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Abstract—In this paper, a strategy is proposed to estimate the
R-peaks in ECG signals recorded inside a 7T magnetic resonance
imaging (MRI) scanner in order to reduce the disturbances due
to the magnetohydrodynamic (MHD) effect and to finally obtain
high quality cardiovascular magnetic resonance (CMR) images.
We first show that the cyclostationarity property of the ECG
signal disturbed by the MHD effect can be quantified by means
of cyclic spectral analysis. Then, this information is forwarded
as input to a cyclostationary source extraction algorithm applied
to a set of ECG recordings acquired inside the MRI scanner in
a Feet first (Ff) and a Head first (Hf) positions. Finally, detection
of the R-peaks in the estimated cyclostationary signal completes
the proposed procedure. Validation of the method is performed
by comparing the estimated with clinical R-peaks annotations
provided with the real world dataset. The obtained results are
promising and future research directions are discussed.

I. INTRODUCTION

Introduced in the early 1980s, Magnetic Resonance Imaging

(MRI) is nowadays widely used in clinical practice and Cardio-

vascular Magnetic Resonance (CMR) is a non invasive medical

imaging technique regarded as a powerful diagnostic tool in

cardiology that aims to create still or animated (Cine Imaging)

imaging sequences of the heart during the cardiac cycle.

Synchronization of data acquisition with the cardiac cycle is

necessary for imaging the heart because it is a constantly

moving organ. Without any synchronization, the resulting

Magnetic Resonance (MR) image would be strongly affected

by motion blur. For synchronization purposes, measurements

of the cardiac activity through electrocardiograms (ECGs) are

made simultaneously with MRI. The final MR image is formed

by segments acquired over consecutive R-R intervals.

CMR studies were intially performed at a field strength of

1.5 Tesla until the United States Food and Drug Administra-

tion (US FDA) approved in 2002 using 3 Tesla (3T) MRI

scanners for whole body imaging [1]. Nowadays, 3T MRI

scanners are well established in clinical routine, but 7T MRI

scanners are also used mainly for research.

The main challenges to performing CMR at 7T are the var-

ious artifacts present in the image. These are due to the heart’s

movement, the respiratory cycle, and the prolonged scanning

times. In addition to that, the high field magnetic strength

introduces a phenomenon called the magnetohydrodynamic

(MHD) effect distording the electrocardiogram. Indeed, ECG-

based gating is a crucial step for acquiring high quality CMR

images as the R wave extraction is of great importance for a

perfect synchronisation of the image with the heart motion.

Several methods are found in the dedicated literature based

on the vectorcardiogram (VCG) [2] and on Blind Source

Separation (BSS) [3] techniques, but to our knowledge none

uses a statistical property characterising ECG signals, called

cyclostationarity, to overcome the challenge of R-peak detec-

tion in presence of the MHD effect. The work presented here

is a first approach to the problem of ECG-based gating in ultra

high field CMR.

In previous work [4] the assumption of ECG signals being

cylcostationary has been validated within the framework of

extracting the fetal electrocardiogram (FECG) from a set of

ECGs coming from electrodes attached on a pregnant woman.

In fact, the fetus’ as well as the mother’s heartbeats are not

stricltly periodic, but they both exhibit some hidden periodic-

ities, i.e. their statistical characteristics vary periodically with

time. In the proposed work, this property is tested to real

world ECG signals recorded inside a 7T MRI scanner and

a cyclostationarity-based source extraction algorithm is used

in order to overcome the artifacts cited above in the R-peak

detection step.

In Section II, the property of cyclostationarity and one of

its quantitative measures are introduced and illustrated on real

world signals; moreover, a brief introduction to BSS theory

and one source extraction algorithm tailored for cyclostation-

ary signals are introduced. The proposed procedure for R-

peak detection is presented in Section III, while in Section

IV experimental results from the application of the proposed

procedure to a real world ECG dataset are displayed. Finally,

a conclusion and a discussion of future research direction are

provided in Section V.

II. CYCLOSTATIONARY NATURE OF ECG MRI SIGNALS

A. The property of cyclostationarity

An introduction to cyclostationary processes can be found in

[5] while Gardner et al offered important contributions to the

development of the theory of cyclostationary signals [6] with

a focus to telecommunications. Since then, other applications
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Fig. 1. Time waveforms of 3 ECGs recorded from lead I for volunteer
number 3 and acquired outside (a) and inside the MRI scanner in Ff (b) and
in Hf (c) positions. ”Star” markers indicate clinically annotated R-peaks.

of this theory have emerged in numerous and varied fields

such as rotating machinery [7], econometrics [8] or even radio-

astronomy [9]. Reviews on cyclostationarity can be found in

[10], [11], [12].

Cyclostationarity is a special case of non-stationarity: a

time-variant process whose statistics vary periodically with

time is called cyclostationary (CS). For example, the peri-

odicity of the cosine function, cos(2πf0t), at some carrier

f0 becomes hidden if its amplitude is modulated by some

random data x(t) with autocorrelation function Rx(τ) =
E [x(t)x(t + τ)].

B. Cyclic coherence’s definition and integrated cyclic coher-

ence

Let x(t) be a CS signal. In order to characterize the

cyclostationarity of x(t), the measure proposed in this work

is a normalized version of the spectral correlation function,

called cyclic coherence (CC) Cxx(f, α):

Cxx(f, α) =
Sxx(f, α)

[Sxx(f − α/2)Sxx(f + α/2)∗] 1/2
(1)

where the ∗ operator denotes the complex conjugate, t and τ
stand for time index and time-lag, respectively, f and α denote

spectral and cyclic frequencies, respectively, and Sxx(f, α) is

the Fourier Transform of the cyclic autocorrelation function

Rα
xx(τ):

Sxx(f, α) =

+∞∫

−∞

Rα
xx(τ)e

−j2πfτdτ. (2)

The cyclic coherence Cxx(f, α) of eq. (1) is computed using

the averaged cyclic periodogram technique [13] and it simply

indicates how strong the correlation between components of

x(t) at frequencies (f − α/2) and (f + α/2) is.

Another measure of cyclostationarity is the integrated Cyclic

Coherence (iCC) over spectral frequency f defined as:

Fig. 2. Cyclic Coherence for the ECG recorded from lead I of volunteer
number 3 recorded outside the MRI scanner.

iCC (α) =

f=fmax∑
f=fmin

Cxx (f, α) , α ∈ [αmin, αmax] . (3)

C. Example data

Let us illustrate the concept of cyclostationarity discussed

above on actual data recorded using a 12-lead Holter ECG

with a sampling rate of 1024 Hz from healthy volunteers;

for a detailed description of the data acquisition procedure,

readers are referred to [14]. ECGs were recorded outside but

also inside the MRI scanner in Feet First (Ff) and Head first

(Hf) positions that influence the way the MHD effect disrupts

the signals as displayed in Fig. 1 (from top to bottom).

Plot (a) in Fig. 1 shows noise-free PQRST complexes from

ECGs acquired outside the MR scanner, while the presence of

MHD noise - mainly, makes it difficult for a non expert eye

to locate the R-peaks as it is shown in plots (b) and (c), hence

the importance of an accurate R-peak detection to trigger the

MR image acquisition. The underlying physical phenomenon

in these ECGs, i.e. the changing electrical potential of the

heart, make of these signals CS processes as will be shown

below.

The CC function of eq. (1) is computed for the ECG

recorded outside the MRI scanner which is plotted in Fig.

1(a); its three-dimensional plot is illustrated by Fig. 2. For

each spectral frequency value f ∈]0, 250] Hz its correlation

with every cyclic frequency α ∈]0, 5] Hz varying by a step

of 5× 10−3 Hz is calculated. This results in the presence of

a first cluster of spectral lines with high magnitude around

the cyclic frequency α0 = 0.965 Hz - called fundamental

cyclic frequency, and of its first two harmonics one can clearly

remark at approximately {2× α0, 3× α0} Hz, respectively.

Correlation between spectral and cyclic components tends

to fade for every other value of cyclic frequency α. This

fundamental cyclic frequency reveals the quasi-periodicity of

the heart beats for volunteer number 3 which is equal to

T0 = 1/α0 = 1.036 s.



Fig. 3. Cyclic Coherence for the ECG recorded from lead I of volunteer
number 3 recorded inside the MRI scanner in Head first position.

Despite the MHD effect, the ECG signals recorded inside

the 7T MRI scanner still exhibit the cyclostationarity property.

Fig. 3 shows the CC of the same lead and for the same

volunteer as previously but for the ECG signal recorded inside

the MRI scanner in Hf position. The presence of a strong

correlation between all spectral frequencies and the cyclic

frequency at around 0.935 Hz reveals a fundamental cyclic

frequency α0. Its four first harmonics are also clearly visible

in this plot. Obtained results are quite similar for the CC of

the corresponding ECG recorded in Ff position.

In order to quantify more simply and accurately the funda-

mental cyclic frequency α0 we computed the iCCs of the three

ECGs coming from lead 1 of volunteer number 3 according eq.

(3). Fig. 4 displays the obtained results. For the reference lead

(i.e. recorded outside the scanner) the obtained fundamental

cyclic frequency plotted in solid line has a value of 0.965Hz,

while the obtained α0 values for the ECGs recorded inside

the scanner in Ff (dotted line) and Hf (dashed-dotted line)

positions are {0.925, 0.935} Hz, respectively. Amplitudes of

the computed iCCs depend strongly on the spectral frequencies

range fmax.

D. BSS and cyclostationarity-based signal extraction

BSS [15], [16] and its underlying mathematical tool called

Independent Component Analysis (ICA) [17] are well known

techniques and a wide variety of strategies are based on these

concepts in order to extract a signal of interest (SoI) from a

set of M recordings called mixtures to which contribute N
unknown sources si(t), i ∈ [1, N ], with N ≤ M , and whose

SoI is part. This problem is commonly modeled by the linear

instantaneous noiseless BSS model which writes in matrix

form:

x(t) = As(t)

where s(t) = [s1(t), s2(t), ..., sN (t)]T and x(t) =
[x1(t), x2(t), ..., xM (t)]T denote the mixture and the source

vectors, respectively, T and t stand for the transpose operator

and time, respectively, and where A is an unknown M × N
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Fig. 4. Integrated Cyclic Coherence for the three ECGs from lead I of
volunteer number 3 recorded outside and inside the MRI scanner in Ff and
Hf positions.

full rank mixing matrix. The basic assumption to solve this

problem is the statistical independence of the source vector

components si; to do so, let B be the estimated unmixing

matrix, i.e. B ≈ A−1. Then, an estimate of the independent

components of the vector s is yielded by:

ŝ(t) = Bx(t).

Within the framework of this research we attempt to exploit

the cyclostationarity property of the ECG signals recorded

inside the 7T MRI scanner. The a priori knowledge of the

fundamental cyclic frequency α0 of the SoI, i.e. the MHD-

free ECG, will serve as an entry to the cyclostationary source

extraction algorithm labeled as Second Order Cyclostationary

Statistics Optimization Criterion (SOC2) [18] which is based

on the joint diagonalisation of a set of cyclic correlation

matrices. This algorithm do not use whitening [19] as a

pre-processing step consisting in a linear transformation of

the observations vector x and assumes all sources can be

either stationary or cyclostationary but at different fundamental

cyclic frequencies.

III. PROPOSED PROCEDURE FOR R-PEAK DETECTION

In order to estimated the R-peaks of the ECGs distorted by

the MHD effect, the following procedure is proposed:

1) Estimate the fundamental cyclic frequency α0 of the

ECGs recorded inside the MRI scanner both for Ff and

Hf positions.

2) For each recording position (Ff and Hf) form a mixture

vector for source extraction purposes.

3) Apply the cycloststionarity-based extraction algorithm in

order to estimate the SoI, i.e. the MHD-free ECG signal.

4) Locate an R-peak.

5) Use the α0 value knowledge to estimate the rest of the

R-peaks in the extracted ECG signal.

In the first step, computation of the iCC measure is

performed. In the second step, and in order to reduce the



computational cost compared to other ICA techniques, the

mixture vector consists of only a part of the 12 available ECG

recordings; experiments have been carried out with four leads

recordings and the obtained results are provided in the next

Section. These mixtures together with the α0 value are given

as input to the SOC2 algorithm in step 3, yielding thus a single

ECG signal supposed to be less distorted by the MHD effect.

For the next step, in some experiments, all or some of the R-

peaks in the estimated SoI are easy to locate by an experienced

eye. In Section IV, clinical annotations have been used in order

to detect the first R-peak.

Finally, an algorithm for research of local maxima in the

more or less immediate vicinity of the next R-peaks is run. As

the estimated SoI is cyclostationary, the R-peaks appear after

not strictly equal time intervals. Based on the α0 frequency

value being estimated in step 1, it is easy to compute the

corresponding cyclic period T0 (see Section II-C) and thus,

to locate the time instant t0 where the next R-peak should

appear in the estimated SoI. A peak detection algorithm is then

run on the interval [t0 + δ, t0 − δ] and seeks for a maximum

value corresponding to the next R-peak, where δ is a wisely-

chosen variable (in seconds) depending on the quality of the

estimated ECG signal.

IV. EXPERIMENTS AND RESULTS

As outlined above, the proposed R-peak detection procedure

uses as prior knowledge the fundamental cyclic frequency

α0 of the SoI. Table I summarises the results obtained for

the ECGs of each volunteer recorded outside but also inside

the MRI scanner in Ff and Hf positions using the procedure

described in II-C. The choice of the ECG lead for iCC

computation is arbitrary, as the results are essentially the same

for all 12 ECG channels. One could also compute a mean iCC

value from the individual ones obtained from each ECG lead

at the expense of a slightly higher computational cost.

TABLE I
ESTIMATED ICCS VALUES (IN Hz) OF EACH VOLUNTEER’S ECG

RECORDED OUTSIDE AND INSIDE THE MRI SCANNER IN FF AND HF

POSITIONS.

Volunteer 1 2 3 4 5

Outside 0.825 1.185 0.965 1.155 1.145

Inside - Ff 0.74 1.1 0.92 1.105 1.105

Inside - Hf 0.76 0.995 0.935 1.11 1.2

For the input to the cyclostationarity-based source ex-

traction algorithm (step 2 of the proposed procedure),

two mixture vectors are used for the ECG leads record-

ings: the first one is formed by ECG channel numbers

{aV L, aV F, V 1, V 2} for recordings inside the MRI scanner

in Ff position and the second one consists of ECG channel

numbers {III, aV F, V 3, V 4} for recordings inside the MRI

scanner in Hf position. Note that the length of the available ex-

perimental dataset varies according to the subject; recordings

were made inside the MRI scanner for each position for 3.5−6

TABLE II
THE MEAN ERROR (IN seconds) BETWEEN ESTIMATED AND CLINICALLY

ANNOTATED R-PEAKS FROM THE EXTRACTED ECG FOR EACH

VOLUNTEER AND THE ASSOCIATED STANDARD DEVIATION VALUES (STD)
FROM RECORDINGS IN FF AND HF POSITIONS INSIDE THE MRI SCANNER.

Volunteer 1 2 3 4 5

Ff
Error −0.382 2.521 0.058 −1× 10−3 −0.456

STD 0.564 2.568 0.445 0.092 0.342

Hf
Error 4× 10−6 −0.273 7× 10−4 −0.002 2.8

STD 2× 10−3 0.145 8× 10−4 4× 10−4 1.083

min. The mixture vector’s choice is quite random as various

experiments with different mixture vector sizes as well as

components have been realised, the aim being to find a trade-

off between the computational cost and the cyclostationary SoI

estimation quality of the SOC2 algorithm.

The ECG recordings inside the scanner for each volunteer

are supplemented with clinical annotations of the R-peaks. In

order to safely compare the results of the proposed procedure

with these annotations, in step 4 of the proposed procedure the

first clinically annotated R-peak is used in order to locate the

first R-peak in the estimated ECG as yielded in the previous

step by the cyclostationary source extraction algorithm. Next,

we applied the procedure of step 5 described in the previous

Section to estimate the rest of the SoI’s R-peaks. Finally,

the mean difference (in seconds) between the estimated time

instant the R-peaks occur and the corresponding clinical

annotations as well as the standard deviation values of this

error are computed for each volunteer and for both positions

inside the MRI scanner.

Table II summarises the obtained results. It can be noted

the proposed procedure provides generally better results in

the case of ECGs recorded inside the MRI scanner in Hf

position (except for volunteer number 5). This finding may be

correlated with the nature of the MHD effect which polarity

changes when the body of the volunteer is placed inside the

scanner in Hf position [20]. One can also remark that, in two

cases (i.e. for volunteer number 2 in Ff position and volunteer

number 5 in Hf position), the estimated cyclostationary signal

is still correlated with the MHD effect, hence a significant

mean error. In all other cases, the good quality of the extracted

cyclostationary source lead to a good R-peak detection. As

shown in Fig. 5, the R-peaks detected by the proposed method

are in almost perfect agreement with those annotated by the

experts.

Let us also note that the results displayed by Table II are ob-

tained by applying the proposed procedure to a mixture vector

of size M = 4 among 12 available ECG electrode recordings.

More experiments are needed to determine, on the one hand,

the more suitable leads for high quality cyclostationarity-based

extraction of the SoI and, on the other hand, the optimum

number of sensors to be used as input to the aforementioned

extraction algorithm.
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Fig. 5. Illustrative example showing the first 60 sec of the extracted
cyclostationary source using the SOC2 algorithm from the 4 channel mixture
{III, aV F, V 3, V 4} of volunteer number 3 recorded inside the MRI scanner
in Hf position and the manually annotated R-peaks (”star” markers) vs those
estimated by the proposed procedure (”circle” markers).

V. CONCLUSION AND DISCUSSION

Although 3T MRI scanners are commonly used in clinical

practice, research applications in CMR are using 7T MRI

scanners. But the image synchronisation is hampered by arti-

facts whose magnetohydrodynamic (MHD) effect corrupts the

recorded ECGs inside the MRI scanner. The proposed work is

a first step towards an automated procedure for MHD-filtered

ECG signal based on the inherent cyclostationarity property

of the latter.

Instead of using general blind source separation (BSS)

algorithms, we propose to apply a signal extraction algorithm

tailored for cyclostationary source signals within the frame-

work of BSS. First having shown that the signal of interest

(SoI), i.e., the ECG recorded inside the 7T MRI scanner,

still exhibits the cyclostationarity property - despite the MHD

effect, the estimation of the fundamental cyclic frequency

of the SoI is performed using cyclic spectral analysis tools,

namely the integrated cyclic coherence (iCC).

Obtained results by application of the proposed procedure

to a real world dataset of ECGs recorded outside and inside

a MRI scanner in Feet first (Ff) and Head first (Hf) positions

from 5 volunteers, are promising. Further studies are proposed

to decide on the robustness of the method. Use of different

ECG leads, of various number of electrodes to form the

mixture vector, but also application of the proposed method to

ECG signals distorted by real and simulated MHD effect [3]

and comparison of the results with those obtained by applying

well established BSS algorithms in terms of Sensitivity (Se)

and positive predictive value (+P ) represent some directions

of future research.
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