
Lightweight parametric design optimization
for 4D printed parts
Rubén Paza,*, Eujin Peib, Mario Monzóna, Fernando Ortegaa and Luis Suáreza

aDepartamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas
G.C., Spain.
bDepartment of Design, College of Engineering, Design and Physical Sciences, Brunel University London, Tower
A, TOWA020, UB8 3PH, United Kingdom.

Abstract. 4D printing is a technology that combines the capabilities of 3D printing with materials that can transform its geom-
etry after being produced (e.g. Shape Memory Polymers). These advanced materials allow shape change by applying different
stimulus such as heating. A 4D printed part will usually have 2 different shapes: a programmed shape (before the stimulus is
applied), and the original shape (which is recovered once the stimulus has been applied). Lightweight parametric optimization
techniques are used to find the best combination of design variables to reduce weight and lower manufacturing costs. However,
current optimization techniques available in commercial 3D CAD software are not prepared for optimization of multiple
shapes. The fundamental research question is how to optimize a design that will have different shapes with different boundary
conditions and requirements. This paper presents a new lightweight parametric optimization method to solve this limitation.
The method combines the Latin Hypercube design of experiments, Kriging metamodel and specifically designed genetic algo-
rithms. The optimization strategy was implemented and automated using a CAD software. This method recognizes both shapes
of the part as a single design and allows the lightweight parametric optimization to retain the minimum mechanical properties
for both shapes.

Keywords: Lightweight design optimization, 4D printing, Shape Memory Polymers (SMPs), Finite Element Analysis (FEA),
genetic algorithms (GAs), Kriging.

*Corresponding author. E-mail: ruben.paz@ulpgc.es. Phone: +34928459640

1. Introduction and problem definition

1.1. Introduction

Smart materials are defined as materials that can
either change their shape or properties between dif-
ferent physical domains under the influence of certain
stimuli from the environment [17]. Particularly,
Shape Memory Materials (SMMs) have the ability to
recover their original shape from a deformation when
a particular stimulus is applied. This is known as the
shape memory effect (SME). SMMs are either inor-
ganic (Shape Memory Alloys, SMAs) or organic
(Shape Memory Polymers, SMPs) [10]. The shape
recovery is usually activated by the surrounding tem-
perature (both in SMAs and SMPs), and other stimuli

that have been used include an electric field, magnet-
ic field, pH, UV light, or specific chemicals, etc. [13].

Additive Manufacturing (AM) is defined as a pro-
cess of fusing materials layer upon layer to produce a
three-dimensional object from CAD data [15]. The
continuous evolution of these technologies and mate-
rials is expected to revolutionize the manufacturing
industry. As conventional 3D printing technology
matures, creeping up in the background is Four-
Dimensional (4D) Printing [7]. The fourth dimension
in 4D printing refers to the ability of material objects
to transform its geometry after being produced,
thereby providing additional capabilities and offering
potential for performance-driven applications [8].
The technology “4D printing” can be summarized as
the combination of using the AM process and Shape
Memory Polymer (SMP) materials which provides

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362653306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ruben.paz@ulpgc.es

far-reaching opportunities that go beyond the poten-
tial application of conventional AM parts.

However, the design and optimization of 4D print-
ed parts has not been studied in detail and some ad-
vances are needed to boost their use in different ap-
plications. Most of the research related to 4D printing
has been focused on discovering new materials and
suggesting specific applications, but there are no ref-
erences associated with design optimization tools. In
fact, only a few authors have considered the design,
most of them focusing on design of alloy-based actu-
ators [29], self-folding sheets with SMAs for origami
engineering [12,37] and design optimization for de-
formation of SMAs [23,24].

Current optimization techniques available in the
commercial 3D CAD software with Finite Element
Analysis (FEA) tools are not prepared for the new
concept of optimization for multiple shapes. For ex-
ample, a specific 4D printed part may require a cer-
tain stiffness to hold a weight in its programmed
shape, and releasing the weight when the stimulus is
applied to recover its original shape, and finally sup-
porting another load in its original shape that may
require another minimum value of stiffness for its
correct function. The key research question is how to
optimize a design that will have different shapes with
different boundary conditions and requirements.

The aim of a lightweight parametric optimization
is to minimize the weight and thus reduce time and
manufacturing costs. To achieve this, the optimiza-
tion process must take both shapes into consideration
to fulfill the mechanical requirements needed in both
shapes. However, this option is not possible with the
current commercial CAD-FEA optimization methods.

1.2. Problem definition (general approach)

The objective is to find the best combination of de-
sign variables of a parametric design to minimize the
weight of a shape memory part produced by AM.
The designer must first propose the design variables
(parameters) that will change during the optimization
process. These design variables are mostly associated
with the geometric dimensions or CAD features such
as wall thicknesses, bar dimensions, angles, etc.
Since any type of CAD feature can be used as a de-
sign variable, these will depend on the specific ge-
ometry that is required for optimization. On the other
hand, the optimal design must fulfill certain mechani-
cal requirements for the boundary conditions related
to the programmed shape (before the stimulus is ap-
plied), and other mechanical requirements associated

with the original shape (once the recovery is com-
pleted). These mechanical requirements can be relat-
ed to different properties such as the maximum stress
that the material can withstand in different directions
or different failure criteria such as Von Mises, Tresca,
etc., the maximum displacement/strain allowed under
certain conditions, maximum displacement of a spe-
cific point of the part and so on. Therefore, the opti-
mization problem can be summarized as follows:

Minimize Weight (VAR1, VAR2, VAR3…)
Subject to: Constraint 1 (programmed shape)
 Constraint 2 (programmed shape)
 …
 Constraint N-1 (original shape)
 Constraint N (original shape)

The optimal design will reduce the weight but

keeping the minimum properties required according
to the constraints desired in both shapes of the part.

2. Methodology

This section presents the methodology developed
to solve the problem described in the previous section.
Section 2.1. explains the overall optimization con-
cept., section 2.2. details how the methodology works
with both shapes of the part during the optimization
process to fulfill the mechanical requirements needed
for each state, section 2.3. presents the strategies of
the algorithm implemented to carry out the optimiza-
tion process, and section 2.4. presents the software
description in terms of automation of the methodolo-
gy and workflow between the different tools used in
the optimization process.

2.1. Overall concept

The overall optimization concept is illustrated in
Figure 1. A commercial CAD-FEA software (Solid-
Works) was used to evaluate the constraints of the
optimization process and the weight of the part. The
data provided by the CAD-FEA software are stored
and used by the optimization algorithm to drive the
optimization process.

The first step is to create a parametric design in the
CAD software. The designer must define the geome-
try and the desired design variables to parameterize
the model. Once the parameterization is completed,
the next step is to set out the appropriate mechanical
analysis (FEA) and the outputs of control (mechani-

cal constraints and weight) according to the condi-
tions that the part must withstand.

The next step is to run the optimization algorithm.
The algorithm will prompt some input data to carry
out the optimization process which is explained fur-
ther in section 2.5. During the process of the optimi-
zation, the algorithm will define the values of the
design variables and the design to be simulated. The
geometry is updated in the CAD software and subse-
quently the simulations are carried out using the FEA
tool. The results such as the weight and mechanical
constraints are stored by the optimization algorithm
and used internally to define the subsequent design.
This is repeated as a continuous iterative process until
an optimal solution is reached. The optimization
strategies are explained in section 2.3.

C
A

D
-F

E
A

 so
ft

w
ar

e

CAD

FEA

Geometry updated

Optimization
algorithm

-Weight
-Simulation results (constraints)

New values of design variables

Fig. 1. Overall optimization concept.

2.2. Configurations to address the multiple shapes

In order to evaluate the multiple shapes as different
states, the method processes different ‘configura-
tions’ in the CAD model.

Each part has a list of features that define the final
geometry, but these features can be activated or sup-
pressed in an independent manner for each of the
configurations, which means that the same part may
have different shapes depending on the configuration.
The use of ‘configurations’ allows better manage-
ment of different shapes for the same design. The
software associates each finite element analysis with
only one configuration, and the algorithm assumes
that each constraint is related only to one analysis
(Figure 2).

D
es

ig
n

Conf. 1
(programmed

shape)

Conf. 2
(original
shape)

Const. 1
Const. 2

...

Const. 3

Const. N-1

Const. N

Analysis 2

Analysis 1

...

Analysis X-1

Analysis X

Fig. 2. Relation between different configurations, analysis and
constraints in one design.

As 4D printed parts usually have 2 different shapes,
configuration 1 is associated with the programmed
shape and configuration 2 is associated with the orig-
inal shape that will be recovered once a stimulus is
applied. For each shape, the design must fulfill dif-
ferent constraints that may be related to different
boundary conditions (analysis 1, analysis 2, etc.). For
each design, the optimization process computes every
single finite element analysis that is produced in
terms of the programmed and original shape.

Within 3D-CAD modeling, the flex feature is
available in the CAD software to differentiate the
programmed and original shapes (configuration 1 and
2). This feature allows bending, twisting, tapering or
stretching of the shape. For example, if the pro-
grammed shape has a ‘L’ profile (configuration 1)
and the original shape a straight profile (configura-
tion 2) (Figure 3), a bending feature could be used so
that configuration 1 would be activated to achieve the
‘L’ shape, and suppressed in configuration 2 to obtain
the straight shape, but always keeping the same val-
ues of the design variables.

Fig. 3. Flex feature to define configuration 1 (left) and 2 (right).

2.3. Optimization algorithm

The optimization algorithm implemented in this
paper is based on genetic algorithms (GAs) and FEA.
There are several metaheuristic methods that are usu-
ally applied in optimization problems such as GAs

[3,27], Differential Evolution (DE) [41], Particle
Swarm Optimization (PSO) [40], Gene Expression
Programming (GEP) [38] or Ant Colony Optimiza-
tion (ACO). These techniques have been applied in
different fields, such as shape and topology optimiza-
tion for structures [1,14,19,20]. On the other hand,
although GAs and FEA are widely used for optimiza-
tion purposes [39], they are commonly combined
with metamodels to estimate the results of the FEA
and then reducing the optimization time [28,34].

There are several parametric optimization tools
available in commercial CAD-FEA software based
on this concept, such as Catia (conjugate gradients or
simulated annealing) [21], SolidWorks (Box-
Behnken Design Of Experiments and the response
surface method) [6,18], or ANSYS. This latter soft-
ware includes different strategies for Design Of Ex-
periments (DOE) such as a central composite or a
Box-Behnken design, and also different metamodels
such as the response surface method, Kriging [5] or
Neural Networks. Among these, only the Kriging
metamodel includes the refinement option, which is
an interesting tool to enhance the accuracy of the
estimations throughout the evolution of the algorithm.

Although none of these tools are capable of pro-
cessing the optimization of multi-shape designs, the
optimization strategies were analyzed to find the best
strategies for this application. In this sense, the idea
of the metamodel refinement (similar to ANSYS)
was considered a key factor to improve the perfor-
mance of the final methodology. On the other hand,
Kriging is commonly used in optimization
[22,30,33,42,44] as it is able to provide the best linear
unbiased predictions. For these reasons, the Kriging
metamodel was selected for this methodology. How-
ever, the refinement criterion applied in the optimiza-
tion algorithm developed in this research was differ-
ent from the one used in ANSYS). Section 2.3.2. ex-
plains these details.

In general terms, the optimization algorithm im-
plemented can be divided into three clear stages:
DOE, feasible/unfeasible border approximation, and
final optimization.

The aim of the DOE is to simulate several designs
of the search space to gather information about the
behavior of the part such as the constraints and objec-
tive depending on the design variables. According to
the tests carried out, the modified version of Latin
Hypercube presented in this work was the best DOE
as it was the one that allowed the metamodel creation
with less sampling points. Section 2.3.1. explains
these details.

The second stage (feasible/unfeasible border ap-
proximation) is an approach to add more sampling
points and to improve the accuracy of the metamodel,
focusing on the feasible/unfeasible border to carry
out the refinement of the metamodel in an efficient
manner. This second stage uses the Kriging method
to predict the results and it is driven by specifically
designed GAs (proximity penalty concept) to explore
new zones along the feasible/unfeasible border.
Moreover, the Kriging metamodel is always generat-
ed with the highest order possible of the regression
model according to the available data to improve the
accuracy of the metamodel.

The final stage of optimization uses the data gath-
ered in the previous stages to accomplish an optimi-
zation based on the trained Kriging and GAs. Section
2.3.3. explains this stage.

2.3.1. Design of experiments (DOE)
The DOE is a stage in which different designs are

simulated by FEA to gather data that will be useful
for the metamodel generation. In previous studies
[35], a more specific DOE was implemented to focus
the sampling on specific areas close to the optimum,
thus improving the performance of the metamodel.
This DOE was driven by a GA with binary and ter-
nary encoding. This coding was used to provide 2 and
3 level values respectively so that all the designs gen-
erated during this DOE had their design values in the
minimum, maximum or middle values according to
the limits selected. However, the coding of the GAs
of other stages of the algorithm was with real num-
bers as the domain is continuous. This flexibility in
terms of encoding was one of the reasons why GAs
were used. To successfully create the metamodel with
1-order polynomial regression models, the sampling
needed in the DOE is too high for this application
where each sampling needed more computational
time due to the simulation of both shapes (configura-
tion 1 and 2). Moreover, the accuracy of the meta-
model can be improved by using a higher order in the
regression model, but this would result in more sam-
pling (more computational time) or using a different
DOE with a similar sampling effort but enhanced
distribution of sampling points.

For this reason, a different DOE using the Latin
Hypercube was implemented. This DOE is common-
ly combined with Kriging [26,32] because the distri-
bution of data is appropriate for Kriging and conse-
quently the sampling needed to define the metamodel
can be reduced. It divides the domain search into dif-
ferent equal spaces and allocates randomly sampling

points so that there is only one sampling point in each
row and column of the search domain. In an n-
dimensional problem, each sample would be the only
one in each axis-aligned hyperplane containing it.
Figure 4 represents this in a 2D example. If the num-
ber of sampling points is 4, then each dimension is
divided into 4 equal parts. The Latin Hypercube will
first add one random point and then the following 3
sampling points will also be randomly placed but
keeping only one sample in each row and column,
which guarantees an appropriate distribution of the
sampling points all over the search domain.

Fig. 4. Latin Hypercube DOE.

Further some modifications were implemented in
the DOE of the methodology to improve its perfor-
mance. First of all, the DOE consists of 2 steps.

Firstly, the minimum, central and maximum points
of the search domain are added. This means that all
the design variables will have the minimum value,
then the middle value, and finally the maximum val-
ue. This first stage provides an initial database of the
search domain.

Secondly, a Latin Hypercube DOE is applied using
a Matlab function [25]. The number of sampling
points added is ‘n’, being ‘n’ the number of design
variables of the parametric design. Therefore, the
sampling effort is proportional to the number of de-
sign variables. On the other hand, the Latin Hyper-
cube is applied following the criterion of maximizing
the minimum distance between points. After several
tests, it was observed that the closer the points were
to the border of the search domain, the more success-
ful the Kriging generation and the more accurate the
results (because interpolation is more accurate than
extrapolation). In this sense, the minimum and max-
imum points added in the first step are important to
reduce the use of extrapolations in favor of interpola-
tions. To take this into account, the Latin Hypercube
was modified to move the sampling points to the bor-
ders of the search domain. The optimization algo-

rithm identifies the points of the standard Latin Hy-
percube DOE that are aligned to the border, and mod-
ifies the correspondent variables to their maximum or
minimum values to place them on the border. Figure
5 shows the modified Latin Hypercube in the same
problem depicted in Figure 4. The black points are
the final sampling points according to the modified
Latin Hypercube. The grey points are the points from
the standard Latin Hypercube where the location was
modified. For example, the point located in the last
row and column was moved to the corner. In this
process, only the points placed in ‘squares’ adjacent
to the border are modified, and only within the con-
straints of the corresponding variables. Section 2.3.4.
summarizes the improvements of this concept.

Fig. 5. Modified Latin Hypercube DOE.

2.3.2. Feasible/unfeasible border approximation
The next step in the optimization algorithm is to

add more sampling points next to the feasi-
ble/unfeasible border. Since the objective (minimum
weight) is always opposite to the mechanical con-
straints (stiffness, stress, etc.) the optimum solution
will always be in the feasible/unfeasible border. This
stage of the algorithm, through the use of the Kriging
metamodel combined with a specific strategy based
on genetic algorithms, allows the addition of new
sampling points along the feasible/unfeasible border,
improving the accuracy of the metamodel in the
zones where the optimum points will be located. Tak-
ing a step further, we also include a refinement loop
that follows a similar idea to the ANSYS metamodel.
However, in this case the refinement is focused on
the zones close to the location of the optimum (feasi-
ble/unfeasible border) and not in the zones with the
highest estimation error. This allows the operator to
improve the metamodel accuracy only in the zones of
interest, thus reducing the sampling and the optimiza-
tion time.

The first task consists of creating the Kriging met-
amodel from the data gathered in the previous stage.
A Matlab subroutine process is used to create the
metamodel [31]. Among the available correlation
models (exponential, generalized exponential, Gauss-
ian, linear, spherical and cubic spline), the general-
ized exponential model was selected as it is the most
flexible in terms of shape of the function and com-
monly used when the spatial correlation between data
is unknown (as it happens in this application). Re-
garding the regression model, the function will be
always polynomial. However, there are several orders
available (2, 1 and 0-order).

The 2-order regression model can achieve better
estimations but requires more sampling or better dis-
tribution of the data to be able to create the metamod-
el. As the order of the regression model lowers, the
metamodel can be created more easily (without so
many data and poorer distribution) but the accuracy is
reduced. For this reason, the optimization algorithm
includes a loop that makes an attempt to generate a 2-
order regression model. If this fails, then the 1-order
regression model is used automatically, and finally
the 0-order. This system enables a simpler regression
model when the data is minimal and consequently,
more complex regression models are produced when
there are enough data.

Once the metamodel is created, a genetic algorithm
(GA) drives the optimization. The genetic algorithm
uses 100 generations with a 100 individual popula-
tion size. The first population is randomly created.
The estimations of the metamodel are used to calcu-
late the fitness value of each individual being pro-
posed during the GA evolution. In this case, the fit-
ness function (‘F’) includes the weight (‘w’) of the
design and different penalty factors that increase the
value to penalize the individual when one or more
constraints are not fulfilled (according to the meta-
model predictions). This penalty factor (‘PF’) is cal-
culated as the absolute error between the estimated
value of the constraint (‘EC’) and its limit value
(‘LV’). This error is multiplied by 10E99 to amplify
the penalization and it must be applied in all the con-
straints that are not fulfilled.

F = w + PF
PF = |EC – LV| · 10E99
Once the fitness function of each individual is

known, the GA applies a tournament selection of 2
individuals, an arithmetic crossover with 50% proba-
bility, mutation with 60% probability and 50% of
maximum mutation amplitude, reparation and elitism.
The arithmetic crossover is applied according to the
following expression:

Children_1 = α · Parent_1 + (1-α) · Parent_2
Children_2 = (1-α) · Parent_1 + α · Parent_2
α = random value between -0.5 and 1.5
The mutation is applied by randomly selecting a

gene or the design variable (‘DV’) of the individual
that will suffer a “mutation”. Its initial value of the
gene or design variable (‘DV0’) will be modified by
adding a value that will randomly change from -0.5 to
0.5 times the domain of that variable, which is calcu-
lated as the difference between the maximum and
minimum values of the design variable (‘DVmax’
and ‘DVmin’ respectively).

DV = DV0 + (DVmax - DVmin)·A
A = amplitude (random value between -0.5~ 0.5)
When the GA finishes its evolution, the best de-

sign is simulated by FEA and the results of weight
and constraints are stored to update the metamodel
using all the available data. Subsequently, the GA
that has been produced earlier is applied again using
the updated Kriging. This is repeated in a loop until
‘n+1’ points have been simulated and added to the
database (being ‘n’ the number of design variables,
so that the sampling is proportional to the number of
design variables).

In the first ‘n’ iterations, the GA uses another pen-
alty factor in the fitness function (proximity penalty
factor, ‘PPF’). The aim of this penalty factor is to
penalize those individuals close to points already
simulated. If the individual is close to a previously
simulated point, then the fitness function will be pe-
nalized and consequently, the individual will not sur-
vive in the tournament selection. To apply this, the
algorithm internally calculates a niche radius or ‘ra-
dius of influence’ (‘Ri’) that depends on the dimen-
sions of the search domain (equivalent radius, ’Req’)
and on the number of ‘niches’ desired in the domain,
which was established in ‘2n’.

Req =1/2· Ʃn(DVmax - DVmin)1/2

Ri = Req / (2n)1/n
Once the radius of influence is defined, the algo-

rithm calculates the distance between each individual
proposed by the GA and the sampling points that
have been added. If the distance between the individ-
ual of the GA and any of the sampling points (‘Di’) is
lower than the radius of influence, then the proximity
penalty factor is applied according to the following
expression:

PPF = Ʃi 1/Di · 10E99
This strategy forces the algorithm to explore new

zones of the domain along the feasible/unfeasible
border. The inspiration of this idea comes from the
resource sharing method used in multimodal optimi-
zation [4,9]. Once ‘n’ points have been added in this

stage, the exploration is considered enough and the
optimization algorithm stops the application of the
proximity penalty to enable more freedom for the
optimum search.

In the iteration ‘n+1’, the GA evolves to an opti-
mal design that is then simulated by FEA. Next, the
accuracy of the predictions of the metamodel are
checked. If the mean absolute percentage error
(MAPE) of the estimations compared with the simu-
lation results (weight and constraints) is higher than
5%, then the last point is added to the database and
the metamodel is updated to improve its accuracy.
Subsequently, the GA is run again. This is repeated in
a loop until the MAPE of the estimations of the last
point is lower than 5%, which guarantees a minimum
accuracy of the metamodel the zones close to the
location of the final solution.

2.3.3. Final optimization
In this final stage, the same GA is run again but us-

ing the metamodel updated with all the available data
and without applying proximity penalty. This GA
allows the new optimal solution to be generated ac-
cording to the metamodel created with all the data
gathered so far. The optimal design obtained accord-
ing to the GA is simulated by FEA, and if it is the
best design simulated so far, then it will be the final
design. Otherwise, the metamodel is updated with
this new point and the GA is run again. This is re-
peated until the algorithm achieves a design better
than the existing solution obtained from the previous
stages of the algorithm. However, if more than ‘5+n’
points are added in this stage and at least one of them
is a feasible design by fulfilling all of the constraints,
then the best design of the previous stages will be
considered as the final solution. This condition was
added because on some occasions, the algorithm can
achieve a very good design in the previous stages that
is difficult to improve afterwards.

Figure 6 summarizes the structure of the optimiza-
tion algorithm. It is noted that stage 2 (Feasi-
ble/unfeasible border approximation) and stage 3
(Final optimization) use GAs to select the design that
will be simulated by FEA. In the first ‘n’ iterations of
stage 2, proximity penalty is applied to explore the
feasible/unfeasible border. Therefore, the optimiza-
tion algorithm draws on GAs applied in different iter-
ative processes and with different purposes.

Design of experiments
Sampling = 3+n

Feasible/unfeasible
border approximation

Sampling ≥ n+1

Do until ‘n+1’:
-Kriging (regression
order 2, 1 or 0)
-GA using Kriging
(proximity penalty in
the first ‘n’ iterations)
-FEA of the optimum

MAPE<5%?

Yes

Final optimization
Sampling ≥ 1

Do until optimum
improved or stop
condition:
-Kriging (regression
order 2, 1 or 0)
-GA using Kriging
-FEA of the optimum

Optimum design

Minimum, middle and
maximum values

(3 points)

Modified Latin
Hypercube DOE

(‘n’ points)

No

Fig. 6. Structure of the optimization algorithm

2.4. Comparison of results between the algorithm
presented and previous versions

This section has presented a short summary of the
comparison between the proposed algorithm and the
previous versions. The final algorithm is the result of
several versions that were improved step by step by
testing them in different applications. The sampling
strategy, refinement and metamodels used were mod-
ified according to the conclusions obtained from the
results of the tests. On the other hand, although there
are many different metaheuristic techniques to opti-
mize, the preliminary tests carried out with GAs
found that there were several configuration that ob-

tained similar results and very close to the theoretical
optimum. These tests depicted that the configuration
of parameters of the GA was not crucial for the per-
formance of the methodology, which meant that some
parameters such as the number of generations may be
high (conservative values) and the performance of the
methodology will not be affected. This is because the
time needed by the GA to evolve is not relevant com-
pared with the sampling or metamodel refinement
strategy. Therefore, the use of GAs provided enough
accuracy and speed, apart from flexibility and robust-
ness to accomplish different ideas to drive the opti-
mization process according to the requirements for
each step. The tuning of the GA was carried out by
changing several parameters such as the type of pen-
alty factor, the number of generations, the crossover
and mutation probability and the mutation amplitude.
After multiple tests, although several configurations
obtained similar results, the parameters presented in
section 2.3.2. were the ones selected.

Although this algorithm is the result of more than
15 versions, only the last ones are presented in this
section, starting from a version already tested in pre-
vious work [35]. The first modification carried out
was to implement a loop to use the highest order of
regression model possible in the Kriging metamodel.
This idea improved the results in terms of the quality
of the optimal solution. The resulting version was
selected as a reference to compare with the new ver-
sions developed. All the versions were tested in five
different case studies with 5, 10, 15, 20 and 25 design
variables respectively. Each version was run 15 times
to obtain an average value of optimization time and
weight of the optimum. We also applied the Mann-
Whitney U-test between each version and version 1
to assess if the weight of the optimal solutions were
statistically different. The overall purpose was to re-
duce the sampling to cut down the optimization time
and to maintain the quality of the optimal solution.

The first modification that was applied was to re-
duce the number of sampling points of the DOE. As
version 1 used a ‘3+n+n=3+2n’ approach, in version
2, the number of sampling points of the DOE was
reduced to ‘3+n/2+n2=3+n’. However, this reduction
led to problems in the metamodel generation in stage
2. In the exploration stage, the algorithm evolved to
produce designs that were already simulated and
therefore almost the same design was unnecessarily
simulated twice.

In order to avoid this, in version 3, the proximity
penalty in stage 2 was applied to all the sampling
points added before instead of just being applied to

the points added in stage 2. The sampling was the
same used in the previous version.

In version 4, the radius of influence (niche radius)
to apply the proximity penalty was reduced for the
sampling points added in the DOE, while the proxim-
ity penalty used for the points added in stage 2 was
kept. This approach aims to allow more freedom of
exploration in stage 2 but avoiding the repetition of
sampling points of the DOE.

In version 5, the DOE strategy was changed to use
Latin Hypercube. Moreover, the number of sampling
points was increased to keep the same number as
version 1, which means 3 points and 2n points of the
Latin Hypercube DOE (3+2n).

In version 6 the number of sampling points was
further reduced to establish the same sampling effort
used by versions 2-4. Therefore, in the first stage, the
sampling was ‘3+n’.

In version 7, the number of sampling points of the
DOE was again set to ‘3+2n’, but the Latin Hyper-
cube strategy was modified to move the sampling
points to the borders of the search domain. The aim
was to avoid the extrapolation of results and to use
interpolation instead.

Finally, in version 8, the previous approach was
applied again but reducing the number of sampling
points of the initial stage to ‘3+n’. Therefore, ver-
sions 2, 3, 4, 6 and 8 have the same sampling effort in
the first stage (‘3+n’), and versions 1, 5 and 7 have
additional numbers of sampling points (‘3+2n’).

Table 1 summarizes the results for each version.
The columns show the version, the number of sam-
pling points used in the DOE, percentage increase of
optimization time compared with the results obtained
with version 1 and the percentage increase of opti-
mum’s weight compared with the results of version 1.
The values presented are the average values of the 15
runs of each version for the 5 different case studies
(15·5=75 runs for each version).

- Version 1: DOE based on binary and ternary
encoding (‘3+2n’ points).

- Version 2: ‘3+n’ sampling points in the
DOE.

- Version 3: Proximity penalty applied in all
the sampling points added before.

- Version 4: Radius of influence reduced in
the proximity penalty of sampling points
added in the DOE.

- Version 5: DOE based on Latin Hypercube
(‘3+2n’ points).

- Version 6: DOE based on Latin Hypercube
(‘3+n’ points).

- Version 7: DOE based on Latin Hypercube
(‘3+n’ points).

Table 1. Comparison between the different versions of optimiza-
tion algorithm developed

Version No. points
(DOE)

Increase of opti-
mization time

Increase of opti-
mum’s weight

1 3+2n - -
2 3+n -31.0% 1.4%
3 3+n -29.5% 1.5%
4 3+n -38.1% 1.3%
5 3+2n -7.7% 0.3%
6 3+n -14.5% 0.8%
7 3+2n -35.4% 1.9%
8 3+n -40.2% 1.5%

Version 8 (algorithm presented in section 2.3.)

achieves an average reduction of 40.2% on the opti-
mization time compared with version 1, while the
quality of the optimum is worsened by 1.5%. It can
be observed that the use of Latin Hypercube im-
proved the results compared with version 1. The
modification proposed to the Latin Hypercube signif-
icantly enhanced the results in terms of the optimiza-
tion time compared to the standard Latin Hypercube
(around 25 points). However, the quality of the solu-
tion is worsened by 1.6 points.

2.5. Software description

The optimization algorithm with the strategies de-
scribed before was implemented in the Application
Programming Interface (API) of the CAD-FEA soft-
ware using Visual Basic. Through this tool, the opti-
mization is driven in a completely automated manner,
which means that the multiple geometry updating and
FEA simulations needed for the optimization process
are automatically generated once the code is run and
the input data is established.

Some specific tasks that are carried out by the
Matlab Windows Application are automatically acti-
vated during the optimization process. The API sends
the available data to Matlab such as the design varia-
bles, constraints and weight of all the points simulat-
ed to create the Kriging metamodel and to calculate
the predictions. These results are sent back to the API
and used for the fitness function evaluation in the
GAs. Apart from the creation of the metamodel and
calculation of the predictions, Matlab is also used to
sort the data in the GAs as well as to save the final
results and create some graphics that summarize the
evolution of the optimization process. Figure 7 repre-
sents the overall workflow.

SolidWorks

Matlab

API
Optimization code and
control of the process

CAD tool
Design updating

(variables/configurations)
and weight evaluation

FEA tool
Mechanical analysis

(constraints evaluation)

- Metamodel creation and predictions
- Data sorting
- Data saving and representation

- Metamodel creation and predictions
- Data sorting
- Data saving and representation

Fig. 7. Workflow of the optimization process.

The sequence to apply the optimization method is
as follows (Figure 8):
− Parameterization of the geometry: Definition of

the geometry in the CAD software, including the
design variables. The design variables must be
linked to the global variables with the right no-
menclature (‘VAR1’, ‘VAR2’, etc.). The global
variables must be defined in the equation man-
ager of the CAD software in the right order and
before the rest of equations. The API will access
the equation manager to change the value of the
variables, which are linked to the corresponding
dimensions of the part.

− Definition of the 2 configurations of the geome-
try: The programmed and original shapes must
be defined using two different configurations
that must be named with integers. One configu-
ration will have the flex feature ‘suppressed’ and
the other being ‘activated’.

− Definition of the mechanical analysis related to
each configuration: Definition of the boundary
conditions (loads, constraints, contacts, materi-
als, etc.) of the analysis associated with each
configuration. The name of the analysis must
follow a certain convention (Analysis 1, Analy-
sis 2, etc.) to guarantee the workflow between
the API and the FEA tool.

− Definition of sensors to get the relevant data
from the FEA results: Definition of the sensors
to store the FEA data is needed for the optimiza-
tion process (constraints and objective). The
sensors must be named also following certain
conventions (Constraint 1, Constraint 2… and
Mass).

− Running of the optimization program: Once the
optimization is run, the program prompts some
input data such as the number of design varia-
bles, the lower and upper limit values of each
variable, the number of FEAs, the number of
constraints, limit values, feasible zones and as-
sociated analysis of each constraint, the maxi-
mum element size for the mesh of each analysis
and finally the configuration number related to
each analysis.

− Final result: The optimization algorithm auto-
matically changes the geometry, accomplishes
the FEA simulations and manages the dataflow
between the CAD, FEA and API tools and
Matlab. Once the optimization is finished, the
CAD shows the optimal design on the screen.

Parameterization

Definition of
configurations

Conf. 2Conf. 1

Definition of
mechanical analysis

Conf. 1 Conf. 2

Definition of
sensors

Running of the
optimization

program

Final result

The optimization algorithm
drives the process

 Fig. 8. Sequence to apply the optimization method.

3. Case study

This section presents a simple case study in which
the new optimization algorithm was applied.

3.1. Geometry and design variables

The geometry of this case study is a simple paral-
lelepiped (a prism whose external faces are all paral-
lelograms) that will have a programmed ‘L’ shape
(configuration 1) and then will be stimulated to re-

cover its original straight shape (configuration 2).
The part will have a hollow geometry with an internal
longitudinal wall (Figure 9). The geometry will be
longitudinally symmetrical. The thickness of the ex-
ternal walls will be homogenous (the same thickness
in all the points), while the thickness of the central
wall will change linearly. A total of 8 design varia-
bles (parameters) were defined to control the dimen-
sions of the part, the external walls of the part (5 var-
iables) and the dimensions of the internal wall (3 de-
sign variables). These dimensions will be the parame-
ters to be modified during the optimization process.
The global dimensions were fixed (90x10x8mm).
The center of the part, which is the zone where the
shape memory will be applied, was kept solid (11mm
length), as well as the end where the part will be
fixed for the mechanical tests (10mm length).

Fig. 9. Geometry to be optimized (internal wall and 4 hollows).

The design variables and limits must be set out ac-

cording to the manufacturing capabilities, so that any
design of the search domain can be manufactured.
This is a main advantage of the parametric optimiza-
tion. The designer can adapt the limits of the parame-
ters according to the manufacturing limitations.

In this case, the design variables and limits (in
mm) were defined as follows:
− VAR1: upper thickness [0.8-3.5]
− VAR2: lower thickness [0.8-3.5]
− VAR3: lateral thickness [1.5-2.5]
− VAR4: thickness in the fixed end [1.5-5]
− VAR5: thickness in the end of the load [1.5-5]
− VAR6: half of the thickness of the reinforcing

wall in the fixed end [0.75-2] (symmetry ap-
plied)

− VAR7: half of the thickness of the reinforcing
wall in the middle of the part [0.75-2] (sym-
metry applied)

− VAR8: half of the thickness of the reinforcing
wall in the end of the load [0.75-2] (symmetry
applied)

The parameterization is carried out by first defin-
ing VAR1, VAR2, etc. as global variables in the
equation manager (and in the correct order), and then
link the dimensions we want to parameterize with the
associated global variable.

3.2. Material

The material used was Polylactic Acid (PLA) for
3D printing, which has shape memory properties. The
material was characterized using standard flexural
tests applied in 3D printed samples. These samples
were produced with the same manufacturing parame-
ters described in section 3.5. Therefore, imperfections
related to manufacturing are considered through the
appropriate definition of the flexural modulus. Ac-
cording to the experimental results, the flexural mod-
ulus was 2950.83MPa. The Poisson’s ratio was 0.36
[16]. The density of PLA was established according
to measurement of several 3D printed samples
(1.176g/cm3). These values were introduced in the
FEA tool to define the material properties.

3.3. Objective and constraints

The part must support a load of 160N (applied at
2.5mm from the border) in its L-shape state (configu-
ration 1) with a maximum deflection of 8.5mm (con-
straint 1). Once the original shape (configuration 2) is
recovered, the part must support a maximum load of
40N keeping the deflection under 6.5mm (constraint
2). Symmetry was applied in order to simplify the
FEA simulations. No penetration contact was estab-
lished between the punch and the part. Figure 10
shows the boundary conditions of configuration 1
(programmed shape). Figure 11 depicts the analysis
of configuration 2 (shape recovered after the stimulus
application). The mesh was defined by using a curva-
ture-based mesher with parabolic tetrahedral solid
elements. The maximum and minimum element size
was 2mm and 0.4mm respectively.

Fig. 10. FEA of configuration 1 (‘L’ shape).

Fig. 11. FEA of configuration 2 (original shape).

The optimization problem of this case study can be
summarized as follows:

Minimize Weight (VAR1, VAR2, …, VAR8)
Subject to: Const.1<8.5mm (programmed shape)
 Constraint 2<6.5mm (original shape)
As the mathematical formulas of the objective and

constraints are not known, the weight and constraints
of each design are obtained from the CAD model and
FEA results respectively. This can lead to high CPU
time. However, the proposed methodology takes ad-
vantage of the Kriging metamodel to evaluate the
values of the weight and constraints from the availa-
ble data without changing the geometry or accom-
plishing the FEA simulations.

3.4. Optimization and results

The optimization was run on a Dell Precision
T3500 CPU model with an Intel(R) Xeon(R) W3530-
2.80GHz processor and 6GB RAM. The optimum
solution was obtained in 102 minutes with a total
number of 23 designs evaluated. The computational
time needed in the DOE was 48 minutes (11 sam-
pling points). In the second stage (feasible/unfeasible
border approximation), the time needed was 41
minutes, with 9 sampling points. Finally, the last
stage took 13 minutes, with 3 new sampling points.
The optimal design was the last one, with a total mass
of 3.448g (real weight of 2x3.448g due to the sym-

metry applied). The deflection with the programmed
‘L’ shape (configuration 1) was 8.498mm (constraint
1), while the limit value was 8.5mm. The deflection
with the straight shape (original shape after recovery,
configuration 2) was 5.952mm (constraint 2). How-
ever, the limit value for this constraint was 6.5mm,
which means that constraint 1 was more restrictive.
As expected, the optimum fulfills all the constraints
established in the problem definition. Table 2 shows
the values of constraint 1, constraint 2 and mass ob-
tained for each design simulated during the optimiza-
tion process. All the designs that did not fulfill con-
straint 2, also did not fulfill constraint 1, which veri-
fies the previous statement (constraint 1 was more
restrictive).

Table 2. Values of the constraints and mass of the designs evaluat-
ed during the optimization process.

Design no. Constraint 1
(mm) (<8.5)

Constraint 2
(mm) (<6.5)

Mass
(g)

1 9.542 7.056 2.851
2 7.909 5.481 3.769
3 7.731 5.344 4.174
4 8.285 5.787 3.652
5 8.002 5.555 3.717
6 7.988 5.582 3.813
7 7.750 5.355 4.099
8 8.155 5.755 3.701
9 7.791 5.386 3.938
10 8.059 5.606 3.706
11 7.885 5.457 3.710
12 9.162 6.432 3.050
13 9.464 6.829 2.978
14 9.513 6.989 2.925
15 8.588 6.147 3.417
16 8.788 6.125 3.454
17 8.369 5.916 3.560
18 8.521 6.099 3.424
19 8.557 6.194 3.411
20 8.601 6.264 3.384
21 8.548 6.137 3.423
22 8.600 6.250 3.474
23 8.498 5.952 3.448

The design variables of the optimum are shown in

Table 3.

Table 3. Values of the design variables of the optimum design.

VAR1
(mm)

VAR2
(mm)

VAR3
(mm)

VAR4
(mm)

VAR5
(mm)

VAR6
(mm)

VAR7
(mm)

VAR8
(mm)

0.806 1.566 1.743 5.000 1.582 1.973 0.750 2.000

Figure 12 shows the relative value of the con-

straints and mass of the designs evaluated in the last 2
stages of the algorithm (points 12-23). The relative
values of the constraints were calculated dividing the

value obtained by the associated limit value. There-
fore, the values of constraint 1 were divided by 8.5
and the values of constraint 2 by 6.5. In the case of
the mass, the reference value is the mass of the opti-
mum. Consequently, the mass values were divided by
3.448.

12 14 16 18 20 22

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Number of design

Relative values

Constraint 1 (relative)
Constraint 2 (relative)
Mass (relative)

Fig. 12. Relative values of the designs 12-23.

From Figure 12, it can be observed that constraint
1, which was the most restrictive, tends to show val-
ues close to 1 as the algorithm evolves. At the same
time, constraint 2 tends to show values lower than 1.
Therefore, the algorithm evolves to the design with
the lower mass that fulfills the constraints.

Figure 13 shows the results (displacements) of the
FEA simulation of the optimum design in its pro-
grammed shape (configuration 1). Figure 14 shows
the displacement results of the optimum in its original
shape (configuration 2).

Fig. 13. Displacements of the optimum (configuration 1).

Fig. 4 Displacements of the optimum (configuration 2).

3.5. Manufacturing

The optimum design was manufactured in a BQ
Prusa i3 extrusion-based 3D printer. The filament
diameter was 1.75mm, the nozzle diameter 0.4mm,
the temperature for the layer deposition was 220°C
(225°C for the first layer), the layer thickness 0.4mm,
3 perimeters in the contour, 3 solid layers at the top
and bottom, 100% fill density and manufacturing
speed of 40mm/s in the perimeter and 50mm/s in the
infill (travel at 80mm/s).

3.6. Experimental tests

The part was heated at 65°C to deform it and ob-
tain the ‘L’ shape of configuration 1. Subsequently,
the part was tested (Figure 15). The results of the test
of configuration 1 are shown in Figure 16.

Fig. 15. Mechanical test of configuration 1.

0 5 10 15 20
0

50

100

150

200

Deflection=10.92mm

Displacement (mm)

Fo
rc

e
(N

)

Force - Displacement

Fig. 16. Results of the test of configuration 1.

The deflection obtained for 160N load was

10.92mm. However, the result according to the FEA
simulations was 8.5mm. This difference was due to a
loss of the material property of the PLA component
during the programming of the ‘L’ shape when it
encountered a large deformation.

Next, the part was heated again to recover its orig-
inal straight shape (configuration 2) and it was tested
(Figure 17). The results of this test are shown in Fig-
ure 18.

Fig. 17. Mechanical test of configuration 2.

0 2 4 6 8 10 12
0

10

20

30

40

50

Deflection=8.04mm

Displacement (mm)

Fo
rc

e
(N

)

Force - Displacement

Fig. 18. Results of the test of configuration 2.

The deflection obtained for 40N load was 8.04mm,

while the result according to the FEA simulations
was 5.94mm. After several subsequent tests with
standard flexural samples, it was observed that the
main cause of this difference was the loss of material
property during the programming stage. The large
displacements and strains applied in the L-shape pro-
gramming led to delamination process (Figure 19),
reducing the properties of the sample. Further, tests
revealed that the loss of stiffness was around 20%
after the shape programming was applied. On the
other hand, it was observed that the ratio between the
displacement in configuration 1 and 2 was 1.4, for
both simulations and experimental results, which
confirmed that the difference between the experi-
mental and simulation results is related to this loss of
property. Therefore, if the material definition is
properly fitted according to the real properties of the
programmed material, the proposed optimization al-
gorithm can be successfully applied to optimize the
weight of the 4D part.

Fig. 19. Sample delaminated in the deformed zone during the pro-

gramming stage.

4. Conclusions

The design methodology proposes a novel light-
weight parametric optimization of shape memory
parts taking into account both shapes of the design
(programmed and original shapes). This tool, which
was implemented in a commercial 3D CAD and FEA
software, can be effectively used to optimize the
weight and consequentially reduce material and man-
ufacturing costs, but yet ensuring that the minimal

mechanical requirements is maintained for both states
of the shape memory part (programmed and original
shapes). Through the use of this algorithm, users will
be able to optimize a design that has different shapes
with different boundary conditions and requirements
to fulfill the mechanical requirements needed in both
instances. This approach of optimization was devel-
oped further by automating the work flow which
would encourage and promoted the uptake of 4D
printing.

While this paper focuses on 2 different configura-
tions, the algorithm is capable of handling many
more configurations as desired. This tool can be very
powerful to model several situations involved in the
shape recovery. For example, a third configuration
could be defined with an appropriate configuration
and associated Finite Element Analysis conducted to
examine whether the part is able to recover under
certain boundary conditions. Therefore, this optimi-
zation algorithm optimizes the design variables ac-
cording to the mechanical requirements needed in the
programmed and original shapes, and also optimizes
the design variables to achieve the shape recovery
force needed during the recovery process. If the re-
covery process is to be analyzed in detail, it can be
discretized in different steps related to different con-
figurations, each of which represents a different situa-
tion/shape during the recovery. On the other hand,
some shape memory materials can retain 3 different
shapes and a third configuration could also be very
useful. Further research will be carried out to investi-
gate more complex geometries and bending methods.
In the case of very complex 4D products, the com-
puter processing time may be too high. As multi-core
CPUs and GPUs become more available with higher
performance and lower cost, this methodology could
be accelerated [2,11,43]. Although SolidWorks was
used due to the availability of the flex feature and the
configurations module, more advanced FEA software
such as Abaqus could also be investigated to allow
the simulation of more complex parts and include
acceleration techniques.

This proposed methodology can be applied in
many different sectors such as medical, automotive,
toy, furniture, interior design, textile or telecommuni-
cations. The capabilities of 4D printing combined
with this methodology have the potential to become
useful in areas of high-value engineering [36].

References

[1] Adeli H, Balasubramanyam KV. A synergic man-
machine approach to shape optimization of structures.
Comput Struct. 1988;30(3):553–61.

[2] Belloch JA, Gonzalez A, Martínez-Zaldívar FJ, Vidal
AM. Multichannel massive audio processing for a gen-
eralized crosstalk cancellation and equalization applica-
tion using GPUs. Integr Comput-Aided Eng. 2013 Jan
1;20(2):169–82.

[3] Bolourchi A, Masri SF, Aldraihem OJ. Studies into
Computational Intelligence and Evolutionary Ap-
proaches for Model-Free Identification of Hysteretic
Systems. Comput-Aided Civ Infrastruct Eng.
2015;30(5):330–346.

[4] Della Cioppa A, De Stefano C, Marcelli A. On the role
of population size and niche radius in fitness sharing.
IEEE Trans Evol Comput. 2004 Dec;8(6):580–92.

[5] Dressler M. Art of Surface Interpolation [Internet].
[Kunštát]: Technical University of Liberec, Faculty of
Mechatronics and Interdisciplinary Engineering Stud-
ies; 2009 [cited 2014 Dec 29]. Available from:
http://m.dressler.sweb.cz/AOSIM.pdf

[6] Eriksson L. Design of Experiments: Principles and Ap-
plications. MKS Umetrics AB; 2008. 486 p.

[7] Eujin Pei. 4D Printing: dawn of an emerging technolo-
gy cycle. Assem Autom. 2014 Sep 9;34(4):310–4.

[8] Garrett TAC Skylar Tibbits, and Banning. The Next
Wave: 4D Printing [Internet]. Atlantic Council. [cited
2016 May 18]. Available from:
http://www.atlanticcouncil.org/publications/reports/the-
next-wave-4d-printing-and-programming-the-material-
world

[9] Glibovets NN, Gulayeva NM. A review of niching ge-
netic algorithms for multimodal function optimization.
Cybern Syst Anal. 2013;49(6):815–20.

[10] Gupta V, Yadav N, Gupta S. Shape Memory Materials:
An Innovative Way to Improve Properties of Cotton.
PARIPEX-Indian J Res. 2014 Jun 1;III(VI):293–6.

[11] Guthier B, Kopf S, Wichtlhuber M, Effelsberg W. Par-
allel Implementation of a Real-time High Dynamic
Range Video System. Integr Comput-Aided Eng. 2014
Apr;21(2):189–202.

[12] Hartl D, Lane K, Malak R. Computational design of a
reconfigurable origami space structure incorporating
shape memory alloy thin films. In: ASME 2012 Con-
ference on Smart Materials, Adaptive Structures and In-
telligent Systems [Internet]. American Society of Me-
chanical Engineers; 2012 [cited 2016 Jul 4]. p. 277–285.
Available from:
http://proceedings.asmedigitalcollection.asme.org/data/
Conferences/ASMEP/75654/277_1.pdf

[13] Huang WM, Ding Z, Wang CC, Wei J, Zhao Y,
Purnawali H. Shape memory materials. Mater Today.
2010 Jul;13(7–8):54–61.

[14] Interactive Layout Optimization of Trusses. J Comput
Civ Eng [Internet]. 1061 Issue: object: doi: .
/jccee5.1987.1.issue-3, revision: rev:1479256513100-
15515:doi:10.1061/jccee5.1987.1.issue-3 [cited 2017
Jan 13];1(3). Available from:
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290
887-3801%281987%291%3A3%28183%29

[15] ISO/ASTM 52900:2015 - Additive manufacturing --
General principles -- Terminology [Internet]. ISO. [cit-
ed 2016 May 18]. Available from:

http://www.iso.org/iso/catalogue_detail.htm?csnumber
=69669

[16] Jamshidian M, Tehrany EA, Imran M, Jacquot M,
Desobry S. Poly-Lactic Acid: Production, Applications,
Nanocomposites, and Release Studies. Compr Rev
Food Sci Food Saf. 2010 Sep 1;9(5):552–71.

[17] Khoo ZX, Teoh JEM, Liu Y, Chua CK, Yang S, An J,
et al. 3D printing of smart materials: A review on recent
progresses in 4D printing. Virtual Phys Prototyp. 2015
Jul 3;10(3):103–22.

[18] Kleijnen JPC. Design of Experiments: Overview [Inter-
net]. Rochester, NY: Social Science Research Network;
2008 Aug [cited 2014 May 6]. Report No.: ID 1262179.
Available from:
http://papers.ssrn.com/abstract=1262179

[19] Kociecki M, Adeli H. Shape optimization of free-form
steel space-frame roof structures with complex geome-
tries using evolutionary computing. Eng Appl Artif In-
tell. 2015 Feb;38:168–82.

[20] Kociecki M, Adeli H. Two-phase genetic algorithm for
topology optimization of free-form steel space-frame
roof structures with complex curvatures. Eng Appl Artif
Intell. 2014 Jun;32:218–27.

[21] König O, Wintermantel M. CAD-based evolutionary
design optimization with CATIA V5. Proc 1st Weimar
Optim Stoch Days WOST Weimar. 2004;1–30.

[22] Kunakote T, Bureerat S. Surrogate-Assisted Multi-
objective Evolutionary Algorithms for Structural Shape
and Sizing Optimisation. Math Probl Eng. 2013 Jul
10;2013:e695172.

[23] Langelaar M, Keulen F van. Modeling of shape
memory alloy shells for design optimization. Comput
Struct. 2008 May;86(9):955–63.

[24] Langelaar M, van Keulen F. Design optimization of
shape memory alloy active structures using the R-phase
transformation. In: The 14th International Symposium
on: Smart Structures and Materials & Nondestructive
Evaluation and Health Monitoring [Internet]. Interna-
tional Society for Optics and Photonics; 2007 [cited
2016 Jul 4]. p. 65250W–65250W. Available from:
http://proceedings.spiedigitallibrary.org/proceeding.asp
x?articleid=1300885

[25] Latin hypercube sample - MATLAB lhsdesign -
MathWorks España [Internet]. [cited 2015 Jul 24].
Available from:
http://es.mathworks.com/help/stats/lhsdesign.html

[26] Laurent L, Boucard P-A, Soulier B. Generation of a
cokriging metamodel using a multiparametric strategy.
Comput Mech. 2012 Apr 26;51(2):151–69.

[27] Lee H-G, Yi C-Y, Lee D-E, Arditi D. An Advanced
Stochastic Time-Cost Tradeoff Analysis Based on a
CPM-Guided Genetic Algorithm. Comput-Aided Civ
Infrastruct Eng. 2015;30(10):824–842.

[28] Lee J-H, Hwang S-C, Park JH, Lee K-H. Structural De-
sign Examples Using Metamodel-based Approximation
Model. In: Proceedings of the 9th WSEAS International
Conference on Applied Computer and Applied Compu-
tational Science [Internet]. Stevens Point, Wisconsin,
USA: World Scientific and Engineering Academy and
Society (WSEAS); 2010 [cited 2014 Mar 22]. p. 153–
156. (ACACOS’10). Available from:
http://dl.acm.org/citation.cfm?id=1844074.1844101

[29] Liang C, Rogers CA. Design of Shape Memory Alloy
Actuators. J Mech Des. 1992 Jun 1;114(2):223–30.

[30] Liu H. Taylor kriging metamodeling for simulation in-
terpolation, sensitivity analysis and optimization. 2009

[cited 2014 Mar 21]; Available from:
http://etd.auburn.edu/etd/handle/10415/1621

[31] Lophaven SN, Nielsen HB, Søndergaard J. A Matlab
Kriging Toolbox. Tech Univ Den Kongens Lyngby
Tech Rep No IMM-TR-2002-12 [Internet]. 2002 [cited
2014 Jul 18]; Available from:
http://www.imm.dtu.dk/~hbn/dace/dace.pdf

[32] Okobiah O, Mohanty S, Kougianos E. Fast Design Op-
timization Through Simple Kriging Metamodeling: A
Sense Amplifier Case Study. IEEE Trans Very Large
Scale Integr VLSI Syst. 2014 Apr;22(4):932–7.

[33] Pan F, Zhu P. Design optimisation of vehicle roof struc-
tures: benefits of using multiple surrogates. Int J
Crashworthiness. 2011;16(1):85–95.

[34] Pant S, Limbert G, Curzen NP, Bressloff NW. Multi-
objective design optimisation of coronary stents. Bio-
materials. 2011 Nov;32(31):7755–73.

[35] Paz R, Monzón MD, Benítez AN, González B. New
lightweight optimisation method applied in parts made
by selective laser sintering and Polyjet technologies. Int
J Comput Integr Manuf. 2015 Jul 9;0(0):1–11.

[36] Pei E. 4D printing – revolution or fad? Assem Autom.
2014 Apr 1;34(2):123–7.

[37] Peraza-Hernandez E, Hartl D, Galvan E, Malak R. De-
sign and optimization of a shape memory alloy-based
self-folding sheet. J Mech Des. 2013;135(11):111007.

[38] Rashidi S, Ranjitkar P. Bus dwell time modeling using
gene expression programming. Comput-Aided Civ In-
frastruct Eng. 2015;30(6):478–489.

[39] Roman Gatzi MU. Structural Optimization Tool using
Genetic Algorithms and Ansys. 2000;

[40] Shabbir F, Omenzetter P. Particle swarm optimization
with sequential niche technique for dynamic finite ele-
ment model updating. Comput-Aided Civ Infrastruct
Eng. 2015;30(5):359–375.

[41] Vincenzi L, Savoia M. Coupling response surface and
differential evolution for parameter identification prob-
lems. Comput-Aided Civ Infrastruct Eng.
2015;30(5):376–393.

[42] Zhao L, Choi KK, Lee I. Metamodeling Method Using
Dynamic Kriging for Design Optimization. AIAA J.
2011;49(9):2034–46.

[43] Zhou Y, He F, Qiu Y. Optimization of parallel iterated
local search algorithms on graphics processing unit. J
Supercomput. 2016 Jun 1;72(6):2394–416.

[44] Zhu P, Zhang Y, Chen G-L. Metamodel-based light-
weight design of an automotive front-body structure us-
ing robust optimization. Proc Inst Mech Eng Part J Au-
tomob Eng. 2009 Sep 1;223(9):1133–47.

	1. Introduction and problem definition
	1.1. Introduction
	1.2. Problem definition (general approach)

	2. Methodology
	2.1. Overall concept
	2.2. Configurations to address the multiple shapes
	2.3. Optimization algorithm
	2.3.1. Design of experiments (DOE)
	2.3.2. Feasible/unfeasible border approximation
	2.3.3. Final optimization

	2.4. Comparison of results between the algorithm presented and previous versions
	2.5. Software description

	3. Case study
	3.1. Geometry and design variables
	3.2. Material
	3.3. Objective and constraints
	3.4. Optimization and results
	3.5. Manufacturing
	3.6. Experimental tests

	4. Conclusions
	References

