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Abstract 

Phononic metamaterials are synthesised materials in which locally resonant units are arranged in a 

particular geometry of a substratum lattice and connected in a predefined topology. This study 

investigates dispersion surfaces in two-dimensional anisotropic acoustic metamaterials involving 

mass-in-mass units connected by massless springs in K3 topology. The reasons behind the particular 

choice of this topology are explained. Two sets of solutions for the eigenvalue problem |𝑫(𝜔2, 𝒌)| =

0 are obtained and the existence of absolutely different mechanisms of gap formation between 

acoustic and optical surface frequencies is shown as a bright display of quantum effects like strong 

coupling, energy splitting, and level crossings in classical mechanical systems. It has been concluded 

that a single dimensionless parameter i.e. relative mass controls the order of formation of gaps 

between different frequency surfaces. If the internal mass of the locally resonant mass-in-mass 

unit, 𝑚, increases relative to its external mass, 𝑀, then the coupling between the internal and external 

vibrations in the whole system rises sharply, and a threshold  𝜇∗  is reached so that for  𝑚/𝑀 > 𝜇∗ the 

optical vibrations break the continuous spectrum of “acoustic phonons” creating the gap between 

them for any value of other system parameters. The methods to control gap parameters and 

polarisation properties of the optical vibrations created over these gaps were investigated.  

Dependencies of morphology and width of gaps for several anisotropic cases have been expounded 

and the physical meaning of singularity at the point of tangential contact between two adjacent 

frequency surfaces has been provided. Repulsion between different frequency band curves, as planar 

projections of surfaces, has been explained. The limiting case of isotropy has been discussed and it 

has been shown that, in the isotropic case, the lower gap always forms, irrespective of the value of 

relative mass.  
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1. Introduction 

Synthesised materials possessing architected microstructures are crucial in elastic band gap formation. 

A phononic metamaterial is such a material possessing an artificial microstructure. As such, the 

metamaterial exhibits unusual response characteristics not readily observed in natural materials and 

offers certain, potentially beneficial, features of behaviour when vibration mitigation, wave 

manipulation or sound attenuation are of concern. Unlike natural materials, the constitutive 

mechanical behaviour of a phononic metamaterial is not determined by its atomic structure but rather 

by its unit or primitive cell.  

 

A number of researchers have been engaged in investigating electromagnetic properties of photonic 

metamaterials [1-8] exhibiting unusual properties such as a negative refractive index in order to 

exploit these for various novel applications [9-11]. However; phononic metamaterials have recently 

started to attract attention in the fields of acoustics and applied mechanics [12-16]. One of the 

properties of a phononic metamaterial, particularly of interest in acoustic applications, is the 

possibility to achieve, simultaneously, negative mass density and elastic modulus [14, 17, 18] in the 

strict sense of the effective medium theory [8, 18, 19]. This is analogous to the negative refractive 

index observed in their photonic counterparts [4, 7, 8, 20]. The existence of a phononic band gap, i.e. 

an interval of frequencies over which mechanical waves cannot propagate, is a direct consequence of 

this property and is of interest to engineers designing phononic devices†. Practical applications of such 

phononic devices include mechanical filters, vibration isolators, and acoustic waveguides and have 

been addressed by researchers [17, 19].  

 

The studies conducted on phononic band structure encompass those conducted in real space as well as 

in reciprocal space. To mention but a few, Kushwaha et al. [14, 15] provided one of the earliest 

calculations of acoustic band gaps in a simple periodic composite. Nevertheless, their calculations 

were limited to the case of anti-plane shear. Zalipaev et al. [21] also considered anti-plane shear and 

studied the transition from two-dimensional (2D) wave propagation through the square periodic 

structure in time-harmonic case to a discrete parameter model of a 2D lattice with masses connected 

by springs. Martinsson [22] provided a simple method to calculate band gaps with special attention 

paid to the connection between microstructural geometry and the presence of band gaps. Furthermore, 

using a phononic lattice structure, complete acoustic band gaps were demonstrated by Martinsson and 

Movchan [16]. Lumped-mass method for the study of band structure in 2D phononic crystals was 

considered by Wang et al. [23]. They presented a lumped-mass model, based on the discretization of a 

continuous system, which worked in the direct space (r-space) and allowed computing the band 

                                                           
† The phenomenon of filtering in phononic devices could also be due to Bragg diffraction. The study of such 
cases falls beyond the scope of the present study. 
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structures of 2D phononic crystals. Li and Chan [24] studied doubly negative acoustic metamaterials 

in which concurrent negative effective density and bulk modulus were obtained. Their double-

negative acoustic system is an acoustic analogue of Veselago’s medium in electromagnetism [6, 7, 

25], and shares with it many principle features, as negative refractive index, as a consequence of its 

microstructural composition. Huang and Sun [19] studied wave attenuation mechanisms in acoustic 

metamaterials of negative effective mass density. The metamaterial under consideration consisted of 

locally resonant mass-in-mass units which when homogenized had negative effective density. Any 

such homogenization theory allows for obtaining coarse-scale variation of field variables associated 

with a heterogeneous medium when the scale ratio, i.e. the ratio between fine and coarse scales, tends 

to zero while essential features are restored and represented faithfully. Locally resonant sonic 

materials were also studied by Liu et al. [26]. They fabricated sonic crystals, based on the idea of 

localized resonant structures, which exhibited spectral gaps with a lattice constant two orders of 

magnitude smaller than the relevant wavelength. This implied Bragg diffraction was not of interest.  

 

Besides the studies conducted on wave propagation in lattices in the direct space (r-space), the 

reciprocal lattice formulation (formulation in k-space) is employed extensively by researchers [27-

30]. There are several advantages associated with employing the k-space formulation. Kittel [31], 

Brillouin [32], Born [33], Sutton [34] and many other standard textbooks on solid state physics 

contain the details of the problem formulation in k-space. In a rather recent study, Phani et al. [27] 

investigated plane wave propagation in infinite 2D periodic lattices using Bloch’s theorem. They 

formulated the exact finite element model of the problem using Timoshenko beam elements 

possessing distributed masses thus extracted frequency band gaps and examined spatial filtering 

phenomena in four representative planar lattice topologies viz. hexagonal honeycomb, Kagomé 

lattice, triangular, and square honeycombs. The plane-wave expansion method was used and the 

admissible plane wave solution was assumed attenuation-free which rendered Floquet-Bloch’s 

theorem applicable. This method was used by Yang et al [28] to formulate the frequency filtering 

phenomenon in heterogeneous lattices and by Sigmund and Jensen [35] to show the dependence of the 

band gap on topology.  

 

More recently researchers have used 3D printing capabilities to confirm the existence of acoustic band 

gaps experimentally in locally-resonant metastructures [36]. An interesting feature of such phononic 

metamaterials is the possibility to tailor the band structure by altering the inertial and stiffness 

properties of elements at a single node in a realistic interval.  Band gaps in 1D and 2D single- and 

multi-resonator metamaterials have been studied and parametric studies have depicted this 

dependence [18, 30]. An overview of range of filterable frequencies was given recently [37].  
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The studies conducted are limited to extraction of gaps and do not discuss in detail the morphology of 

frequency surfaces especially of the physical meaning of points of singularity and undefined 

polarisation. Furthermore, most works of literature do not draw a parallel between quantum 

mechanical effects and analogous effects observed in classical systems. The effects of anisotropy and 

the importance of critical mass ratio at which the optical vibrations break the continuous spectrum of 

“acoustic phonons” creating the gap between them for any value of other system parameters have not 

been discussed and remain obscure in the literature. 

 

The objective of the present study is to investigate band structure and morphology of dispersion 

surfaces in anisotropic homogeneous 2D acoustic metamaterials comprising locally resonant mass-in-

mass units connected by springs in the simple topology of a complete graph on three vertices (K3). 

Besides simplicity and adequacy of static redundancy, this topology is selected due to two associated 

facts which have been presented as well-known mathematical theorems in this work. In section 2 the 

lattice system under consideration has been mathematically defined using the terminology of graph 

theory, a lingo suitable for the task. This allows the representation of the anisotropic 2D acoustic 

metamaterial as an infinite medium consisting of lumped masses and discrete stiffness elements. The 

internal springs have a particular orientation thus different directional characteristics (source of 

anisotropy). Equations of motion for the generic single node in the phononic metamaterial have been 

derived in section 3. Floquet-Bloch’s principle is applied and the eigenvalue problem has been 

derived to study the frequency surfaces of the 2D lattice. In section 4 three primary cases and one 

asymptotic case have been considered. As the wave vector is assumed to be attenuation-free, the 

position of the node is immaterial and the change in the complex wave amplitude across a unit cell is 

uniform throughout the domain. The results obtained show the existence and the extent of the 

phenomenon of frequency filtering in this class of structures. In some cases singularities have been 

encountered which have been physically expounded using the morphology of surfaces. Furthermore, 

for the sake of the present study non-dimensional parameters are extracted and utilised and the 

functional dependence of band structure on dimensionless parameters observed is discussed. 

Thresholds on certain parameters are also set which have a particular physical meaning. The study is 

concluded in section 5. 

 

2. The discrete parameter 2D metamaterial 

The building block of the metamaterials considered is the complete graph on n=3 vertices (K3) the 

schematic of which is shown in Fig.1(a). The schematic of the discrete parameter 2D infinite lattice 

made of K3 units and consisting of locally resonant nodes is depicted in Fig.1 (b) where the blue 

vertices consist of internal and external masses (see Fig 2(a)).  Fig.1(c) shows the unit cell along with 

lattice vectors. As denoted in Fig. 1(b) the degree of each vertex in the infinite lattice is 6. 
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                  (a)                                                            (b)                                               (c) 

Fig. 1: (a) the complete graph on three vertices (K3) (b) The schematic of the infinite lattice K3, (c) the 

unit cell along with associated lattice vectors 

The entire metamaterial could then be constructed by replicating the nodes along the lattice vectors 

and connecting them using external springs in the K3 topology. Since, along with topology, the metric 

properties are of importance lattice constants are defined to refer to the directional distances between 

primitive/unit cells. The reticulated structure could analogously be obtained through the tessellation of 

the primitive cell along the finite number of fixed predefined directions (lattice vectors) at particular 

distances (lattice constants). The K3 lattice metamaterials could, as such, be thought of as essentially a 

triangular honeycomb with internal nodal resonators. The reasons for the choice of this particular type 

of topology are as follows: 

(1) A triangulated medium is simple to construct and possesses enough degrees of static 

indeterminacy to be deemed a suitable medium for load transfer (in the case of a truss with 

hinged connections 𝛾𝑠(𝐺) = 𝑁𝑖(𝐺) − 𝑀𝑐(𝐺) where 𝛾𝑠(𝐺) is the degree of static 

indeterminacy, 𝑁𝑖(𝐺) is the number of internal nodes including crossings, and 𝑀𝑐(𝐺)  is the 

number of members required to triangulate the entire system provided the connections are 

pinned [38]. For rigid connections the equation for a plane frame i.e. 𝛾𝑠(𝐺) = 3𝑏1(𝐺) =

3(𝑀(𝐺) − 𝑁(𝐺) + 𝑏0(𝐺)) must be used where 𝑀(𝐺) is the number of elements, 𝑁(𝐺) the 

number of nodes and 𝑏0(𝐺) and 𝑏1(𝐺) designate Betti’s zeroth and first numbers, 

respectively [38]) . 

(2) Theorem 1: Every maximal planar graph is fully triangulated (see [39] for proof). This 

implies triangulated graphs are of particular significance and could be a suitable point of 

departure for the study of wave propagation in a discrete parameter medium. 

(3) Theorem 2: Every simple planar graph is rectilinear (see [40] for proof). This expresses the 

fact that every planar graph possessing no loops or multiple edges can be drawn in plane 

using straight lines. 
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Together the two theorems imply that the fully-triangulated graph is maximal planar and rectilinear. 

This means addition of any further edges requires crossings and overlapping edges which implies the 

implementation of a more intricate procedure of construction. Furthermore, the graph constructed 

does not need any curved edges to be used.  

The structure of the phononic metamaterials could be shown as in Fig. 2. The internal structure of a 

single phononic node and its connectivity to the external mass is shown in Fig 2(a). Fig. 2(b) shows 

the connectivity of the external mass to the rest of the medium. Fig. 3 shows the degrees of freedom 

for the internal mass as well as the centre of mass of the external mass.  

                                          

                                             (a)                                (b) 

Fig. 2: The internal and external structures of a generic node indexed (A). (a) the internal structure, 

(b) the red circle depicts the reference cell shown in (a). Six neighbouring nodes exert forces on the 

reference cell (node) in (b). 

 

 

 

 

                

   (a)                                                                       (b) 

Fig. 3: Degrees of freedom for (a) internal mass, (b) centre of mass of the external mass  
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The microstructural arrangement of a node could be related to a real situation when a hard mass is 

buried in a soft massless matrix which, in its own right, is placed inside a hard shell (see Fig. 4). If the 

external shell is spherical (circular in 2D) isotropy in ensued. However, if a non-spherical (e.g. 

ellipsoidal (elliptical in 2D)) external shell is assumed anisotropic behaviour emerges (see Fig. 5). In 

the discrete parameter model of this work anisotropy is considered through allowing the angle 

between internal springs to be unequal to 𝜋/2. External anisotropy is achievable through different 

directional lattice constants. This has not been considered in the present work. 

Hard dense shell 

(external mass)

Soft massless filling 

(internal springs)

Hard dense core 

(internal mass)

 

Fig. 4: A representative isotropic locally resonant cell 

Isotropic mass-in-mass 

microstructure

Anisotropic mass-in-

mass microstructure  

Fig. 5: Representative isotropic and anisotropic locally resonant cells 

Spring stiffness for the internal springs could be obtained through analytical, numerical or 

experimental means. Fig. 6 shows evolution of stresses in a local resonator or locally resonant 

phononic node (internal spring’s elastic response) when the internal mass displaces in horizontal and 

vertical directions. On calculating the surface integrals of these tractions on the inner core surface one 

obtains the force the components on which could be related to the corresponding displacement 

components through directional stiffnesses. 

Once the model parameters are obtained the study of band structure in metamaterials could 

commence. The following section deals with the derivation of equations of motion for the K3 

metamaterial and associated analyses for the derivation of dispersion surfaces. 
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                                                  von Mises stress contour            displacement contour 

(a) 

                      

                                          von Mises stress contour                                    displacement contour 

                   
 

von Mises stress contour                                     displacement contour 
 

(b)  

Fig. 6: Schematic of von Mises stress and displacement fields in the internal soft medium due to 

directional unit displacement of the internal mass for (a) isotropic case, (b) anisotropic case 

 

3. Analyses 

 

3.1. Derivation of the equations of motion 

Considering the free body diagram of a single phononic node (a mass-in-mass unit) with its 

connectivity depicted as in Fig. 2(b) the equations of motion could be written as follows: 

𝑀�̈�𝑒
(𝐴)

= 𝑭𝑒𝑥𝑡 − 𝒇𝑖𝑛𝑡                                                 (1) 

                                                                     𝑚�̈�𝑖
(𝐴)

= 𝒇𝑖𝑛𝑡                                             

𝑭𝑒𝑥𝑡 = ∑ 𝒇𝑗
6
𝑗=1 ,                                                     (2) 

 

Where 𝑭𝑒𝑥𝑡 is the external force exerted on the reference cell, 𝒇𝑗 the force exerted on the 

reference cell by a neighbouring cell indexed 𝑗 and 𝒇𝑖𝑛𝑡 the force applied on the internal mass 

by the shell.  

𝒇𝑗 = 𝜒𝑒𝒆𝑗 [𝒆𝑗 ∙ (𝒖𝑒
(𝑗)

− 𝒖𝑒
(𝐴)

)]                                             (3) 

 

The unit vector 𝒆𝑗 is aligned along the spring connecting the reference cell to its j-th adjacent 

cell, (j=1,2,…,6) and is directed from the ref. cell A to the j-th cell (the distance between cells 

equals 𝑎). 𝜒𝑒 is the stiffness of the external springs. 

 

𝒆𝑗 = (𝑐𝑜𝑠𝛼𝑗, 𝑠𝑖𝑛𝛼𝑗), 𝛼𝑗 =
𝜋

3
(𝑗 − 1),   𝑗 = 1,2, … ,6. 
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According to the Bloch’s theorem for a harmonic plane wave solution: 

 

𝒖𝑒
(𝑗)

= 𝒖𝑒
(𝐴)

exp(𝑖𝑎𝒌 ∙ 𝒆𝑗),                               (4) 

 

where 𝒌 is real wave vector (attenuation-free wave). 

Analogously,𝒇𝑖𝑛𝑡 = 𝜒𝑖 ∑ 𝒆𝑖,𝑛 [𝒆𝑖,𝑛 ∙ (𝒖𝑒
(𝐴)

− 𝒖𝑖
(𝐴)

)]2
𝑛=1 ,   where 𝜒𝑖 is the stiffness of 

the internal spring and  𝒆𝑖,1 = (cos
𝜑

2
, −𝑠𝑖𝑛

𝜑

2
),  𝒆𝑖,2 = (cos 

𝜑

2
, 𝑠𝑖𝑛

𝜑

2
).  

Substituting expressions obtained for 𝒇𝑖𝑛𝑡  and 𝑭𝑒𝑥𝑡  into Eq. (1) and taking into account the 

relation (4) the following equations are obtained for a harmonic wave of frequency 

Ω (i. e. 𝒖𝑒
(𝐴)

= �̂�𝑒
(𝐴)

𝑒𝑥𝑝(𝑖Ω𝑡)): 

−Ω2𝑚�̂�𝑖
(𝐴)

= 𝜒𝑖 ∑ 𝒆𝑖,𝑛 [𝒆𝑖,𝑛 ∙ (�̂�𝑒
(𝐴)

− �̂�𝑖
(𝐴)

)]2
𝑛=1 ,                            (5) 

−Ω2𝑀�̂�𝑒
(𝐴)

= 𝜒𝑒 ∑ 𝒆𝑗(𝒆𝑗 ∙ �̂�𝑒
(𝐴)

)(exp (𝑖𝑎𝒌 ∙ 𝒆𝑗) − 1) − 𝜒𝑖 ∑ 𝒆𝑛 [𝒆𝑛 ∙ (�̂�𝑒
(𝐴)

− �̂�𝑖
(𝐴)

)]2
𝑛=1

6
𝑗=1 .   (6) 

One can easily calculate the eigenfrequencies of the isolated node when there are no external 

interactions  𝑭𝑒𝑥𝑡 = 𝟎. 

                   

𝑓𝑖𝑛𝑡,𝑥 = 𝜒𝑖 (∑ 𝒆𝑖,𝑛 [𝒆𝑖,𝑛 ∙ (𝒖𝑒
(0)

− 𝒖𝑖
(0)

)]

2

𝑛=1

)

𝑥

= 

 

= 2𝜒𝑖𝑢𝑒𝑥
(0)

𝑐𝑜𝑠2 𝜑

2
− 2𝜒𝑖𝑢𝑖𝑥

(0)
𝑐𝑜𝑠2 𝜑

2
=

3

2
𝜒𝑖𝑢𝑒𝑥

(0)
−

3

2
𝜒𝑖𝑢𝑖𝑥

(0)
,         (7a) 

 

𝑓𝑖𝑛𝑡,𝑦 = 𝜒𝑖 (∑ 𝒆𝑖,𝑛 [𝒆𝑖,𝑛 ∙ (𝒖𝑒
(0)

− 𝒖𝑖
(0)

)]

2

𝑛=1

)

𝑦

= 

 

= 2𝜒𝑖𝑢𝑒𝑦
(0)

𝑠𝑖𝑛2 𝜑

2
− 2𝜒𝑖𝑢𝑖𝑦

(0)
𝑠𝑖𝑛2 𝜑

2
=

3

2
𝜒𝑖𝑢𝑒𝑦

(0)
−

3

2
𝜒𝑖𝑢𝑦

(0)
,        (7b) 

 

for 𝜑 = 𝜋/3. Using the relation  𝑀𝒖𝑒
(0)

+ 𝑚𝒖𝑖
(0)

= 0 for free vibration of a single node, from 

Eqs. (5) and (7a) the eigenfrequency of vibration along x-axis is obtained as follows: 

𝜆𝑥
2 = 2

𝜒𝑖

𝑚
𝑐𝑜𝑠2 𝜑

2
(1 +

𝑚

𝑀
) =

3

2
𝜔0

2 (1 +
𝑚

𝑀
).                           (8a) 

Where the value 𝜔0
2 =

𝜒𝑖

𝑚
  is used as a reference frequency with respect to which frequencies 

could be normalised. 

Analogously, the eigenfrequency of free vibration along y-axis is obtained as follows: 

 𝜆𝑦
2 = 2

𝜒𝑖

𝑚
𝑠𝑖𝑛2 𝜑

2
(1 +

𝑚

𝑀
) =

1

2
𝜔0

2(1 +
𝑚

𝑀
).                             (8b) 

In both cases 𝜆2′𝑠 depict the directional resonance frequencies. 

In fact, the set of equations (5) and (6) gives the dispersion equation in terms of 

�̂�𝑒𝑥
(𝐴)

, �̂�𝑒𝑦
(𝐴)

, �̂�𝑖𝑥
(𝐴)

, �̂�𝑖𝑦
(𝐴)

,  for the reference cell (A), which can be re-written as follows: 
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    𝑫(Ω2, 𝒌)𝒖 = 𝟎,     𝒖 = [
𝒖𝑒

𝒖𝑖
] ≡ [

�̂�𝑒
(𝐴)

�̂�𝑖
(𝐴)],     |𝑫(Ω2, 𝒌)| = 𝟎,     Ω2 = Ω2(𝒌) ,                 (9) 

where 𝑫(Ω2, 𝒌) is the dynamic matrix which is, in this case, a square 4 × 4 matrix. Below, 

we introduce the non-dimensional frequency as: 

 

𝜔2 = Ω2/𝜔0
2,     𝜔0

2 =
𝜒𝑖

𝑚
, 

 

and determine the four  dispersion surfaces  𝜔𝑛
2 = 𝜔𝑛

2(𝒌), 𝑛 = 1,2,3,4, which satisfy the 

equation |𝑫(𝜔𝑛
2(𝒌), 𝒌)| = 0. 

 

Dimensionless parameters of the problem could be constructed based on any pair of the three 

parameters defined as follows: 

 

                           𝜇 =
𝑚

𝑀
 ,        𝛽 =

𝜒𝑖

𝜒𝑒
,         Ω0

2 = 𝜇/𝛽 =
𝜒𝑒

𝑀
𝜔0

2⁄ .                               (10) 

 

Based on Eqs. (5),(6),(7a),(7b) the elements of the dynamic 𝐷𝑖𝑗(𝜔2, 𝒌) could easily be re-

written using the parameters,  𝜇,  Ω0
2,  and the  dimensionless wave vector    �̂� = 𝒌𝑎 as 

follows: 

 

𝐷11 = Ω0
2 [3 − 2 cos(�̂�𝑥) − cos (

�̂�𝑥

2
) cos (�̂�𝑦

√3

2
)] + 2𝜇𝑐𝑜𝑠2 𝜑

2
− 𝜔2, 

𝐷22 = 3Ω0
2 [1 − cos (

�̂�𝑥

2
) cos (�̂�𝑦

√3

2
)] + 2𝜇𝑠𝑖𝑛2 𝜑

2
− 𝜔2, 

𝐷33 = 2𝑐𝑜𝑠2 𝜑

2
− 𝜔2, 𝐷44 = 2𝑠𝑖𝑛2 𝜑

2
− 𝜔2,                                                              (11)                                                        

𝐷12 = 𝐷21 = √3Ω0
2sin (

�̂�𝑥

2
) sin (�̂�𝑦

√3

2
), 

𝐷13 = −2 𝜇𝑐𝑜𝑠2 𝜑

2
, 𝐷24 = −2𝜇𝑠𝑖𝑛2 𝜑

2
, 𝐷31 = −2𝑐𝑜𝑠2 𝜑

2
, 𝐷42 = −2𝑠𝑖𝑛2 𝜑

2
, 

𝐷14 = 𝐷23 = 𝐷32 = 𝐷34 = 𝐷41 = 𝐷43 = 0.         

 

 

 

 

3.2. Extraction of frequency band structure 

 

As a point of departure in the analysis of dispersion properties a simple reduction is made to 

the system so that a point-mass lattice is obtained. Such an abstraction provides a benchmark 

for the subsequent study and renders 𝜔𝑓 = 𝜔𝑓(𝒌) the only dependency of frequency in the 

system for free vibrations of the lattice when internal masses and springs are excluded.  In this 

case one needs to solve Eq. (9) taking into account expressions (11) at 𝜇 = 0  and operate 

only with matrix ‖
𝐷11 𝐷12

𝐷21 𝐷22
‖. For this type of vibrations the eigenfunctions are denoted as 

𝒖𝑓,𝑒
(0)

(𝒌). 

 

It therefore follows that:  

𝜔𝑓,𝑙𝑜𝑤𝑒𝑟
2 /Ω0

2 = 𝜔𝑓𝑎
2 − 𝜔𝑓𝑏

2 ,     𝜔𝑓,𝑢𝑝𝑝𝑒𝑟
2 /Ω0

2 = 𝜔𝑓𝑎
2 + 𝜔𝑓𝑏

2 ,                      (12) 

𝜔𝑓𝑎
2 = 3 − 𝑐𝑜𝑠�̂�𝑥 − 2𝑐𝑜𝑠

�̂�𝑥

2
𝑐𝑜𝑠

√3

2
�̂�𝑦, 
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𝜔𝑓𝑏
2 = √(𝑐𝑜𝑠�̂�𝑥 − 𝑐𝑜𝑠

�̂�𝑥

2
𝑐𝑜𝑠

√3

2
�̂�𝑦)

2

+ 3𝑠𝑖𝑛2 �̂�𝑥

2
𝑠𝑖𝑛2 √3

2
�̂�𝑦. 

 

     Before proceeding with a discussion of main results obtained, let us demonstrate the structure 

of free vibrations in the lattice for different branches (𝜔𝑓,𝑙𝑜𝑤𝑒𝑟
2 (𝒌), 𝜔𝑓,𝑢𝑝𝑝𝑒𝑟

2 (𝒌)) depending on the 

wave vector 𝒌.   

The main equation of the eigenproblem, i.e. 𝑫(Ω, 𝒌)𝒖 = 𝟎, defines the eigenvectors 𝒖𝑛 =

[
𝒖𝑒

𝒖𝑖
]

𝑛
. The angle between 𝒌 and 𝒖𝑒 characterizes the type of vibration for a given  𝒌 vector. If  

Φ(𝒌) = 𝑐𝑜𝑠𝛼 =
𝑎𝑏𝑠[(𝒌∙𝒖𝑒)]

|𝒌||𝒖𝑒|
≈ 1, then the vibration is deemed longitudinal, and in the case of 𝑐𝑜𝑠𝛼 ≈

0  the vibration is transverse.  Fig. 7(a) depicts these two types of free vibration designated by 

surfaces 𝜔𝑓,𝑙𝑜𝑤𝑒𝑟
2 (𝒌) (cyan surface) for transverse vibration and 𝜔𝑓,𝑢𝑝𝑝𝑒𝑟

2 (𝒌) (yellow surface) for 

longitudinal vibration for the normalised dimensionless parameter Ω0
2 =

𝜇

𝛽
=

𝜒𝑒

𝑀
𝜔0

2⁄ = 1. The 

functional dependence of 𝜔2(𝒌) is represented at the left half of the square (dashed line) shown in 

Fig. 7(b) - The first Brillouin zone for the hexagonal 2D-lattice. Fig. 7(c) shows the structure of the 

contours for 𝜔𝑓,𝑙𝑜𝑤𝑒𝑟
2 (𝒌) at a wider area, which is larger than the first Brillouin zone (cyan coloured in 

the Fig. 7(c)). 

 

(a) 

   

                                           (b)                                             (c) 
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Fig. 7: (a) Dispersion surfaces, (b) the first Brillouin zone, (c) 2D mapping of 𝜔𝑓,𝑙𝑜𝑤𝑒𝑟
2 (𝒌) on a 

Brillouin zone and its neighbourhood 

Fig. 8 shows both vibration modes as characterized by the essentially isotropic function Φ(𝒌) = 𝑐𝑜𝑠𝛼 

(𝛼 being the angle of polarisation) at the center of the Brillouin zone (according to the general 

properties of the elastic medium, transverse vibrations lie on the lower frequency-surface and 

longitudinal vibrations on the upper one).  The reason is that the system under consideration has six 

planes of symmetry, and correspondingly twelve directions of the wave vector 𝒌 such that exactly one 

of the conditions 𝒖𝑒 ⊥ 𝒌 or 𝒖𝑒 ∥ 𝒌 holds. These properties need to be known and considered carefully 

when looking for the parameters to be altered for gap formation between neighbouring frequency-

surfaces, which ranges over the first Brillouin zone. 

              

             (a)                                                                    (b) 

Fig. 8: The distribution in Brillouin zone (𝒌-space) of the function Φ(𝒌).  Φ(𝒌) = 𝑐𝑜𝑠𝛼, where 𝛼 is 

the angle between the wave vector 𝒌 and displacement vector 𝒖𝑓,𝑒
(0)

(𝒌) for (a) the lower frequency-

surface, 𝜔𝑓,𝑙𝑜𝑤𝑒𝑟
2 (𝒌), and (b) the higher frequency-surface, 𝜔𝑓,𝑢𝑝𝑝𝑒𝑟

2 (𝒌) . The dependency of Φ(𝒌) is 

presented at the square (dashed line) shown in Fig. 7(b) which is (a) coloured in blue is the region 

where 𝑐𝑜𝑠𝛼≤0.1; and (b) coloured in red is the region where 𝑐𝑜𝑠𝛼≥0.9. 

As in the first approach, we can find the solution to the eigenvalue problem of Eq. (9) for the limiting 

case when the mass and stiffness ratios vanish while 𝜔0
2 remains constant. (𝜇 → 0  in Eq. 11 and 𝛽 →

0 in Eq. 10 -Fig. 9a). The shown set of the frequency-surfaces in Fig. 9a is, in fact, the combination of 

the set of four analytically calculated vibration modes of Eqs. (8a),(8b),(12).  

𝜔1
2(𝒌) = 𝜔𝑓,𝑙𝑜𝑤𝑒𝑟

2 (𝒌), 𝜔2
2(𝒌) = 𝜔𝑓,𝑢𝑝𝑝𝑒𝑟

2 (𝒌), 

𝜔3
2(𝒌) = 𝜆𝑦

2 =
1

2
,  𝜔4

2(𝒌) = 𝜆𝑥
2 =

3

2
,                                  (13) 

The calculated vibration modes “don’t interact” with each other since the parameter 𝜇  in the matrix 

𝑫(ω, 𝒌) formally describes the correlation between internal and external oscillations. The second pair 

of planes in (13) cross the first pair of surfaces in 3D i.e. in (𝑘𝑥, 𝑘𝑦, 𝜔2)-space. This can be interpreted 

as vibration energy-level crossing. For any nonzero value of internal mass (𝜇 ≠ 0), even when 𝜇 ≪ 1, 

there arises some interaction between vibrations of different type at the numerous lines of crossing 

(Fig. 9(a)),  and the morphology of surfaces essentially transforms (Fig. 9 (b)) . Just as in quantum 

mechanics, repulsions of energy levels occur followed by formation of four isolated 

frequency/energy-surfaces. This repulsion effect is known as “level repulsion” or the Wigner–von 

Neumann non-crossing (anti-crossing) rule. 
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                                      (a)                                                                     (b) 

Fig. 9: (a) Eigensurfaces for the limiting case of Ω0
2 = 1, 𝜇 = 0; the frequency-surfaces are calculated 

and shown for the upper-left quarter of the square region shown in Fig. 7(b). (b) Eigensurfaces at 

Ω0
2 = 1, 𝜇 = 0.1; white circles denote points of contacts between the neighbouring frequency 

surfaces. 

 (See [41, 42] for a detailed discussion of the case). For the given set of model parameters 

corresponding to the latter surface morphology (as in Fig. 9(b)), one can observe that a group of 

isolated points (here labelled as a, b, c, and d) remain in contact subsequent to occurrence of localised 

repulsion, i.e. when other areas of adjacent surfaces in the neighbourhood of these points repel each 

other. At these points the frequency-surfaces contact and the coupling strength between two 

oscillations of the same frequency at a given 𝒌 is absent. The physical mechanism responsible for 

both the repulsion and preservation of morphology encompassing the same points of contact can be 

qualitatively described using the first approach in the following way.  

In the case of the equality of lower and upper vibration frequencies, 𝜔𝑓,𝑙𝑜𝑤𝑒𝑟,𝑢𝑝𝑝𝑒𝑟
2 = 𝜆𝑥,𝑦

2  , at 

a given k , the angle of polarization, Φ(𝒌), for both modes of oscillation must be considered. In other 

words, the angle between two eigenfunctions that describe the displacements of the external mass, 

𝒖𝑓,𝑒
(0)(𝒌), 𝒖𝑖𝑛𝑡,𝑒

(0)
 have to be analyzed (𝒖𝑓,𝑒

(0)(𝒌)  is the displacement of the external mass as  𝜇 ⟶ 0 , 

𝛽 ⟶ 0 while 𝜔0
2 = 𝑐𝑜𝑛𝑠𝑡 ; and  𝒖𝑖𝑛𝑡,𝑒

(0)
 is that of external displacement for 𝜒𝑒 = 0). 

There are two extreme cases: 

                                   𝒖𝑓,𝑒
(0)

(𝒌) ⊥ 𝒖𝑖𝑛𝑡,𝑒
(0)

                                                (14a) 

                                  𝒖𝑓,𝑒
(0)

(𝒌) ∥ 𝒖𝑖𝑛𝑡,𝑒
(0)

 .                                              (14b) 

It is obvious that in the first case (Eq. (14a)) the vibration modes don’t “interact” and two the 

frequency-surfaces retain contact (See points a and b in Fig. 10). The free internal vibrations (FIV) 

possess only two directions of polarization of the displacements, 𝒖𝑖𝑛𝑡,𝑒
(0)

 : along y-axis with the lower 

frequency, 𝜆𝑦
2 , and along x-axis with the higher frequency  𝜆𝑥

2. Contrary to this frequency pair, the free 
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external vibrations (FEV) are characterized by rather isotropic functions  Φ(𝒌)  for both branches of  

𝒖𝑓,𝑒
(0)

(𝒌)  (see Fig. 8).  Thus, there are two points on the plane 𝑘𝑥 = 0 where Eqs. (15a) and (15b) are 

valid (See Figs.9(b) and 10). 

                         𝜆𝑥
2 = 𝜔𝑓,𝑢𝑝𝑝𝑒𝑟

2 ,   𝒖𝑓,𝑒
(0)

(𝒌) ⊥ 𝒖𝑖𝑛𝑡,𝑒
(0)

   (point a),                                             (15a) 

𝜆𝑦
2 = 𝜔𝑓,𝑙𝑜𝑤𝑒𝑟

2 ,   𝒖𝑓,𝑒
(0)

(𝒌) ⊥ 𝒖𝑖𝑛𝑡,𝑒
(0)

  (point b).                                              (15b) 

As a result of (12), the frequencies  𝜔𝑓,𝑙𝑜𝑤𝑒𝑟
2 , 𝜔𝑓,𝑢𝑝𝑝𝑒𝑟

2  at 𝑘𝑥 = 0  are equal to 

   𝜔𝑓,𝑙𝑜𝑤𝑒𝑟
2 (𝑘𝑥 = 0, 𝑘𝑦) = Ω0

2(1 − 𝑐𝑜𝑠
√3

2
�̂�𝑦),  

 𝜔𝑓,𝑢𝑝𝑝𝑒𝑟
2 (𝑘𝑥 = 0, 𝑘𝑦) = 3Ω0

2(1 − 𝑐𝑜𝑠
√3

2
�̂�𝑦)                                                          (16) 

and  𝜔𝑓,𝑢𝑝𝑝𝑒𝑟
2 (𝑘𝑥 = 0)/𝜔𝑓,𝑙𝑜𝑤𝑒𝑟

2 (𝑘𝑥 = 0) = 𝜆𝑥
2/𝜆𝑦

2 = 3 (See  Eqs. (8a) and (8b)). 

 

Fig. 10: Cross section of the surfaces shown in Fig. 9(b) by the plane 𝑘𝑥 = 0. Arrows denote 

orientation of the displacements 𝒖𝑒 relative to the y-axis for different types of vibration. The 

schematic figure inserted at the top reminds the orientation of the internal structure for nodes on the 

plane xy. Red and blue dash lines are cross sections of the four surfaces of Eq. (13). 𝜆𝑥
2 =

1/2(1 + 𝜇) = 0.55, 𝜆𝑥
2 = 3𝜆𝑦

2 = 1.65.  

Thus both equalities (15a) and (15b) are satisfied for the same value of 𝑘𝑦,𝑐𝑟 : 

𝑘𝑦,𝑐𝑟 =
2

√3
arccos [1 − (1 + 𝜇)/(2Ω0

2)].                            (17) 

At  Ω0
2 = 1,   𝑘𝑦,𝑐𝑟 ≈ 1.27 which corresponds to results shown in Fig. 10. At the regions where  𝜆𝑥

2 =

𝜔𝑓,𝑙𝑜𝑤𝑒𝑟
2 (𝑘𝑥 = 0, 𝑘𝑦) or 𝜆𝑦

2 = 𝜔𝑓,𝑢𝑝𝑝𝑒𝑟
2 (𝑘𝑥 = 0, 𝑘𝑦) in both cases 𝒖𝑓,𝑒

(0)
(𝒌) ∥ 𝒖𝑖𝑛𝑡,𝑒

(0)
, and one can see 

the effects of repulsion (See Fig. 10). 

In the (𝑘𝑥 , 𝜔) −plane (See Fig. 9b), the equalities 𝜆𝑥
2 = 𝜔𝑓,𝑢𝑝𝑝𝑒𝑟

2  and 𝜆𝑦
2 = 𝜔𝑓,𝑙𝑜𝑤𝑒𝑟

2 ,  are 

satisfied (in opposite to the (𝑘𝑦, 𝜔)-plane) at 𝒖𝑓,𝑒
(0)

(𝒌) ∥ 𝒖𝑖𝑛𝑡,𝑒
(0)

 due to the rotation of the FEV-vectors,  
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𝒖𝑓,𝑒
(0)

(𝒌) – See. Fig. 8. – by fixed  orientations of the FIV-vectors, 𝒖𝑖𝑛𝑡,𝑒
(0)

.  Thus, the points of contacts 

convert to regions of marked repulsions. Such transformations (contact-repulsion) can be easily 

retraced by comparison with Figs.10 and 11. 

 

Fig. 11: Cross section of the surfaces shown in Fig. 9b by the plane 𝑘𝑦 = 0. Arrows denote 

orientation of the displacements 𝒖𝑒 relative to the x-axis for different types of vibration. The insert 

remind the orientation of the internal structure of nodes at the plane xy. 

To elaborate, the repulsion at the region where 𝜆𝑥,𝑦
2 = 𝜔𝑓,𝑙𝑜𝑤𝑒𝑟,𝑢𝑝𝑝𝑒𝑟

2  and 𝒖𝑓,𝑒
(0)

(𝒌) ∥ 𝒖𝑖𝑛𝑡,𝑒
(0)

 (where the 

coupling strength between one of the internal oscillations, 𝜆𝑥
2  or 𝜆𝑦

2  and one of the free external 

oscillations  𝜔𝑓,𝑙𝑜𝑤𝑒𝑟
2 (𝒌),  𝜔𝑓,𝑢𝑝𝑝𝑒𝑟

2 (𝒌) is maximal) can be interpreted as in the sequel.  

It is evident that the frequencies of the FIV, 𝜆𝑥,𝑦
2 , are proportional to  (1 +

𝑚

𝑀
)  (See Eqs. (8a) and 

(8b)). The multiplier (1 +
𝑚

𝑀
)  reflects the fact that the oscillation of internal and external masses is in 

antiphase, which increases the effective stiffness of the internal springs, 𝜒𝑖
∗ = 𝜒𝑖 (1 −

𝒖𝑖𝑛𝑡,𝑒
(0)

𝒖𝑖𝑛𝑡,𝑖
(0) ) > 𝜒𝑖, 

compared to the case of the motionless node shell (𝒖𝑒
(0)

= 0  in Eq. (7a)). In the first approach, 

combining the two modes i.e. FIV and FEV at the critical points 𝜆𝑥,𝑦
2 = 𝜔𝑓,𝑙𝑜𝑤𝑒𝑟,𝑢𝑝𝑝𝑒𝑟

2   can be 

realized in two ways:   

(i) Anti-phase displacements i.e. 𝒖𝑓,𝑒
(0)

(𝒌) ↑↓ 𝒖𝑖𝑛𝑡,𝑒
(0)

, which implies 𝒖𝑒 ≈ 𝒖𝑖𝑛𝑡,𝑒
(0)

+

𝒖𝑓,𝑒
(0)(𝒌) < 𝒖𝑖𝑛𝑡,𝑒

(0)
, and formally corresponds to increasing the effective mass, 𝑀∗, of 

the node shell, thus 𝑀∗ > 𝑀 ; 

(18) 

 

(ii) In-phase displacements i.e. 𝒖𝑓,𝑒
(0)

(𝒌) ↑↑ 𝒖𝑖𝑛𝑡,𝑒
(0)

 , which implies  𝒖𝑒 ≈ 𝒖𝑖𝑛𝑡,𝑒
(0)

+

𝒖𝑓,𝑒
(0)(𝒌) > 𝒖𝑖𝑛𝑡,𝑒

(0)
 ,  therefore 𝑀∗ < 𝑀. 
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So, the cases (i) and (ii) are responsible for formation of the lower and the upper frequencies 

when the repulsion occurs (See. Figs.10 and 11).    

It is very useful to determine the type of vibration at the acoustic frequency-surfaces like 1 

and 2 in Fig. 11. The results partially presented in Fig. 12 for high parameter Ω0
2 (Ω0

2 =10) provide an 

explanation. 

 

Fig. 12: Cross sections of the frequency-surfaces by the plane 𝑘𝑦 = 0 (left half) and by the plane 

𝑘𝑥 = 0 (right half). 𝜇 = 0.1, Ω0
2 =10 (ten time higher than in Figs.10 and 11). Arrows denote the 

zones of “levels repulsion”. The sections are presented only at the central region of the first Brillion 

zone. 

At the point 𝒌 = 0 the lower optical frequency (the point 𝑂1) correspond to the internal oscillations 

with the frequency 𝜆𝑦
2 =

1

2
(1 + 𝜇) = 0.55. These vibrations interact and combine in a sophisticated 

way with the 𝜔𝑓,𝑙𝑜𝑤𝑒𝑟
2 (𝒌)-surface (See the left half of Fig. 12) and with the  𝜔𝑓,𝑢𝑝𝑝𝑒𝑟

2 (𝒌)-surface (See 

the right half of Fig. 12). In both cases one can see that after repulsion the frequencies of vibrations on 

surface 1 are practically the same: 𝜔(1)
2 (𝒌) ≈ 1/2. A detailed analysis of the corresponding eigen 

functions indicates that on this surface vibrations occur along 𝑘𝑦-axis (on the periphery of the first 

Brillouin-zone) but the displacements of the external masses are at least four hundred times less than 

displacements of the internal masses (for the free internal vibrations |
𝒖𝑖𝑛𝑡,𝑒

(0)

𝒖𝑖𝑛𝑡,𝑖
(0) | =

𝑚

𝑀
= 0.1). Analogously, 

at point 𝑂2 on the upper optical surface 𝜔2(𝑘 = 0) = 𝜆𝑥
2= 

3

2
(1 + 𝜇) = 1.65 but on surface 2 

vibrations occur with the frequency 𝜔(2)
2 (𝒌) ≈ 3/2 (excluding the central region). Besides, at the 

periphery of the Brillouin zone the displacements 𝒖𝑒(𝒌) point to their origin from the free high-

frequency optic vibrations. In other words,  𝒖𝑒 mainly oriented along 𝑥-axis and the corresponding 

angle 𝛾 = acos (𝑢𝑒𝑥/|𝒖𝑒|) does not exceed 320 (See Fig. 13a). These results can be interpreted in the 

following way. 
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(a)          (b) 

Fig. 13:  Characteristics of the upper acoustic surfaces, 𝜔(2)
2 (𝒌), at 𝜇 = 0.1, Ω0

2 = 10 (See Fig. 12). 

(a) The distribution of the angle, 𝛾, between displacements of the node shells, 𝒖𝑒, and the 𝑥-axis in 

the 𝑘𝑥, 𝑘𝑦 -space : 𝛾(𝑘𝑥, 𝑘𝑦) = acos (𝑢𝑒𝑥/|𝒖𝑒|). The size of the side for the region presented is three 

time less than the size of the Brillouin zone.  The numbers by the equiscalar contour lines indicate the 

angle 𝛾 in degrees. White circles correspond to points of tangential contact between the neighbouring 

frequency surfaces (See Fig. 12). Out of the central area the angle 𝛾 doesn’t exceed the limit of 320. 

(b) The ratio 𝑀∗/𝑀 as a function of 𝑘𝑥 , 𝑘𝑦 as 𝑀∗/𝑀 = −𝜇|𝒖𝑖|/|𝒖𝑒|, 𝒖𝑖 ∙ 𝒖𝑒 > 0. 

The external vibratory force field that exerts on the node shells can be brought to an effective 

mass of the shells in the assumed “free” internal vibrations on the acoustic branches at the periphery 

of the Brillouin zone.  The self-consistency of the external and internal forces results in the two 

possible effective masses, 𝑀1
∗, 𝑀2

∗ , for these acoustic surfaces. Similarly to the free internal vibration 

in which 𝑚/𝑀 = 𝜇 = −𝒖𝑖𝑛𝑡,𝑒
(0)

/𝒖𝑖𝑛𝑡,𝑖
(0)

  (𝒖𝑖𝑛𝑡,𝑒
(0)

↑↓ 𝒖𝑖𝑛𝑡,𝑖
(0)

, 𝒖𝑖𝑛𝑡,𝑒
(0)

∙ 𝒖𝑖𝑛𝑡,𝑖
(0)

< 𝟎), one can estimate the 

effective masses as follows:  𝑚/𝑀∗ = −|𝒖𝑒|/|𝒖𝑖|, and  𝑀∗/𝑀 = −𝜇|𝒖𝑖|/|𝒖𝑒| (in the preceding 

equations it has been taken into account that in the acoustic wave the internal and the external masses 

vibrate in-phase, and  𝒖𝑖 ∙ 𝒖𝑒 > 0, which physically corresponds to decreasing the effective stiffness 

of the internal springs). As shown by the results in Fig. 13b, the effective mass at the periphery of the 

Brillouin zone is negative and |𝑀∗| ≫ 𝑀 (on the 𝜔(1)
2 (𝒌)-surface the corresponding effective mass 

goes down to  −120𝑀). In fact it could be simply argued that the greater the value of Ω0
2 (external 

stiffness) the greater is the absolute value of the effective mass |𝑀∗| due to the fact that increasing 

external stiffness renders 𝒖𝑒 small. 

The qualitative analysis  of the results presented in Figs.12 and 13 leads to the conjecture that 

the frequencies of the acoustic vibrations never exceed their corresponding thresholds  𝜆𝑦
2 (𝑀∗ = −∞) 

and 𝜆𝑥
2(𝑀∗ = −∞), respectively: 

 

                                 max (𝜔(1)
2 (𝒌)) = 𝜆𝑦

2 (𝑀∗ = −∞)  

 max (𝜔(2)
2 (𝒌)) = 𝜆𝑥

2(𝑀∗ = −∞)                                                         (19) 
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Throughout the numerical analyses conducted the expected behaviour prevailed. For instance, 

for the case of Ω0
2 = 10, 𝜇 = 1 the higher frequency 𝜔2(𝑘 = 0) = 𝜆𝑥

2 = 3 but max (𝜔(2)
2 (𝒌)) = 

1.455< 𝜆𝑥
2(𝑀∗ = −∞) = 1.5. The ansatz conjectured, i.e. Eq. (19), could be analytically proved as 

follows. 

According to Eq. (8a), 𝜆𝑥
2(𝑀∗ = −∞) = 2𝑐𝑜𝑠2 𝜑

2
.  The dispersion equation  |𝑫(𝜔, 𝒌)| = 0 at 

𝜔2 = 2𝑐𝑜𝑠2 𝜑

2
 , |𝑫 (𝜔2 = 2𝑐𝑜𝑠2 𝜑

2
, 𝒌)| = 0, takes the following form: 

1.5Ω0
2 [1 − cos (

�̂�𝑥

2
) cos (�̂�𝑦

√3

2
)] = 𝑐𝑜𝑠2 𝜑

2
(𝑐𝑜𝑠𝜑 − 𝜇𝑠𝑖𝑛2 𝜑

2
) /𝑐𝑜𝑠𝜑.        (20) 

For an arbitrary direction 𝒆 (𝒆 = 𝑒𝑥𝒊 + 𝑒𝑦𝒋 being the unit vector) the function 

       𝑓(𝑘) = cos (
1

2
�̂�𝑒𝑥) cos (

√3

2
�̂�𝑒𝑦) ≡ cos (

�̂�𝑥

2
) cos (

�̂�𝑦√3

2
),                              (21) 

is a monotonically decreasing function in the first Brillouin zone. So, the Eq. (20) may have a single 

solution in terms of  �̂�, and the solution corresponds to a point that can only be situated at the lower 

“optical” frequency-surface – See. Fig. 12, for example.  There exists no solution of Eq. (20) at the 

acoustic frequency surfaces 2 for any value of the dimensionless wave parameter �̂�. However, it must 

be noticed that the lower the ratio 
𝜇

Ω0
2 =

𝜒𝑖

𝜒𝑒
= 𝛽 the closer is the max (𝜔(2)

2 (𝒌))  to its threshold 

𝜆𝑥
2(𝑀∗ = −∞).   

The statements (19) are very important in finding the gaps needed to be formed by the proper 

choice of parameters 𝜇, Ω0
2 or equivalently 𝜇, 𝛽. 

 

4. Mechanisms of gap formation 

 

Formation of gaps of different characteristics is of significance in designing phononic devices. Gaps 

of diverse characteristics, between neighbouring frequency-surfaces, can be formed based on different 

physical mechanisms, which depend on the value of the dimensionless parameter 𝜇.  

For  𝜇 ≪ 1  a second parameter i.e. Ω0
2 must be low enough so that the point of contact of type a (See. 

Fig. 10) between surfaces vanishes. This means that (i) the upper frequency of the internal 

frequencies, 𝜆𝑥
2 = 1.5(1 + 𝜇) – See. Eq. (8a) - is at least greater than  max  {𝜔𝑓,𝑢𝑝𝑝𝑒𝑟

2 (𝒌)} , (ii) Eq. 

(17) doesn’t have a solution, that is |1 − (1 + 𝜇)/(2Ω0
2)|>1. Finally, the upper gap (between the 

frequency surfaces 3 − 4, Fig. 14a) appears if 

  Ω0
2 <

1+𝜇

4
  .                                                          (22) 

  So,  Ω0
2 < 0.275  if  𝜇 = 0.1 . 
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   (a)                                                    (b) 

Fig. 14:  Formation of gaps at the low value of parameter 𝜇 =
𝑚

𝑀
= 0.1, 𝜔𝑖𝑛𝑡,𝑦

2 = 0.55, 𝜔𝑖𝑛𝑡,𝑥
2 = 1.65. 

a - Ω0
2 = 0.2, Δ𝑢𝑝𝑝𝑒𝑟=0.37; b - Ω0

2 = 1/9, Δ𝑢𝑝𝑝𝑒𝑟=0.85, Δ𝑙𝑜𝑤𝑒𝑟 = 0.06. The gaps are marked by grey 

dashed patterns. 

 Since Ω0
2 = 𝜇/ (

𝜒𝑖

𝜒𝑒
), Eq. (22) can be re-written as:  

𝜒𝑖

𝜒𝑒
>

4𝜇

1+𝜇
  .                                                         (23) 

Analogously, both the upper and lower gaps (between the frequency surfaces 2 − 3) appear if the 

lower of the internal frequencies, 𝜔𝑖𝑛𝑡,𝑦
2 = 0.5(1 + 𝜇) – (See 8(b)) – is greater than  

max{𝜔𝑓,𝑢𝑝𝑝𝑒𝑟
2 (𝒌)} i.e. : 

Ω0
2 ≲

1+𝜇

12
 ,  

𝜒𝑖

𝜒𝑒
≳

12𝜇

1+𝜇
  .  (Ω0

2 ≲ 0.09  if  𝜇 = 0.1 )                  (24)  

The thresholds set by Eqs. (22)-(24) are in a good agreement with the exact results (See. Fig. 15) at 

𝜇 ≲ 0.3. When the parameter Ω0
2 decreases for a fixed value of  𝜇 (

𝜒𝑖

𝜒𝑒
 increases), one can see that the 

formation of the upper gap precedes that of the lower gap and it first appears followed by the 

formation of the lower gap.  Such an order of formation is comprehensible and could be expounded in 

accordance with the physical mechanisms of gaps formation presented above. 
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(a)                                                  (b)                                              (c) 

Fig. 15: The critical values of the parameter Ω0
2 as function of the mass ratio 𝜇.  For the upper (lower) 

gap to be formed the relation Ω0
2 < Ω𝑐𝑟,𝑢𝑝𝑝𝑒𝑟

2   (Ω0
2 < Ω𝑐𝑟,𝑙𝑜𝑤𝑒𝑟

2 ) must hold. The region 0.1 ≤ 𝜇 ≤ 1 is 

presented separately in high resolution (Fig. 15a). The dependence Ω𝑐𝑟,𝑢𝑝𝑝𝑒𝑟
2 (𝜇) is  approximated by 

the linear function Ω𝑐𝑟,𝑢𝑝𝑝𝑒𝑟
2 = (1.4 + 𝜇)/6 (Fig. 15c) with high accuracy as well as Ω𝑐𝑟,𝑙𝑜𝑤𝑒𝑟

2 =

0.8𝜇/(2 − 𝜇) at 𝜇 > 0.8 (Fig. 15b). 

 

   The order of appearance of gaps is only correct for low values of mass ratio (small internal mass) 

i.e. 𝑚 ≪ 𝑀. If  𝑚 ~ 𝑂(𝑀)  (𝜇 ≳ 0.6, See Fig. 14) a sudden shift in the effect occurs. Then at first the 

lower gap forms (Compare Fig. 16 with Fig. 14). 

 

 

Fig. 16: The reverse order of gap formation when the 

parameter Ω0
2 is decreasing. 𝜇 = 0.8, Ω0

2 = 0.45. The 

upper gap will be formed at Ω0
2 < 0.37. 

 

 

Our estimation of Eq. (22) Ω𝑐𝑟,𝑢𝑝𝑝𝑒𝑟
2 = (1 + 𝜇)/4 – 

corresponds, at least qualitatively and approximately, to 

the exact result:  

Ω𝑐𝑟,𝑢𝑝𝑝𝑒𝑟
2 (𝜇) = (1.4 + 𝜇)/6.                                                      

(25a) 

 But the threshold 

   Ω𝑐𝑟,𝑙𝑜𝑤𝑒𝑟
2 (𝜇) = 0.8𝜇/(2 − 𝜇).                                               

(25b)  

is not a linear function of mass ratio as Eq. (24) (i.e. Ω𝑐𝑟,𝑙𝑜𝑤𝑒𝑟
2 (𝜇)~(1 + 𝜇)/12) and demonstrates 

unusual behaviour (Fig. 15b). For 𝜇 > 2 the lower gap formally arises at any finite Ω0
2.  
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More obviously, the properties of the acoustic system can be represented by the dependencies of the 

relative critical stiffness on the relative mass: (
𝜒𝑖

𝜒𝑒
)

𝑐𝑟
=

𝜇

Ω𝑐𝑟
2 (𝜇)

  - See. Fig. 17 (for the formation of 

gaps the inequality 
𝜒𝑖

𝜒𝑒
> (

𝜒𝑖

𝜒𝑒
)

𝑐𝑟
 must hold). One can see that at the region 𝜇 < 2 the lower gap can’t 

appear if the relative internal stiffness is less than the critical value (
𝜒𝑖

𝜒𝑒
)

𝑐𝑟,𝑙𝑜𝑤𝑒𝑟
  derived.  

 

Fig. 17:  The critical values of the parameter (𝜒𝑖/𝜒𝑒)𝑐𝑟 as a function of the relative mass 𝜇. The blue 

curve is (𝜒𝑖/𝜒𝑒)𝑐𝑟,𝑙𝑜𝑤𝑒𝑟, and the red - (𝜒𝑖/𝜒𝑒)𝑐𝑟,𝑢𝑝𝑝𝑒𝑟. Gaps arise if the relative stiffness  𝜒𝑖/𝜒𝑒  is 

higher than the corresponding critical value (𝜒𝑖/𝜒𝑒)𝑐𝑟. 

 

In accordance with the approximating function for Ω𝑐𝑟,𝑢𝑝𝑝𝑒𝑟
2   (See Eq. (25a)) 

(𝜒𝑖/𝜒𝑒)𝑐𝑟,𝑢𝑝𝑝𝑒𝑟 = 6𝜇/(1.4 + 𝜇).                                   (26a) 

 

As a consequence of Eq. (26b) the value (
𝜒𝑖

𝜒𝑒
)

𝑐𝑟,𝑙𝑜𝑤𝑒𝑟
 is a linear function of 𝜇 for 𝜇 ≳ 0.8: 

(𝜒𝑖/𝜒𝑒)𝑐𝑟,𝑙𝑜𝑤𝑒𝑟 ≈ 1.25(2 − 𝜇);                                    (26b) 

At 𝜇 > 𝜇∗ = 2, there aren’t any limitations on  𝜒𝑖/𝜒𝑒 for  the formation of the lower gap. The 

threshold, 𝜇∗, has a clear explanation. Below, the value of 𝜇∗ for an arbitrary angle 𝜑 between two 

internal springs is calculated – See Fig. 2a.  

The dimensionless internal eigenfrequencies according to Eqs. (8a) and (8b) are equal to 𝜆𝑥
2 =

2(1 + 𝜇)𝑐𝑜𝑠2 𝜑

2
 , 𝜆𝑦

2 = 2(1 + 𝜇)𝑠𝑖𝑛2 𝜑

2
 . Increasing the relative mass, 𝜇, is followed by increasing the 

dimensionless frequencies  𝜆𝑥
2 and 𝜆𝑦

2  at the fixed 𝜆𝑥
2(𝑀∗ = −∞) = 2𝑐𝑜𝑠2 𝜑

2
. Thus, a possibility may 

be realized when:  

 

𝜆𝑦
2 > 𝜆𝑥

2(𝑀∗ = −∞), or   𝜇 > 𝜇∗ = 𝑐𝑜𝑠2 𝜑

2
𝑠𝑖𝑛2 𝜑

2
⁄ − 1.                       (27) 



22 
 

In this case the lower of the two optical surfaces (surface 3) (See Fig. 12) lies above the 

max (𝜔(2)
2 (𝒌)) = 𝜆𝑥

2(𝑀∗ = −∞) (See Eq. (19)), thus Eq. (20) doesn’t have a solution (the right hand 

side of Eq. (20) becomes negative at 𝜇 > 𝜇∗ whereas the left hand side remains always positive). Such 

a situation guarantees that a gap appears above the upper acoustic frequency-surface (surface 2) and 

below the lower optic surface. The width of the gap, ∆𝑙𝑜𝑤𝑒𝑟, may be estimated as 𝜆𝑦
2 − 𝜆𝑥

2(𝑀∗ =

−∞)- (See Fig. 12). Then: 

 ∆𝑙𝑜𝑤𝑒𝑟= 2(𝜇 × 𝑠𝑖𝑛2 𝜑

2
− 𝑐𝑜𝑠𝜑) .                                          (28) 

For 𝜑 = 𝜋/3  

𝜇∗ = 2, ∆𝑙𝑜𝑤𝑒𝑟=
𝜇

2
− 1,                               (29) 

which is in agreement with the results presented in Fig. 18. 

The results of Figs.17 and 18 show that there is a wide region on the plane (𝜇; 𝜒𝑖/𝜒𝑒) at 

which only the lower gap,  ∆𝑙𝑜𝑤𝑒𝑟,  can be formed with a rather large width.  The width ∆𝑙𝑜𝑤𝑒𝑟 

linearly increases when the relative mass, 𝜇, increases (Fig. 18a). The formation of only the upper gap 

is possible at a narrow zone (between red and blue curves in Fig. 17, 𝜇 ≲ 0.6). But this gap, ∆𝑢𝑝𝑝𝑒𝑟,  

don’t exceed ~0.78 at the region.  

 

 

(a)                                                        (b) 

Fig. 18:   The dependencies of ∆𝑙𝑜𝑤𝑒𝑟(𝜇; 𝜒𝑖/𝜒𝑒) and ∆𝑢𝑝𝑝𝑒𝑟(𝜇; 𝜒𝑖/𝜒𝑒) on the relative mass and 

dimensionless stiffness for 𝜇 ≥ 0.1, and 𝜒𝑖/𝜒𝑒 ≥ 0.1. The regions where the gaps don’t appear are 

marked by cyan. 

 

As the results presented in Figs.18a and 18b depict, the single wide upper gap, ∆𝑢𝑝𝑝𝑒𝑟> 1, can appear 

only together with a wide lower gap. Such an interconnection is demonstrated in Fig. 19: when Ω0
2 

decreases ((𝜒𝑖/𝜒𝑒) increases), significant widening of the upper gap doesn’t affect the existing lower 

gap, which is mainly a function of 𝜇 (See Eq. (29)). But an interesting detail is to be noticed: the 

widening occurs because of “repulsion” between the upper (yellow) and the lower (green) frequency 

surfaces – the second one is localized in a more narrow frequency range in case Fig. 19b than in case 

of Fig. 19a.  
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                                       (a)                                                             (b) 

Fig. 19: Dispersion surface for 𝜇 = 5 (𝜆𝑦
2 = 3, 𝜆𝑥

2 = 9).  a - Ω0
2 = 1 (Ω𝑐𝑟,𝑢𝑝𝑝𝑒𝑟

2 = 1.06; (𝜒𝑖/

𝜒𝑒)𝑐𝑟,𝑙𝑜𝑤𝑒𝑟 ≈ 4.7),  Δ𝑢𝑝𝑝𝑒𝑟 = 0.35, Δ𝑙𝑜𝑤𝑒𝑟 = 2.44 - the narrow upper gap is marked by gray pattern; 

b - Ω0
2 = 0.5  (𝜒𝑖/𝜒𝑒 = 10),  Δ𝑢𝑝𝑝𝑒𝑟 = 3.26, Δ𝑙𝑜𝑤𝑒𝑟 = 2.65 

So, on can taylor the width of the gaps, ∆𝑙𝑜𝑤𝑒𝑟,𝑢𝑝𝑝𝑒𝑟, through alteration of the governing 

parameters viz. 𝜇, 𝛽 = 𝜒𝑖/𝜒𝑒 (or alternatively Ω0
2) by using the results that are presented in Figs.15, 

17and 18.  

 There would be no reason to change the orientation of the internal springs at a fixed internal 

angle 𝜑 between them since the main results practically don’t change.  

 It would be instead more effective to change the angle 𝜑 itself as shown by the Eq.’s (27)-

(28) to control the gap size ∆𝑙𝑜𝑤𝑒𝑟– (the ratio 𝑐𝑜𝑠2 𝜑

2
/𝑠𝑖𝑛2 𝜑

2
≡ 𝜆𝑥

2/𝜆𝑦
2    could be the meassure of 

anisotrophy of internal vibrations). But it is easy to ascertain that at 𝜑 = 600 the magnitudes of 

Δ𝑙𝑜𝑤𝑒𝑟 and  Δ𝑢𝑝𝑝𝑒𝑟 are the most balanced on average as they are of the same order of magnitude. 

    In the following the case of isotropy of the internal phononic structure leading to the global 

isotropy of the metamaterial is briefly studied.  

 

4.1. Homogeneous isotropic phononic metamaterial 

 

 If 𝜑 = 900, then 𝜆𝑦
2 = 𝜆𝑥

2 = 𝜆2,  and internal vibrations become isotropic: vibrations oriented 

in any direction have the same frequency 𝜆2 =
𝜒𝑖

𝑚
(1 + 𝜇) (or in the units of  

𝜒𝑖

𝑚
 the dimensionless 

value 𝜆2 = 1 + 𝜇).  

As above, the maximum acoustic frequency, max (𝜔(2)
2 ) , on surface 2 (Fig. 12) can’t exceed the 

threshold: 
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max (𝜔(2)
2 )  < 𝜆2(𝑀∗ = −∞) = 2𝑐𝑜𝑠2 𝜑

2
= 1, 

(See Eqs. (19) for the derivation) and the critical mass parameter 𝜇∗ = 0 (see Eq. (27)). The physical 

meaning of such a low value of the relative critical mass,  𝜇∗, lies in the intensive “energy-level 

repulsion” which occurs between the isotropic acoustic and the twice-degenerate isotropic optical 

vibrations over the entire Brillion zone, which renders the appearance of contact points such as points 

a, b, c, and d observed previously (See Fig. 9b, 10 and11) impossible. 

 Thus, the unique gap exists for any value of the parameters identifying the system under 

consideration: 

Δ ≈ 𝜆2 − 𝜆2(𝑀∗ = −∞) = 𝜇 > 0.                                        (30) 

In fact, the gap ∆ is slightly greater than 𝜇 because max (𝜔(2)
2 ) ≈ 𝜆2(𝑀∗ = −∞) only when Ω0

2 =

𝜇/(𝜒𝑖/𝜒𝑒) ≫ 1. For a generic case when max (𝜔(2)
2 ) < 𝜆2(𝑀∗ = −∞), the estimation (30) is in 

excellent agreement with numerical experiments (See Fig. 20). 

Examples of frequency-surfaces are presented in Fig. 21.  It is to be noticed an important 

relation. The internal vibrations tear the continuous spectrum of the two free acoustic vibrations 

(𝜔𝑓,𝑙𝑜𝑤𝑒𝑟
2 (𝒌), 𝜔𝑓,𝑢𝑝𝑝𝑒𝑟

2 (𝒌)) into the pair of low-frequency acoustic oscillations, 𝜔(1)
2 (𝒌), 𝜔(2)

2 (𝒌), and 

the pair of high-frequency “optic” oscillations  𝜔(3)
2 (𝒌), 𝜔(4)

2 (𝒌). The results of our numerical 

experiments show that for these hybrid oscillations some conservation law is satisfied with high 

accuracy. 

max [𝜔(1)
2 (𝒌)] + (max [𝜔(3)

2 (𝒌)] −  𝜆2) = max[𝜔𝑓,𝑙𝑜𝑤𝑒𝑟
2 (𝒌)] = 4.5Ω0

2 , 

max [𝜔(2)
2 (𝒌)] + (max [𝜔(4)

2 (𝒌)] −  𝜆2) = max[𝜔𝑓,𝑢𝑝𝑝𝑒𝑟
2 (𝒌)] = 6Ω0

2.                  (31) 

 

Where the left hand side depicts the conserved value and the right hand side in both are derived based 

on Eq. (12). 

 

                  

                               (a)                                                                     (b) 

Fig. 20:  The width of the gap ∆≈ 𝜇 in accordance with (30) (especially for low values of 𝜒𝑖/𝜒𝑒);  For 

𝜒𝑖/𝜒𝑒 ≳ 1 the frequency max (𝜔(2)
2 ) < 𝜔𝑖𝑛𝑡

2 (𝑀∗ = −∞) = 1, and for a fixed 𝜇 the gap ∆ mainly 

increases due to the decrease in the value of max (𝜔(2)
2 ). The results shown are calculated for 𝜇 ≥

0.1, 𝜒𝑖/𝜒𝑒 ≥ 0.1. 
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                 (a)                                                      (b) 

Fig. 21:  Frequency surfaces for the isotropic case when (a) 𝜇 = 2,   
𝜒𝑖

𝜒𝑒
= 0.5;  Ω0

2 = 4 and 

max (𝜔2
2) ≈ 𝜔𝑖𝑛𝑡,𝑥

2 (𝑀∗ = −∞) = 1, Δ = 2.08 .  (b) 𝜇 = 2,   
𝜒𝑖

𝜒𝑒
= 2;  Ω0

2 = 1, max (𝜔2
2) ≈ 0.725 <

1, Δ = 2.275. 

 

In Eq. (31) it has been taken into account that 𝜔(3)
2 (𝑘 = 0) = 𝜔(4)

2 (𝑘 = 0) = 𝜆2. Eq. (31) could thus 

be interpreted as signifying the fact that the band of frequencies for each of the initial frequency-

surfaces of supposed “free” external vibrations is torn (by the internal vibrations) into two single 

frequency-surfaces (𝜔𝑓,𝑙𝑜𝑤𝑒𝑟
2 (𝒌) → 𝜔(1)

2 (𝒌) ⊕ 𝜔(3)
2 (𝒌) and 𝜔𝑓,𝑢𝑝𝑝𝑒𝑟

2 (𝒌) → 𝜔(2)
2 (𝒌) ⊕ 𝜔(4)

2 (𝒌) ) 

with the same total width for the band of frequencies.   

Furthermore, taking into account that max [𝜔(1,2)
2 (𝒌)] < 1 and using Eq. (31), one can estimate the 

band of frequencies of the “optical” vibrations, 𝛿(𝜔2), as follows : 

𝛿(3)(𝜔2) ≈ 4.49Ω0
2 − 1;  𝛿(4)(𝜔2) ≈ 6Ω0

2 − 1,                                  (32) 

Which is in good agreement with the data in Fig. 21. 

 

4.2. Asymptotic analyses (  𝜒𝑖 → ∞, 𝑚 → ∞ .)                  

 So far, the normalisation of frequencies has been done in all cases with respect to the unit of 

frequencies-squared i.e. 
𝜒𝑖

𝑚
.  (The eigenvalue of the free internal vibration if only one internal spring 

were involved).  Now, let’s suppose that the values of 𝑀 and 𝜒𝑒 are fixed as parameters 𝑚 and 𝜒𝑖 

change. In this case it would be more convenient to use the value  
𝜒𝑒

𝑀
 as the unit of frequencies-

squared. The relation between the “old” (𝜔2), and “new” (�̅�2) intrinsic frequencies of the system is 

obviously as follows: 
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�̅�2 = 𝜔2 × (𝜒𝑖/𝑚)/(𝜒𝑒/𝑀) = 𝜔2/Ω0
2 , Δ̅ = Δ/Ω0

2 .                                     (33) 

 

The results of Fig. 20 are then transformed to the results of Fig. 22 using Eq. (33) 

 Let’s analyse the data in the light of new parameters defined. The exact value of the gap is 

Δ = 1 + 𝜇 − max [𝜔(3)
2 (𝒌)], therefore  

Δ̅ = (1 + (1 − max [𝜔(2)
2 (𝒌)])/𝜇) × (𝜒𝑖/𝜒𝑒).                                (34) 

Formally, for 𝜇 ≫ 1, the inequality (1 − max [𝜔(3)
2 (𝒌)])/𝜇 ≪ 1 holds , and  

Δ̅ ≈ (𝜒𝑖/𝜒𝑒) .                                                               (35)  

In fact, the gap  Δ̅  can be estimated with an error which does not exceed 10% as follows:              

Δ̅ ≈ (1 +
1

𝜇
) (

𝜒𝑖

𝜒𝑒
) ;     𝜇 ≥ 5,   𝜒𝑖/𝜒𝑒 ≥ 5.                                     (36) 

If 𝜇 = 0.1, then max [𝜔(2)
2 (𝒌)]  (the path b-c in Fig. 20b) can be approximated with a rather high 

accuracy as follows: 

max [𝜔(2)
2 (𝒌)] = 0.55/(𝜒𝑖/𝜒𝑒) ,    𝜒𝑖/𝜒𝑒 ≥ 1.                                 (37) 

Accordingly, max [�̅�(2)
2 (𝒌)] ≈ 5.5 for 𝜒𝑖/𝜒𝑒 ≥ 1 - See the line b-c in Fig. 22b. 

Then, using Eq. (34), 

 

  

                              (a)                                                               (b) 

 

Fig. 22:   The width of gap and max (𝜔2
2) presented in unit of  𝜒𝑒/𝑀 as functions of 𝜇 and 𝜒𝑖/𝜒𝑒 at 

fixed values 𝜒𝑒 and 𝑀. The point b calculated at 𝜇 = 0.1,
𝜒𝑖

𝜒𝑒
= 0.1. 

 

Δ̅(𝜇 = 0.1) = (1 +
1

𝜇
) (

𝜒𝑖

𝜒𝑒
) −

0.55

𝜇
= 11 (

𝜒𝑖

𝜒𝑒
) − 5.5;    𝜒𝑖/𝜒𝑒 ≥ 1 .                    (38) 

The linear dependence expressed in Eq. (38) can be seen in Fig. 22a i.e. the line b-c. 
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Finally, a word on the physical meaning of the blue line c-d in Fig. 22b (or analogously in Fig. 20b) is 

in order. The surface 𝜔(2)
2 (𝒌) presents the upper branch of acoustic vibrations. For a suitably high 

value of the stiffness of internal springs, oscillations may be excited in which every node can be 

regarded as a single node of the total mass 𝑀𝑡𝑜𝑡~(𝑚 + 𝑀) = 𝑀(1 + 𝜇). Thus, at high values of 
𝜒𝑖

𝜒𝑒
≫

1 the frequency of acoustic oscillations must be of the order of 1/𝑀𝑡𝑜𝑡. For the fixed 𝑀, as stated 

above,  

max [�̅�(2)
2 (𝒌)]~1/(1 + 𝜇);    (

𝜒𝑖

𝜒𝑒
) ≫ 1.                                        (39) 

The dependency (39) is in good agreement with the result shown in Fig. 22b – the blue line c-

d  when  (
𝜒𝑖

𝜒𝑒
) = 10. 

  

5. Conclusions 

 

The present study focuses on different aspects of band structure and dispersion surfaces in 

metamaterials of a particular topology (K3). On the basis of mechanical equations for single nodes of 

the K3-acoustic system the simple analytical form of the dispersion matrix 𝑫(𝜔2, 𝒌) has been 

constructed, which provides a convenient means for some qualitative and quantitative estimations to 

be made. A significant result is the statement about existence of the absolutely different mechanisms 

of gaps formation between acoustic, 𝜔(1),(2)
2 (𝒌) , and optical, 𝜔(3),(4)

2 (𝒌), surface frequencies. 

Sometimes this formation is the bright display of quantum effects like strong coupling, energy 

splitting, and level crossings in classical mechanical systems (See for example [43]). 

 Formally, the parameter 𝜇 in the dynamic matrix i.e. 𝑫(𝜔, 𝒌)-matrix is the key parameter as it 

determines the strength of interaction between the free internal vibrations (FIV) and free external 

vibrations (FEV). (When 𝜇 alters, the reference frequency 𝜔0
2 = is supposed to be fixed). 

Qualitatively, for invariable total mass, 𝑀𝑡𝑜𝑡 = 𝑀 + 𝑚, and given energy of the FIV the 

displacements of a node’s shell, 𝒖𝑖𝑛𝑡,𝑒, are proportional to the ratio 𝑚/𝑀 ≡ 𝜇. So, the effects of 

interference between 𝒖𝑖𝑛𝑡,𝑒 and  𝒖𝑓,𝑒 , which are responsible for the formation of gaps, intensify as 𝜇 

increases. Only at single points where  𝒖𝑖𝑛𝑡,𝑒(𝜔, 𝒌) ⊥ 𝒖𝑓,𝑒(𝜔, 𝒌) the level repulsion doesn’t push the 

surface-frequencies of different types aside and these surfaces touch each other. 

  There are two extreme cases of gap formation between the upper acoustic mode 𝜔(2)
2 (𝒌), and 

the lower optical mode 𝜔(3)
2 (𝒌) (𝜑 < 900). These are expounded as follows: 

 

A. The case of small relative mass 𝜇 ≪ 1 (𝑚 ≪ 𝑀). Then in order to avoid overlapping of the 

bands of frequencies 𝛿𝜔(2)
2 (𝒌)  and 𝛿𝜔(3)

2 (𝒌)  the parameter Ω0
2 (~𝜒𝑒) must be low enough 

so that the upper of the free external vibration frequency, 𝑚𝑎𝑥(𝜔𝑓,𝑢𝑝𝑝𝑒𝑟
2 ), be of the order of, 

or less than the internal vibrations frequency, 𝜆𝑦
2 . Gap formation under these conditions 

corresponds to the minimal  strength of coupling between the internal and external 

vibrations. The low coupling results in the narrow bands of frequencies 𝛿𝜔(3)
2 (𝒌), 𝛿𝜔(4)

2 (𝒌) 

as compared to that for the acoustic modes, 𝛿𝜔(1)
2 (𝒌), 𝛿𝜔(2)

2 (𝒌). The displacements on the 

optical frequency surfaces 3 and 4, 𝒖𝑒
(3)

(𝜔, 𝒌), 𝒖𝑒
(4)

(𝜔, 𝒌), (where 𝒖𝑒
(𝑖)

(𝜔, 𝒌),𝑖 = 1,2,3,4 – 

are the eigenvectors of the matrix 𝑫(𝜔, 𝒌))  are mainly oriented along 𝑘𝑦-and 𝑘𝑥-axis 



28 
 

correspondingly. That is, the optical vibrations have anisotropic polarization relative to the 

wave vector. 

 

B. The case of large relative mass 𝜇 > 1 (𝑚 > 𝑀). Large internal mass gives rise to enhanced 

coupling between the internal and external vibrations and the strength of coupling rises 

sharply.  At 𝜇 > 𝜇∗ the optical vibrations break the continuous spectrum of “acoustic 

phonons” creating the gap ∆𝑙𝑜𝑤𝑒𝑟≈ 𝜆𝑦
2 − 𝜆𝑥

2(𝑀∗ = −∞) for any parameters Ω0
2. However, 

the bigger this parameter, the wider is the bands of frequencies 𝛿𝜔(3)
2 (𝒌), 𝛿𝜔(4)

2 (𝒌) relative 

to the maximal acoustic frequency. (The region of low values of Ω0
2 (low 𝜒𝑒) is not so 

interesting because the formations of the two gaps 𝜔(2)
2 (𝒌) ⟺ 𝜔(3)

2 (𝒌) and 𝜔(3)
2 (𝒌) ⟺

𝜔(4)
2 (𝒌) occur with the scenario presented below as section A. )  By changing the parameter 

Ω0
2 we can significantly change the polarization properties of the optical oscillations, 

𝜔(3)
2 (𝒌), 𝜔(4)

2 (𝒌) (See Fig. 23, for example). 

 

At Ω0
2 = 4 only in the central region of the first Brillouin zone (the dark yellow circle) the 

polarization is extensively anisotropic (Fig. 23b) contrary to the case when Ω0
2 = 1 (Fig. 23a) 

with marked anisotropy over the entire Brillouin zone (the same effects can be observed for 

the displacements 𝒖𝑒
(4)

(𝜔, 𝒌)). So, one can tune the governing filtering properties of the 

optical branches by alteration of defining parameters. 

 

 

 
                                       (a)                                                                 (b) 

Fig. 23:  Distributions of the parameter of polarization for the lower branch of optical  

vibrations in the first Brillouin zone:  Φ(𝑘) = (𝒖𝑒
(3)

(𝜔, 𝒌) ∙ 𝒌)/ (|𝒌| |𝒖𝑒
(3)

|) ≡ 𝑐𝑜𝑠𝛼, 𝛼 is the angle of 

polarization. 𝜑 = 600, 𝜇 = 3.  (a) Ω0
2 = 1,   𝛿𝜔(2)

2 (𝒌) ≈ 0.74 , 𝛿𝜔(3)
2 (𝒌) ≈ 5.6 , ∆𝑙𝑜𝑤𝑒𝑟≈ 1.26; in the 

red regions - 0.9 ≤ Φ(𝑘) ≤ 1, in the blue regions 0 ≤ Φ(𝑘) ≤ 0.1, black arrows show the typical 

displacements on the lower optical surface. (b) Ω0
2 = 4,   𝛿𝜔(2)

2 (𝒌) ≈ 1.21  , 𝛿𝜔(3)
2 (𝒌) ≈ 19 , 

∆𝑙𝑜𝑤𝑒𝑟= 0.8 ; regions of cyan - 0.1 ≤ Φ(𝑘) ≤ 0.2, regions of yellow  0.2 ≤ Φ(𝑘) ≤ 0.3, white 

hollow circles signify the singular points with undefined polarization. 
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C. The case of isotropic internal vibrations is distinguished by its conspicuous ability to form 

the lower gap  ∆𝑙𝑜𝑤𝑒𝑟 at any 𝜇 > 0. This phenomenon is based on the strongest coupling of 

the isotropic acoustic and the twice-degenerate optical vibration on intersections of 𝒖𝑓,𝑒
(0)

(𝒌) 

and 𝒖𝑖𝑛𝑡,𝑒
(0)

 (𝒖𝑓,𝑒
(0)

(𝒌)  is the non-perturbed displacement of the external mass as  𝜇 ⟶ 0 , 𝛽 ⟶

0 while 𝜔0
2 = 𝑐𝑜𝑛𝑠𝑡 ; and  𝒖𝑖𝑛𝑡,𝑒

(0)
− that for 𝜒𝑒 = 0). 

So, in the present study the fundamental characteristics of gap formation for K3-phononic 

metamaterials have been discussed. The different dependencies of band structure and dispersion 

surfaces on model parameters were quantitatively established and expounded. The methods to control 

gap parameters and properties of the optical vibrations created over these gaps were investigated.  
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