
On the Relationship Between Coupling and
Refactoring: An Empirical Viewpoint

Steve Counsell
Dept. of Computer Science

Brunel University
London, UK

steve.counsell@brunel.ac.uk

Mahir Arzoky
Dept. of Computer Science

Brunel University
London, UK

mahir.arzoky@brunel.ac.uk

Giuseppe Destefanis
Dept. of Computer Science

Brunel University
London, UK

giuseppe.destefanis@brunel.ac.uk

Davide Taibi
Tampere University
Tampere, Finland

davide.taibi@tuni.fi

Abstract—[Background] Refactoring has matured over the
past twenty years to become part of a developer’s toolkit.
However, many fundamental research questions still remain
largely unexplored. [Aim] The goal of this paper is to investigate
the highest and lowest quartile of refactoring-based data using two
coupling metrics – the Coupling between Objects metric and the
more recent Conceptual Coupling between Classes metric to
answer this question. Can refactoring trends and patterns be
identified based on the level of class coupling?
[Method] In this paper, we analyze over six thousand refactoring
operations drawn from releases of three open-source systems to
address one such question.
[Results] Results showed no meaningful difference in the types of
refactoring applied across either lower or upper quartile of
coupling for both metrics; refactorings usually associated with
coupling removal were actually more numerous in the lower
quartile in some cases. A lack of inheritance-related refactorings
across all systems was also noted.
[Conclusions] The emerging message (and a perplexing one) is that
developers seem to be largely indifferent to classes with high
coupling when it comes to refactoring types – they treat classes
with relatively low coupling in almost the same way.

Keywords— Refactoring, coupling, metrics, empirical.

I. INTRODUCTION

Over the past twenty or so years, refactoring has become a
mainstream software engineering discipline; hundreds of
empirical studies have been undertaken since Fowler’s seminal
text and Opdyke’s preliminary study were first published [7,
10]. In short, refactoring is: “The process of changing a
software system in such a way that it does not alter the external
behavior of the code yet improves its internal structure.” While
previous studies have given us a broad understanding of the
area, there are still many aspects to refactoring that we still do
not appreciate. For example, it is intuitive to suggest that the
extract method refactoring (which splits one method into two
or more methods) might be applied to methods exhibiting the
long method code smell [7]. Equally, the extract class
refactoring which splits one class into two or more separate
classes might reasonably be applied to large classes [7]. What
is not so clear, however, is when the motivation for specific
refactorings is less intuitive.

 In this paper, we explore a large dataset of refactorings
applied to multiple releases of three open-source systems. We
used data produced by Bavota et al. [3], as a basis of our

analysis – the same dataset is freely downloadable for
replication and further study from their original paper. We
explore those refactorings with specific reference to coupling.
Excessive coupling is generally considered harmful and it is
widely accepted in the software engineering community that
developers should strive to keep coupling to a minimum [12].
We focus on two specific metrics: firstly, the well-used
Coupling between Objects metric (CBO) of Chidamber and
Kemerer [6] which counts the number of classes to which any
single class is coupled. The second is the Conceptual Coupling
between Classes metric (CCBC) developed by Poshyvanyk et
al. [11], and is a measure of the textual similarity between
classes. The higher that textual similarity, the higher the
coupling value of the metric. To further facilitate our analysis,
we decomposed the same dataset taken from [3] into inter-
quartile ranges. This gave us three parts to our analysis: the
lower 25% of coupling values, the 50% in the mid-range of
coupling values (which, for the purposes of this paper where we
look at the upper and lower quartiles, we henceforth ignore) and
the upper 25% of coupling values. The underlying premise of
the research question is that there will generally be fewer
refactorings in the lower quartile of classes compared to the
upper quartile when ranked on coupling and, also, we will find
disjoint sets of refactoring types applied in classes with low
coupling, vis a vis classes with high coupling.

Results showed no very little difference in the types of
refactoring applied across either quartile (i.e., we found a very
high overlap of refactoring types) – this applied to both metrics
studied; secondly, refactorings usually associated with coupling
removal were found to be more numerous in the lower quartile,
in some cases. Finally, very few inheritance-related
refactorings were found across all systems. These results
present a situation which is difficult to explain and calls into
question our belief about high coupling and its corrosive
influence; certainly, if developer refactoring is anything to go
by. Also, we need to fundamentally question the value of using
Fowler’s complete set of seventy-two refactorings [7] since
only a handful of that set seem to ever be applied (and certainly
not inheritance-based ones). The remainder of the paper is
organized as follows. In the next section, we describe
preliminary information on the systems studied, the data
collected and summary data. We then present results through
an analysis of each the three open-source systems (Section 3)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362653566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

using CBO and CCBC. Section 4 discusses related work;
threats to study validity are then reported in Section 5. Finally,
we conclude and point to further work (Section 6).

II. PRELIMINARIES

The systems studied consisted of three Java open source
projects: Xerces [17], Apache Ant [15] and ArgoUML [16].
Xerces-J is a Java XML parser, Apache Ant a build tool and
library primarily designed for Java applications and ArgoUML
a UML modeling tool and Table 1, taken verbatim from [3]
shows the salient characteristics of the three systems. Here,
‘Rel.’ is the number of releases and the final column (#Ref.)
represents the total number of refactorings for that system
before we decomposed it into its inter-quartile ranges.

Table 1. Features of the three systems analyzed from [3]

System Period Analyzed Rel. # Classes # Ref.
Xerces Nov ‘99-Nov

‘10
1.0.4-2.9.1 33 181-776 7502

Apache Ant Jan ‘00-Dec
‘10

1.2-1.8.2 17 87-1191 1289

ArgoUML Oct ‘02-Dec
‘11

0.12-0.34 13 777-1519 3255

Table 2 shows data the number of refactorings in each of the
ranges for the three systems after it had been decomposed. It
shows the Upper Quartile (UQ) and Lower Quartile (LQ)
median values for the CBO and CCBC metrics and the Inter-
Quartile Range (IQR) in each case. IQR is calculated as the UQ
value minus the LQ value. It also shows the number of
refactorings in each of the lower and upper ranges in
parentheses after each value. For example, in the UQ of the
Xerces systems, the median was 26 and the number of
refactorings 1818. The IQR for the CBO was 21 and 8.1 for the
CCBC metric.

Table 2. Dataset decomposition into quartiles

System CBO
(UQ)

CBO
(LQ)

IQR CCBC
(UQ)

CCBC
(LQ)

IQR

Xerces 26
(1818)

5
(1745)

21 3.15
(1875)

11.25
(1667)

8.1

Apache 9
(288)

2
(121)

7 9.65
(316)

0.86
(289)

8.79

ArgoUML 17
(627)

4
(601)

13 19.44
(813)

3.90
(827)

15.54

A total of 5200 refactorings were therefore used as a basis for

our analysis in the LQ and UQ data (the sum of the values in
parentheses in Table 2). Finally, the Ref-Finder tool [8] was
used to extract the set of refactorings on which our analysis was
based; the refactorings were extracted and validated as part of
the earlier study and are used in our study [3]. The tool collects
up to sixty-three of Fowler’s original set of 72 refactorings.
Ref-Finder has a recall of 95% and a precision of 79% [8].

III. RESULTS

We begin by looking at the CBO metric and the refactorings
in those two quartiles, before moving on to the CCBC.

A. CBO refactorings applied
Figs. 1a-1f show the distribution of the top ten most popular

refactorings for the CBO metric in the Xerces, Apache Ant and
ArgoUML systems for the lower quartile ranked in ascending
order (Fig. 1a, 1c and 1e) and the UQ ranked similarly (Fig. 1b,
1d and 1f). We chose the top ten refactorings simply for ease of
comparison between figures and we report the totals in that
analysis where appropriate. The refactoring acronyms in the
figures are as follows: RM: Rename method; MF: Move Field;
MM: Move Method; RP: Remove Parameter; CCE:
Consolidate Conditional Expression; AP: Add Parameter;
RMNwSC: Replace Magic Number with Symbolic Constant;
CDCF: Consolidate Duplicate Conditional Fragments; IEV:
Introduce Explaining Variable; RMwMO: Replace Method
with Method Object; EM: Extract Method; RCF: Remove
Control Flag. The frequency of each refactoring is on the x-
axis.

Fig. 1a: Xerces LQ

Fig. 1b: Xerces UQ

One noticeable feature from Figs. 1a and 1b is the overlap in
the types of refactoring applied in each quartile. The MF, RM
and MM refactorings all feature in the top four in each case. In
fact, of the ten refactorings in each figure, seven are common
to both. It is also interesting that the LQ and the UQ both had
large numbers of MM and MF refactorings. These are
refactorings which are strongly associated with coupling
reduction, since they move features between classes to where
those features are most needed. The motivation for MM is when
[14]: “A method is used more in another class than in its own
class”. The solution is to: “Create a new method in the class
that uses the method the most, then move code from the old
method to there.” A similar motivation and solution applies to

0
100
200
300
400
500

RM MF MM RP CC
E AP

RM
Nw
SC

CD
CF IEV

RM
wM

O

0
50
100
150
200
250

RM
Nw
SC MF RM MM CD

CF AP RC
F EM RP IEV

MF. It was therefore surprising to see so many of each
refactoring type in both quartiles. In the LQ, approximately
25.67% of all refactorings were attributed to just MM and MF.
This contrasts with only 37.54% for the UQ; in other words, a
comparable percentage of these coupling-related refactorings
were found to have been applied in lowly-coupled classes. Even
more notable is that only fifteen and sixteen of Fowler’s
original refactorings can be found across the UQ and LQ,
respectively from the sixty-three refactorings that Ref-Finder
extracts. In other words, the appropriateness, relevance of many
of Fowler’s original and complete set of refactorings could be
questioned in this case. Figs. 1c and 1d for Apache show a
similar pattern to the Xerces system. Six of the refactorings are
common across the set of ten refactorings in the figures.

Fig. 1c: Apache LQ

Fig. 1d: Apache UQ

One standout feature from both figures is the proportion of

RMNwSC refactorings in both the LQ and UQ. This refactoring
accounted for over 13.15% and 20.25% of the total number of
refactorings in the LQ and UP, respectively. The RMNwSC is
not, strictly speaking, a refactoring which is directly associated
with coupling. It is one that simply replaces a literal with a
constant. For example, it replaces all hard-coded values of
3.142 in the code with a constant let us say ‘Pi’. Again, as for
the Xerces system, the percentage of MM and MF refactorings
was comparable in the LQ and UQ. In fact MM accounted for
12.11% of refactorings in the LQ compared with just 3.16% in
the UQ. What is also noticeable is the relatively large number
of AP and RP refactorings in each quartile. The motivation for
using AP is when [14]: “A method doesn’t have enough data to
perform certain actions”. The solution is to: “Create a new
parameter to pass the necessary data”. In the LQ, these two
refactorings accounted for 21.19% of the total and in the UQ it
was 17.64%. One hypothesis as to why this might have been
the case is that sharing of data and methods, usually managed
by moving class features around might have instead been
accomplished through addition and removal of parameters to
the method signatures and accessing functionality that way -

obviating the need to move features around. Only sixteen of
Fowler’s seventy-two refactorings were identified across both
quartiles. Finally, Figs. 1e and 1f show the data for the
ArgoUML system and these share eight refactorings from the
ten shown in each figure. The number of MM and MF in the
LQ accounted for approximately 35.17% of the total
refactorings. Thus contrasts with just 10.39% for the UQ.
Again, the AP and RP refactorings figure quite strongly. The
RMwMO is the most common refactoring in the LQ (applied
99 times).

Fig. 1e: ArgoUML LQ

Fig. 1f: ArgoUML UQ

The motivation for using the RMwMO refactoring is when

[14]: “You have a long method in which the local variables are
so intertwined that you can’t apply Extract Method”. The
mechanics of this refactoring are: “Transform the method into
a separate class so that the local variables become fields of the
class. Then you can split the method into several methods
within the same class”. Here is a refactoring which, far from
reducing coupling, actually creates it, since a new class is
extracted as part of the process. Only twenty of Fowler’s
refactorings were found to have been applied across the two
quartiles. It was also remarkable from the data how few
inheritance-related refactorings had been applied across all
three systems. In the six quartiles (LQ and UQ for each of
Xerces, Apache and ArgoUML, only 112 out of 5200 (2.15%)
were related to inheritance; 106 of those were in the Xerces
system, primarily consisting of the Push down field (41) and
Push down method (43) refactorings. These two refactorings
move fields and methods from super classes to their subclasses.

0
20
40
60

RM
Nw
SC AP RP EM MM CD

CF RA
P MF IEV RM

0
20
40
60
80

RM
Nw
SC IEV AP RP EM IT

RM
wM

O
CD
CF CC

E
RC
F

0

50

100

150

RM
wM

O RP RM AP RC
F EM MM

IT

RM
Nw
SC IEV

0

50

100

150

MF AP RP MM

RM
Nw
SC RM CD

CF IEV

RM
wM

O RC
F

Considering the data from the CBO, there is a clear correspondence
and overlap between refactorings applied in each quartile.
Refactorings that we normally associate with removal of high
coupling (Move method and Move field) sometimes appeared more
frequently in the lower quartile of the data.

B. CCBC refactorings applied
Just as we analyzed the CBO metric in the previous section,

we next compare the results we obtained from that metric and
the CCBC, since they compute coupling in contrasting ways.
The CBO metric is simply a count of the number of other
classes to which a specific class is coupled; the CCBC measures
the textual similarity of tokens between classes as a measure.
Figs. 2a-2f shows the same data and in the same format shown
for the CBO metric, but this time for CCBC. Figs 2a, 2c and 2e
represent the UQ for each of the three systems and Figs 2b, 2d,
and 2f the LQ. Figs 2a and 2b show a similar pattern to that for
the CBO. In fact, nine out of the ten refactorings in Fig 2a are
the same as in Fig 1a, although the ordering is slightly different.
Similarly, Fig 2b has all ten corresponding refactorings to that
found for CBO. The same types of refactoring dominate once
more as they did for CBO. The MF, RM and MM feature
strongly in the UQ, but they feature heavily in the LQ also. The
prominence of these three refactorings is such that 35.38% of
the total number of refactorings in the LQ can be attributed to
just these three and account for 59.88% in the UQ.

Fig. 2a: Xerces LQ

Fig. 2b: Xerces UQ

Figs 2c and 2d show the same data, but for the Apache

system. Here, the most prominent refactoring in the UQ was the
RM refactoring. For the UQ, RMNwSC was the most popular.
This refactoring has very little relationship to coupling (as
previously described). The same could be said of many of the
refactorings in Figs 2c and 2d and for the other two systems
also. For example, Introduce Explaining Variable (IEV) simply
replaces an expression with sub-parts assigned to more
meaningful variable names. The Consolidate Duplicate
Conditional Fragments (CDCF) refactoring is, again, not
strictly linked to coupling reduction, nor too Consolidate
Conditional Expression (CCE) or Introduce Explaining
Variable (IEV). Put another way, many of the refactorings from
Fig 2b are not directed at coupling per se.

Fig. 2c: Apache LQ

Fig. 2d: Apache UQ

Finally, Figs 2e and 2f show the data for the ArgoUML

system. The same types of refactoring as found for the previous
two systems recur. The most popular refactoring in the LQ is
AP (130), closely followed by RP (128). For the UQ, MF is the
most popular (198) followed by RMwMO (134). Seven of the
ten refactorings are common to both figures, emphasizing again
the overlap between the two quartiles.

Fig. 2e: ArgoUML LQ

Fig. 2f: ArgoUML (UQ)

0
50
100
150
200
250

MF AP MM RM RP

RM
Nw
SC

CD
CF RC

F EM

RM
wM

O

0
100
200
300
400
500

RM MF MM AP RP CC
E

RM
Nw
SC

CD
CF IEV

RM
wM

O

0
20
40
60
80
100

RM IEV

RM
Nw
SC MF AP RP IM EM CC

E
RA
P

0

20
40
60
80

RM
Nw
SC IEV AP RP EM IT

RM
wM

O
CD
CF CC

E
RC
F

0

50

100

150

AP RP RM RC
F

RM
wM

O
MM

RM
Nw
SC EM IT

CD
CF

0
50
100
150
200
250

MF

RM
wM

O
MM AP RP RC

F RM IT IEV CD
CF

Once again, refactorings such as RCF, RMNwSC and CDCF
feature heavily. For this system again only twenty of Fowler’s
refactorings were identified and many of those were just in
single figures.

C. The influence of size

The results so far for both CBO and CCBC metrics have
shown that the upper and lower quartiles comprise large
numbers of MM, MF, AP and RP to name several. However,
the implicit assumption we have made is that the LQ of the
CBO and CCBC will tend to be for smaller classes than those
in the upper quartile. Table 3 shows the minimum, maximum,
mean and median number of lines of code (LOC) and methods
per class (WMC) for just the CBO metric in the LQ and UQ,
for each of the three systems. So, for example for Xerces, the
mean number of LOC in the LQ was 249.46. The mean LOC in
the UQ was 1781.36. We can see that for all systems, the
discrepancy between the UQ and LQ is large. For every
measure in Table 3, the UQ value exceeds LQ. Consider
ArgoUML. The mean WMC in the LQ was 15.00; in the UQ it
was 57.72. The data in Table 3 thus implies that even though
classes in the UQ were much larger than classes in the LQ,
comparable numbers and types of refactorings were applied in
each.

 Table 3. Summary statistics for size (all systems)

Metric/Stat. Min. Max. Mean Med.
Xerces
LOC (LQ) 12 2503 249.46 158
LOC (UQ) 160 5827 1781.36 1832
WMC (LQ) 0 243 45.81 38
WMC (UQ) 5 687 221.33 224
Apache Ant
LOC (LQ) 9 320 120.03 102
LOC (UQ) 79 1973 970.83 1073
WMC (LQ) 2 58 23.34 18
WMC (UQ) 23 371 166.82 107
ArgoUML
LOC (LQ) 8 357 62.40 40
LOC (UQ) 35 1424 433.78 317
WMC (LQ) 0 93 15.00 7
WMC (UQ) 2 252 57.72 42

IV. RELEVANT RELATED WORK

Refactoring has been the subject of multiple empirical studies
in the past. In this paper, we have focused on two coupling
metrics both of which have both been studied before [4, 5, 11,
13]; work by Bavota et al., has shown the CCBC to be the
coupling metric which captures a developer’s perception of
coupling between code components best [2]. However, the
CBO still effectively remains the ‘gold’ standard for measuring
coupling and used in hundreds of studies of code in the past [1,
4]. The work in this paper suggests that from a refactoring

perspective, the two metrics are very similar in terms of how
they relate to high and low coupling. The data for our analysis
was used first by Bavota et al., [3] in a study of the relationship
between refactoring and quality through a set of code quality
metrics. The paper mined the evolution history of the same
three Java open source projects and investigated whether
refactoring activities applied to code suggested refactoring
might be necessary. Results indicated the metrics did not show
a clear relationship with refactoring. In their own words:
“….refactoring operations are generally focused on code
components for which quality metrics do not suggest there
might be need for refactoring operations.” In fact, in [3], the
CBO was found to be related most strongly to the Introduce null
object, Pull up field, Push down method and Replace data with
object refactorings and not the refactorings we’d expect (i.e.,
Move method, Move field, etc). Equally, the CCBC was found
to be related to the Separate query from modifier refactoring
and not the similar expected refactorings. Our results suggest
that perhaps in highly- and lowly-coupled classes these
relationships might not hold. In terms of inheritance and why
we found so low numbers of refactorings, it has long been
acknowledged that developers do not use it to the depth we
might expect [1]. Perhaps the lack of inheritance related
refactorings is simply due to the complexity involved in
manipulating inheritance structures. Finally, a review of
refactoring was undertaken in the early 00’s [9].

V. THREATS TO VALIDITY

The preceding analysis raises a number of questions about
how we view refactoring. In terms of whether these results are
‘emerging’, we claim that the themes of the paper (i.e., lack of
use of most of Fowler’s refactorings, overlap in refactoring
usage and our understanding of contrasting coupling metrics)
come together to form emerging and pressing research issues.
In terms of threats to validity of the study, firstly, we have only
used three systems as the basis of our analysis. However, we
see the work as largely exploratory and represent the results
from a sample set of open-source systems. Secondly, we have
looked at three different open-source domains and so
generalizing the results to other domains may prove difficult as
a result. Thirdly, perhaps we are wrong to think about coupling
in isolation as a class factor to consider. Many of the
refactorings such as CCDF and RMNwSC which we found to
be applied frequently address complexity in code other than
coupling. Fourthly, we have excluded the mid-range refactoring
data from our analysis (we considered upper and lower quartiles
only). Analysing this data may shed light on our results.

Another threat is the selection of CBO and CCBC as coupling
metrics. Other coupling metrics, such as the ones defined in
[2],[4],[18], could have led to different results.
Finally we have not considered the role of defects in our
analysis. It may simply be that high coupling in a class is
necessary and actually leads to stable classes, relatively free of
defects.

VI. CONCLUSIONS AND FURTHER WORK

Until now, the refactoring research community has
predominantly focused its efforts in refactoring studies on
Fowler’s set of seventy-two refactorings [7], but the relevance
of the complete set has rarely been questioned. In this paper, the
notion that highly coupled classes will be refactored in a
different way to lowly-coupled classes is explored through the
prism of refactoring. A set of refactoring data from three open-
source systems sought to answer one question: can refactoring
trends and patterns be identified based on the level of class
coupling? We assumed, rightly or wrongly, that developers
would target classes with high coupling, and would use the
relevant set of refactorings to do so. Results showed no obvious
difference in the types of refactoring applied across either
lowly- or highly-coupled classes, suggesting that developers do
not tend to adhere to this principle. In fact, refactorings usually
associated with coupling removal were actually found in some
cases to be more numerous in low-coupled classes. A dearth of
inheritance-related refactorings across all systems was also
noted and although the lack of such refactorings has been noted
in other studies [1], no concrete evidence for why this is the
case has been put forward. Finally, the CBO and CCBC metrics
showed a very strong relationship, suggesting that they may be
surrogates (further work could examine their inter-relationship
more closely).
 There are many other avenues for further work. Firstly,
replication of this study on a large-scale would be a valuable
way of confirming or refuting the reported results. We are
planning to replicate this work starting from the Technical Debt
Dataset, that include refactoring information on 33 projects.
Only a small number of the seventy-two refactorings of Fowler
seem to be used “in anger” and this begs the question whether
other more relevant and appropriate refactorings are hidden in
the code that we are ignoring? Secondly, the work has looked
at the two coupling metrics, without considering class cohesion
[12]. It may be useful and insightful to consider this aspect of
code in conjunction with coupling. Finally, the same empirical
study could be carried out using proprietary code,
complementing the open-source work in this paper. The
summary refactoring data used in this paper can be made
available from the lead author.

REFERENCES
[1] V. Basili, L. Briand, W. Melo. “A validation of object-oriented design

metrics as quality indicators.” IEEE Transactions on Software
Engineering 22, 10, 751–761. 1995

[2] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, A. De Lucia.
“An empirical study on the developers' perception of software coupling.”
ICSE 2013. pp 692-701. 2013

[3] G. Bavota, A. De Lucia, M. Di Penta,, R. Oliveto, F. Palomba. “An
experimental investigation on the innate relationship between quality and
refactoring.” J. Syst. Software. 107, pp 1-14. 2015

[4] L. Briand, P., Devanbu, W. Melo. “An Investigation into Coupling
Measures for C++.” Proceedings of International Conference on Software
Engineering, Los Angeles, USA. 1999

[5] L.C. Briand, J. Daly, J. Wüst. “A Unified Framework for Coupling
Measurement in Object-Oriented Systems.” IEEE Trans. Softw. Eng. 25,
1, pp 91-121. 1999

[6] S. R. Chidamber, C. F. Kemerer. “A Metrics Suite for Object Oriented
Design” IEEE Transactions on Software Engineering, 20(6):476-493,
1994.

[7] M. Fowler. “Refactoring: Improving the Design of Existing Code”
Addison-Wesley, 1999.

[8] M. Kim, M. Gee, A. Loh, N. Rachatasumrit, Napol. “Ref-Finder: A
refactoring reconstruction tool based on logic query templates.”
Proceedings of the ACM SIGSOFT Symposium on the Foundations of
Software Engineering. 371-372. 2010

[9] T. Mens, T. Tourwe. “A survey of software refactoring.” IEEE
Transactions on Software Engineering 30, 2, 126–139. 2004

[10] W. Opdyke, “Refactoring object-oriented frameworks.” PhD Thesis,
University of Illinois, Urbana-Champaign, 1992.

[11] D. Poshyvanyk, A., Marcus, R., Ferenc, and T., Gyimothy. “Using infor-
mation retrieval based coupling measures for impact analysis.” Empirical
Software Engineering 14, 1, 5–32. 2009

[12] W. Stevens, G. Myers, L. Constantine. “Structured design” IBM Systems
Journal. 13 (2): 115–13, 1974.

[13] N. Tsantalis, A., Chatzigeorgiou, A. “Identification of move method
refactoring opportunities.” IEEE Transactions on Software Engineering
35, 3, 347–367. 2009

[14] https://refactoring.guru/move-method
[15] http://ant.apache.org/
[16] http://argouml.tigris.org/
[17] http://xerces.apache.org/xerces-j/
[18] R. Harrison, S. Counsell, and R. Nithi. "Coupling metrics for object-

oriented design." Proceedings Fifth International Software Metrics
Symposium. Metrics. IEEE, 1998.

[19] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. ”The
Technical Debt Dataset.” Proceedings of the 15th International
Conference on Predictive Models and Data Analytics in Software
Engineering (PROMISE’19), September 18, 2019, Recife, Brazil.

