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Abstract 8 

This paper investigated the effects of vermiculite on water absorption, water/fertilizer retention and 9 

basic physicochemical properties of sulfoaluminate cementitious materials for plant growing 10 

applications. Vermiculite was utilised to partially replace sulfoaluminate cement (SAC) for the 11 

preparation of a cementitious material with enhanced water absorption capacities and water/fertilizer 12 

retention properties which are essential for plant growing in a cement-based environment. Mercury 13 

intrusion porosimetry (MIP) and thermal analysis (TG-DSC) were employed to characterize the effects 14 

of vermiculite on the porosity and hydration products of hardened SAC-based pastes for plant growing. 15 

Hydration heat-evolution was introduced for the hydration process of SAC-based materials. 16 

Experimental results showed that SAC based materials delivered the best performance at a 20 wt.% 17 

vermiculite content. At this SAC replacement level, the water absorption rate of hardened SAC-based 18 

paste increased by 95.3% while the water retention capacity of the SAC-based hardened paste 19 

increased 13% at 120 h. In addition, other property enhancements were measured including reduction 20 

of the fertilizer pervasion rate by up to 15.3 wt.% , a 0.45 drop in the pore fluid alkalinity and the 21 

early-age compressive strength of up to 35.1MPa. 22 
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1. Introduction 25 

Porous concrete is a non-conventional type of concrete which incorporates high porosity and possesses 26 

multiple environmental benefits [1]. It has been found to possess superior water-purification, 27 

permeability, noise absorption and thermal insulation properties [2-5], leading to its application in 28 

permeable trenches, gullies and gutters [1], noise barriers [3,4] etc. At a more innovative level, porous 29 

concrete has been used as a plant bedding [6, 7], and has been appropriately named ‘planting concrete’.  30 
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Due to its high porosity, planting concrete as plant bedding has been evaluated as an economical and 31 

environmentally friendly alternative to traditional impervious hard concrete for the purpose of growing 32 

plants, conserving water and soil [8]. Generally, planting concrete consists of cementitious materials, 33 

coarse aggregate, water and admixtures. Among the components, cementitious material directly 34 

determines the water absorption capacity, the water and fertilizer retention capacities, the alkalinity and 35 

other relevant properties, making it indisputably one of the most important components of planting 36 

concrete. 37 

The cementitious material can be divided into two main types: Portland cement (PC) and SAC-based 38 

cementitious materials. The major hydration products of PC are C-S-H and calcium hydroxide (CH) 39 

[9-11], while AFt (C3A·3C$·H32; C = CaO, A = Al2O3 , $ = SO3 , H = H2O) and AFm (C3A·C$·H12) are 40 

the main principle crystal products during the hydration of SAC [12-14]. Therefore the alkalinity of 41 

pore fluid of hydrated SAC is lower than PC [15-18], making it a favourable envir- onment for plant 42 

growth. In addition, the production of SAC has the advantage of a lower calcination temperature 43 

(~1250°C), lower CO2 emissions and easier grinding with less energy required [19-24]. Furthermore, 44 

using SAC can shorten the construction period due to its rapid hardening and high strength gain 45 

[25-27]. Therefore, the use of SAC is more suitable as a cementitious material compared with OPC. 46 

But the water absorption capacity, water and fertilizer retention properties of the hardened paste of 47 

traditional cementitious material still cannot meet plant growing demand. Plants living in planting 48 

concrete can often wither and die, defeating the primary purpose of a planting concrete. On the other 49 

hand, vermiculite has a high water absorption capacity and desirable water retention capacity [28]. The 50 

study of Kiyoshi Okadaet al. observed that mixing allophane with vermiculite could control various 51 

pore sizes, which was a very good strategy for enhancing the water retention capacity of planting 52 

concrete [28, 29]. Vermiculite is a hydrous phyllosilicate mineral consisting of a 2:1 layered structure, 53 

and possesses the ability to store water molecules and exchangeable cations in its interlayer space 54 

[30-32]. Each layer in vermiculite consists of octahedrally coordinated cations (typically Mg, Al 55 

and Fe) about 1 nm in thickness, sandwiched by tetrahedrally coordinated cations (typically Si and 56 

Al) [33, 34]. The interlayer space of vermiculite is characterized by adsorption, ion exchange, etc. [31].  57 

According to the basic theory of ‘fertilizer moves with water’ [35, 36], vermiculite also has a desirable 58 

fertilizer retention capacity. So it was evident that vermiculite is suitable to improve the water 59 

absorption capacity, water/fertilizer retention properties of cementitious materials. 60 



Therefore, in this paper, vermiculite was adopted to partially replace SAC in order to prepare a 61 

cementitious material with an enhanced water absorption capacity, water/fertilizer retention properties. 62 

At the same time, urea was adopted as the fertilizer to study the effect of vermiculite on the fertilizer 63 

retention property of SAC-based material. Another important intention of this study is to determine 64 

vermiculite’s effect on the basic physicochemical properties and the mechanisms, such as alkalinity of 65 

pore fluid, pore structure, mechanical properties, thermo-gravimetric analysis and heat of hydration. 66 

The intention of this paper is to offer useful data to advance the knowledge in the planting concrete 67 

industry, especially for cementitious material. 68 

2. Materials and Methods 69 

2.1 Materials 70 

SAC (42.5 R, manufactured in China) was used as the base cementitious material in this study, whose 71 

initial and final setting times were 15 min and 21 min, respectively. The exfoliated vermiculite from a 72 

local supplier, calcined at 850°C. The chemical compositions of SAC and vermiculite were determined 73 

by X-ray fluorescence spectrometer (Tiger S8, Bruker AXS GMBH, Germany), and are given in Table 74 

1. Particle size distributions of SAC and vermiculite were determined using a laser particle size 75 

analyzer (LS13320, Beckman, USA) and are presented in Fig.1. 76 

Urea (with a purity of 99.0 wt.%, from Damao Chemical Reagent Factory, China) was adopted as 77 

fertilizer in this study. The urea was composed of no more than 0.005 wt.% water-insoluble substances, 78 

had an ignition loss of no higher than 0.01 wt.%, and a burette content of no more than 0.2wt. %. 79 

2.2 Experimental design 80 

In this study, vermiculite was used to partially replace SAC at the replacement levels of 5%, 10%, 20% 81 

and 40% by weight and marked as SV 5, SV 10, SV 20 and SV 40, respectively. A control sample of 82 

SAC without vermiculite was named SV ref. The mix proportions of the investigated SAC-based 83 

cementitious materials are shown in Table 2. 84 

2.3 Sample preparation 85 

The pastes without fertilizer were prepared with a water-to-binder (W/B) weight ratio of 0.35, then cast 86 

in 20 × 20 × 20 mm3 moulds and vibrated to remove air bubbles. The moulded pastes were kept in a 87 

curing environment of 20±2°C and 95+% RH. After 24 hours, the specimens were demoulded and then 88 

placed in water at 20±2 °C for 2 days. Subsequently, the hydration of the cement pastes was stopped by 89 

leaving samples immersed in absolute ethyl alcohol for 24h. 90 



The pastes containing fertilizer were prepared and cured in the exact same conditions as described 91 

above, differentiating only in that fertilizer had been predissolved in the mixing water. The fertilizer 92 

contents used were 2%, 4% and 8% (by weight) of binder. 93 

In this paper, mortars were adopted to study the mechanical property of cementitious materials, which 94 

were prepared and cured according to the Chinese National Standard GB 20472-2006 [37]. 95 

2.4 Test methods 96 

2.4.1 Water absorption capacity 97 

The water absorption capacities of the hardened pastes were tested at 35±2°C. The hardened pastes 98 

without fertilizer were cured for 3 days followed by drying at 35±2°C for 24h, after which they were 99 

accurately weighted and the mass recorded as m0. Specimens were soaked in deionized water until the 100 

weight did not increase more than 0.1%. Samples were taken out from water and the surface water of 101 

the samples was gently dried to remove. Then the samples were accurately weighted and the mass was 102 

recorded as m1. The Water Absorption Rate (WAR) of a sample was calculated as 103 

WAR=[(m1-m0)/m0]×100%. 104 

2.4.2 Water retention property  105 

The samples after the water absorption test were exposed to an environment of 35±2°C and 20±2% RH. 106 

At predetermined times (0.5h, 1h, 2h, 4h, 6h, 8h, 10h, 15h, 20h, 25h, 30h, 40h, …, 80h, 100h, 120h), 107 

the samples were accurately weighed and the mass recorded as m2. The water release rate (WRR) of a 108 

sample was calculated as WRR=[(m1-m2)/(m1- m0)]×100%. 109 

2.4.3 Fertilizer retention capacity 110 

The hardened pastes’ fertilizer retention capacity is demonstrated by fertilizer release rate in deionised 111 

water. Every sample was soaked in 100ml deionized water. At predetermined times (1d, 2d, … , 7d, 112 

10d, 14d, 21d, 28d, 35d), the fertilizer concentration of the soaking solution was tested by 113 

ultraviolet-visible spectroscopy (UV-VIS) [38]. After each test, the soaking water was replaced by 114 

another 100ml pure deionised water. 115 

2.4.4 Alkalinity of pore fluid  116 

For this test, ex-situ leaching [39] was adopted to prepare the pore liquid. The pH was tested by using a 117 

laboratory grade pH meter (Spsic, PHS-3E, China). 118 

2.4.5 TG-DSC analysis 119 

TG-DSC analysis was conducted to estimate quantitatively the hydration product content, especially 120 



the CH content using a simultaneous thermal analyzer (Mettler, TGA/DSC1/1600HT, Sweden) at a 121 

heating rate of 20°C/min from 0°C to 800°C under argon atmosphere. 122 

2.4.6 Mechanical properties  123 

The mechanical properties of the samples were tested according to the Chinese National Standard 124 

GB20472-2006[37].  125 

2.4.7 Hydration heat evolution 126 

A conduction calorimeter (TAM Air C80, Thermometric, Sweden) operating at 25°C was used to 127 

determine the hydration heat flow. For such purpose, a water to binder of 0.5 was adopted, and the heat 128 

flow was recorded every 44s until 72h. 129 

2.4.8 Bulk density 130 

The bulk density of hardened paste specimens was measured by the water vacuum saturation method 131 

[40, 41]. The specimens were dried at 65°C in order to remove the majority of the physically bound 132 

water. After that, the hardened pastes were placed into a desiccator with deaired water. For the duration 133 

of three hours, air was evacuated with a vacuum pump from the desiccator. The hardened pastes were 134 

then kept in water for more than 24h. 135 

2.4.9 Pore structure 136 

Mercury intrusion porosimetry was employed to examine the pore structure of hardened pastes. An 137 

automatic mercury porosimetry (Pore Master-60, Quanta- chrome Instruments, USA) was used in this 138 

study, whose intrusion accuracy was ±0.11%. 139 

3. Results and Discussion 140 

3.1 Planting potential 141 

3.1.1 Water absorption capacity 142 

The WARs of hardened pastes are shown in Table 3. The WAR of SV ref was only 8.05wt.%. When the 143 

dosage of vermiculite was 5 wt.%, the WAR increased by 16.8% to a value of 9.40 wt.%. Evidently, 144 

with the increase of vermiculite dosage, the WAR increased. This trend continued with the increase of 145 

vermiculite dosage. With an addition of 20 wt.% vermiculite, the WAR reached up to 14.82 wt.%, an 146 

increase of 84.1% compared to the SV ref. Therefore vermiculite proved to be suitable to improve the 147 

water absorption capacity of cementitious material pastes. 148 

3.1.2 Water retention capacity 149 

The measured water release rates of hardened pastes are presented in Fig.2, representing their water 150 



retention capacity. When the exposure time was less than 8h, the water release rate of pastes increased 151 

with the increasing of vermiculite dosage. A possible reason was that with the increase of vermiculite 152 

dosage, the open porosity at sample surfaces increased, resulting the amount of free water at sample 153 

surfaces to increase. The water release rate of SV ref reached up to 98.9% at 120h. At the same time, 154 

the water release rate of SV 20 was only 80.4%, suggesting that vermiculite could improve water 155 

retention capacity of cementitious pastes. This enhancement can be attributed to the increased internal 156 

porosity imparted by vermiculite. 157 

3.1.3 Fertilizer retention capacity 158 

The fertilizer release rates from hardened pastes are presented in Fig.3, which represent the fertilizer 159 

retention property. The fertilizer release rates increased with the increase of soaking time. The fertilizer 160 

release rate of SV ref at 35d was highest and reached up to 96.3 wt.% when fertilizer dosage was 20 wt.% 161 

(Fig.3 (a)), suggesting that the fertilizer added during mixing could be released slowly in the hardened 162 

pastes. And the fertilizer release rate grew with a straight-line at early ages (i.e. up to 7d) and with the 163 

further extending of soaking time the curves of fertilizer release rate became flatten, indicating that the 164 

velocity of fertilizer release decreased with the increase of soaking time. 165 

In this study, in cases of a vermiculite content of less than 20wt.%, the fertilizer release rate from 166 

hardened pastes decreased with the increase of vermiculite content at the same soaking times. For 167 

example, in Fig.3(b) the 35d fertilizer release rate of SV 5, SV10 and SV 20 were 62.9 wt.%, 60.2 wt.% 168 

and 54.3 wt.% lower than that of SV ref. However, 40 wt.% vermiculite could increase the fertilizer 169 

release rate of hardened pastes compared with SA ref with 0 wt.% vermiculite, which suggests that 170 

excessive vermiculite is not beneficial to the fertilizer retention property of cementitious materials. 171 

Therefore vermiculite dosage should be less than 20 wt.%, which could improve the fertilizer retention 172 

capacity of an SAC-based cementitious material. 173 

In addition, there was a phenomenon worthy noting here. When using a fertilizer dosage of 8 wt.% at 174 

most, for the same kind of materials, the fertilizer release rates decreased with the increase of fertilizer 175 

addition. Therefore, a proper fertilizer dosage could also improve the fertilizer retention property of 176 

cementitious materials. 177 

3.1.4 Alkalinity 178 

Fig.4 shows the alkalinity of pore fluid of hardened cementitious pastes. A previous study [42] 179 

demonstrated that the pH of pore fluid of hardened PC paste was about 13 as determined by ex-situ 180 



leaching. In this study, the pH of pore fluid of SV ref was 11.40, which is significantly less than that of 181 

PC. The pH of pore fluid of the hardened pastes decreased gradually with the increase of vermiculite 182 

dosage, and the pH of SV 20 and SV 40 was measured to be 10.95 and 10.71, respectively. Therefore, 183 

vermiculite could effectively reduce the alkalinity of pore fluid of hardened SAC-based materials. This 184 

result further proves that SAC-based cementitious materials with vermiculite are suitable to prepare 185 

planting concrete.  186 

The TG-DSC analyses of the hydration products are shown in Fig.5. The TG-DSC curves (Fig.5 (a)) of 187 

SV 20 and SV 40 became gentler compared with that of SV ref. at 400°C~500°C which was the 188 

decomposition temperature of CH [43]. According to TG-1st derivative curve (Fig.5 (b)), the area of 189 

the endothermic peak of SV ref was less than that of SV ref at 400°C~500°C and no corresponding 190 

peak was seen in that of SV 40. These suggested that the CH content of hardened pastes was decreased 191 

by vermiculite. As increased amounts of SAC were replaced by vermiculite, this reduced the amount of 192 

CH that could potentially form from the hydration of SAC. 193 

Furthermore, the total pore volume and pore liquid content increased with the increase of vermiculite 194 

dosage, which decreased the concentrations of Ca2+ and OH- of pore fluid of hardened pastes. The 195 

formation and growth of CH crystals were limited. Therefore, the alkalinity of pore fluid of hardened 196 

pastes decreased with the increase of vermiculite content. Therefore, it was concluded that vermiculite 197 

played a positive role during the hydrating of the cementitious materials to reduce alkalinity. Low 198 

alkalinity was helpful for plant growing in planting concrete and achieved the expected value in this 199 

study. 200 

3.2 Basic physicochemical properties 201 

3.2.1 Mechanical properties 202 

The mechanical properties of SAC-based cementitious materials are presented in Fig.6. The 203 

compressive strength (Fig.6 (a)) and flexural strength (Fig.6 (b)) decreased with the increase of 204 

vermiculite dosage. The 1d, 3d and 28d compressive strength of SV ref reached up to 38.1, 45.5 and 205 

51.5 MPa, respectively and the 1d, 3d and 28d flexural strength reached up to 5.9, 7.8 and 8.1 MPa, 206 

respectively. For SV 5 at 1d, 3d, and 28d, the compressive strength was 36.5, 41.5 and 48.7 MPa, 207 

respectively, while flexural strengths of 5.6, 7.5, and 7.7 MPa, respectively, was attained at the same 208 

curing ages. So there was minor effect of 5 wt.% vermiculite on mechanical property of SAC-based 209 

materials. The 1d and 3d compressive strength of SV 20 were 28.5 and 35.1 MPa, respectively. 210 



Compared to SV ref, the 1d and 3d compressive strength of SV 20 reduced 25.2% and 22.9%, 211 

respectively. Furthermore, the 3d compressive and flexural strength of SV 40 reduced to 19.4 and 4.1 212 

MPa, respectively. The 3d compressive strength and flexural strength of SV 40 reduced 57.4% and 47.4% 213 

compared with the corresponding value of SV ref. Therefore, a dosage of 40 wt.% vermiculite was very 214 

negative to the mechanical property of SAC-based materials. 215 

3.2.2Hydration heat evolution 216 

Fig.7 shows the hydration heat evolution of SAC-based cementitious materials. There was minor effect 217 

of vermiculite addition on the first exothermic peak (heat of dissolution, the age of about 0.1h) of 218 

SAC-based materials. The second exothermic peak (the age of about 1h) decreased with the increase of 219 

vermiculite content, which was caused by the hydration of ye’elimite (C4A3$) and the main hydration 220 

product was Aft (C4A3$ + 2C$ + 38H → C3A·3C$·H32 + 2AH3). The third exothermic peak (at the age 221 

between 2 and 5h) was C4A3$ hydrate which produces Aft (C4A3$ + 2C$ + 38H → C3A·3C$·H32 + 222 

2AH3), and the time between the second and the third exothermic peak became gradually longer with 223 

the increase of vermiculite dosage. The delay of the onset of the third peak has been considered as the 224 

induction period of the hydration of C4A3$. Therefore, it can be concluded that vermiculite can increase 225 

the induction period of the hydration of C4A3$. Presumably, it was caused by the increased water 226 

absorption by vermiculite. In addition, the fourth exothermic peak (at the age about 5h), which 227 

represents the hydration of C4A3$ to produce AFm (C4A3$ + 18H → C3A·C$·H12 + 2AH3), increased 228 

with the increase of vermiculite content.  229 

Furthermore, the 1d and 3d cumulative heats of SV 5 and SV 10 were similar to those of SV ref. So 230 

there was negligible effects of 5 wt.% and 10 wt.% vermiculite content on the 1d and 3d cumulate heat 231 

of SAC-based materials. So 1d and 3d mechanical properties of SV 5 and SV 10 were similar to those 232 

of SV ref. In addition, the 1d and 3d cumulate heats of SV 20 were slightly lower than those of SV ref. 233 

Also, the 1d and 3d cumulate heats of SV 40 were significantly lower than those of SV ref. Therefore 234 

the 1d and 3d mechanical properties of SV 40 were significantly lower than those of SV ref. It was 235 

because that 40 wt.% SAC had been replaced by vermiculite. 236 

3.2.3 Pore structure 237 

The cumulative pore volumes of hardened pastes are shown in Fig.8. The total pore volume of SV ref 238 

was only 9.0%, which can be attributed to its poor water absorption capacity. The total pore volume 239 

increased with the increase of vermiculite dosage, which was probably due to the difference in the 240 



particle size between SAC and vermiculite (Fig.1). Hence the water absorption capacity increased with 241 

the increase of vermiculite dosage. Compared to SV ref, the total pore volume of SV 10 and SV 20 242 

increased by 31.1% and 66.7%, respectively. Therefore, vermiculite was able to improve the total pore 243 

volume of hardened SAC-based pastes. 244 

Fig.9 presents the pore size distribution of hardened pastes. While the vermiculite content was no more 245 

than 20 wt.%, the increase of pore volume was mainly due to fine pores between 0.4 and 1μm in 246 

diameter. Generally, the water retention property can be enhanced by various pore sizes [29]. Therefore, 247 

the water retention property was improved by vermiculite as long as the vermiculite dosage is no more 248 

than 20 wt.%. However with a vermiculite dosage of 40 wt.%, the volume of pores between 0.2~1μm 249 

in diameter decreased while the volumes of 10~30μm and 100~200μm pores significantly increased, 250 

which were harmful to the water/fertilizer retention property and mechanical performance. So 251 

vermiculite addition could cause pore volume and pore size changed. The latter results explain the 252 

change of water absorption capacity, water/fertilizer retention property and mechanical performance of 253 

hardened SAC pastes prepared with varying dosages of vermiculite. 254 

The bulk densities of hardened pastes are shown in Fig.10. In this study, the bulk density of hardened 255 

pastes decreased with the increase of vermiculite. The bulk density of SV ref reached up to 1.86 g/cm3, 256 

while the bulk density of SV 20 was only 1.72 g/cm3. Compared to SV ref, the bulk density of SV 20 257 

reduced 7.5%. When the dosage of vermiculite reached to 40 wt.%, the bulk density of hardened pastes 258 

further reduced to 1.61 g/cm3 and was 13.4% lower than that of SV ref. So, vermiculite was beneficial 259 

to decrease the bulk density of hardened pastes. In addition, these also probably suggested that the 260 

compactness of hardened pastes decreased with the increase of vermiculite dosage. In other words, the 261 

porosity of hardened pastes increased with the increase of vermiculite dosage. 262 

The relationships between total pore volume, WAR and bulk density of hardened pastes are shown in 263 

Fig.11. The correlation coefficient between total pore volume and WAR reached up to 0.9981, which 264 

proved that there was an extremely significant linear correlation between them. Furthermore, the water 265 

absorption capacities of SV ref, SV 5, SV 10, SV 20 and SV 40 were 8.05wt.%, 9.40wt.%, 11.20wt.%, 266 

14.82wt.%, and 17.81wt.%, respectively. Water with a density of about 1g/cm3 was used in all mixtures, 267 

so the water absorption capacities can be approximately expressed for SV ref, SV 5, SV 10, SV 20 and 268 

SV 40 as 0.081, 0.094, 0.112, 0.148 and 0.178 cm3/g, respectively. Additionally, the total pore densities 269 

of SV ref, SV 5, SV 10, SV 20 and SV 40 were 0.090, 0.102, 0.118, 0.150 and 0.175 cm3/g, 270 



respectively. Therefore, the difference between water absorption and total pore volume decreased with 271 

the increase of vermiculite dosage. Those proved that the reason for the water absorption rate increased 272 

with the increase of vermiculite addition was not only due to the increase of pore volume, but 273 

vermiculite also has excellent water absorption property. Because vermiculite has 2:1 (tetrahedral–274 

octahedral–tetrahedral) type layered structure, weak bond existed between the layers of vermiculite 275 

molecular structure. So water is able to enter the layers of vermiculite molecular structure.  276 

In addition, the correlation coefficient of total pore volume and bulk density of hardened pastes reached 277 

up to 0.9736. It proves that the bulk density decreasing with the increase of vermiculite dosage was 278 

because the total pore volume increased with the increase of vermiculite content once again. 279 

 280 

4. Conclusions 281 

In this paper, from the basis of multiple perspectives, the effects of vermiculite on water/fertilizer 282 

retention and basic physicochemical properties of SAC-based materials were investigated. The main 283 

conclusions that can be drawn are as following: 284 

(1) The water absorption capacity of hardened SAC-based materials increased with the increase of 285 

vermiculite dosage. The water absorption capacity was improved 81.8% using 20 wt.% 286 

vermiculite. 287 

(2) The adoption of vermiculite proved to be suitable for the enhancement of the water retention 288 

property of SAC-based materials when its dosage is no more than 20 wt.%. At 120h, the water 289 

release rate decreased by 18.5% at 20 wt.% vermiculite replacement level. 290 

(3) The change of the fertilizer retention property of SAC-based material was similar to that of water 291 

retention property, because ‘fertilizer moves with water’. 20 wt.% vermiculite in the SAC-based 292 

materials was the best therapy  for improving fertilizer retention. For the latter cement 293 

replacement level, the fertilizer release rate at 35d reduced 15.3 wt.% and 12.1 wt.% when the 294 

fertilizer dosage was 2 wt.% and 4 wt.%, respectively. 295 

(4) Vermiculite can decrease the pore fluid alkalinity of hardened SAC-based pastes. The alkalinity of 296 

pore fluid of hardened pastes reduced 0.45 at 20 wt.% vermiculite dosage, which is beneficial for 297 

plant growth. 298 

(5) The compressive strength and flexural strength decreased with the increase of vermiculite dosage. 299 

However, the 3d compressive strength and 3d flexural strength of SV 20 reached up to 35.1 and 300 



6.0MPa, respectively, which can meet the requirement for planting concrete. 301 

(6) The total pore volume of hardened SAC-based materials increased with the increase of vermiculite. 302 

The total pore volume increased 6% when 20wt.% vermiculite was incorporated. The increase of 303 

pore volume was mainly due to vermiculites’ fine pores of diameter between 0.4~1μm.  304 
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Fig.1 Particle size distributions of SAC and vermiculite 409 
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Fig.2 Water release rate of hardened pastes 413 
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(a) Fertilizer dosage of 2 wt. % 416 
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(b) Fertilizer dosage of 4 wt. % 418 
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(c) Fertilizer dosage of 8 wt. % 420 

Fig.3 Fertilizer release rate of hardened pastes 421 
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Fig.4 Alkalinity of pore fluid of hardened pastes 424 
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(a) TG-DSC curves 427 
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Fig. 5 TG-DSC analysis 430 
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Fig.6 Mechanical properties of cementitious materials 436 
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(a) hydration heat evolution for 1d 439 
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(b) Hydration heat evolution for 3d 441 

Fig.7 Hydration heat evolution 442 
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Fig.8 Cumulative pore volume of hardened pastes 445 
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Fig.9 Pore size distribution of hardened pastes 448 
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Fig.10 Bulk density of hardened pastes 451 
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Fig.11 Relationship between total pore volume 454 

and WAR, bulk density  455 



Table 1 456 

Table 1 chemical composition of SAC and vermiculite 457 

Component 
Amount (wt.%) 

SAC Vermiculite 

SiO2 9.16 41.00 

CaO 44.37 1.82 

Al2O3 23.26 15.10 

Fe2O3 2.53 16.14 

MgO 1.59 12.53 

K2O 0.44 5.14 

Na2O 0.29 0.48 

TiO2 1.01 1.91 

SO3 10.11 0.08 

Ignition loss 6.24 3.20 

 458 



Table 2 459 

 

Table 2 Mix proportions of SAC control sample and samples with additions of vermiculite 

No. Composition (wt. %) 

SAC Vermiculite 

SV ref 100 0 

SV 5 95 5 

SV 10 90 10 

SV 20 80 20 

SV 40 60 40 

 460 

 461 



Table 3 462 

 463 

Table 3 WARs of hardened pastes (wt. %) 464 

No. SV ref SV 5 SV 10 SV 20 SV 40 

WAR 8.05 9.40 11.20 14.82 17.81 

 465 
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