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Abstract: This paper argues that because of the cognitive and communication limitations of human and autonomous 
agents engaged in Human-Autonomy Teaming within dynamic environments, various external factors, 
which can be classified collectively as environment complexity, set boundaries to the effectiveness of 
strategies for agent transparency – that is, the ability of autonomous agents to make human actors aware of 
their goals, actions, reasoning, and expectations of future states.  Understanding the mechanisms by which 
changes in environment complexity affect transparency, and the conditions in which it can be disrupted, can 
help researchers to better frame the results of existing and future studies on transparency and, in turn, inform 
the development of strategies to modify autonomous agents’ behaviour to maintain transparency under 
different environment conditions. It is proposed that one such strategy could be the adjustment of the level 
of abstraction of the shared mental model adopted by the team as the common ground for communication so 
as to keep the amount of information that is exchanged manageable within human cognitive limitations.

1. INTRODUCTION 

Improvements in capabilities of Artificial 
Intelligence (AI) create opportunities for 
autonomous agents to be deployed in increasingly 
diverse real-world work environments as partners in 
mixed human-agent teams (Sycara, 2002). These 
situations are the subject of interdisciplinary 
research into Human-Autonomy Teaming (HAT), 
which investigates the challenges related to human 
collaboration with autonomous agents towards the 
achievement of common objectives (Christoffersen 
& Woods, 2002; Hoc, 2000; How, 2016; Shively et 
al., 2018). 

In order to be said to participate in a team as a 
true partner, an agent must be autonomous, which 
means it being able to generate its own goals and 
free to act on them (Luck & D’Inverno, 1995). To be 
autonomous, agents must be capable of surviving in 
their environment (be viable), they must not need 
help in performing their tasks (be self-sufficient), 
and they must set their own goals and make their 
own plans (be self-directed). The above 
characterisation can only be meaningful when 
referred to a specific context of activity (Bradshaw, 
Hoffman, Woods, & Johnson, 2013; Kaber, 2017). 
Throughout this paper, we refer to that context as the 

‘HAT environment’, ‘operational environment’ or 
just ‘environment’. 

Agents involved in HAT are not bound by 
dependence relationships, as it is the case in 
supervisory control situations (Sheridan, 2012). 
Therefore, to be effective team mates, they must 
behave collaboratively (Bellamy, 2017; Klein, 
Woods, Bradshaw, Hoffman, & Feltovich, 2004). A 
key aspect of doing so is to remain transparent. This 
paper adopts the account of transparency proposed 
by Chen & Barnes (2014) in their Situation 
Awareness based Agent Transparency (SAT) 
framework, which defines transparency as the ability 
of an agent to make another aware of their goals, 
actions, reasoning, and expectations of future states. 
In order to do so agents have to: select the 
information they intend to communicate; choose an 
appropriate time to communicate it; choose an 
appropriate channel to communicate it; decide when 
it is appropriate to repeat it; and decide when to 
communicate updates and confirmations. 

Transparency is therefore to be understood as a 
quality of these actions and decisions, hingeing on 
humans and autonomous agents being able to share 
an understanding of the situation and of the 
mechanisms and rules governing it. 

Existing research on transparency in HAT has 
focused on defining it as a construct and on 
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manipulating its level to study its effect on team 
performance (Chen, Barnes, Selkowitz, & Stowers, 
2017; Stowers et al., 2017; Wohleber, Stowers, 
Chen, & Barnes, 2017; Wright, Chen, Barnes, & 
Hancock, 2016). Research is lacking, however, into 
the factors and mechanisms affecting the 
achievement of transparency itself, and consequently 
how to maintain it. 

This paper proposes firstly that environment 
complexity affects agent transparency, as the 
demands it creates test the limits of agents’ cognitive 
and communication abilities. This determines 
boundaries within which certain strategies for 
achieving transparency work effectively. When 
complexity exceeds these boundaries, it may be 
necessary for the agent to make adjustments in order 
to maintain transparency. Our second proposition is 
that one such adjustment can be made in regards to 
the level of abstraction of the Shared Mental Model 
(SMM) on which communication and understanding 
of the situation is grounded. 

As an example let us consider a scenario in 
which a human pilot is teamed with a synthetic agent 
navigator, with the joint goal of visiting a certain 
number of waypoints that become known to the 
navigator over the length of the mission. The task of 
the pilot is to drive a vehicle and to negotiate the 
uncertainties of the terrain. The task of the navigator 
is to interpret incoming information and to relay it to 
the pilot so as to direct them to visit the waypoints in 
the most efficient way. 

With a low number of waypoints and a slow rate 
of arrival of new ones, the navigator communicates 
the exact position of each waypoint and the order in 
which it intends to visit them. The shared mental 
model is one of points on a map. If the number of 
locations and the rate of their arrival increase, at a 
certain point it would become difficult to maintain 
an effective communication between navigator and 
pilot: transparency would break down (our first 
hypothesis). The navigator agent may then choose to 
switch to a more abstract mental model, based on the 
density of locations to visit on the map, along with 
the specific position of only the waypoint to reach 
next. As long as both mental models have been 
practised in advance, and are equally familiar to the 
pilot, this may allow the team to re-establish 
transparency in the changed, more challenging, 
conditions (our second hypothesis). 

The remainder of this paper will discuss 
complexity factors of dynamic environments and 
how they can hinder transparency, briefly introduce 
SMMs and their role in maintaining transparency 
and conclude by proposing a possible approach to 
mitigating this effect by adjusting the level of 
abstraction of the SMM. 

2. COMPLEXITY IN DYNAMIC 
ENVIRONMENTS  

An increasing number of useful applications of HAT 
are possible in dynamic environments (Bainbridge, 
1997; Hoc, 1993; Russell & Norvig, 2009), 
characterised by the possibility for system changes 
to occur independently of an agent’s actions, owing 
to spontaneously-occurring events or to actions by 
agents outside the team. The uncertainty about 
future states and action outcomes, together with the 
inherent variability of context, makes applications in 
dynamic environments the most challenging for 
HAT (Kaber, 2017). 
For example, in a chemical processing plant, 
machines can break down or availability of certain 
resources may vary due to provisioning fluctuations; 
in a Command and Control (C2) application, an 
adversary may try to impede the operations, or 
visibility may change; and in an Unmanned Vehicle 
(UxV) scenario, interfering traffic, shifting weather 
conditions and mechanical problems may all occur 
independently of the vehicle’s actions, and affect 
their precise outcome as well as the choice of best 
course of action. 
Environment complexity can vary between or within 
its instantiations. For example, an Air Traffic 
Control (ATC) system may go through periods of 
low and high traffic (number of entities), as well as 
situations when flights are on schedule and there is 
no need to hurry, and others when there is a need to 
recuperate delays (time pressure). This determines 
that an autonomous agent operating in that 
environment will be faced with maintaining 
transparency under possibly very different 
conditions. 
While environment complexity factors, characterised 
sometimes as task features and constraints of the 
operational environment, have been found in 
previous research to impact interaction with 
automation (Mosier et al., 2013), their effect on 
HAT transparency has not been examined. Several 
frameworks have, though, been proposed to 
categorise factors contributing to complexity of 
environments and of tasks performed within them 
(Ham, Park, & Jung, 2011; P. Liu & Li, 2011), an 
exhaustive review of which is beyond the scope of 
the present work. For this research, we focus on 
three of the most commonly-cited complexity 
factors and discuss how they can affect agent 
transparency when present in a HAT environment. 
In particular we consider: time pressure (Edland & 
Svenson, 1993; D. Liu, Peterson, Vincenzi, & 



 

Doherty, 2016); predictability (Mosier et al., 2013); 
and number of entities and possible courses of action 
(Park & Jung, 2007). 

3. HOW TIME PRESSURE, 
PREDICTABILITY AND NUMBER 
OF ENTITIES AFFECT 
TRANSPARENCY 

 That agents can be autonomous does not mean 
that they do not differ significantly from humans in 
attitudinal capabilities. The observation that humans 
generally have better soft skills and adaptability, 
while agents are able to account for, and process, 
more information quicker and are somewhat limited 
in their capacity of action in the physical world, can 
be traced back to the classic Fitt’s list (Fitts et al., 
1951). Although the list may require some 
adjustments owing to technological advancements 
since its inception, the basic observation remains 
valid that, for the moment, machines and humans 
have largely differing abilities. 

In particular, the ability of AI-based systems to 
process much more information than the human 
mind, along with their computational advantage, is 
likely to determine a divergence of intelligibility 
between humans and agents. As environment 
complexity increases it is not possible to expect that 
humans can be made aware of everything an agent 
perceives, does and reasons (Miller, 2014).  

3.1 Time pressure 

One of the commonly-cited contributing factors 
of complexity is time pressure, which decreases the 
time available to provide and understand 
explanations. Examples of highly time-pressured 
scenarios include search and rescue, operating 
rooms, command and control, sport competitions, 
and many others. 

In settings where time pressure is not a driving 
issue, agents have the option to slowly relay all of 
the necessary information, provide detailed 
explanations, suggest possible courses of action, and 
then take the backseat in decision making. Their 
decisions can be vetted, understood or questioned by 
human actors before any action is taken. This leads 
to scenarios of classic Human-Automation 
Interaction, with the agent losing its autonomy in 
decision-making and working instead as an advisor. 

Where, however, the scenario is governed by 
time pressure, the dynamic of interaction changes: 
agents, with their superior computational speed and 

ability to handle many concerns at once, are able to 
cope with time pressure well beyond the point where 
human actors become helpless. There is, though, less 
time to exchange information and to understand the 
agent’s decisions in depth; as such, issues of trust 
come to the fore. Time pressure thus generates a 
requirement for a higher throughput in exchanging 
and processing information about the agent’s state, 
plans and predictions. Since the cognitive abilities of 
humans are fixed, the only ways to manage this are 
compression or omission of information. 

3.2 Predictability 

When a system is predictable by an agent but not 
by a human, there is an asymmetry of information, 
which in turn makes the agent’s actions less 
intelligible. In addition, the communication of 
expectations not corresponding to the current 
perception of the human actor can generate surprise 
or exacerbate issues of trust. For example, while 
some of the events within dynamic environments 
can be fundamentally unpredictable, others are 
opaque to a human, but probabilistically 
approachable for Artificial Intelligence (AI), in 
particular with Machine Learning (ML). In other 
words, these environments provide the opportunity 
to ‘shine’ for agents that can, in real time, make 
better predictions or calculate according to better 
models than humans are able to. Generally, these are 
hard-to-explain mathematical models, however, and 
even more so in real time situations. Explainable AI 
(XAI) (Adadi & Berrada, 2018) is investigating 
ways for Artificial Intelligence to communicate the 
‘reasoning’ behind its predictions and decisions by 
using explanation interfaces using techniques 
borrowed from research in recommender systems 
(Pu & Chen, 2006), but doing so is generally 
feasible only in offline situations, in which time is 
not a factor.  

3.3 Number of entities 

The number of items and relationships to 
account for in an environment directly generate 
cognitive demand: systems can easily become so 
complex that their scale and intricacy prevent 
humans from fully understanding them; this is the 
case in any sufficiently advanced work of ingenuity, 
from skyscrapers to microprocessors, as well as in 
large socio-technical systems, like a hospital. The 
same can be said for the complexity of reasoning, 
many examples of which can be found in the current 
literature about XAI. 



 

Accounting for more entities individually 
requires a larger mental model. While this is not 
generally a problem for agents, it rapidly becomes 
one for humans. Once the mental models diverge, 
communication breaks down, and it becomes hard 
for agents to describe their state and their actions in 
a way that the human actor will understand – 
creating a breakdown in transparency.   

Having outlined how complexity factors of 
dynamic environments can contribute to the 
breakdown of HAT transparency, it is important to 
look at the concept of Shared Mental Models, since 
it is through them that human actors understand and 
communicate, or otherwise fail to, an agent’s actions 
in such an environment. 

4. SHARED MENTAL MODELS 

Shared Mental Models (Scheutz, DeLoach, & 
Adams, 2017) are knowledge structures that simplify 
reasoning about a certain system (all models are 
simplifications that maintain some properties and 
relationships while losing others, and they exist for 
certain practical purposes). In particular, a model is 
shared so that the parties using it can perform the 
same reasoning, simplifications and assumptions to 
communicate or collaborate (language itself is 
dominated by – if not made of – models). 

The adoption of a SMM (Cannon-Bowers, Salas, 
& Converse, 1993; Stubbs, Wettergreen, & Hinds, 
2007) and the careful choice of the content and 
timing of their communication (Bindewald, Miller, 
& Peterson, 2014; Goodman, Miller, Rusnock, & 
Bindewald, 2016) are critical mechanisms of agent 
transparency, as they provide the anchoring for the 
information being communicated. 

An important feature of mental models is their 
level of abstraction. Reduction and synthesis are two 
ways to make models more abstract.  

For example, it is possible to think of Italy as 
being more or less shaped like a boot – a rather 
abstract model – or to refer to a small map fitting on 
one page of a book, or even to an accurate digital 
map, describing every street in the country. Each 
one of them requires more data to be described, and 
is harder to summarise. And each is to be preferred 
to communicate in different contexts of use. The 
first one when describing to a friend which part of 
the country one visited; the second to show the 
administrative regions; and the third to draw an 
itinerary from a hotel to a museum. One could not 
use these models interchangeably. Using a model 
with the appropriate level of abstraction to optimise 
mutual HAT understanding within the current 
context, is therefore critical to transparency. 

Although most people have an intuitive sense of 
a model’s level of abstraction, a few formalisations 
exist (Hayakawa, 1949; Rasmussen, 1979; Sheridan, 
2017; St-Cyr & Burns, 2001). Rasmussen’s, in 
particular, neatly provides a powerful taxonomy: 
Models of Physical Form; Models of Physical 
Function; Models of Functional Structure; and 
Models of Abstract Function, that generalises well 
across domains. 

 
In everyday interactions, people commonly use 

SMM at different levels of abstraction to refer to the 
same systems. For example, a car engineer may 
think of an engine in terms of thermodynamics and 
materials (physical form and function) when talking 
about his work, but in terms of elasticity, fun or 
power, when explaining the car to a friend (abstract 
function). The curricula in computing have 
recognised the ability of dealing with abstractions as 
one of the fundamental computational skills (Grover 
& Pea, 2013), and levels, or layers, of abstraction are 
a fundamental concept in computing. 

5. ADJUSTMENT OF THE LEVEL 
OF ABSTRACTION OF THE 
SHARED MENTAL MODEL TO 
PRESERVE TRANSPARENCY 

Given that transparency is seen as a prerequisite 
for HAT effectiveness (Chen et al., 2018; 
Christoffersen & Woods, 2002), it is desirable for an 
autonomous agent to be aware of the current level of 
complexity and to adapt its strategy to maintain it. 
While adaptive strategies are not new in agent 
computing – a rich tradition of research exists in 
regards to adjustable autonomy (Bradshaw et al., 
2003; Johnson et al., 2011) – the focus of that 
research is on adjusting the Level of Automation 
(LOA) in semi-autonomous systems. We propose, 
instead, to investigate how an autonomous agent 
may adjust the level of abstraction of SMM to 
maintain transparency while remaining fully 
autonomous. As we have seen in the analysis of how 
complexity affects transparency, the main disruption 
happens in regards to more information having to be 
conveyed, and understood, or less time to do so. In 
other words the main limiting factor of transparency 
is throughput. As we have seen, abstraction of a 
model is a simplification by way of compression or 
reduction of information. As a result, we propose 
that when a dynamic environment becomes more 
complex, and the information to transmit becomes 
too much, thus breaking down transparency, it is 
possible to repair it by adjusting the level of 



 

abstraction of the SMM so that the amount of 
information that must be communicated remains 
manageable for a human actor. 

To do so, agents must continuously assess the 
complexity of the environment by monitoring the 
factors contributing to it – for example by keeping a 
count of how many entities are present. Work in 
adjustable autonomy can inform the present research 
in regards to the strategies used by agents to detect 
and model the conditions that trigger the 
adjustments, this could include counting entities, 
keeping track of rates of change of the environment, 
and keeping track of the occurrence of unexpected 
events. When an agent decides that it must switch 
the level of SMM, it must do so in a way that is clear 
and does not cause loss of Shared Situation 
Awareness (SSA) (Grimm, Demir, Gormana, & 
Cooke, 2018). One way of doing this would be to 
make sure, prior to their deployment, that human 
agents are equally familiar with the different mental 
models they will encounter, for example by use of 
training; other ways to prevent loss of SSA would be 
to mark the switch through explicit communication 
and to design the different levels to be clearly 
distinguishable. Another concern in turning to a 
more abstract mental model is that, by definition, 
some of its ability to carry detailed information is 
going to be lost, and therefore it becomes crucial to 
establish what trade-off is most advantageous 
between loss of transparency and loss of 
information. 

6. SUMMARY AND FURTHER 
WORK 

In this paper we have examined the relationship 
between the complexity of dynamic environments 
and transparency in HAT, and have argued that the 
effects of complexity occur mainly as a consequence 
of the demands that complexity puts on throughput 
of communication between autonomous agents and 
human actors, as well as on the ability of humans to 
process larger amounts of information. We have 
presented the concept of SMM and put forward that 
varying the level of abstraction of the SMM may 
mitigate the disruptive effects of complexity on 
HAT transparency, by allowing the re-establishment 
of a common ground in terms that can be understood 
and communicated effectively under the new 
complexity conditions. Finally, we have highlighted 
some ways in which this could negatively affect 
SSA. 

Our current research programme is directed at 
testing the above hypotheses. To do so we intend to 

build a virtual environment for HAT in which 
factors of complexity and SMM can be manipulated, 
and to investigate ways of measuring transparency 
within it. The overall objective of the research is 
therefore to compare transparency in situations in 
which complexity is increased with the SMM 
unchanged, to other situations in which the SMM is 
adjusted to compensate the increase. 
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