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“.... these waves are claws, the boat is caught in them, you can feel it.”
-Letters between artist Vincent Van Gogh and his brother Theo, 1888

Fig. 1. Under a wave off Kanagawa by Hokusai (1760-1849) [1]. An ε-machine is a discrete dynamical system which reproduces the temporal behaviour
and other characteristics of a process based on rich enough sequences of observations (unlike static measures and simple statistics). Thus, like Hokusai’s print
(also known as The Great Wave), an ε-machine can be viewed as a portrait capturing in a compact form, the temporal dynamics of complex processes, such
as the production of sequences of EEG microstates that can be observed in the spatiotemporal neurodynamics of a particular mental state.
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Abstract

We introduce new techniques to the analysis of neural spatiotemporal dynamics via applying ε-machine reconstruction to
electroencephalography (EEG) microstate sequences. Microstates are short duration quasi-stable states of the dynamically changing
electrical field topographies recorded via an array of electrodes from the human scalp, and cluster into four canonical classes. The
sequence of microstates observed under particular conditions can be considered an information source with unknown underlying
structure. ε-machines are discrete dynamical system automata with state-dependent probabilities on different future observations (in
this case the next measured EEG microstate). They artificially reproduce underlying structure in an optimally predictive manner as
generative models exhibiting dynamics emulating the behaviour of the source. Here we present experiments using both simulations
and empirical data supporting the value of associating these discrete dynamical systems with mental states (e.g. mind-wandering,
focused attention, etc.) and with clinical populations. The neurodynamics of mental states and clinical populations can then be
further characterized by properties of these dynamical systems, including: i) statistical complexity (determined by the number of
states of the corresponding ε-automaton); ii) entropy rate; iii) characteristic sequence patterning (syntax, probabilistic grammars); iv)
duration, persistence and stability of dynamical patterns; and v) algebraic measures such as Krohn-Rhodes complexity or holonomy
length of the decompositions of these. The potential applications include the characterization of mental states in neurodynamic
terms for mental health diagnostics, well-being interventions, human-machine interface, and others on both subject-specific and
group/population-level.

I. MOTIVATION AND BACKGROUND

WE focus on using the ‘grammar’ of electroencephalography (EEG) microstate sequences to distinguish different mental
states and their characteristics by employing computational automata- and computer algebraic theoretic tools. EEG

microstates are quasi-stable maps of electric potential landscapes of short duration, typically classed in a small number of
discrete types analogous to ‘letters’ of an alphabet. Aberrant tendencies for simple EEG microstate transitions between certain
pairs of these discrete types have already been shown to characterize clinical populations (people with schizophrenia or
frontotemporal dementia vs. healthy controls [2], [3]). Our research targets finer understanding of temporal neurodynamical
structure and patterns using novel computational methods to harness their potential in distinguishing different mental states
and in characterizing mental state dynamics in health and disease. Specifically, we begin to validate and develop ε-machine
and algebraic automata methods toward their potential application in clinical diagnosis and mental illness prevention, as well
as in promotion of wellbeing.

After reviewing motivation and background in this Section, in Section II we introduce ε-machines (also called ε-automata
[4], [5]), their connection to grammars, and how they can be used to reconstruct unknown underlying dynamics of a discrete
dynamical process; in Section III we validate the methods in some simple toy models and then on data derived from the study of
EEG microstate transitions in schizophrenia patients vs. controls at a population level; in Section IV we exhibit and compare
two very different ε-machines modelling the EEG microstate neurodynamics of an individual meditator and non-meditator.
Section V summarizes our conclusions and discusses possible methodological and real-world applications.

A. “Atoms of Thought” ?

William James [6] spoke of ‘stream of consciousness’ – a continuous flow of thoughts, feelings, and sensations constituting
our experiential ‘now’. However, modern psychophysiological research employing EEG has suggested that the transitions
between moments of awareness are discontinuous and characterized by rapid changes in topographic distribution of brain
electrical activity followed by periods of quasi-stable spatial distribution referred to as EEG microstates [7]. These have been
suggested to reflect candidate ‘atoms of thought’ that fit together in complex ways in human brain processes and cognition [7].

B. EEG Microstates: Topography, Function and Syntax

EEG microstates are typological maps of the momentary spatial distributions of electric potential that remain quasi-stable
in the sub-second time range and are separated by rapid configuration changes [8]. They can be obtained from a task-related
(ERP) or resting-state (EEG) data and further analysed by a number of topographic classes, duration, occurrence, time coverage,
and syntax (microstate sequence patterning). In terms of topography, most resting-state EEG studies ([9], [2], [10]) reveal 4
microstate classes, accounting for approximately 79% of the EEG data variance [9]. Two of these classes have asymmetric
topography: class A (right-frontal to left-posterior) and class B (left-frontal to right); and two have symmetric topography: class
C (frontal to occipital) and class D (frontal to occipital, but with more midline frontal activity than class C). Mean microstate
duration during resting-state EEG is in the range of 70 to 125 milliseconds ([8], [7], [2], [9]). The duration, however, and
other class parameters vary depending on context and conditions. Thus, the duration, occurrence, and time coverage of different
microstate classes have a developmental trajectory [9]. Alterations of microstate parameters have been reported in schizophrenia
([11], [2], [3]), depression [12] and Alzheimer’s disease ([13], [3]). They also vary as a function of wakefulness [14], personality
predispositions [15], and hypnosis [16].

In terms of functional significance of the four microstate classes, most recent evidence suggests that their discrete
spatiotemporal patterns are signatures of the global neural integration processes associated with conscious cognition and
perception. A simultaneous EEG-fMRI study [17] found significant correlations between four resting-state EEG microstate
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classes and four fMRI resting-state networks: class A was correlated with negative blood-oxygen-level dependent (BOLD)
contrast imaging signal in areas implicated in phonological processing; class B was correlated with negative BOLD signal in
areas implicated in visual processing; class C with positive BOLD signal in saliency and interoceptive networks; and class
D with negative BOLD signal in right-lateralized networks associated with attention reorientation. Milz et al. [18] directly
tested the four microstates classes during verbal and visuo-spatial processing and found microstate class A to be associated
with visual and class B with verbal processing. However, although relative occurrence of classes A and B was significantly
different in visual and verbal conditions respectively, all microstate classes occurred during both conditions with the absolute
difference in coverage being very small [18]. The authors suggest that while increased duration, occurrence, and coverage
of EEG microstate classes might be associated with modality-specific processing, they cannot be reduced to these functions.
Instead, understanding finely-tuned interplay between the four EEG microstate classes might be necessary for establishing their
functionality and their associations with cognition, perception, and subjective experience.

Studies that explored microstate syntax suggest that a sequence of microstates might indeed be informative. Basic properties
of microstate ‘language’ could include: (1) transition probabilities between pairs of microstates (‘syllables’); (2) occurrence
probability of short characteristic sequences (‘words’); and (3) higher level structure and regularities (‘sentences’ and
‘grammar’). Transition probabilities between pairs of microstates (1) have been considered in several studies ([14], [19],
[2], [20]). The importance of short sequences of microstates longer than a single transition (3) is demonstrated by Lehmann
et al [2] showing differences in directional predominance of microstate transitions between first-episode schizophrenia patients
and controls, with predominance of A → D → C → A in patients vs. A → C → D → A in controls. Van De Ville et al
[21] presented evidence of higher level structure and regularities in microstate sequences (3) by revealing scale-free dynamics
in EEG microstate sequences and concluding that “modeling microstate syntax needs to go beyond short-range interactions
such as modeled by n-step Markov chains”. Could the formal syntax of such characteristic transitions be detected for more
complex sequences?

This question leads to natural hypotheses that could be investigated using the methods proposed here. Elaborating on the
idea that the syntax of the microstate sequences is likely to be related to the structure of cognition, we hypothesize that:
(H1) different mental functionalities could entail differential sequences of brain processes resulting in different characteristic
microstate sequences or syntax. As a simple case, this includes different transition probabilities between microstates in different
context, e.g. in a visualization task if attention momentarily wanders, one would predict microstate D associated with attention-
reorienting would be more likely to be followed by one associated with visual activity than verbal. (H2) Longer microstate
sequences (‘words’) with constrained structure would be expected to reflect more coverage by contextually relevant microstates,
in particular those associated with the task at hand. (H3) Extracting short microstate sequences characterizing different brain
processing steps during various tasks or mental processes could reveal whether there are (i) generic steps that occur in cognition
as well as (ii) task- or context-specific ones for the given mental process. Since all 4 EEG microstate classes derived by Koenig
et al. [9] occur in various spatial- and object- visualization and verbal tasks [18], we would predict that generic cognitive steps
would be associated with common microstate syntax (e.g. framing by the same short sequences), and differences in task and
context would be characterized by the differences in microstate coverage and syntax.

Syntactic structure is well studied in formal language theory where different classes of automata models act as generators
or recognizers of a ‘language’ of possible sequences (e.g. [22], [23], [24], [25]). To study microstate syntax, such
generators/recognizers can be constructed from microstate sequence data using ε-machines methodology, developed for inferring
the causal structure of processes from a sequence of discrete measurements or observations. Unlike fitting parameters to
the architecture of a pre-given model (e.g. [26]), the structure of an ε-machine is derived from the data. The ε-machine
construction infers a minimum number of causal states necessary to optimally predict future observations [4], [27]. The
causal states of ε-machines collect trajectories of the process up to the present moment that probabilistically predict exactly
the same possible futures, and, with sufficient data, asymptotically give complete information of the syntax of the process.
These discrete dynamical systems allow not only to address such syntactic characteristics of neurodynamics, but to determine
meaningful underlying computational architectures of processes that could produce the observed sequences and to characterize
their complexity [5].

II. ε-MACHINES, GRAMMARS, AND ALGEBRAIC INVARIANTS

Unknown dynamical processes produce sequences of discrete observations from a finite set of possibilities (‘alphabet’)
corresponding to ‘letters’ (e.g. the four canonical EEG microstates {A,B,C,D} characterized by Koenig et al. [9]), and to
attempt to capture these processes ε-machines are generative dynamical models determining classes of formal languages over
the alphabet and a probability measure on observed words (sequences or time series of observations). It will be assumed the
process being studied is stationary, i.e. governed by the same dynamics at each moment of time, or at least conditionally
stationary, i.e. the present dynamics depend at most only on previous history. Then ε-machines are provably optimal non-linear
recursive predictors for discrete time series ([4], [5], [28]).
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A. ε-Machines

Given discrete time series data, ε-machines are minimal sufficient statistics, i.e. given the past history they allow complete
determination of the probability distribution over possible futures [4]. Each past history determines a unique causal state
of the ε-machine and two past histories determine the same causal state if and only if they determine the same probability
distribution over possible futures. Moreover, causal states have a deterministic automata structure: given a past history h and
next observation x of the time series, the new causal state is the causal state of history hx, that is, the history where h then x
occurred. The causal states are minimal in that any other statistic that determines that determines possible futures given past
history must contain at least as much information as the causal states [4] and so can be mapped onto the them.

An ε-machine (or ε-automaton) is a formally specified automaton A = (Q,X, δ, P ), often constructed from observation
sequences [5]. It has a finite alphabet X from which observations are drawn, a set Q of underlying causal states, and a
deterministic transition map δ : Q×X → Q, giving the next state q′ = δ(q, x) if the automata was in state q and observation
x ∈ X was observed. To each state q ∈ Q is assigned a probability distribution Pq , giving the probability Pq(x) of the next
observation being x when the machine is in state q.∑

x∈X
Pq(x) = 1, for all q ∈ Q.

A trajectory of A starting in state q = q0 is a sequence of states q0, . . . q` and observations x1, . . . , x` with qi+1 = δ(qi, xi)
for all 0 ≤ i < `, for some length ` ≥ 0. The probability of w = x1 . . . x` occurring in state q = q0 is thus

Pq(w) =

`−1∏
i=0

Pqi(xi+1).

Of course, also
∑
w∈X` Pq(w) = 1.

The behaviour of the ε-machine is to iteratively emit a letter x with probability Pq(x) when in state q and then to transition
to new state q′ = δ(q, x). Here time is modelled as discrete and defined by events (or observations), i.e. the index of time t
is regarded as integer-valued and the next moment of time t+ 1 is determined whenever xt+1 is observed.1

At each state q and sequence length ` an ε-machine determines a possible set of observation sequences

L(`)
q = {w ∈ X` : Pq(w) 6= 0},

as those occurring from state q with non-zero probability. The future morph at state q is the union of all possible observation
sequences possible at q, i.e. the set Lq =

⋃
`>1 L

(`)
q where each w ∈ Lq has an associated probability Pq(w). If |w| = `, we

have probability Pq(w) over all sequences of length ` of observing w = x1, . . . , x` from causal state q. The future morph at
state q is thus the set of all possible futures with particular probabilities associated to them.

Suppose the ε-machine has so far generated a (finite or infinite) sequence . . . xt−m . . . xt−1xt up to the present moment
(indexed by t) and is in state q. Observe that in an ε-automata for each state q, the future morph is conditionally independent
of the past. That is, the probability of any sequence w of observations of length ` occurring at q depends only on the current
state q and not on any details of the sequence . . . xt−m . . . xt−1xt.

B. Physical Clock Time vs. Event-Driven Time

For time as modelled in ε-machines, making a new observation defines a ‘clock-tick’ and determines a transition to the next
causal state. We may choose to record an observation according to a regular interval of physical clock time, e.g. recording the
sequence of observations x1x2x3 . . . ... at 250 Hz with 4 milliseconds (ms) between observations, in our case EEG microstates.
Alternatively, we may choose a different sampling rate, e.g. 100 Hz, so that 10 ms elapse between observations. We may also
choose ‘event-driven’ time instead, with the ε-machine making a transition whenever an observation is made, and only then.
Moreover, we could allow a mixture of physical time and event-driven time: e.g. the ε-machines receives an observation only
if the observational reading has changed (or a maximal time interval has elapsed); in this case xi 6= xi+1 (unless the maximum
time has elapsed), and the shortest time interval interval between the two observations xi and xi+1 is the sampling rate.2 In
every case, time in ε-machines is always indexed by the arrival of discrete observations.

1Note that if Pq(x) is zero, it is sensible to regard δ(q, x) as undefined, as x can never be observed in any transition from state q. Alternatively, one could
set δ(q, x) = ∗, an adjoined ‘impossible’ state in this case, i.e., ∗ is a ‘sink state’, which can never be left once entered. That is, δ(∗, x) = ∗ for all x ∈ X .

2 For example, if the sampling rate is 500 Hz (one reading per 2 ms) and the maximal time is set to 50 ms, then observation xi+1 could occur at some
multiple of 2 ms after observation xi, at the first reading where the observations differ but not more than 50 ms later.



5

C. ε-machine Reconstruction from Observations

Crutchfield and colleagues ([5], [4], [27], [28]) describe methods to approximately reconstruct an ε-machine from a given
sequence or sequences of observations of a physical process that is conditionally stationary.

A partition of a set of all finite sequences w of observations is said to make the future conditionally independent from the
past if for all m > 0 the probability of each w′ ∈ Xm occurring after each member of the partition class [w] is the same.
Members of a partition class [w] are regarded as equivalent histories. That is, for any two observation sequences w and w′ in
[w], the probability of any future sequence of observations x1, . . . , xm following w is the same as the probability of the future
sequence of observations x1, . . . , xm following w′.

Given such a partition, we can define an ε-machine with alphabet X (the set of possible discrete observations), states given
by the partition classes [w], and transition function δ([w], x) = [wx], for each x ∈ X . The transition function is well-defined
by the condition that the partition makes the future conditionally independent of the past. It follows that the probability P[w](x)
that x is observed after the having just observed w is independent of the representative w of the partition class [w], so is
well-defined to. Since the transition function is defined in terms of states and observations, it turns out that it suffices to
consider just the next observation after word w in ε-machine reconstruction [27].

Due to the limitations of the finiteness in real data sequences of discrete observations, a maximal window size k is selected
as a parameter of the method, and all strings of actual observations of length at most k are considered in estimating such a
partition on words of length at most k. Based on observational data, one approximates the causal state set by starting with
all sequences of observations of length zero, and the partition of all sequences into a single universal class partition class,
where observation x ∈ X occurs with probability its observed frequency in the data. Supposing that the partition has been
constructed up to a certain stage with all words in partition classes having length at most m (m < k), the one-step probability
distribution over observations for each partition class [v] is estimated by simple maximum likelihood, to reflect the frequency
of observations x appearing after any histories in [v] in the data. Extending each w of length m in a partition class [w] by a
letter y (one-step of previous history) to get yw, one checks whether in the one-step probability distribution over observations
following yw is the same as that of partition class [w], or, if not, of any other [v] obtained so far. (Statistical tests are applied
to order to decide whether the distribution over next observations of yw and [v] are the ‘same’ in software implementations
[28].) If so, then yw is added to [v] (which may well be [w]). If not, a new partition class [yw] containing yw is created. In
practice yw needs only be considered if it occurs in the observation sequence(s) from data. One continues this for all letters
x ∈ X and all partition classes found so far, using only words up to length k as derived from data. The transition function
is defined by δ([w], x) = [wx] if |wx| ≤ k or by the [(wx)k] otherwise, where (wx)k denotes the last k letters of wx. One
checks whether δ is well-defined for w and x, i.e. independent of the representative w of [w]. If not, one iteratively partitions
[w] into new states to make it well-defined. This causal state splitting process is iterated for all candidate causal states [w],
and is guaranteed to converge due to finiteness of the data, with a worse case run-time of O(|X|2k+1)+O(N) where N is the
number of observations in the data [27]. Examples illustrate success of this reconstruction even when the process modelled is
non-Markovian [27].

D. Deriving Grammars from ε-machines

If the ε-machine is finite, we obtain a (probabilistic) regular grammar for a formal language Lq0 ⊆ X∗ for each causal state
q0 of the ε-machine. (See e.g. [22] for an introduction to formal languages.) We have a variable symbol Vq for each causal
state q ∈ Q, a terminal symbol x for each observation letter x ∈ X . For each causal state q of the automata and observation
letter x ∈ X , we have a grammar rule

Vq → xVδ(q,x)

if δ(q, x) is defined, i.e., Pq(x) > 0. We also add rules Vq → λ, the finite string with no letters; that is, Vq may be replaced
by the empty string terminating the generation of a finite word. Then Lq is the language of all strings in the terminal symbols
that can be reached using these rules starting from symbol Vq . Observe that we may assign probabilities Pq(x) to the first
kind of rule above, in which case the probability of w ∈ X` being generated is Pq(w) as defined above.

Note: this derivation of a probabilistic grammar will work even if the number of causal states is infinite, although the
languages Lq need not then be rational (i.e. recognizable by a finite-state automaton).

E. Invariants of Mental States and Complexity Measures

As reviewed in Section I-B, the parameters of EEG microstates and their sequences such the duration or coverage of given
EEG microstate classes, or the pairwise transition probabilities from one microstate class to another have been shown to
distinguish between between different mental states (e.g. visual, verbal, or interoceptive information processing, and attention
reorientation) [18], as well as clinical populations (e.g. schizophrenia, frontotemporal dementia, and Alzheimer’s disease) and
healthy controls ([2], [3]).

The ε-machine construction allows much richer, predictive measures of a system’s behaviour by specifying its dynamics in
a more complex way than has been applied previously in EEG studies. To each observational epoch or a set of epochs, the
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construction associates (1) a deterministic finite automaton with probabilistic transitions for each letter from each state, (2)
a probabilistic regular grammar, and (3) probabilities to particular sequences of observations. The ε-machine can be used to
derive a number of other measures, including statistical complexity (the log2 number of states of the automata), entropy rate,
Krohn-Rhodes complexity (minimal number of permutation computing levels in a cascade decomposition) of these automata
and their algebraic invariants such as their simple subgroup divisors (‘atoms’ of computation), their natural subsystems ([25],
[29]), and the length of their holonomy decomposition ([23], [30]). We compute these using computer algebraic software
SgpDec [30]. These measures can be used as dependent variables in experiments to distinguish different mental states or
different clinical populations, and could potentially be applied in diagnostic tools.

III. SIMULATION EXPERIMENTS

A. Simulating the EEG Microstate Sequences Corresponding to a Mental State

For the purpose of the simulation experiments presented in this section and in the ε-machine analysis of actual EEG data of
Section IV, we use sequences of an (arbitrary) length of 30,000 EEG microstates. This is the number of EEG microstates derived,
for example, from a human participant during a particular experimental condition that probes/engages a certain mental state
or process if one uses two-minute interval epochs during which neurodynamics are assumed to be conditionally stationary,
at a recording rate of 250 Hz per microstate (which is a standard rate used in the field). Using ε-machine reconstruction
as outlined in Section II-C, we can generate a discrete dynamical system model that is optimized to produce sequences
of microstates statistically indistinguishable from the observed microstate sequence data and study its various characteristic
properties. (Section IV gives ε-machine reconstructions for two individuals, an experienced meditator and a non-meditator,
from actual EEG microstate sequences of exactly this kind.)

To validate our methods we first test the capacity of ε-machines to reconstruct known underlying processes using simulated
data. We describe the grammatical structure of processes using probabilistic regular grammars, test the capacity for ε-machine
reconstruction to recover the generating automata, and apply computer algebraic automata analysis using a computer algebra
GAP extension by the first author to CSSR [28] and SgpDec [30].

For the simulations, we use as a departure point the parameters such as observed frequencies of occurrence and pairwise
transition probabilities for different EEG microstate classes, with parameters derived from clinical experiments used in III-D.
In the rest of this Section, we carry this out for synthetic observational data, (1) with no preferred sequence structure, (2) with
deterministic and non-deterministic cycles, and (3) with structure based on observed transition probabilities between microstates
from a clinical study.

B. Experiment 1 : No Preferred Sequences

Suppose that observations show any sequence of length n as equally likely. It follows that given any sequence of observations
w, all words v of length ` occur with equal likelihood following w. Each observation x ∈ X following w is equally likely,
and the probability of wv is the same as the probability of wv′ if |v| = |v′|. Thus the ε-automaton has exactly one causal
state q0 = [w], and the probability of x in state q0 is 1

|X| , and the transition function is the trivial one δ(q0, x) = q0 for all
x ∈ X . Its entropy rate is log2 |X| and statistical complexity is zero. The corresponding grammar has one variable symbol V0
corresponding to the unique sate of the ε-machine and 4 equiprobable rules:

V0 → AV0, V → BV0, V0 → CV0, V0 → DV0.

Similarly, if the microstates A,B,C,D occur with probabilities pA, pB , pC , pD and these are independent of all previous history,
then the four rules would have these respective probabilities. Straightforward computational experiments confirm ε-machines
easily recover this structure.

C. Experiments 2a and 2b: Cycles

Given a cycle of observations, A,B,C,D, which repeats indefinitely (here 90 times), the reconstructed ε-machine has 4
states and probability 1 to emit the next letter in the sequences (Figure 2, left).

A variant is to repeat the cycle A,B,C,D indefinitely, except that, with probability p = 1
2 , A is observed rather than

B, C, or D in any position where these letters would otherwise occur in the repeating sequence. An artificial sequence of
length 30,000 simulated EEG microstates was generated following this rule with the ε-machine successfully reconstructing the
structure of the underlying process (Figure 2, right).

These two ε-machines have a particularly simple structure, with 4 states Q = {qA, qB , qC , qD}, which record the the most
recently observed EEG microstate, and transition function δ(qX , Y ) = qY for all X,Y ∈ {A,B,C,D}. Any EEG microstate
sequence could be crudely modelled in this way, where the probabilities PqX (Y ) are derived from empirical measurement.
(Both ε-automata recovered in Experiment 2a and 2b are of this form.) Such a model exhibits no dependence on the history
of the dynamics beyond the most recent microstate, which might not reflect underlying neurodynamics sufficiently well.



7

0

1

B: 1        

2

C: 1        

3

D: 1        

A: 1        

0

3

A: 1        

2

A: 0.5058   B: 0.4942   

1
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Fig. 2. Reconstructed ε-machines from simulated data in Experiments 2a (left) and 2b (right). Causal states have been reconstructed perfectly. Arrows label
transitions with the next observed EEG microstate and transition probability. These probabilities have been recovered from the synthetic data sequences
perfectly in Exp. 2a and to within ∼ 0.7% in Exp. 2b. Statistical complexity is 2, and entropy rates are 0 (left) and 0.75 (right). The Exp. 2a yields an
ε-machine with a transformation semigroup of size 17 generated by the 4 partial constant mappings corresponding to the observed microstates. The holonomy
decomposition has two levels and the Krohn-Rhodes complexity is zero, as all subgroups are trivial. The ε-machine for Exp. 2b is interesting since the
semigroup transition corresponding to A permutes the causal states generating a cyclic group of order 4, so Krohn-Rhodes complexity is non-trivial, and the
holonomy decomposition has two levels (see [25] or [30]) with the computing group level on top. The semigroup has 21 elements and is generated by the
order 4 permutation of the states corresponding to observing A and three partial constant maps corresponding to transitions B, C, D.

D. ε-machines of EEG microstate sequences in Schizophrenia Patients vs. Healthy Controls

Lehmann et al. [2] reported the percentages of transitions between distinct EEG microstates for schizophrenia patients vs.
healthy controls, and established that significant differences exist between the two populations in directional predominances of
certain transitions between microstates, and also a predominance of EEG microstate sequence ADCA over ACDA in patients
and the reverse in controls.

Though the Lehmann et al. (2005) publication does not contain full microstate sequences, the percentages of occurrence of
each type of transition between distinct microstates reported for the two groups of 27 patients and 27 controls (Table 3(A),
p. 150 [2]) allowed us to calculate the probability distributions at group level of each distinct microstate following a given
microstate A, B, C or D. Using the reported percentages for each transition between microstate pairs of type x→ y (x 6= y),
we calculated that probabilities of the next distinct microstate in schizophrenia patients given the current EEG microstate
were as follows:

probability to A to B to C to D
from A: 0 0.275319 0.391489 0.333191
from B: 0.337513 0 0.333501 0.328987
from C: 0.322104 0.225507 0 0.452389
from D: 0.270644 0.248818 0.480538 0

and in controls were as follows:

probability to A to B to C to D
from A: 0 0.296104 0.390649 0.313247
from B: 0.244558 0 0.329065 0.426376
from C: 0.243999 0.281978 0 0.474024
from D: 0.228202 0.335831 0.435967 0

(Note: rows – but not columns – sum to 1 in these tables.)
We attempted to simulate corresponding EEG microstate sequences for patients and controls using simple ε-machines with no

dependence on history except for the current microstate. The tables allow the construction of simulated microstate sequences
with the probabilities of the next observation depending only the current microstate. In effect, these tables are generative
ε-machine models with a causal state for the current microstate reading, i.e. with 4 causal states with differing probabilities
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over which distinct microstate will occur next (according to the rows above). We generated such sequences of length 30,000
microstate transitions according to the above transition probability tables for patients and controls.

Using these simulated microstate sequences, we reconstructed ε-automata for the patient and control groups as in Figure 3.
These inferred ε-machines correctly recover the number of states and closely approximate the transition probabilities in the
simple model. (Longer simulated microstates sequences would yield further precision in recovering the transition probabilities,
already within ∼1% of the generative models.) This further validates the ε-machine reconstruction method in that the resulting
associated probabilistic regular grammars reflect the reported data well, at least at the level of pairwise transitions between
microstates.

Patients Controls

A

B

B: 0.2683   

C

C: 0.3907   

D

D: 0.3409   

A: 0.3442   

C: 0.3355   

D: 0.3203   A: 0.3228   

B: 0.2222   

D: 0.455    

A: 0.2698   

B: 0.247    

C: 0.4832   

A

B

B: 0.2796   

C

C: 0.3983   

D

D: 0.322    

A: 0.2535   

C: 0.3305   

D: 0.416    A: 0.2421   

B: 0.2854   

D: 0.4724   

A: 0.2309   

B: 0.3332   

C: 0.436    

Fig. 3. Reconstructed ε-machines from simulated EEG microstate sequences for Schizophrenia Patients and Healthy Controls. Casual states in this case
correspond to the most recent microstate observed. Arrows are labelled by the next observed microstate and the probability of that microstate being observed
from the given casual state. Inferred probabilities have been recovered to within ∼1% of those used in generating the simulated length 30,000 EEG microstate
sequences. Statistical complexity of both is 2; entropy rates are 1.54438 (patients) and 1.54428 (controls). The algebraic invariants analysis yields that the
transformation semigroups of the control and patient ε-machines are isomorphic since they differ only in non-zero transition probabilities. Both have 17
elements (generated by the four partial constant maps to each EEG microstate). They have holonomy decomposition with two identity-reset levels and contain
no non-trivial symmetry groups, hence their Krohn-Rhodes complexity is zero.

One might suspect that a four-state model (equivalent to one-step hidden Markov model) is enough to replicate much of
the data Lehmann and colleagues report. A simple transitional structure like this might possibly reflect the neurodynamics of
patients and controls (at a group level): Indeed, we can analytically derive that, if there were only 4 states with the transition
probabilities we derived from Lehmann et al.’s work [2], then the probabilities of the length 4 sequences ACDA and ADCA
are 1.15% and 1.24% for patients, and 0.811% and 0.640% for controls, respectively.3 The analytical estimates are in fairly
good agreement with the simulated microstate sequence and in line with the predominance of ADCA over ACDA in patients
and the reverse in controls reported in [2].

However, starting the cycle ACDA at C or D instead of A yields CDAC and DACD and Lehmann et al report these 3
variant cycles (ACDA, CDAC, and DACD) occurring as 2.76% of length 4 words in patients, and similarly the 3 cyclic
variants of ADCA (namely ADCA, CADC, and DCAD) are reported to occur as 3.47% of length 4 words in patients.
In controls, the respective percentages were reported as 2.50% and 2.10%. Using the occurrence frequencies of A, C and D
from the study and the above transition probabilities, one would expect 3.82% for ACDA variants and 4.11% for ADCA
variants in patients, and 3.22% for ACDA variants and 2.54% for ADCA variants in controls. While these percentages are
somewhat higher than those reported in Lehmann study, both the original study and the ε-machine reconstruction models are
in agreement on the predominance of ACDA variants in controls and ADCA variants in patients.

The discrepancy between these analytically estimated simple transition model percentages with the actual percentages reported
in the study suggests that the EEG neurodynamics yields a syntax requiring a richer model to capture its dynamics. A full
ε-machine reconstruction from actual data, at both the individual and group levels, could be considerably more complex, and

3For the sequence ACDA, one calculates its occurrence among microstate sequences of length 4 by starting at the microstate A with probability equal
to its frequency of occurrence times the probabilities of transitioning from A to C, then C to D, then D to A for patients and for controls, respectively;
similarly for the sequence ADCA. In [2], microstate A occurs 2.91 times/sec with 12.12 microstates / sec accounting for 24.01% of microstate occurrences
for patients, and microstate A occurs 2.17 times/sec with 11.30 microstates / sec accounting for 19.20% of microstate occurrences for controls. Using the
transition probabilities for patients, 24.01%×pAC ×pCD×pDA = 1.15% of 4-microstate words are expected to be ACDA, similarly 1.24% are expected
to be ADCA for patients, and 0.811% for ACDA and 0.640% for ADCA for controls.

Thus in a 30,000 microstate sequence one expects: 342 ACDAs and 371 ADCAs for patients and 243 ACDAs and 192 ADCAs for controls, respectively.
In our simulated sequences generated considering only the transition probabilities, as described above, for patients ACDA occurred 329 times, while ADCA
occurred 389 times, whereas in the model for controls ACDA occurs 235 times and ADCA occurs 194 times, close to what is expected.
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might reveal additional syntactic structure. This is a strong argument for using methods sensitive to higher level grammatical
structure such as ε-machines to explore EEG microstate sequences in greater depth.

It would therefore be useful to apply our techniques to the actual EEG microstate time series and compare the resulting
inferred ε-machines with the above in order to detect further possible structural differences between the spatiotemporal
neurodynamics of schizophrenia patients vs. controls in terms of process structure, grammar, and algebraic invariants.

IV. EEG MICROSTATE DYNAMICS OF MIND MODES RECONSTRUCTED WITH ε-MACHINES

In this section, we report ε-machine reconstruction of the resting EEG microstate data from two individuals, an experienced
meditator and a meditation-naı̈ve healthy control collected during our pilot project (an unpublished MSc thesis, King’s College
London) exploring ε-machine potential for differentiating the EEG microstate data during three information processing modes
or mind modes: mind-wandering, focused attention, and open presence [31].
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Fig. 4. Reconstructed ε-machines from EEG microstate sequences for Meditator vs. Non-meditator during mind-wandering. The ε-machine for the meditator
has 153 causal states, transition semigroup with holonomy decomposition length 24 and Krohn-Rhodes complexity 1, indicating presence of a non-trivial
symmetry group in its transformation semigroup. Statistical complexity: 4.518, entropy rate: 0.570709. The ε-machine for the non-meditator has 43 causal
states, transition semigroup with holonomy decomposition length 23 and Krohn-Rhodes complexity 0, indicating no non-trivial symmetry groups in its
transformation semigroup. Statistical complexity: 3.5429; entropy rate: 0.50769.

Our prediction was that meditators will have significantly higher number of causal states in ε-machines than non-meditators in
mind-wandering and open presence modes due to less fixation on the current mental state and greater experiential openness/less
dependence on automatic habitual patterns of reaction/response to stimulus/mental content. EEG microstate observations and
hence transitions were sampled at 250 Hz (i.e. each transition is 4 ms) for each mind-mode over two-minute intervals. EEG
microstate classes used were subject-specific rather than group-averaged as in EEG microstates classes derived by Koenig et al.
[9], so the transition probabilities and ε-machines reported here were derived at subject-level during a single 2-minute interval
rather than group-level. Figure 4 displays reconstructed ε-machines from EEG microstate sequences from one experienced
meditator and one non-meditator during mind-wandering (or ‘neutral’ resting state).

As can be seen from the figure, EEG microstate sequences considering only the current microstate would be a very poor fit to
the actual data, as dozens or hundreds of causal states may be required to describe the dynamics and syntax in either meditators
or meditation-naı̈ve controls. The results of our pilot study generally showed the number of causal states to be significantly
higher for meditators than meditation-naı̈ve controls [31] and appear to support the hypothesis that meditators’ neurodynamics
as indexed by EEG microstates are more complex than those of controls, but this needs to be confirmed/replicated with more
detailed studies currently underway.
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V. SUMMARY AND CONCLUSIONS

EEG microstates, although unlikely to literally translate into “the atoms of thought” as proposed by Lehmann et al [7] due
to the limited variability of their spatial topographies, have been shown to correspond to changes in the type of mental content
(e.g. visual imagery vs. abstract thought), information processing dynamics (e.g. speed of information processing, degree of
conceptual elaboration/mode of attention), as well as levels of wakefulness/alertness. They are therefore most likely to reflect
global neural integration processes. Spatiotemporal dynamics or sequences of four microstate classes have been shown to
differentiate between clinical populations and healthy controls. Thus far, observational and model-fitting studies of microstate
syntax have only considered the current microstate to determine the probability of the next one. However, the neural dynamics
and thus EEG microstate syntax and grammar are likely to be far more complex. We therefore propose the application of
ε-machines to EEG microstate sequences as a method capable of reconstructing much greater complexity of the underlying
neurodynamics processes.

The experiments reported here using simulated data validate the capacity of ε-machine to reconstruct the pre-given structure.
Furthermore, applying ε-machines to data reported by Lehmman et al. [2] showed that a simple transition structure could
account for predominance of certain reported sequences in schizophrenia patients vs. healthy controls, but also suggested
that more subtle dynamical structure could be uncovered using the actual sequences. Different ways of modeling the data
(individual vs. group/population) and their relative value can be addressed using the ε-reconstruction method which allows the
use of multiple sequences: Subject-level EEG microstate analysis for individuals in particular mental states, with particular
expertise or medical conditions, or doing particular tasks in specific contexts can be tailored to detect and address the personal
characteristics and needs of particular individuals. Comparing such subject-specific models to ε-machines reconstructed at
group-level by combining data from all members of a particular population or clinical group could help establish and assess
the value of subject-level analysis over group-level EEG microstates classes/analysis in various domains of application.

Applied to EEG microstate sequences from expert meditators vs. healthy controls during 2-minute periods of different
mind modes, ε-machines revealed syntactic structure of the data beyond what can be produced by simple transition systems
that depend only on the current microstate. Single case studies presented here (Section IV) and significant group analysis
results of the pilot study [31] suggest that the number of causal states in the ε-machines may generally be higher in expert
meditators than controls, but these preliminary results need to be replicated in further studies, which are currently underway.
These observations tentatively suggest examining syntactic structure of microstate sequences will be required to understand
the underlying neurodynamics. Furthermore, our results using ε-machines to derive the sequence structure of the resting EEG
microstate data from experienced meditators and meditation-naı̈ve controls support the need for modeling EEG microstates with
far greater complexity than applied in previous research. Overall, our results suggest that task, modality, and inter-individual
differences in neural dynamics may be reflected in EEG microstate syntax that one could capture using ε-machine analysis at a
subject level. Further research is needed to fully tap into the potential of the ε-machine method for the study of spatiotemporal
neural dynamics and its application in health and disease.

ACKNOWLEDGMENT

This work is supported in part by a BIAL Foundation grant to the authors for the project “Decoding the Language of ‘Now’:
EEG microstates in experienced meditators, from letters to grammar”.



11

REFERENCES

[1] K. Hokusai, “Under a Wave off Kanegawa,” in Thirty Six Views of Mount Fuji, 1829-1833, [Public Domain Image].
[2] D. Lehmann, P. L. Faber, S. Galderisi, W. M. Herrmann, T. Kinoshita, M. Koukkou, A. Mucci, R. D. Pascual-Marqui, N. Saito, J. Ackermann, G. Winterer,

and T. Koenig, “EEG microstate duration and syntax in acute, medication-nave, first-episode schizophrenia: a multi-center study,” Psychiatry Research:
Neuroimaging, vol. 138, no. 2, p. 141156, 2005.

[3] K. Nishida, Y. Morishima, M. Yoshimura, T. Isotani, S. Irisawa, K. Jann, T. Dierks, W. Strik, T. Kinoshita, and T. Koenig, “EEG microstates associated
with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimers disease,” Clincial Neurophysiology, vol. 124, no. 6,
p. 11061114, 2013.

[4] J. P. Crutchfield and K. Young, “Inferring statistical complexity,” Physical Review Letters, vol. 62, no. 2, pp. 105–108, 1989.
[5] J. P. Crutchfield, “Observing complexity and the complexity of observation,” in Inside versus Outside, H. Atmanspacher, Ed. Springer Verlag, 1993,

pp. 235–272.
[6] W. James, Principles of Psychology. Cambridge, 1981 [1890].
[7] D. Lehmann, W. K. Strik, B. Henggeler, T. Koenig, and M. Koukkou, “Brain electrical microstates and momentary conscious mind states as building

blocks of spontaneous thinking: I. visual imagery and abstract thoughts,” Int J Psychophysiol, vol. 29, pp. 1–11, 1998.
[8] D. Lehmann, H. Ozaki, and I. Pal, “EEG alpha map series: Brain micro-states by space-oriented adaptive segmentation,” Electroencheph Clin Neurophysiol,

vol. 67, pp. 271–288, 1987.
[9] T. Koenig, L. Prichep, D. Lehmann, P. Vadles Sosa, E. Braeker, H. Kleinlogel, R. Isenhart, and E. R. John, “Milisecond by milisecond, year by year:

Normative EEG microstates and developmental stages,” NeuroImage, vol. 16, pp. 41–48, 2002.
[10] J. Kindler, D. Hubl, W. Strik, T. Dierks, and T. Koenig, “Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortning of

specific microstates,” Clin Neurophysiol, vol. 122, pp. 1179–1182, 2011.
[11] T. Koenig, D. Lehmann, M. C. Merlo, K. Kochi, D. Hell, and M. Koukkou, “A deviant EEG brain microstate in acute, neuroleptic-naı̈ve schizophrenics

at rest,” Eur Arch Psychiatry Clin Neurosci, vol. 249, no. 4, pp. 205–211, 1999.
[12] W. Strik, T. Dierks, T. Becker, and D. Lehmann, “Larger topogrpahical variance and decreased duration of brain electric microstates in depression,” J

Neural Transm Gen Sect JNT, vol. 99, pp. 213–222, 1995.
[13] T. Dierks, V. Julin, K. Maurer, L. O. Wahlund, O. Almkvist, W. K. Strik, and B. Winblad, “EEG-microstates in mild memory impairment and alzheimer’s

disease: Possible assocation with distrubed information processing,” J Neural Transm, vol. 104, pp. 483–495, 1997.
[14] V. Brodbeck, A. Kuhn, F. von Wegner, A. Morzelewski, E. Tagliazucchi, S. Borisov, C. M. Michel, and H. Laufs, “EEG microstates of wakefulness and

NREM sleep,” NeuroImage, vol. 62, no. 3, pp. 2129–39, 2012.
[15] J. I. Schmidtke and W. Heller, “Personality, affect and EEG: predicting patterns of regional brain activity related to extraversion and neuroticism,”

Personal Individ Differ, vol. 36, pp. 717–732, 2004.
[16] H. Katayama, R. Gianotti, T. Isotani, P. L. Faber, K. Sasada, T. Kinoshita, and D. Lehmann, “Classes of multichannel EEG microstates in light and deep

hypnotic conditions,” Brain Topogr, vol. 20, pp. 7–14, 2007.
[17] J. Britz, D. Van De Ville, and C. M. Michel, “BOLD correlates of EEG topography reveal rapid resting-state network dynamics,” NeuroImage, vol. 52,

pp. 1162–1170, 2010.
[18] P. Milz, P. L. Faber, D. Lehmann, T. Koenig, K. Kochi, and R. D. Pascual-Marqui, “The functional significance of EEG microstates-associations with

modalities of thinking,” NeuroImage, vol. 125, pp. 643–656, 2016.
[19] J. Wackermann, D. Lehmann, C. M. Michel, and W. K. Strik, “Adaptive segmentation of spontaneous EEG map series into spatially defined microstates,”

Int J Psychophysiol, vol. 14, p. 269283, 1993.
[20] F. Schlegel, D. Lehmann, P. L. Faber, P. Milz, and L. R. Gianotti, “EEG microstates during resting represent personality differences,” Brain Topogr,

vol. 25, pp. 20–26, 2012.
[21] D. Van De Ville, J. Britz, and C. M. Michel, “EEG microstate sequences in rest reveal scale-free dynamics,” Proc Natl Acad Sci, vol. 107, no. 42, p.

1817918184, 2010.
[22] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata, Languages, and Computation, 3rd ed. Pearson, 2006.
[23] S. Eilenberg, Automata, Languages and Machines. Academic Press, 1976, vol. B.
[24] C. L. Nehaniv, “Complexity of finite aperiodic semigroups and star-free languages,” in Semigroups, Automata, Languages, J. Almeida, G. Gomes, and

P. Silva, Eds. World Scientific, 1996, pp. 195–209.
[25] J. Rhodes, Applications of Automata Theory and Algebra via the Mathematical Theory of Complexity to Biology, Physics, Psychology, Philosophy, and

Games. World Scientific Press, 2010, foreword by M. W. Hirsch, ed.: C. L. Nehaniv.
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