 Y 16

4 N 9

5 Y 1

6 Y 17

7 Y 19

8 Y 18

Table C.3: new-CFD-1

CFD Match Trades

1 Y 10

2 Y 8

3 Y 8

4 Y 11

5 Y 11

6 Y 6

7 Y 2

Table C.4: new-CFD-7

CFD Match Trades

1 Y 9

2 Y 12

3 N 10

4 Y 9

5 Y 8

6 Y 6

7 N 3

8 Y 17

9 Y 2

Table C.5: new-CFD-4

CFD Match Trades

1 Y 10

2 Y 10

3 Y 7

4 Y 9

5 Y 2

6 Y 3

7 N 6

8 Y 1

9 Y 10

10 Y 22

11 Y 16

Table C.6: new-CFD-6

CFD Match Trades

1 Y 14

2 Y 852

3 Y 29

4 Y 50

5 Y 241

Table C.7: new-CFD-6

CFD Match Trades

1 Y 11239

2 N 6578

3 Y 712

4 Y 9987

Table C.8: CFD-9

Bibliography

[1] Aarts, H.L.E., and Korst, J.H.M., ”Simulated annealing and boltzmann machines: A

stochastic approach to combinatorial optimization and neural computing”, John Wiley

Sons Inc,(1988).

[2] Aarts, H.L.E., Korst, J.H.M., and Van Laarhoven, P.J.M., ”A quantitative analysis of

the simulated annealing algorithm: A case study for the travelling salesman problem”,

Journal of Statistical Physics, 50(1) (1988) 187-201.

[3] Akker, M.V.D., Hoogeven, H., and Woeginger, G.J., ”The Two-Machine Open Shop

Problem: To Fit or Not to Fit, That Is the Question”, Operations Research Letters, 31

(2003) 219-224.

[4] Al-Anzi, F.S., and Allahverdi, A., ”A hybrid tabu search heuristic for the two-stage as-

sembly scheduling problem”, International Journal of Operations Research, 3(2) (2006)

106-119.

[5] Alaykyran, K., Engin, O. and Doyen, A., ”Using ant colony optimization to solve hy-

brid flow shop scheduling problems”, International Journal of Advanced Manufacturing

Technology, 35(5-6) (2007) 541-550.

[6] Alkandari, A.M., ”3D packing of balls in different containers by VNS”, PhD thesis

School of Information Computing and Mathematics Brunel University UK, (2013).

[7] Amaldass, N.I.L., Lucas, C., and Mladenovic, N., ”A heuristic hybrid framework for

vector job scheduling”, Yugoslav Journal of Operations Research, 27 (2017) 31-45.

[8] Andreatt, A., and Ribeiro, C., ”Heuristics for the phylogeny problem”, Journal of

Heuristics, 8(4) (2002) 429-447.

[9] Artigues, C., and Roubellat, O., ”An efficient algorithm for operation insertion in

a multi-resource job-shop schedule with sequence-dependent setup times”, Production

Planning and Control, 13(2) (2002) 175-186.

93

Bibliography 94

[10] Baker,K.R., and Kanet,J.J., ”Job shop scheduling with modified due dates”, Journal

of Operations Management, 4(1) (1983) 11-22.

[11] Bansal, N., Vredeveld, T., and Van-Der-Zwaan R ., ”Approximating vectorscheduling:

almost matching upper and lower bounds”, Springer, Heidelberg, 8392(3) (2014) 47-59.

[12] Baruah, S., Bonifaci, V., D’Angelo, G., Marchetti-Spaccamela, A., Van-Der-Ster, S.,

and Stougie, L., ”Mixed criticality scheduling of sporadic task systems”, Proceedings of

the 19th annual European symposium on algorithms (ESA), 6942(4) (2011) 555-566.

[13] Barzokia, R.M., Hejazia, R.S., and Mazdeh, M.M., ”A Branch and Bound Algorithm

to Minimize the Total Weighed Number of Tardy Jobs and Delivery Costs”, Applied

Mathematical Modelling, 37(7) (2013) 4924-4937.

[14] Battiti, R., and Tecchiolli, G., ”The continuous reactive tabu search: Blending com-

binatorial optimization and stochastic search for global optimization”, Annals of Oper-

ations Research, 63 (1996) 153-188.

[15] Bar-Yam, Y., ”Dynamics of Complex Systems”, Studies in Nonlinearity Addison-

Wesley Reading MA,(1997).

[16] Bauer, A., Bullnheimer, B., Hartl, R.F., and Strauss C., ”An ant colony optimization

approach for the single machine total tardiness problem”, Proceedings of the 1999 IEEE

Congress on Evolutionary Computation, (1999) 1445-1450.

[17] Bonifaci, V., and Wiese, A., ”Scheduling unrelated machines of few different types”,

CoRR (2012).

[18] Brasel, H., Herms, A., Morig, M., Tautenhahn, T., Tusch, J., and Werner, F., ”Heuris-

tic Constructive Algorithms for Open Shop Scheduling to Minimize Mean Flow Time”,

European Journal of Operational Research, 189 (2008) 856-870.

[19] Brimberg, J., Hansen, P., and Mladenovic, N., ”Attraction probabilities in variable

neighborhood search”, 4OR, 8(2) (2010) 181-194.

[20] Blum, C., ”Beam-ACO hybridizing ant colony optimization with beam search: an

application to open shop scheduling”, Computers and Operations Research, 32(6) (2005)

1565-1591.

[21] Blum, C., and Roli, A., ”Metaheuristics in Combinatorial Optimization: Overview

and Conceptual Comparison”, ACM Computing Surveys, 35(3) (2003) 268-308.

Bibliography 95

[22] Campbell, H.R., and Smith, D. M., ”A heuristic algorithm for n-jobs m- machines

sequencing problem”, Management Science, 16 (1970) 630-637.

[23] Carlier, J. and Pinson, E., ”An algorithm for solving the job-shop problem”, Man-

agement Science, 35(2) (1989) 164-176.

[24] Cerny, V., ”Thermodynamical approach to travelling salesman problem: an efficient

simulation”, Journal of Optimization Theory and Applications, 45 (1985) 41-51.

[25] Chekuri, C., and Khanna, S., ”On multidimensional packing problems”, SIAM J

Computer, 33(4) (2004) 837-85.

[26] Chelouah, Y.R., and Siarry, P., ”Tabu search applied to global optimization”, Euro-

pean Journal of Operations Research, 123 (2000) 256-270.

[27] Chen, J., ” An Integer Programming Model for Open Scheduling Problem”, The Far

East Journal, 20(1) (1991).

[28] Chen, Z.L., and Hall, N.G., ”Supply chain scheduling conflict and cooperation in

assembly systems”, Operation Research, 55(6) (2007) 1072-1089.

[29] Choi, I.C., and Choi, D.S., ”A local search algorithm for job-shop scheduling problems

with alternative operations and sequence-dependent setups”, Computers and Industrial

Engineering, 42(1) (2002) 43-58.

[30] Chong, K.E., Omar, M.K., and Bakar, N.A., ”Solving assembly line balancing problem

using genetic algorithm with heuristics treated initial population”, Proceedings of The

World Congress on Engineering, 2 (2008) 1273-1277.

[31] Colorni, A., Dorigo, M., Maniezzo, V., and Trubian, M., ”Ant system for job shop

scheduling”, Belgian Journal of Operations Research Statistics and Computer Science,

34(1) (1994) 39-53.

[32] Comerton-Forde, C., and Putnins, T.J., ”Measuring of closing price manipulation”

,Journal of Financial Intermediation, 20(2) (2009) 135-58.

[33] Cordon, O., Fernndez, I., Viana, D., and Herrera, F., ”Analysis of the best-worst ant

system and its variants on the tsp”, Mathematic Soft Computer, (2002).

[34] Crainic, T.G., Gendreau, M., Hansen, P., and Mladenovic, N., ”Cooperative parallel

variable neighborhood search for the p-median”, Journal of Heuristics, 10 (2004) 293-

314.

Bibliography 96

[35] David, D., Theodoulidisand, B., and Eliza, A., ”Cross border challenges in financial

markets monitoring and surveillance. A case study of customer driven service value

networks”, Annual SRII Global Conference, (2012) 146-157.

[36] Deneubourg, J.L., Aron, S., Goss, S., and Pasteels, J. M., ”The self-organizing ex-

ploratory pattern of the Argentine ant”, Journal of Insect Behaviour, 3(1990) 159-168.

[37] Dorigo, M., ”Optimization learning and natural algorithms (in Italian)”, PhD thesis

Dipartimento di Elettronica Politecnico di Milano Italy, (1992)

[38] Dorigo, M., and Blum, C., ”The hyper-cube framework for ant colony optimization”,

IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics), 34(2) (2004)

1161-1172.

[39] Dorigo, M., and Caro, D.G., ”The ant colony optimization meta-heuristic”, New Ideas

in Optimization McGraw-Hill London UK, (1999) 11-22.

[40] Dorigo, M., and Gambardella, L.M., ”Ant colonies for the travelling salesman prob-

lem”, Biosystems, 43 (1997) 73-81.

[41] Dorigo, M., and Gambardella, L.M., ”Ant colony system: a cooperative learning ap-

proach to the travelling salesman problem”, IEEE Transactions in Evolutionary Com-

putation, 1(1) (1997) 53-66.

[42] Dorigo, M., Maniezzo, V., and Colorni, A., ”Ant system: optimization by a colony

of cooperating agents”, EEE Transactions on Systems Man and Cybernetics Part B:

Cybernetics, 26(1) (1996) 29-41.

[43] Dorigo, M., and Stutzle, T., ”Ant colony algorithms for quadratic assignment prob-

lem”, New Ideas in Optimization McGraw-Hill London UK, (1999).

[44] Dorigo, M., and Stutzle, T., ”Ant Colony Optimization”, MIT Press-London, (2004).

[45] Drezner, Z., Marcoulides, G.A., and Stohs, M.H., ”Financial application of a Tabu

search variable selection model”, Journal Application Mathematics Decision Science,

5(4) (2001) 215-234.

[46] Duratem, A., Pantrigom, J.J., Pardo, G.E., and Mladenovic, N., ”Multi-objective

variable neighborhood search: an application to combinatorial optimization problems”,

Journal of Global Optimization, 63 (2015) 515-536.

[47] Durr, C., and Hurand, M., ”Finding total unimodularity in optimization problems

solved by linear programs”, Algorithmica 59(2) (2011) 256-268.

Bibliography 97

[48] Elffers, J., and De Weerdt, M., ”Scheduling with two non-unit task lengths is NP-

complete”, arXiv preprint, (2014) 1412-3095

[49] Eswaramurthy, V.P., and Tamilarasi, A., ”Hybridizing tabu search with ant colony

optimization for solving job shop scheduling problems”, International Journal of Ad-

vance Manufacturing Technology, 40 (2008) 1004-1015.

[50] Fandel, G., and Stammen-Hegene, C., ”Simultaneous lot sizing and scheduling for

multi-product multi-level production”, International Journal of Production Economics,

104(2) (2006) 308-316.

[51] Fisher, H., and Thompson, G.L., ”Probabilistic learning combinations of local job-

shop schedul-ing rules J.F. Muth G.L. Thompson (eds.)”, Industrial Scheduling Prentice

Hall Englewood New Jersey,(1963).

[52] Gajpal, Y., Rajendran, C., and Ziegler, H., ”An ant colony algorithm for scheduling

in flowshops with sequence- dependent setup times of jobs”, International Journal of

Advanced Manufacturing Technology, 30(5-6) (2006) 416-424.

[53] Gao, L., Zeng, Y., and Dong, A.G., ”An ant colony algorithm for solving max-cut

problem”, Progress in Natural Science, 18(9) 2008) 1173-1178.

[54] Garey, M.R., Johnson, D.S., Simons, B.B., and Tarjan, R.E., ”Scheduling unittime

tasks with arbitrary release times and deadlines”, SIAM Journal on Computing, 10(2)

(1981) 256-269.

[55] Glover, F., ”Future paths for integer programming and links to artificial intelligence”,

Computers Operations Research, 13(5) (1986) 533-549.

[56] Goffem, W.L., Ferrier, G., and Roger, J., ”Simulated Annealing: An initial application

in econometrics”, Computer Science in Economics and Management, 5(2)(1992) 133-146.

[57] Gonzalez, T., and Sahni, S., ”Open Shop Scheduling to Minimize Finish Time”,

Journal of the Association for Computing Machinery, 23 (1976) 665-679.

[58] Greening, D.R., ”Simulated annealing with errors ”, PhD thesis, University of Cali-

fornia , (1995).

[59] Gupta, J.N., ”A functional heuristic algorithm for the flow-shop scheduling problem”,

Operational Research, 22(1) (1971) 39-47.

Bibliography 98

[60] Hansen, P., Brimberg, J., Urosevic, D., and Mladenovic, N., ”Primal-dual variable

neighborhood search for the simple plant-location problem”, Informs Journal on Com-

puting, 19(4) (2007) 552-564.

[61] Hansen, P., Mladenovic, N., Brimberg, J., and Moreno Prez, J.A., ”Variable neigh-

borhood search Handbook of Metaheuristics 2nd edition (Gendreau and Potvin Eds)”,

International Series in Operations Research Management Sciences, 146 (2010)61-86.

[62] Hansen, P., Mladenovic, N., and Perez-Brito, D., ”Variable neighborhood decompo-

sition search”, Journal of Heuristics, 7 (2001) 335-350.

[63] Heinonen, J., and Pettersson, F., ”Job-shop scheduling and visibility studies with a

hybrid ACO algorithm”, Applied Mathematics and Computation, 187(3) (2007) 989-

998.

[64] Holthaus, O., and Rajendran, C., ”New dispatching rules for scheduling in a job shop-

an experimental study”, International Journal of Advanced Manufacturing Technology,

13(2) (1997) 148-153.

[65] Huang, K., and Liao, C., ”Ant colony optimization combined with tabu search for

the job shop scheduling problem”, Computers and Operations Research, 35(4) (2008)

1038-1046.

[66] Hsu, W.N., ”Approximation algorithms for the assembly line crew scheduling prob-

lem”, Mathematics of Operation Research, 9(3) (1984) 376-383.

[67] Irawan, C., Salhi, S., and Drezner, Z., ”Hybrid meta-heuristics with VNS and Exact

Methods: Application to large unconditional and conditional vertex p-centre problems”,

Journal of Heuristics, 22(2016) 507-537

[68] Ishibuchi, H., Yamamoto, N., Murata, T., and Tanaka H., ”Genetic algorithms and

neighborhood search algorithms for fuzzy flowshop scheduling problems”, Fuzzy Sets

and Systems, 67(1) (1994) 81-100.

[69] Jaszkiewicz, A., ”Genetic local search for multi-objective combinatorial optimization”,

European Journal of Operational Research, 137(1)(2002) 50-71.

[70] Johnson, S.D., Papadimtriou, H.C., and Yannakakis, M., ”How easy is local search?”,

Journal of Computer and System Sciences, 37(1) (1988) 79-100.

[71] Johnson, S. M., ”Optimal two-and three-stage production schedules with setup times

included”, Naval Research Logistics Quarterly, 1(1) (1954) 61-68.

Bibliography 99

[72] Kandavanam, G., Botvich, D., Balasubramaniam, S., and Jennings, B., ”An efficient

general variable neighborhood search for large travelling salesman problem with time

windows”, International Conference on Artificial Evolution (Evolution Artificielle),5975

(2009) 49-60.

[73] Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P., ”Optimization by simulated anneal-

ing”, Science, 220 (1983) 3671-3680.

[74] Kolonko, M., ”Some new results on simulated annealing applied to the job shop

scheduling problem”, European Journal of Operational Research, 113(1) (1999) 123-

136.

[75] Kubale, M., and Nadolski, A., ”Chromatic Scheduling in a Cyclic Open Shop”, Eu-

ropean Journal of Operational Research, 164 (2005) 585-591.

[76] Kuo, I., Horng, S.J., Kao, T. W., Lin, T.L., Lee, C.L., Terano, T., and Pan, Y., ”An

efficient flow-shop scheduling algorithm based on a hybrid particle swarm optimization

model”, Expert Systems with Applications, 36(3) (2009) 7027-7032.

[77] Lawrence, S., ”Resource constrained project scheduling: an experimental investiga-

tion of heuristic scheduling techniques (Supplement)”, Graduate School of Industrial

Administration Carnegie-Mellon University Pittsburgh Pennsylvania, (1984).

[78] Lazic, J., Hana, S., Mladenovic, N., and Urosevic, D., ”Variable neighborhood de-

composition search for 0-1 mixed integer programs”, Computers Operations Research,

37(6) (2010) 1055-1067.

[79] Lenstra, J.K., and Kan, A.H.G., ”Complexity of vehicle routing and scheduling prob-

lems”, Networks, 11(2) (1981) 221-227.

[80] Lian, Z., Gu, X., and Jiao, B., ”A similar particle swarm optimization algorithm for

permutation flow-shop scheduling to minimize makespan”, Applied Mathematics and

Computation, 175(1) (2006) 773-785.

[81] Liang, Y.C., and Wu, C.C., ”A variable neighborhood descent algorithm for the

redundancy allocation problem”, Industrial Engineering and Management Systems,

4(1)(2005) 94-101.

[82] Liao, C., and Cheng, C., ”Variable neighborhood search for minimizing single machine

weighted earliness and tardiness with common due date”, Computers and Industrial

Engineering, 52(4) (2007) 404-413.

Bibliography 100

[83] Liouane, N., Saad, I., Hammadi, S., and Borne, P., ”Ant systems and local search

optimization for flexible job shop scheduling production”, International Journal of Com-

puters Communications and Control, 2(2) (2007) 174-184.

[84] Low, C., Hsu, C. M., and Huang, K. I., ”Benefits of lot splitting in job-shop schedul-

ing”, International Journal of Advanced Manufacturing Technology, 24(9-10) (2004)

773-780.

[85] Lu, L., Yuan, J., and Zhang, L., ”Single machine scheduling with release dates and

job delivery to minimize the makespan?”, Theoretical Computer Science, 393(1) (2008)

102-108.

[86] Manikas, A., and Chang, Y. L., ”Multi-criteria sequence-dependent job shop schedul-

ing using genetic algorithms”, Computers and Industrial Engineering, 56(1) (2009) 179-

185.

[87] Maric, M., Stanimirovic, Z., and Mladenovic, N., ”Metaheuristic methods for solving

the bi-level incapacitated facility location problem with clients preferences”, Faculty of

Mathematics University of Belgrade Serbia Electric Notes in Discrete Mathematics, 39

(2012) 43-50.

[88] Mavrovouniotis, M., ”Ant colony optimization in stationary and dynamic environ-

ments”, PhD thesis Department of Computer Science University of Leicester UK,(2013).

[89] Mazdeha, M.M., Shashaania, S., Ashouria, A., and Khalil-Hindib, S. K., ”Single-

machine batch scheduling minimizing weighted flow times and delivery costs”, Applied

Mathematical Modelling, 35(1) (2011) 563-570.

[90] Mladenovic, N., and Hansen, P., ”Variable neighborhood Search”, Computers and

Operations Research, 24(11) (1997) 1097-1100.

[91] Mladenovic, N., Todosijevic, R., and Urosevic, D., ”Two level general variable neigh-

borhood search for attractive traveling salesman problem”, Yugoslav Journal of Opera-

tions Research, 23 (2012) 19-30.

[92] Mladenovic, N., Todosijevic, R., and Uroevic, D., ”An efficient general variable neigh-

borhood search for large travelling salesman problem with time windows”, Yugoslav

Journal of Operations Research, 22 (2012).

[93] Mladenovic, N., Urosevic, D., and Perez-Brito, D., ”Variable neighborhood search

for minimum linear arrangement problem”, Yugoslav Journal of Operations Research,

26(1) (2016) 3-16.

Bibliography 101

[94] Morton, T., ”Heuristic scheduling systems: with applications to production systems

and project management”, John Wiley Sons, 3 (1993).

[95] Naderi, B., Fatemi, G.S.M.T., Aminnayeri, M., and Zandieh, M., ”Scheduling Open

Shops with Parallel Machines to Minimize Total Completion Time”, Journal of Com-

putational and Applied Mathematics, 235 (2011) 1275-1287.

[96] Nawaz, M., Enscore, J., and Ham, I., ”A Heuristic algorithm for the M machine,

n-job flow shop sequencing problem”, OMEGA, 11(1) (1983) 91-95.

[97] Nowicki, E., and Smutnicki, C., ”A fast taboo search algorithm for the job shop

problem”, Management Science, 42(6) (1996) 797-813.

[98] Ogut, H., Doganay, M., and Aktas, R., ”Detecting stock price manipulation in an

emerging market the case of turkey”, Expert Systems with application, 36(9) (2009)

11944-11959.

[99] Osman, I.H., ”Metastrategy simulated annealing and tabu search algorithms for the

vehicle routing problem”, Annals of Operations Research, 41 (1993) 421-451.

[100] Osman, I.H., and Laporte, G., ”Metaheuristics: a bibliography”, Annals of Opera-

tions Research, 63(5) (1996) 511-623.

[101] Palmer, D.S., ”Sequencing jobs through a multi-stage process in the minimum total

time: a quick method of obtaining a near optimum”, Operations Research, 16(1) (1965)

101-107.

[102] Palomo-Martnez, P.J., Salazar-Aguilar, M.A., Laporte, G., and Langevin, A., ”A

hybrid variable neighborhood search for the orienteering problem with mandatory visits

and exclusionary constraints”, Computers Operations Research, 78 (2017) 408-419.

[103] Pan, Q. K., Tasgetiren, F.M., and Liang, Y.C., ”A discrete particle swarm op-

timization algorithm for the no-wait flow-shop scheduling problem”, Computers and

Operations Research, 35(9) (2008) 2807-2839.

[104] Patkar, S., Poojari, C., and Porwal, P., ”An investigation into approximate solu-

tions for deterministic and stochastic multi-dimensional sequencing”, Brunel University

Archive Brunel,(2005).

[105] Pereira, J., and Vila, M., ”Variable neighborhood search heurisitcs for a test assembly

design problem”, Expert Systems with application, 42(10) (2015) 4805-4817.

Bibliography 102

[106] Pinedo, M., ”Scheduling: Theory, Algorithms and Systems ”, 2nd ed, Prentice Hall,

Englewood Cliffs, NJ., (2002).

[107] Pinedo, M., ”Planning and scheduling in manufacturing and services”, New York,

Springer,(2005).

[108] Pirrong, C., ”Detecting manipulation in futures markets: the ferruzzisoybean

episode”, American Law and Economics Review, 6(1) (2004) 28-71.

[109] Potts, C.N., ”An algorithm for the single machine sequencing problem with prece-

dence constraints”, Mathematical Programming Studies, 13 (1980) 78-87.

[110] Potts, C.N., Sevastjanov, S.V., Strusevich, V.A., Van Wassenhove, L.N., and Zwan-

eveld, C.M., ”Two stage assembly scheduling problem:complexity and approximation”,

Operation Research, 43(2) (1995) 346-355.

[111] Ponnambalam, S.G.N., Jawahar, N., and Girish, B.S., ”An ant colony optimization

algorithm for flexible job shop scheduling problem”, New Advanced Technologies, 4

(2010) 73-94.

[112] Puchinger, J., and Raidi, R.G., ”Bringing order into the neighborhood: relaxation

guided variable neighborhood search”, Journal of Heurisitics, 14(5) (2008) 457-472.

[113] Punniyamoorthy, M., and Thoppan, J.J., ”ANN-GA based Model for Stock market

Surveillance”, Journal of Financial Crime, 20(1) (2013) 52-66.

[114] Qu, R., Xu, Y., and Kendall, G., ”A variable neighborhood descent search algo-

rithm for delay-constrained least-cost multicast routing”, International Conference on

Learning and Intelligent Optimization, 5851 (2009) 15-29.

[115] Rajab, R.S., ”Some application of continuous variable neighborhood search meta

heuristic (mathematical modelling)”, PhD thesis School of Information Computing and

Mathematics Brunel University UK.

[116] Rajendran, C., and Chaudhuri, D., ”An efficient heuristic approach to the scheduling

of jobs in a flow-shop”, European Journal of Operational Research, 61(3) (1992) 318-325.

[117] Rajendran, C., and Ziegler, H., ”Ant colony algorithms for permutation flowshop

scheduling to minimize makespan total flowtime of jobs”, European Journal of Opera-

tional Research, 155(2) (2004) 426-438.

Bibliography 103

[118] Salmasi, N., Logendran, R., and Skandari, M.R., ”Makespan minimization of a flow-

shop sequence-dependent group scheduling problem”, International Journal of Advanced

Manufacturing, (2011).

[119] Salhi, S., ”Heuristic Search: The Emerging Science of Problem Solving”, Springer,

(2017).

[120] Santos, D.L., Hunsucker, J.L., and Deal, D.E., ”On makespan improvement in flow

shops with multiple processors”, Production Planning and Control, 12(3) (2001) 283-

295.

[121] Seda, M., ”Mathematical model for flow job and job shop problems”, World Academy

of Science Engineering and Technology, 18(3)(2007) 331-342.

[122] Selvarajah,E., Steiner, G., and Zhang, R., ”Single machine batch scheduling with

release times and delivery costs”, Journal of Scheduling, 16(1) (2013) 69-79

[123] Sevkli, M., and Aydin, M., ”Variable neighborhood search algorithm for job shop

scheduling problems”, Evolutionary Computation in Combinatorial Optimization, 3906

(2006) 261-271.

[124] Sevkli, M., and Aydin, E., ”Variable neighborhood search for job shop scheduling

problems”, Journal of Software, 1(2) (2006).

[125] Sgall, J., ”Open Problems in Throughput Scheduling”, Springer Berlin Heidelberg,

(2012).

[126] Sha, D.Y., Lin, H.H., and Hsu, C.Y., ”A Modified Particle Swarm Optimization

for Multi-Objective Open Shop Scheduling”, Proceedings of the International Multi

Conference of Engineers and Computer Scientists, 3 (2010) 17-19.

[127] Shyu, S.J., Lin, B.M.T., and Yin, P.Y., ”Application of ant colony optimization for

no-wait flow-shop scheduling problem to minimize the total completion time”, Comput-

ers and Industrial Engineering, 47(2) (2004) 181-193.

[128] Simons, B., ”A fast algorithm for single processor scheduling. In Foundations of

Computer Science”, 19th Annual Symposium on 1978, (1978)

[129] Singh, R,M., ”Thesis: A Study on Flexible Flow Shop and Job Shop Scheduling

using Meta-heuristic Approaches”, National Institute of Technology, India (2014).

Bibliography 104

[130] Steinhofel, K., Albrecht, A., and Wong, C. K., ”Two simulated annealing-based

heuristics for the job shop scheduling problem”, European Journal of Operational Re-

search, 118(3) (1999) 524-548.

[131] Solimanpur, M., Vrat, P., and Shankar, R., ”A neuro-tabu search heuristic for the

flow shop scheduling problem”, Computers and Operations Research, 31(13) (2004)

2151-2164.

[132] Storer, R.H., Wu, S.D., and Vaccari, R., ”New search spaces for sequencing instances

with application to job shop scheduling”, Management Science, 38 (1992)1495-1509.

[133] Stutzle, T., and Hoos, H., ”Max-Min Ant System”, Future Generation Computer

Systems, 16(8) (2000) 889-914.

[134] Subramaniam, V., Ramesh, T., Lee, G.K., Wong, Y.S., and Hong, G.S., ”Job shop

scheduling with dynamic fuzzy selection of dispatching rules”, International Journal of

Advanced Manufacturing Technology, 16(10) (2000) 759-764.

[135] Surekha, P., and Sumathi, S., ”Solving fuzzy based job shop scheduling problems

using GA and ACO”, Journal of Emerging Trends in Computing and Information Sci-

ences, 1(2) (2010) 95-102.

[136] Taillard, E., ”Robust taboo search for the quadratic assignment problem”, Parallel

Computing, 17(1991) 443-455.

[137] Taillard, E., ”Benchmarks for basic scheduling problems”, European Journal of Op-

erational Research, 64 (1993) 278-285.

[138] Taillard, E., ”Some efficient heuristic methods for the flow shop sequencing problem”,

European Journal of Operational Research, 47(1) (1990) 65-74.

[139] Tamiz, M., and Jones, F.D., ”A General Purpose Interactive Goal Programming

Algorithm”, Multiple Criteria Decision Making, (1997) 433-444.

[140] Teh, Y.S., and Rangaiah, G.P., ”Tabu search for global optimization of continuous

functions with application to phase equilibrium calculations”, Computers and Chemical

Engineering, 27 (2003) 1665-1679.

[141] Todosijevic, R., Hanafi, S., Lazic, J., and Mladenovic, N., ”Variable and single

neighborhood diving for MIP feasibility”, Yugoslav Journal of Operations Research,

26(2) (2016) 131-157.

Bibliography 105

[142] Toumi, S., Cheikh, M., and Jarboui, B., ”0-1 Quadratic knapsack problem solved

with VNS algorithm”, Electronic Notes in Discrete Mathematics, 47 (2015) 269-276.

[143] Tseng, L.Y., and Lin, Y.T., ”A hybrid genetic local search algorithm for the per-

mutation flow-shop scheduling problem”, European Journal of Operational Research,

198(1) (2009) 84-92.

[144] Van Laarhoven, J.M.P., Aarts, H.L.E., and Lenstra, K.J., ”Job shop scheduling by

simulated annealing”, Journal Operations Research, 40(1) (1992) 113-125.

[145] Vredeveld, T., ”Vector Scheduling Problems”, Springer Science+ Business Media

New York, (2004).

[146] Wang, J.B., Daniel Ng, C.T., Cheng, T.E., and Liu, L.L., ”Minimizing total com-

pletion time in a two-machine flow shop with deteriorating jobs”, Applied Mathematics

and Computation, 180(1) (2006) 185-193.

[147] Webster, S., and Azizgolu, M., ”Dynamic programming algorithm for scheduling

parallel ma-chines with family setup time”, Computer and Operation Research, 28(2)

(2001) 127-137.

[148] Yamada, T., and Nakano, R., ”A genetic algorithm applicable to large-scale job-

shop instances R. Manner B. manderick (eds)”, Parallel instance solving from nature 2

North-Holland Amsterdam, (1992) 281-290.

[149] Yamada, T. and Nakano, R., ”Genetic algorithms for job-shop scheduling problems”,

In Proceedings of the Modern Heuristics for Decision Support, (1997) 67-81.

[150] Yang, S.X., Deb, S., and Fong, S., Metaheuristic algorithms: optimal balance of

intensification and diversification”, Applied Mathematics Information Sciences, 8(3)

(2014) 977-983.

[151] Yang, H.A., Xu, Y.P., Sun, S.D., and Yu, J.J., ”A Job Shop Scheduling Heuristic

Algorithm Based on Probabilistic Model of the Search Space”, Materials Science Forum,

532 (2006) 1084-1087.

[152] Zecchin, C. A., Holger, R., Ross, A., and John, B., ”Ant colony optimization applied

to water distribution system design: Comparative study of five algorithms”, Journal of

Water Resources Planning and Management, 133(1) (2007) 87-92.

[153] Zhang, G., Gao, L., Li, X., and Li, P., ”Variable neighborhood genetic algorithm for

the flexible job shop scheduling problem”, Intelligent Robotics and Applications, (2008)

503-512.

Bibliography 106

[154] Zhang, J., Zhong, J.H., and Huang, Q., ”Implementation of an ant colony opti-

mization technique for job shop scheduling problem”, Transactions of the Institute of

Measurement and Control, 28(1) (2006) 93-108.

[155] Zhou, H., Cheung, W., and Leung, L.C., ”Minimizing weighted tardiness of job-

shop scheduling using a hybrid genetic algorithm”, European Journal of Operational

Research, 194(3) (2009) 637-649.

	Certificate
	Acknowledgements
	Publications
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Introduction
	1.2 Problem Description
	1.3 Motivation
	1.3.1 Vector Job Scheduling
	1.3.2 Financial Derivative Matching

	1.4 Contribution
	1.4.1 Vector Job Scheduling
	1.4.2 Financial Derivative Matching
	1.4.3 Application of the Heuristics Method
	1.4.4 Benefits and Application

	1.5 Thesis Outline

	2 Literature Review
	2.1 Metaheuristic
	2.1.1 Introduction
	2.1.2 Local Search
	2.1.3 Basic Local Search
	2.1.4 Simulated Annealing
	2.1.5 Tabu Search
	2.1.6 Variable Neighborhood Search
	2.1.6.1 Variable Neighborhood Descent
	2.1.6.2 Reduced Variable Neighborhood Search
	2.1.6.3 Basic Variable Neighborhood Search
	2.1.6.4 General Variable Neighborhood Search
	2.1.6.5 Skewed Variable Neighborhood Search
	2.1.6.6 Variable Neighborhood Decomposition Search
	2.1.6.7 Primal-Dual VNS
	2.1.6.8 Summary and Conclusion

	2.1.7 The Ant Colony Optimization Algorithm
	2.1.7.1 Characteristics of ACO
	2.1.7.2 The Ant System
	2.1.7.3 Elitist Ant System
	2.1.7.4 Rank-Based Ant System
	2.1.7.5 The Max-Min Ant System
	2.1.7.6 Best-Worst Ant System
	2.1.7.7 The Ant Colony System
	2.1.7.8 Hyper-Cube Framework (HCF)
	2.1.7.9 Applications of ACO
	2.1.7.10 Summary and Conclusion

	2.2 Scheduling Problems
	2.2.1 Introduction
	2.2.2 Taxonomy of Scheduling
	2.2.3 Single Machine Scheduling
	2.2.4 Flow Shop Scheduling
	2.2.5 Job shop scheduling
	2.2.6 Open Shop Scheduling
	2.2.7 Vector Job Scheduling
	2.2.8 Financial Derivative Problem
	2.2.9 Performance Measures in Scheduling
	2.2.10 Summary and Conclusion

	3 Vector Job Scheduling
	3.1 Introduction
	3.2 Mathematical Programming Formulation
	3.3 Construction for VJS
	3.3.1 ACO
	3.3.2 Solution Construction
	3.3.3 Pheromone Update
	3.3.4 Variable Neighborhood Search (VNS)
	3.3.5 Hybrid Algorithm

	3.4 Computational Results
	3.4.1 Setting Parameter Values for ACO
	3.4.2 Results

	3.5 Summary

	4 Financial Derivative Hedging
	4.1 Introduction
	4.2 Problem Example
	4.3 Data
	4.4 Mathematical Programming Formulation
	4.5 Basic Variable Neighborhood Search (BVNS)
	4.5.1 Neighborhood Structure
	4.5.2 Local Search Neighborhood
	4.5.3 Search Type-1 (STYPE-1)
	4.5.4 Search Type-2 (STYPE-2)

	4.6 Numerical Results
	4.7 Summary and Conclusion

	5 Conclusion
	5.0.1 Overview
	5.0.2 The Hybrid Algorithms
	5.0.3 VNS Variants
	5.0.4 Future Work

	A Results ACO for VJS
	B Results ACOVNS for VJS
	C Results Financial Derivative Problem
	Bibliography

