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Abstract 

Research in recycling Al-alloy is necessary for a sustainable industrial development. Iron present in the recycled Al-

alloys deteriorates its mechanical properties. The challenge, therefore, is to tackle the iron impurity using different 

methodologies. The present study focuses on a strategy by which iron containing beta phase could be destabilized 

with the addition of Ni. A large number of microstructural image, lattice parameter data and mechanical properties 

have been obtained using optical microscopy with state-of-the-art image analysis, FESEM with EDS and EBSD, 

XRD, Vickers microhardness and universal tensile testing. Based on these results, the present work provide 

necessary insight about the effect of Ni addition in the recycled Al-Si cast alloys containing as high as 2wt% Fe. 

Finally it was concluded that upto 4wt% Ni addition could be beneficial for Al-Si alloys Si content limited to 9wt%. 

 

1. Introduction 

Energy requirement for the production of aluminium could be reduced by ten times by recycling 

the aluminium products rather than extracting the same from the bauxite ore
12

 [1] [2]. However, 

the recycled aluminium accumulates different metallic impurities due to the diversified source of 

the scrap and also with the increasing number of recycling processes. Presence of these metallic 

impurities, either in solid solution or as a separate phase, poses a great challenge to obtain the 

same physico-mechanical properties as that of the virgin aluminium
34

 [3, 4]. Therefore, the aim 

of the recycling could be shifted from making the commercially pure Al to developing a new 

castable Al-alloy with a different chemical composition. Such method of developing of new 

castable Al-alloy through recycling process enjoys a huge economical benefit
5
 [5]. Despite the 

substantial energy saving and economic viability such newly developed alloy suffers from the 

accumulated metallic impurities, and amongst all metallic impurities Fe is known for its 

notoriety. In cast Al-alloys where Si is ubiquitous, Fe promotes the formation of the so-called β-
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phase (Al9Fe2Si2)
67

 [6, 7]. It is now established that presence of Fe reduces the castability by 

reducing the fluidity of the melt and by increasing the porosity in the cast
89

 [8, 9]. The network 

of β-phase, which appears as needle like feature in the micrograph, is directly responsible to 

reduce the strength and ductility of the alloy
1011

 [10, 11].  

There exist different philosophies on how to tackle iron impurity in the recycled cast Al-alloy. 

Merits and disadvantages of each school of thoughts have been discussed elsewhere in details
5
 

[5]. It suffices here to briefly state the methodologies of tackling β-phase for the sake of the 

completeness; as mentioned below –  

i) Removal of β-phase (and thereby iron impurity) by gravity segregation or by the 

filtration of the liquid metal
12

 [12] 

ii) Modification of the β-phase morphology by suitable heat treatment7 [7] 

iii) Destabilizing the β-phase by changing the chemical composition and promoting some 

other phase with or without further heat-treatment613
[6, 13] 

The last method attracted many research works in the recent past; including the current one. For 

example, Mn was the first element identified as the modifier that promotes the formation of the 

polygonal Al15(Fe, Mn)3Si2 phase rather than the β-phase, however, its effect vanishes beyond a 

Fe concentration of 1.2wt% in the Al-alloy6 [6]. It was recently demonstrated that Cu can 

destabilized the β-phase by promoting the formation of ω-phase (Al7Cu2Fe)13 [13]. The present 

work demonstrates Ni as the potential element to destabilize the β-phase and investigates its 

effect in the microstructure and the tensile properties of the modified Al-Si-Fe alloys with Si of 

6wt%, 9wt% and 12wt% having a fixed Fe content of 2wt%. 

 

2. Experimental 

In these Al-Si-Fe-Ni alloys, three Si content were chosen, namely, 6wt%, 9wt% and 12wt% and 

for each Si content Ni was varied from 0wt% to 8wt% with an interval of 2wt% and Fe content 

was kept at a constant 2wt% for all these alloys. For the sake of brevity an alloy designated as 

9Si6Ni would indicate an Al-alloy with a composition of 9wt% Si, 6wt% Ni, 2wt% Fe and the 

rest is Al. This style of designation will be used throughout in the rest of this article to refer a 

particular alloy composition. 

99.95% pure Al ingots (from Norton Aluminium Ltd.), Al-50wt% Si, Al-45 wt% Fe and Al-

20wt% Ni master alloys (from KBM Affilips) having commercial purity were used for preparing 
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the final alloys. Alloys of same Si content were prepared at a time in a pit type resistance furnace 

using boron nitride coated clay bonded graphite crucible. First Al ingot was melt and then Al-Si, 

Al-Fe and Al-Ni master alloys were added sequentially. A melt of about 400 g was prepared at 

1306 K with intermittent stirring for a total holding time of 7200 s to ensure chemical 

homogeneity. Commercially available hexachloroethane (C2Cl6) tablet was used as degassing 

agent at 1023K before pouring into a boron nitride coated pre-heated (at 523 K) mild steel 

prismatic die with a cavity size of 150 mm x 70 mm x 20 mm. An average cooling rate of about 

5-10 °C/s is expected based on previous experiments and experience
14

[14]. Apart from the cast 

samples, homogenized specimens were made by cutting the cast samples pieces and isothermally 

holding at 823K for 48 hrs. followed by water quenching.    

Standard metallographic technique with a final finish with 0.025µm colloidal silica polish was 

used for microstructural evaluation using both optical microscope and field emission scanning 

electron microscope (FESEM) fitted with energy dispersive spectroscope (EDS) and electron 

back scatter diffraction (EBSD) camera. Chemical composition of any particular phase, 

determined using EDS, reported here is based on the average value of 10 different measurements 

made in spot mode. Image analysis was carried out on the optical photomicrographs using 

ImageJ computer code
15

 [15]. X-ray diffraction (XRD) traces were recorded using Bruker D8 

machine that uses θ-θ goniometer with sample rotation; 1.6 kW Cu-Kα radiation with a step size 

of 0.01
o
 and 1 s dwell time at each step was used. Rietveld analysis of the XRD traces was 

carried out with GSAS II software
1617

 [16, 17].Vickers microhardness testing were carried out as 

per ASTM E384-17 standard using 1 kg load and a dwell time of 10 s 
18

[18]. Rectangular shaped 

tensile samples were cut for tensile testing. Round and rectangular tensile specimens with some 

selected 9Si and 12Si alloy with varying Ni content upto 4wt% were made using high pressure 

die casting (HPDC). Sample dimensions and tensile test parameters conform to ASTM B557-10 

standard
19

 [19].   

 

3. Results 

Image analysis is a useful tool for determining the area fraction of multiple phases which might 

or might not appear in similar grey-scale level on lightly shaded matrix; thus the area fraction of 

matrix phase can also be determined. This data also corroborates the phase fraction (by volume) 

obtained from the XRD analysis. It is pertinent here to discuss about the technique deployed for 
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the image analysis in brief. Many a times the optical micrograph suffers from partial shadowing 

due to slightest obliqueness on the polished surface and image analysis of such unprocessed raw 

images becomes difficult, sometimes impossible. One of the best ways to tackle the partial 

shadowing issue is usage of FFT (Fast Fourier Transformation) assisted band pass filter, 

followed by contrast enhancement and color thresholding. Optical photomicrographs along with 

different snapshots of the image analysis stages of the as-cast samples are provided in the fig. 1, 

2 and 3 for different Si content respectively. Similar figures for the samples homogenized at 

550
o
C for 48 hrs. are presented in the supplementary fig. S1, S2 and S3. Area fraction of the 

matrix phase calculated from the image analysis for all the samples are presented in the Table 1 

and compared with that of homogenized samples in supplementary table S1. 

Lattice parameters and the phase fractions obtained from the Rietveld analysis along with the 

matrix area fractions calculated from the image analysis are presented in Table 1. Whole pattern 

fitting of the XRD traces for Rietveld analysis for the as-cast samples could be found in the 

supplementary fig. S4 (a- l). It is worthwhile to note that area fraction and volume fraction 

would never match even for the uniformly distributed equal sized spherical particle as a second 

phase; nonetheless, area fraction and volume fraction has a one to one correspondence between 

them
20

 [20]. 

To see the efficacy of the present thermodynamic database for Al-alloys and to compare the 

thermodynamic results with the XRD data MatCalc (v.6.03) computer code with Al-alloy 

database from Hao et. al. was used21 [21]. Both Scheil solidification and equilibrium 

solidification model was adopted and corresponding yield of the intermetallic phases were 

present in fig. 4 (a-d). Isopleths were constructed at 6wt%, 9wt% and 12wt% Si content with 

fixed 2wt%Fe; as presented in supplementary fig. S5, using both MatCalc and PandaT softwares 

without and with Hao’s database, respectively. 

 SEM micrograph of as-cast 6Si2Ni sample is presented in fig. 5 (a) and corresponding 

elemental mapping of Si-Kα, Fe-Kα and Ni-Kα.using EDS are presented in fig. 5 (b- d) 

respectively. SEM micrograph of as-cast 12Si2Ni sample is presented in fig. 6 (a) and 

corresponding elemental mapping of Si-Kα, Fe-Kα and Ni-Kα.using EDS are presented in fig. 6 

(b- d) respectively. Fig. 7 (a-b) and (c-d) are the bright field optical photomicrographs showing 

the effect of homogenization on the morphological changes of the phases in the 12Si2Ni and 

12Si4Ni alloys, respectively. An SEM image of 9Si2Ni sample homogenized at 550
o
C for 48hrs 
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showing the growth of Al9FeNi phase on the edge of β-Al9Fe2Si2 phase is presented in fig. 8 (a) 

and corresponding quantitative line scan is shown in fig. 8 (b). Growth of Al9FeNi phase along 

the edge of the β-Al9Fe2Si2, similar to fig. 8 (a), can be seen at lower magnification in the 

supplementary fig. S6. The elemental mapping of 12Si4Ni sample homogenized at 550
o
C for 48 

hrs suggesting the growth of Al9FeNi phase onto the β-Al9Fe2Si2 phase could be seen in 

supplementary fig. S7 (a-d). Screen shots of Kikuchi pattern analysis from the electron back 

scattered pattern (EBSP) of homogenized 12Si4Ni sample can be seen in supplementary fig. S8 

(a-b). Fig 10 (a) and (b) is the SEM image and the corresponding band contrast image 

(difference between maximum intensity of a Kikuchi band in the electron back scattered pattern 

(EBSP) and the background intensity in the pattern) of homogenized 9Si8Ni sample; whereas 

fig. 9 (c) and (d) is the phase map and Euler map, respectively, of the same area considering 

Al9FeNi and Al3Ni phase. Fig. 9 (e- h) represents the elemental mapping of the same area using 

Al Kα, Si Kα, Ni Kα and Fe Kα x-ray respectively. 

Fig. 10 shows variation in Vickers microhardness with respect to the Ni content in the alloy for 

both as-cast and homogenized condition. Yield stress at 0.2% offset strain, ultimate tensile 

strength (UTS) and elongation till failure are plotted in fig. 11 (a- c), respectively, with the 

varying Ni content in the alloy. The original engineering stress vs. strain curves for the as-cast 

alloys can be found in the supplementary fig. S9 and the same for the HPDC samples are 

presented fig. S10.  

 

4. Discussions 

4.1 Microstructure 

It has been shown earlier that, for a given concentration of Fe, the formation of β-phase 

(Al9Fe2Si2) requires a minimum level of Si concentration in Al-Fe-Si system7 [7]. In the present 

alloys Fe was kept constant at 2wt%, as a minimum Si content of 1.5wt% is required for the 

formation of β-Al9Fe2Si2 phase
7
 [7]. However, juxtaposing fig.1 and table 1 it can be seen that 

microstructure of 6Si alloys does not contain the characteristic needle like β-Al9Fe2Si2 phase. On 

the other hand, comparing fig. 3 and table 1 it can be seen that in case of 12Si alloys the phase 

fraction of β-Al9Fe2Si2 dwindles as Ni content increases in the alloy. Therefore it can be said 

with certainty that addition of Ni tends to destabilize the β-Al9Fe2Si2 and favors the formation of 

Al9FeNi phase; also, this destabilization effect is strong at low Si content. Table 1 also ascertains 
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that formation of Al3Ni phase requires a minimum amount of Ni addition for a given amount of 

Fe content. Hao et. al. has also shown earlier that in Al-8wt%Si-1wt%Fe alloy addition of even 

1wt% Ni destabilized β-Al9Fe2Si2 phase formation
21

 [21]. 

It is important to note that β-phase forms in needle like morphology, as shown in 12Si samples 

(fig. 3 top two rows); whereas Al9FeNi phase forms in polygonal morphology as shown in fig. 5 

(a- d). Coexistence of Fe and Ni, as shown in fig. 5 (c- d), by EDS assisted elemental mapping 

and XRD analysis proves complete annihilation of β-Al9Fe2Si2 phase and presence of Al9FeNi 

phase in as-cast 6Si2Ni. On the other hand, SEM micrographs and elemental maps of as-cast 

12Si2Ni sample show the coexistence of both β-Al9Fe2Si2 phase and presence of Al9FeNi phase, 

as evident from the fig. 6 (a- d) and supported by the XRD analysis (table 1). 

Effect of homogenization on the Si and β-phase are well known and the probable mechanisms of 

morphological changes are also proposed for the Al-Fe-Si system7 [7]. Addition of Ni does not 

play any significant role in changing the morphology of Si. The morphological changes of 

phases in 12Si2Ni and 12Si4Ni sample is rather apparent as presented in the fig. 7 (a- b) and (c-

d), respectively; where the blocky Si particles in as-cast microstructure tend to be spherodized, 

the β-Al9Fe2Si2 phase and Al9FeNi phase gets fragmented in sausage like morphology. The 

compositional changes of different phases will be discussed in the next section.  

In case of higher Ni content alloys the Al3Ni phase usually forms onto the matrix- Al9FeNi 

interface as presented in the fig. 9 (a- c). The phase map image generated by indexing Kikuchi 

patterns, in fig. 9 (c), is particularly important to identify the Al9FeNi phase (blue colored) and 

Al3Ni phase (red colored) distinctly. It was observed during Rietveld fitting that both Al9FeNi 

phase and Al3Ni phase required higher order of spherical harmonics (often more than 6
th

 order), 

signifying highly textured phase. The same could be reconfirmed through orientation mapping 

(Euler angle) as presented in fig. 9 (d); it shows identical coloring for Al9FeNi phase disjoint 

across the spatial scale indicating that this phase posses high degree of crystallographic preferred 

orientation. Similar comment can also be made for the Al3Ni phase, in fact texture index for this 

phase is even higher than the Al9FeNi phase, as revealed during Rietveld analysis. It needs to 

mention here that Al and Si phase was not considered during the indexing of Kikuchi pattern 

since the phase map and orientation map would look extremely cluttered and the very purpose of 

showing Al9FeNi and Al3Ni phase would go in vein. Fig. 9 (e-h) is the elemental mapping 

corroborating the presence of these phases. It is important to note here that even after 
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homogenization treatment no major change was observed in terms of the phase fraction, except 

for the fact the more Al9FeNi phase forms with the expense of β-Al9Fe2Si2 phase. The 

homogenization treatment does not alter the crystallographic orientation of Al9FeNi and Al3Ni 

phase as well, as could be observed from the fig. 9 (d).  

4.2 Phase composition 

It is known that β-Al9Fe2Si2 phase is highly faulted structure and because of that it has 

considerable capacity in accommodating other elements (e.g. Cu etc.) into its lattice by suitable 

site substitution
22

 [22]. In 12Si2Ni alloy, EDS analysis reveals that Ni can replace the Fe atoms 

in the β-Al9Fe2Si2 phase; in as-cast condition about 13% of Fe sites were occupied by the Ni 

atom and upon homogenization Ni occupies about half of the Fe sites in the β-Al9Fe2Si2 phase; 

however, no alteration in Si content was observed in these two cases. Therefore, under 

equilibrium condition the β-Al9Fe2Si2 phase in 6Si2Ni alloy can be expressed as 

Al9(Fe0.5Ni0.5)2Si2. Similar site occupancy of β-Al9Fe2Si2 phase gives better fitting during the 

Rietveld analysis of XRD data. 

EDS analysis shows that in as-cast 6Si2Ni sample the Al9FeNi phase contains 2at%Si, more than 

13at% Fe and about 8at% Ni against the theoretical value of about 9.1 at% for Fe and Ni. Upon 

homogenization it was observed that while Fe decreases slightly to reach 11at%, the Si content 

increases in Al9FeNi phase from 2at% to upto 6.5 at%; and Ni too approaches 6.5at% from 8at%. 

However, it was observed that the sum of Si content and Ni content remains nearly equal to Fe 

content. It needs to be emphasized here that in Al9FeNi phase both Fe and Ni occupy the same 

site since Al9FeNi phase is crystallographically equivalent to Al9Co2 prototype
23

 [23]. Therefore, 

in case of 6Si2Ni alloy the equilibrium Al9FeNi phase can actually be expressed as 

Al9Fex(Si0.5,Ni0.5)2-x, where x is slightly less than 1 and solely depends on the alloy composition. 

Similarly, in case of homogenized 12Si8Ni alloy Al9FeNi phase can be approximated as 

Al9(Fe0.67Si0.33)Ni, since Fe was about 6at% and approximately twice than that of Si content, 

however, sum of Si and Fe content remains nearly equal to the Ni content. Therefore, it could be 

said that in the low-Si low-Ni end in 2wt% Fe isopleths of Al-Fe-Si-Ni system (e.g. 6Si2Ni) 

Fe:Si:Ni is equals to 2:1:1 in Al9FeNi phase; whereas in high-Si high-Ni end (e.g. 12Si4Ni and 

12Si8Ni) the ratio was found to be 2:1:3 as sum of Fe and Si content equals to the Ni content. 

Interestingly, in 12Si2Ni sample the chemical composition of Al9FeNi phase reveals the ratio of 

Fe:Si:Ni as 1:1:1. 
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It is rather clear from the EDS line scanning that during homogenization part of β-Al9Fe2Si2 

phase gets converted to Al9FeNi phase at the β-matrix interface, as evident from the fig. 8 (a-b). 

This observation highlights the fact that Ni tends to destabilize β-Al9Fe2Si2 phase and promotes 

the formation of the Al9FeNi phase. Despite the usual limitation of the EDS technique in terms 

of the certainty in the chemical composition, the relative changes of Si, Fe and Ni in Al9FeNi 

phase clearly indicates large solubility range of these elements in that intermetallic phase; 

however, effect of chemical composition is not very apparent in their lattice parameters when as-

cast samples are considered.  

4.3 Phase diagram and solidification 

At this point it is imperative to compare the phase fractions obtained from the XRD data with the 

same obtained from the thermodynamic calculations. Therefore, to obtain the yield of different 

intermetallic phases both Scheil solidification model and equilibrium solidification model were 

considered. It is known that for the substitutional alloys Scheil solidification model works with 

reasonable accuracy 
24

[24]. MatCalc software was used alongwith Hao’s database for assessing 

the solidification and yield of the intermetallic phases 21[21]. Fig. 4 (a), (b) and (c) represent 

yield (in wt%) of β-Al9Fe2Si2, Al9FeNi and Al3Ni phase as obtained from the Scheil 

solidification calculation. Fig. 4 (a) clearly shows the efficacy of Ni in destabilizing the Al9F2Si2 

phase in low-Si alloys; e.g. in 6Si alloy only 2wt%Ni is enough to destabilize β-Al9F2Si2 phase, 

whereas in 12Si alloy the same could be achieved with 4wt%Ni. On the other hand fig. 4 (b) and 

(c) depicts increasing yield of Al9FeNi and Al3Ni phases, respectively, with increase in Ni 

content in an alloy for a given Si content. This trend is similar to that observed from the XRD 

results as well (see Table 1). Fig. 4 (d) represents the yield of Al9FeNi, the only intermetallic 

phase obtained as per the equilibrium solidification. It is interesting to note that the phase 

fraction and the trend pertaining to the yield of Al9FeNi phase obtained from the XRD analysis 

match fairly well to the same obtained from the equilibrium solidification calculation (fig. 4-d). 

Supplementary fig. S5 represents the isopleths calculated by MatCalc with their Al-database (top 

row) and the same using PandaT software with Hao’s database21[21]. Isopleths obtained from 

MatCalc databse does not show the Al9FeNi as the stable phase at the room temperature; 

whereas Hao’s database does not show Al3Ni as the stable phase. It is clear from the fig. S5 that 

these isopleths differ considerably in terms of temperature, phase stability and the phase 

boundary. 
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In Al9FeNi crystal structure, the Fe and Ni sites are equivalent and therefore it was seen that Si 

can replace both Fe and Ni depending on the Si and Ni content of the alloy; therefore Al9FeNi 

phase can take up a large amount of Si; as discussed in detail in the previous section with the 

help of EDS result. On the other hand, as discussed earlier, Ni can replace as high as half of the 

Fe sites in Al9Fe2Si2 phase at higher temperature and rejects Ni at lower temperature. Therefore, 

it seems reasonable to assume that both Si and Ni play a significant role in deciding the relative 

stability of the Al9FeNi and Al9Fe2Si2 phase, respectively. 

 

4.4 Mechanical properties 

The micro-hardness value of the both as-cast and homogenized alloys monotonously increases 

with increasing Ni, as shown in fig. 10 (a-b). The overall increase in hardness with increasing Si 

and Ni is due to the higher yield of the intermetallic phases, e.g. Al9FeNi and Al3Ni. However, 

homogenization treatment decreases the hardness and the extent of decrease is more at higher Si 

and Ni content. Such decrease is expected due to several reasons, e.g. chemical equilibration 

between matrix phase and intermetallic phases; the spheroidization of different phases that 

eliminates the stress concentration to a larger extent, as evident in fig. 7 (b) and (d).  

The 0.2% yield stress and UTS are found higher in high pressure die cast (HPDC) sample than 

corresponding gravity mold cast sample, as can be seen from fig. 11 (a-b); however, the ductility 

of HPDC sample deteriorates beyond about 4wt%Ni. Overall it is apparent that irrespective of 

the Si content and the casting technique the alloy composition beyond 4wt%Ni reduces the 

ductility. It can be assumed safely that the ductility is not dependent on the size of the dendrites 

as the ductility does not vary much from gravity cast (GC) to HPDC samples for a given 

composition, see fig. 11 (c), despite huge difference in the cooling rate that determines the inter-

dendritic spacing. Therefore, in the present case the ductility is chiefly a function of the fraction 

of the intermetallic phase. On the other hand due to higher cooling rate in HPDC the nucleation 

rate was also higher and therefore the intermetallic phases were finely distributed over the 

casting this result into the significant rise in the yield strength and UTS. 
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5. Conclusions 

i. β-Al9Fe2Si2 phase exhibits solubility for Ni, where Ni occupies Fe sites. 

ii. Al9FeNi phase shows appreciable solubility for Si and Si can replace both Fe and Ni 

depending on the Si and Ni content of the alloy.  

iii. Present thermodynamic description is indecisive about the stability of Al9FeNi and Al3Ni 

phase below 550
o
C. 

iv. Ni destabilizes β-Al9Fe2Si2 phase and favors formation of Al9FeNi phase in Al-Si-Fe-Ni alloy 

system; the effect of destabilization is strong in high Fe containing Al-alloys with Si content less 

than 9wt%. 

v. Ni addition is beneficial in high-Fe Al-Si cast alloy with low-Si content of below 9wt%; 

however, Ni content of more than 4wt% deteriorates the mechanical properties of the alloys. 
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Table 1: Matrix area (%) obtained from the image analysis; while the phase fractions (wt%) and the lattice parameters were obtained 

from the Reitveld analysis of the XRD traces.  

Phase 
details 

As-cast samples 

6Si0Ni 6Si2Ni 6Si4Ni 6Si6Ni 6Si8Ni 9Si0Ni 9Si2Ni 9Si4Ni 9Si6Ni 9Si8Ni 12Si0Ni 12Si2Ni 12Si4Ni 12Si6Ni 12Si8Ni 

Matrix 
area (%) 

79.95 
78.69 73.95 64.13 59.5 76.04 72.62 65.95 62.4 62.06 73.03 67.13 58.73 55.8 48.15 

Al (wt%) 88.70 79.10 71.80 55.80 57.70 84.50 82.10 65.80 54.40 57.20 81.60 77.00 74.80 56.20 53.50 

a (nm) 0.404949 0.404945 0.404782 0.404860 0.404973 0.404923 0.404769 0.404795 0.404751 0.404836 0.404944 0.404793 0.405062 0.404922 0.405077 

Si (wt%) 5.60 4.40 5.80 6.10 5.90 8.70 8.80 8.70 8.90 8.40 11.20 11.10 11.80 12.00 11.70 

a (nm) 0.542925 0.542920 0.542884 0.543038 0.542947 0.542888 0.542926 0.542908 0.542857 0.542975 0.542966 0.542993 0.543074 0.543053 0.543070 

Al9Fe2Si2 

(wt%) 5.70 0.00 0.00 0.00 0.00 6.80 0.50 0.00 0.00 0.00 7.20 5.70 0.40 0.00 0.00 

a (nm) 2.080913  --  --  --  -- 2.081133 2.081336  --  --  -- 2.075920 2.080813 2.065831  --  -- 

b (nm) 0.617934  --  --  --  -- 0.618321 0.618275  --  --  -- 0.618855 0.618053 0.613595  --  -- 

c (nm) 0.616423  --  --  --  -- 0.621666 0.616360  --  --  -- 0.622213 0.616324 0.636641  --  -- 

β (degree) 91.343  --  --  --  -- 91.223 90.394  --  --  -- 91.261 90.544 92.597  --  -- 

Al9FeNi 
(wt%)  -- 16.50 22.40 34.00 32.30  -- 8.60 25.50 31.90 27.10  -- 6.20 13.00 27.30 27.30 

a (nm)  -- 0.621630 0.622572 0.623329 0.622692  -- 0.622773 0.622753 0.622325 0.622926  -- 0.619604 0.622310 0.622587 0.622191 

b (nm)  -- 0.627480 0.627798 0.628656 0.627722  -- 0.627061 0.627226 0.627423 0.627361  -- 0.627209 0.626257 0.626855 0.625800 

c (nm)  -- 0.859648 0.858079 0.859615 0.859591  -- 0.858330 0.858940 0.859061 0.860001  -- 0.861804 0.859298 0.859553 0.859476 

β (degree)  -- 94.799 94.919 95.247 95.219  -- 94.936 95.045 95.093 95.210  -- 95.335 95.253 95.243 95.203 

Al3Ni 
(wt%)  -- 0.00 0.00 4.10 4.10  -- 0.00 0.00 4.80 7.30  -- 0.00 0.00 4.50 7.50 

a (nm)  --  --  -- 0.660420 0.660069  --  --  -- 0.660665 0.660929  --  --  -- 0.661013 0.660845 

b (nm)  --  --  -- 0.734301 0.733983  --  --  -- 0.736906 0.736247  --  --  -- 0.733793 0.734001 

c (nm)  --  --  -- 0.481897 0.481916  --  --  -- 0.481041 0.481294  --  --  -- 0.481087 0.481047 

Rwp (%) 7.11 10.59 10.05 7.87 8.54 8.31 11.46 10.90 10.93 9.61 7.32 9.57 9.4 8.54 8.24 
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Fig. 1. From top row to bottom row, 6Si0Ni, 6Si2Ni, 6Si4Ni, 6Si6Ni and 6Si8Ni as-cast 

samples. As-obtained micrographs are in the first column; second column is FFT filtered and 

contrast adjusted and the last one is thresholded micrographs for calculating area fraction.  

Fig. 2. From top row to bottom row, 9Si0Ni, 9Si2Ni, 9Si4Ni, 9Si6Ni and 9Si8Ni as-cast 

samples. As-obtained micrographs are in the first column; second column is FFT filtered and 

contrast adjusted and the last one is thresholded micrographs for calculating area fraction.  

Fig. 3. From top row to bottom row, 12Si0Ni, 12Si2Ni, 12Si4Ni, 12Si6Ni and 12Si8Ni as-cast 

samples. As-obtained micrographs are in the first column; second column is FFT filtered and 

contrast adjusted and the last one is thresholded micrographs for calculating area fraction. 

Fig. 4. Yield of different intermetallic phases at the end of solidification (a) β-Al9Fe2Si2, (b) 

Al9FeNi and (c) Al3Ni; using Scheil solidification model. Only intermetallic phase, i.e. Al9FeNi, 

was found stable under equilibrium solidification model and the corresponding yield is presented 

in (d). 

Fig. 5. As-cast 6Si2Ni sample showing (a) SEM micrograph and corresponding elemental 

mapping of (b) Si-Kα, (c) Fe-Kα and (d) Ni-Kα. The coexistence of Fe and Ni in the composition 

of the dispersed phase and corresponding Kikuchi pattern (not shown here) confirms Al9FeNi 

phase.   

Fig. 6. SEM micrograph and elemental mapping of as-cast 12Si2Ni sample; (a) SEM 

micrograph, (b) Si Kα, (c) Fe Kα and (d) Ni Kα. The composition of the needle-like phase 

reveals β-Al9Fe2Si2 (dotted arrow) coexisting with Al9FeNi phase (solid arrow). 

Fig. 7. Bright field optical photomicrograph of 12Si2Ni and 12Si4Ni sample in as-cast condition 

(a) and (c) respectively; and after homogenization (b) and (d). The darkest shaded phase is Si and 

the rest are either β-phase or Al9FeNi phase in the Al-matrix. Note the change in phase 

morphology after homogenization. 

Fig. 8. (a) SEM micrograph showing β-phase needle with growing Al9FeNi phase along its edge 

in 9Si2Ni sample homogenized at 550
o
C for 48hrs, the dashed line indicates line scan direction 

and (b) EDS line scan for quantitative elemental analysis across the β-phase needle. 

Fig. 9. EBSD assisted phase map and simultaneous EDS elemental mapping 9Si8Ni sample 

homogenized at 550
o
C for 48hrs for the phase identification; (a) SEM image, (b) band contrast 

image, (c) phase map showing coexisting Al9FeNi phase (blue) and Al3Ni phase (red), note that 

Al and Si were not considered during the indexing of Kikuchi pattern, (d) Orientation map 

showing Al9FeNi phase and Al3Ni phase excluding Al and Si phase. EDS assisted elemental 

mapping showing (e) Al-Kα, (f) Si-Kα, (g) Ni-Kα and (h) Fe-Kα.  

Fig. 10. Vickers microhardness of gravity cast alloys as a function of Ni content in as-cast 

condition and after homogenization at 550
o
C for 48hrs. 
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Fig. 11. Tensile properties of as-cast sample, (a) yield strength, (b) UTS and (c) elongation at 

failure, GC stands for gravity casting and HPDC for high pressure die casting 
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Highlights 

 

 β-Al9Fe2Si2 phase exhibits solubility for Ni, where Ni occupies Fe sites. 

 Si can replace both Fe and Ni sites in Al9FeNi phase. 

 Ni destabilizes β-Al9Fe2Si2 phase and promotes Al9FeNi phase. 

 Destabilization of β-Al9Fe2Si2 phase due to Ni is more prominent when Si content is less 

than 9wt%. 

 Ni content of more than 4wt% deteriorates the mechanical properties of the alloys. 
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