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Abstract

In this paper, we obtain a recursive formula for the density of the double barrier

Parisian stopping time. We present a probabilistic proof of the formula for the

first few steps of the recursion, and then a formal proof using explicit Laplace

inversions. These results provide an efficient computational method for pricing

double barrier Parisian options.
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1. Introduction

Parisian options are a kind of path dependent option, where the payoff depends not

only on the final value of the underlying asset, but also on the path trajectory of the

underlying above or below a predetermined barrier L. In particular, the owner of a

Parisian down-and-out call loses the option when the underlying asset price S reaches

the level L and remains constantly below this level for a time interval longer than

D, while for a Parisian down-and-in call, the same event gives the owner the right to

exercise the option. Parisian options were first introduced in [Chesney et al. (1997)],

where the Laplace transforms of the prices of single sided Parisian options were ob-

tained using Azéma martingales. The pricing of Parisian options were also studied
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later in [Haber et al.(1999)], [Schröder (2003)] and [Dassios and Wu (2009)]. There

are several motivations for the interest in these options. Parisian options are cheaper

than the vanilla option of the same maturity and strike, since the value of the option

depends on a barrier event occurring. Parisian options also has the added advantage

over a barrier option, as it is not as easily manipulated by an influential agent since

the barrier event requires more than just a touch of the barrier. Furthermore, since

Parisian options are only triggered when the underlying asset has spent an amount of

time beyond the barrier, this smooths the delta and gamma values near the barrier

and makes hedging easier. Parisian options also have other practical applications, for

instance to real option problems in [Broeders and Chen (2010)], and to insurance in

[Dassios and Wu (2009)].

Double barrier Parisian options are a two-barrier version of the standard Parisian

options described above. For example, a double barrier Parisian min-in call gives

the owner the right to exercise the option if the underlying asset price S either

makes an excursion above the upper barrier, or below the lower barrier for a con-

tinuous period longer than D, while the owner of a double barrier Parisian min-out

call will lose the right to exercise the option when the same event occurs. Pric-

ing of double barrier Parisian options has been studied in [Dassios and Wu (2011)],

[Anderluh and van der Weide (2009)] and [Labart and Lelong (2009)]. All these pa-

pers have focused on obtaining explicit expressions for the Laplace transforms of the

prices, but numerical inversions of these Laplace transforms are sometimes unstable.

In this paper, we derive a recursive formula for the density of the double barrier

Parisian stopping time. In [Dassios and Lim (2013)], an explicit solution for the density

of the Parisian stopping time with a single barrier was obtained. But here, we consider

excursions both above the upper barrier and below the lower barrier. We define the

double barrier Parisian stopping time as the first time the Brownian motion remains

continuously below the lower barrier b1 or above the upper barrier b2 for a fixed amount

of time. It turns out that the density is a finite sum of recursive terms, which are

convolutions of the previous terms, and hence are fast and easy to compute. This gives

us an explicit expression for the price of a double barrier Parisian option, which does
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not require any numerical inversion of Laplace transforms. Furthermore, our approach

is intuitive and easy to understand from a probabilistic viewpoint. Since t is the first

time the length of an excursion reaches D, if kD < t < (k+ 1)D, the probability is the

same as that of the current excursion starting at time t − D, which will be between

(k − 1)D < t − D < kD, and that there are no excursions outside the barriers of

length greater than D before this. Hence, we can decompose the Brownian path into

each interval of length D, and if there has been no excursions of length greater than

D, the density for the stopping time where t is between kD < t < (k + 1)D can be

computed from the density of the previous step. To illustrate this further, we provide

a probabilistic proof for the first few steps of the recursion. This also suggests that

the method can be generalised to obtain explicit formulas for densities of the Parisian

stopping times of other Markov processes, of which the first and last passage time

densities are known. Finally, we use the density to present an efficient computational

method for pricing double barrier Parisian options.

This paper will be organised as follows. In Section 2, we define the excursions and

the double barrier Parisian stopping time and option. In Section 3, we present the

result on the density of the double barrier Parisian stopping time. We first give a

heuristic proof for the first few steps of the recursion, and then provide a formal proof

of the formula for t ≥ 0. In Section 4, we derive the pricing formulas for the Parisian

double barrier in call options and show how the prices of the double barrier Parisian

out call options can be obtained using the in-out parity relationships. In Section 5, we

provide numerical examples to demonstrate the accuracy of our results.

2. Definitions

We will use the same definitions for the excursions as in [Chesney et al. (1997)].

Let S be the price process for the underlying asset, and Q denote the risk neutral

probability measure. We assume that S follows a geometric Brownian motion and its

dynamics under Q is

dSt = St(rdt+ σdWt), S0 = x, (2.1)
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where W is a standard Brownian motion under Q, and r and σ positive constants. We

also introduce the notations

m :=
1

σ

(
r − σ2

2

)
, b :=

1

σ
ln

(
L

x

)
, k :=

1

σ
ln

(
K

x

)
, (2.2)

so that the asset price St = xeσ(mt+Wt). We define

gSL,t := sup{s ≤ t|Ss = L}, dSL,t := inf{s ≥ t|Ss = L}, (2.3)

with the usual convention that sup ∅ = 0 and inf ∅ =∞. The trajectory of S between

gSL,t and dSL,t is the excursion which straddles time t. We are interested here in t−gSL,t,

which is the age of the excursion at time t. For D > 0, we now define

τ+L,D(S) := inf{t ≥ 0|1St>L(t− gSL,t) ≥ D}, (2.4)

τ−L,D(S) := inf{t ≥ 0|1St<L(t− gSL,t) ≥ D}. (2.5)

We have denoted as τ+L,D(S) the first time that the length of an excursion of process

S above the barrier L reaches D, while τ−L,D(S) is the first time that the length of an

excursion of process S below the barrier L reaches D. We also introduce the following

notation for the stopping times where we refer to the standard Brownian motion W

instead of S. Furthermore, without loss of generality since any time t of interest can

be expressed in units of the window length D, we let D = 1 from now on.

τ+b := inf{t ≥ 0|1Wt>b(t− gWb,t) ≥ 1}, (2.6)

τ−b := inf{t ≥ 0|1Wt<b(t− gWb,t) ≥ 1}. (2.7)

We now look at the double barrier Parisian option, which is defined as (for b1 < b2):

τ b2b1 := τ−b1 ∧ τ
+
b2
. (2.8)

This is the first time that for the Brownian motion W , the length of an excursion above

b2, or an excursion below b1, reaches length 1. We note that we have taken the window

length of both sides to be the same (ie. 1 in our case).
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The owner of a double-barrier Parisian min-in option receives the payoff only if there

is an excursion below the level L1 or above level L2 which is of length greater than

D = 1. This will be the case if τL2

L1
(S) ≤ T . Denoting Cdoublei (x, T, L1, L2,K) as the

price of a Parisian min-in call with initial underlying price x, maturity T , strike price

K, lower barrier L1, upper barrier L2, we have the risk-neutral price of the option

Cdoublei (x, T, L1, L2,K) = EQ

[
e−rT1{τL2

L1
(S)≤T}(xe

σ(mT+WT ) −K)+
]
. (2.9)

We introduce a new probability measure P, with Radon-Nikodym derivative dP
dQ =

e−mWt− 1
2m

2t. Applying Girsanov’s Theorem and a change of measure from Q to P,

we have

Cdoublei (x, T, L1, L2,K) = EP

[
dQ
dP

e−rT1{τL2
L1

(S)≤T}(xe
σ(mT+WT ) −K)+

]
(2.10)

= EP

[
e−(r+

1
2m

2)T1{τb2b1≤T}
emZT

(
xeσZT −K

)+]
,(2.11)

where Zt = Wt + mt a standard Brownian motion under P. To simplify things, we

also let

∗Cdoublei (x, T, L1, L2,K) = e(r+
1
2m

2)TCdoublei (x, T, L1, L2,K). (2.12)

In the next section, we will first look at the density function of τ b2b1 , which we will

denote by f b2b1 (t), and then show how it can be used to obtain the prices of a Parisian

min-in call option.

3. Density of the double barrier Parisian stopping time

We are interested to derive the density of the double barrier Parisian stopping time

τ b2b1 . We first look at the case when the excursion has not started (b1 ≤ 0 ≤ b2) and

then discuss results for the case when we are already within an excursion (b1 < b2 ≤ 0

or 0 ≤ b1 < b2). We look at two cases, one where the excursion of length 1 occurs

above the upper barrier first (τ+b2 < τ−b1) and the other where the excursion of length 1

occurs below the lower barrier first (τ−b1 < τ+b2).
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Theorem 3.1. Let f b2b1 (t, τ+b2 < τ−b1) and f b2b1 (t, τ−b1 < τ+b2) denote the probability density

function of τ b2b1 on the set τ+b2 < τ−b1 and τ−b1 < τ+b2 respectively. Then for b1 ≤ 0 ≤ b2,

we have for t > 1, n < t ≤ n+ 1, n = 1, 2, ...,

f b2b1 (t, τ+b2 < τ−b1) =

n−1∑
k=0

(−1)
k
Lk(t− 1), (3.1)

f b2b1 (t, τ−b1 < τ+b2) =

n−1∑
k=0

(−1)
k
L̃k(t− 1), (3.2)

where Lk(t) and L̃k(t) are defined recursively as follows for t > k + 1:

Lk+1(t) =

∫ t−k

1

(
Lk(t− s)ϕ1(s) + L̃k(t− s)ϕ2(s, b2 − b1)

)
ds, (3.3)

L̃k+1(t) =

∫ t−k

1

(
L̃k(t− s)ϕ1(s) + Lk(t− s)ϕ2(s, b2 − b1)

)
ds, (3.4)

with initial conditions

L0(t) =
1

2π
√
t
e−

b22
2t , L̃0(t) =

1

2π
√
t
e−

b21
2t , for t > 0, (3.5)

and the functions ϕ1(s) and ϕ2(s, b) are defined as

ϕ1(s) :=

√
s− 1

2πs
, (3.6)

ϕ2(s, b) :=

√
s− 1

2πs
e−

b2

2(s−1) − b√
2πs3/2

e−
b2

2sN

(
− b√

s(s− 1)

)
. (3.7)

Before we begin the formal proof of Theorem 3.1, we will first give, in the following

subsection, an intuitive proof for 1 < t < 3.

3.1. A probabilistic explanation for the recursion

Here, we explain the above result using excursions. We will prove the result for small

values of t by using a path decomposition of the Brownian motion around time t = 1.

The general result will then follow by induction. We only look at f b2b1 (t, τ+b2 < τ−b1), the

case when the excursion above b2 occurs before the excursion below b1, but the same

idea applies to f b2b1 (t, τ−b1 < τ+b2), the case when the excursion below b1 occurs before
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the excursion above b2. We denote by P x the law of a Brownian motion starting

at x at time 0, px,y(t) the transition density of a Brownian motion from x to y in

time t, and Tx the first hitting time of level x of the Brownian motion. Recall the

notation that gb1,t is the last time the Brownian motion hits level b1 before time t.

We want to find the density of τ b2b1 when τ+b2 < τ−b1 . First, we note that there is no

density for τ b2b1 when t < 1. For 1 < t < 2, if {τ b2b1 ∈ dt}, the excursion must start at

t− 1, where 0 < t− 1 < 1, and it must be the first excursion. Hence, we need to find

νb2(t) := P 0(τ b2b1 −1 ∈ dt, τ+b2 < τ−b1), the probability of t being the start of the excursion

above b2 greater than length 1 for a Brownian motion starting at 0, by decomposing

it into the part of the excursion between gb2,1 and 1, and between 1 and gb2,1 + 1. We

have for 0 < t < 1,

P (τ b2b1 − 1 ∈ dt, τ+b2 < τ−b1) =

∫ ∞
b2

P 0(gb2,1 ∈ dt,W1 ∈ dx)P x(Tb2 ≥ 1− (1− t)). (3.8)

Using the time reversal property of Brownian motion, we have

P 0(gb2,1 ∈ dt,W1 ∈ dx) = P x(Tb2 ∈ 1− t)pb2,0(t) (3.9)

=
x− b2√

2π(1− t)3
e−

(x−b2)2

2(1−t)
1√
2πt

e−
b22
2t dxdt. (3.10)

Hence,

P (τ b2b1 − 1 ∈ dt, τ+b2 < τ−b1) (3.11)

=

∫ ∞
b2

x− b2√
2π(1− t)3

e−
(x−b2)2

2(1−t)
1√
2πt

e−
b22
2t

∫ ∞
t

x− b2√
2πu3

e−
(x−b2)2

2u dudxdt (3.12)

=

∫ ∞
t

1

2π
√
t(1− t)3

1√
2πu3

e−
b22
2t

∫ ∞
0

x2e−
x2

2(1−t) e−
x2

2u dxdudt (3.13)

=

∫ ∞
t

1

2π
√
t(1− t)3

1√
2πu3

e−
b22
2t

√
π

2

(
u(1− t)
1− t+ u

)3/2

dudt (3.14)

=
1

2π
√
t
e−

b22
2t dt. (3.15)

This is the first term in the recursion, which we have denoted by L0(t). Note that due

to the symmetry of Brownian motion, this probability is the same for the excursion

below b1, and only depends on the difference between the barrier and the starting
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point. Hence, it follows that the probability of t being the start of the excursion below

b1 greater than length 1, for 0 < t < 1, is

P 0(τ b2b1 − 1 ∈ dt, τ−b1 < τ+b2) = νb1(t) =
1

2π
√
t
e−

b21
2t dt, (3.16)

which we denote by L̃0(t), and corresponds to the first term of the second recursion

(3.5). This proves the equations (3.1) and (3.2) for 1 < t < 2.

Now, for 2 < t < 3, the same interpretation for L0(t− 1) as the start of the excursion

greater than length 1 for 1 < t − 1 < 2 still applies, but now there can be up to 2

excursions greater than length 1. Hence, we need to subtract the probability of t being

the start of the second excursion greater than length 1. We denote by ϕ1(t − s + 1)

the probability that we will start another excursion above b2 greater than length 1 at

time t, given that at time s, we are already length 1 into an excursion above b2. We

have for 1 < s < t,

ϕ1(t− s+ 1) =

∫ ∞
b2

P b2(Ws ∈ dx|gb2,s = s− 1)

∫ t

s

P x(Tb2 ∈ du)ν0(t− u), (3.17)

where we have decomposed the excursion, conditioning on the value of the Brownian

motion at time s, and the time when it comes back to level b2, and ν0(t − u) is the

probability that the Brownian motion will start another excursion above b2 of length 1

at time t, given that it is at level b2 at time u. Now, the Brownian motion conditioned

to stay above b2 up to time 1 is a Brownian meander, which has density

P b2(Ws ∈ dx|gb2,s = s− 1) = (x− b2)e−
(x−b2)2

2 1{x>b2}dx. (3.18)

Hence, we have

ϕ1(t− s+ 1) =

∫ ∞
b2

(x− b2)e−
(x−b2)2

2

∫ t

s

x− b2√
2π(u− s)3

e−
(x−b2)2

2(u−s)
1

2π
√
t− u

dudx(3.19)

=
1

2π

√
t− s

t− s+ 1
. (3.20)
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Next, we denote by ϕ2(t− s+ 1, b2− b1) the probability that we will start an excursion

above b2 of length at least 1 at time t, given that at time s, we are already length 1

into an excursion below b1. We have for 1 < s < t,

ϕ2(t− s+ 1, b2 − b1) =

∫ b1

−∞
P b1(Ws ∈ dx|gb1,s = s− 1)

∫ t

s

P x(Tb1 ∈ du)νb2−b1(t− u),

(3.21)

where we have decomposed the excursion, conditioning on the value of the Brownian

motion at time s, and the time when it comes back to level b1. Then νb2−b1(t − u) is

the probability that the Brownian motion will start an excursion above b2 of length 1

at time t, given that it is at level b1 at time u. Computations lead to

ϕ2(t− s+ 1, b) (3.22)

=

∫ b1

−∞
(b1 − x)e−

(b1−x)
2

2

∫ t

s

b1 − x√
2π(u− s)3

e−
(b1−x)

2

2(u−s)
1

2π
√
t− u

e−
b2

2(t−u) dudx (3.23)

=
1

4π

∫ t

s

1√
t− u(1 + u− s)3/2

e−
b2

2(t−u) du (3.24)

=
1

4π

[
− 2

√
t− u

(1 + t− s)
√

1 + u− s
e−

b2

2(t−u) (3.25)

−
√

2πb

(1 + t− s)3/2
e−

b2

2(1+t−s)

(
1− 2N

(
− b

√
1 + u− s√

(t− u)(1 + t− s)

))]t
s

(3.26)

=
1

2π

√
t− s

1 + t− s
e−

b2

2(t−s) +
b√

2π(1 + t− s)3/2
e−

b2

2(1+t−s)N

(
− b√

(t− s)(1 + t− s)

)
.(3.27)

Note that due to the symmetry of Brownian motion, ϕ1(t−s+1) is also the probability

that t is the start of another excursion below b1 greater than length 1, given that at

time s, we are already in an excursion of length 1 below b1. Likewise, ϕ2(t−s+1, b2−b1)

is also the probability that t is the start of an excursion below b1 greater than length

1, given that at time s, we are already in an excursion of length 1 above b2.

Since the first excursion can either be above b2 or below b1, there are two scenarios.

The probability that t is the start of the second excursion above b2 greater than length

1 is the sum of the two cases:

∫ t

1

L0(s− 1)ϕ1(t− s+ 1)ds+

∫ t

1

L̃0(s− 1)ϕ2(t− s+ 1, b2 − b1)ds (3.28)
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=

∫ t

1

L0(t− s)ϕ1(s)ds+

∫ t

1

L̃0(t− s)ϕ2(s, b2 − b1)ds, (3.29)

which is L1(t − 1) in the recursion equation (3.3). Similarly, the probability that t is

the start of the second excursion below b1 greater than length 1 is

∫ t

1

L̃0(t− s)ϕ1(s)ds+

∫ t

1

L0(t− s)ϕ2(s, b2 − b1)ds, (3.30)

which is L̃1(t−1) in the recursion equation (3.4). Hence for 2 < t < 3, the density of τ b2b1

for the cases τ+b2 < τ−b1 and τ−b1 < τ+b2 are L0(t− 1)−L1(t− 1) and L̃0(t− 1)− L̃1(t− 1)

respectively, and we proved the equations (3.1) and (3.2) for 2 < t < 3. The same

argument would follow by induction for t > 3 and thus we obtain the recursion.

3.2. Formal proof

In this section, we give a formal proof of the recursive formula based on Laplace

transforms. We define the Laplace transform ĥ(β) of a function h(t) on the positive

real line as

L(h(t)) = ĥ(β) :=

∫ ∞
0

e−βth(t)dt, (3.31)

and the inverse Laplace transform operator is denoted by L−1(.). Furthermore, for

ease of notation, we define as in previous papers the following function

Ψ(x) := 1 + x
√

2πe
x2

2 N (x), (3.32)

where N (x) is the cumulative distribution function for the standard normal distribu-

tion.

Proof. We only show the calculations for the case when {τ+b2 < τ−b1}, but the case

when {τ−b1 < τ+b2} can be proved in the same way. The Laplace transform of the double

barrier Parisian stopping time was studied in [Anderluh and van der Weide (2009)] and

we use here the result in Theorem 3.2 of the paper. The Laplace transform for τ b2b1 on

the set {τ+b2 < τ−b1} is

E
(
e−βτ

b2
b1 1{τ+

b2
<τ−b1

}

)
=

e−
√
2βb1Ψ

(√
2β
)
− e
√
2βb1Ψ

(
−
√

2β
)

e
√
2β(b2−b1)Ψ

(√
2β
)2 − e√2β(b1−b2)Ψ

(
−
√

2β
)2 . (3.33)



Double barrier Parisian stopping time 11

Factorising, we obtain

E
(
e−βτ

b2
b1 1{τ+

b2
<τ−b1

}

)
=

1
2

(
e
√
2β(b1+b2)/2 + e−

√
2β(b1+b2)/2

)
e
√
2β(b2−b1)/2Ψ

(√
2β
)

+ e
√
2β(b1−b2)/2Ψ

(
−
√

2β
) (3.34)

−
1
2

(
e
√
2β(b1+b2)/2 − e−

√
2β(b1+b2)/2

)
e
√
2β(b2−b1)/2Ψ

(√
2β
)
− e
√
2β(b1−b2)/2Ψ

(
−
√

2β
) .(3.35)

Now we refer to Dassios and Lim [Dassios and Lim (2013)] for the derivation of the

following equality

e−β
1

β
Ψ
(√

2β
)

= 2

√
π

β

(
1 +

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
. (3.36)

Similarly, we derive

e−β
1

β
Ψ
(
−
√

2β
)

=
e−β

β
− 2

√
π

β
N
(
−
√

2β
)

(3.37)

=

∫ ∞
1

e−βsds− 2

√
π

β

∫ −√2β

−∞

1√
2π
e−

x2

2 dx (3.38)

=

∫ ∞
1

e−βsds−
∫ ∞
1

e−βs√
s
ds (3.39)

= 2

√
π

β

(
1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
. (3.40)

Adding the two, we obtain an expression for the denominator in the expression on the

RHS of (3.34),

e
√
2β(b2−b1)/2Ψ

(√
2β
)

+ e
√
2β(b1−b2)/2Ψ

(
−
√

2β
)

(3.41)

= eβe
√
2β(b2−b1)/22

√
πβ

(
1 +

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds+ e

√
2β(b1−b2) 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
,(3.42)

and (3.35),

e
√
2β(b2−b1)/2Ψ

(√
2β
)
− e
√
2β(b1−b2)/2Ψ

(
−
√

2β
)

(3.43)

= eβe
√
2β(b2−b1)/22

√
πβ

(
1 +

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds− e

√
2β(b1−b2) 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
.(3.44)
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Denoting by ĝ0(β), ˆ̃g0(β), ĝk(β) and ˆ̃gk(β) the following expressions,

ĝ0(β) =
e
√
2βb1 + e−

√
2βb2

4
√
πβ

, (3.45)

ˆ̃g0(β) =
e
√
2βb1 − e−

√
2βb2

4
√
πβ

, (3.46)

ĝ1(β) =
1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds+ e

√
2β(b1−b2) 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds, (3.47)

ˆ̃g1(β) =
1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds− e

√
2β(b1−b2) 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds, (3.48)

we can write the expression on the RHS of (3.34) as

1
2

(
e
√
2β(b1+b2)/2 + e−

√
2β(b1+b2)/2

)
e
√
2β(b2−b1)/2Ψ

(√
2β
)

+ e
√
2β(b1−b2)/2Ψ

(
−
√

2β
) (3.49)

=

1
2

(
e
√
2β(b1+b2)/2 + e−

√
2β(b1+b2)/2

)
eβe
√
2β(b2−b1)/22

√
πβ
(

1 + 1
2
√
πβ

∫∞
1

e−βs

2s3/2
ds+ e

√
2β(b1−b2) 1

2
√
πβ

∫∞
1

e−βs

2s3/2
ds
)(3.50)

= e−β
ĝ0(β)

1 + ĝ1(β)
, (3.51)

and (3.35) as

−
1
2

(
e
√
2β(b1+b2)/2 − e−

√
2β(b1+b2)/2

)
e
√
2β(b2−b1)/2Ψ

(√
2β
)
− e
√
2β(b1−b2)/2Ψ

(
−
√

2β
) = −e−β

ˆ̃g0(β)

1 + ˆ̃g1(β)
. (3.52)

Since ĝ1(β) is a continuous and decreasing function of β, it goes to 0 when β → ∞.

Hence, there exists some β > 0 such that |ĝ1(β)| < 1, and so (3.51) can be written

as the sum of a convergent geometric series with first term ĝ0(β) and common ratio

−ĝ1(β). Similarly, since

|ˆ̃g1(β)| ≤ 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds < 1, (3.53)

(3.52) can be written as the sum of a convergent geometric series with first term ˆ̃g0(β)

and common ratio −ˆ̃g1(β). We obtain

E
(
e−βτ

b2
b1 1{τ+

b2
<τ−b1

}

)
= e−β

(
ĝ0(β)

∞∑
i=0

(−1)k (ĝ1(β))
k − ˆ̃g0(β)

∞∑
i=0

(−1)k
(

ˆ̃g1(β)
)k)

.(3.54)
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Now, we invert the Laplace transform (3.54). If we denote the Laplace inversions of

ĝ0(β), ˆ̃g0(β), ĝ1(β), and ˆ̃g1(β) by g0(t), g̃0(t), g1(t) and g̃1(t), we have for t > 1,

f b2b1 (t, τ+b2 < τ−b1) =

∞∑
k=0

(−1)k (gk(t− 1)− g̃k(t− 1)) , (3.55)

where gk(t) is the convolution of g0(t) with k − 1 times of g1(t), and g̃k(t) is the

convolution of g̃0(t) with k − 1 times of g̃1(t). Next, we have the following explicit

Laplace inversions:

L−1
(
e
√
2βb1

4
√
πβ

)
=

1

4π
√
t
e−

b21
2t , (3.56)

L−1
(
e−
√
2βb2

4
√
πβ

)
=

1

4π
√
t
e−

b22
2t , (3.57)

L−1
(

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
=

√
t− 1

2πt
1{t>1}, (3.58)

and

L−1
(
e
√
2β(b1−b2) 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
(3.59)

=

(√
t− 1

2πt
e−

(b2−b1)2

2(t−1) − b2 − b1√
2πt3/2

e−
(b1−b2)2

2t N

(
− b2 − b1√

t(t− 1)

))
1{t>1}.(3.60)

The first three inversions were computed in [Dassios and Lim (2013)], and the last one

can be derived as the convolution of the following two functions:

L−1
(
e
√
2β(b1−b2) 1

2
√
πβ

)
=

1

2π
√
t
e−

(b1−b2)2

2t (3.61)

L−1
(∫ ∞

1

e−βs

2s3/2
ds

)
=

1

2t3/2
1{t>1}, (3.62)

so that

L−1
(
e
√
2β(b1−b2) 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
(3.63)

= 1{t>1}

∫ t−1

0

1

2π
√
s

1

2(t− s)3/2
e−

(b1−b2)2

2s ds (3.64)



14 Angelos Dassios, Jia Wei Lim

= 1{t>1}

∫ b1−b2√
t−1

−∞

−x(b2 − b1)

2π (tx2 − (b1 − b2)2)
3/2

e−
x2

2 dx (3.65)

= 1{t>1}

(√
t− 1

2πt
e−

(b1−b2)2

2(t−1) −
∫ b1−b2√

t−1

−∞

−x(b2 − b1)

2πt
√
tx2 − (b1 − b2)2

e−
x2

2 dx

)
(3.66)

= 1{t>1}

(√
t− 1

2πt
e−

(b1−b2)2

2(t−1) − b2 − b1√
2πt3/2

e−
(b1−b2)2

2t N

(
− b2 − b1√

t(t− 1)

))
.(3.67)

Thus, adding the appropriate terms, we have

g0(t) =
e−

b21
2t − e−

b22
2t

4π
√
t

, (3.68)

g̃0(t) =
e−

b21
2t + e−

b22
2t

4π
√
t

, (3.69)

g1(t) = 1{t>1} (ϕ1(t)− ϕ2(t, b2 − b1)) , (3.70)

g̃1(t) = 1{t>1} (ϕ1(t) + ϕ2(t, b2 − b1)) , (3.71)

where ϕ1(t) and ϕ2(t, b) are as defined in (3.6) and (3.7), and for k ≥ 1,

gk+1(t) =

∫ t−k

1

gk(t− s) (ϕ1(s)− ϕ2(s, b2 − b1)) ds, for t > k + 1, (3.72)

g̃k+1(t) =

∫ t−k

1

g̃k(t− s) (ϕ1(s) + ϕ2(s, b2 − b1)) ds, for t > k + 1. (3.73)

We also note that for n < t ≤ n + 1, gk(t) and g̃k(t) are zero for k > n, and thus

gk(t− 1) and g̃k(t− 1) are zero for k > n− 1, so we only need a finite sum up to n− 1.

Finally, we let Lk(t) = gk(t) − g̃k(t), and L̃k(t) = gk(t) + g̃k(t), to obtain the result.

For n < t ≤ n+ 1, n = 1, 2, ...,

f b2b1 (t, τ+b2 < τ−b1) =

n−1∑
k=0

(−1)k (gk(t− 1)− g̃k(t− 1)) (3.74)

=

n−1∑
k=0

(−1)kLk(t− 1), (3.75)

where

L0(t) = g0(t)− g̃0(t) =
1

2π
√
t
e−

b22
2t , (3.76)
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L̃0(t) = g0(t) + g̃0(t) =
1

2π
√
t
e−

b21
2t , (3.77)

for t > 0, and

Lk+1(t) =

∫ t−k

1

(
Lk(t− s)ϕ1(s) + L̃k(t− s)ϕ2(s, b2 − b1)

)
ds, (3.78)

L̃k+1(t) =

∫ t−k

1

(
L̃k(t− s)ϕ1(s) + Lk(t− s)ϕ2(s, b2 − b1)

)
ds, (3.79)

for t > k + 1, which completes the proof. �

Remark 1. When b1 = b2, the above formula reduces to the formula for the two-sided

Parisian stopping time for b = b1 = b2.

3.3. Starting above (b1 < b2 ≤ 0) or below (0 ≤ b1 < b2) both barriers

We denote by Tb the first hitting time of level b of a standard Brownian motion W .

For the case when we start above both barriers (b1 < b2 ≤ 0), we consider only the

case when Tb2 < D = 1, because if this is not the case, then we would have τ b2b1 = 1

since we are already above the upper barrier.

Theorem 3.2. For b1 < b2 ≤ 0, we have for Tb2 < 1, for the two cases where τ+b2 < τ−b1

and τ−b1 < τ+b2 , we have the following formulas for the probability density function of

τ b2b1 , for t > 1, n < t ≤ n+ 1 and n = 1, 2, ...:

f b2b1 (t, τ+b2 < τ−b1 , Tb2 < 1) =

n−1∑
k=0

(−1)
k
Lk(t− 1), (3.80)

f b2b1 (t, τ−b1 < τ+b2 , Tb2 < 1) =

n−1∑
k=0

(−1)
k
L̃k(t− 1), (3.81)

where Lk(t) and L̃k(t) are defined recursively as follows for t > k + 1:

Lk+1(t) =

∫ t−k

1

(
Lk(t− s)ϕ1(s) + L̃k(t− s)ϕ2(s, b2 − b1)

)
ds, (3.82)

L̃k+1(t) =

∫ t−k

1

(
L̃k(t− s)ϕ1(s) + Lk(t− s)ϕ2(s, b2 − b1)

)
ds, (3.83)
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with the initial conditions

L0(t) = 1{0≤t≤1}

(
1

4π
√
t
e−

b21
2t +

1

4π
√
t
e−

b22
2t

)
(3.84)

+1{t>1}

(
1

4π
√
t
e−

b21
2tN

(
b2
√
t− 1√
t

+
b2 − b1√
t
√
t− 1

)
(3.85)

+
1

4π
√
t
e−

(2b2−b1)2

2t N
(
b2
√
t− 1√
t

− b2 − b1√
t
√
t− 1

)
+

1

2π
√
t
e−

b22
2tN

(
−b2

√
t− 1

t

))
,(3.86)

L̃0(t) = 1{0≤t≤1}

(
1

4π
√
t
e−

b21
2t − 1

4π
√
t
e−

b22
2t

)
(3.87)

+1{t>1}

(
1

4π
√
t
e−

b21
2tN

(
b2
√
t− 1√
t

+
b2 − b1√
t
√
t− 1

)
(3.88)

+
1

4π
√
t
e−

(2b2−b1)2

2t N
(
b2
√
t− 1√
t

− b2 − b1√
t
√
t− 1

)
− 1

2π
√
t
e−

b22
2tN

(
−b2

√
t− 1

t

))
,(3.89)

where ϕ1(s) and ϕ2(s, b) are as defined in Theorem 3.1.

Proof. For b1 < b2 ≤ 0, when Tb2 < 1, using the strong Markov property of the

Brownian motion, we can restart it the first time it hits b2. Then τ b2b1 can be decomposed

into the sum of Tb2 and τ0b1−b2 , which are independent of each other, and furthermore,

due to the symmetry of Brownian motion, τ0b1−b2 = τ b2−b10 . The Laplace transform of

the stopping time on the sets we are interested in is thus:

E
(
e−βτ

b2
b1 1{τ+

b2
<τ−b1

}1{Tb2<1}

)
(3.90)

= E
(
e−β(Tb2+τ

0
b1−b2

)1{τ+
0 <τ

−
b1−b2

}1{Tb2<1}

)
(3.91)

= E
(
e−βTb2 1{Tb2<1}

)
E
(
e−βτ

0
b1−b2 1{τ+

0 <τ
−
b1−b2

}

)
(3.92)

= E
(
e−βTb2 1{Tb2<1}

)
E
(
e−βτ

b2−b1
0 1{τ+

b2−b1
<τ−0 }

)
. (3.93)

Using now equation (3.54), but with the two barriers now being 0 and b2− b1, we have

E
(
e−βτ

b2−b1
0 1{τ+

b2−b1
<τ−0 }

)
= e−β

(
ĝ0(β)

∞∑
i=0

(−1)k (ĝ1(β))
k − ˆ̃g0(β)

∞∑
i=0

(−1)k
(

ˆ̃g1(β)
)k)

,(3.94)
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with ĝ1(β) and ˆ̃g1(β) the same as in (3.47) and (3.48), but ĝ0(β) and ˆ̃g0(β) becomes

ĝ0(β) =
e
√
2β(b1−b2) + 1

4
√
πβ

, (3.95)

ˆ̃g0(β) =
e
√
2β(b1−b2) − 1

4
√
πβ

. (3.96)

Hence,

E
(
e−βτ

b2
b1 1{τ+

b2
<τ−b1

}1{Tb2<1}

)
(3.97)

= e−β

(
E
(
e−βTb2 1{Tb2<1}

)
ĝ0(β)

∞∑
i=0

(−1)k (ĝ1(β))
k

(3.98)

−E
(
e−βTb2 1{Tb2<1}

)
ˆ̃g0(β)

∞∑
i=0

(−1)k
(

ˆ̃g1(β)
)k)

. (3.99)

This can be inverted the same way as before, and each convolution term L1(t) and

L̃1(t) is the same as before, but the initial conditions become

L0(t) = L−1
(
E
(
e−βTb2 1{Tb2<1}

)
ĝ0(t)

)
, (3.100)

L̃0(t) = L−1
(
E
(
e−βTb2 1{Tb2<1}

)
ˆ̃g0(t)

)
. (3.101)

To find L0(t) and L̃0(t), we invert the following Laplace transforms:

L−1
(
E
(
e−βTb2 1{Tb2<1}

) e√2β(b1−b2)

4
√
πβ

)
(3.102)

= 1{0≤t<1}

∫ t

0

−b2√
2πs3

e−
b22
2s

1

4π
√
t− s

e−
(b2−b1)2

2(t−s) ds (3.103)

+1{t>1}

∫ 1

0

−b2√
2πs3

e−
b22
2s

1

4π
√
t− s

e−
(b2−b1)2

2(t−s) ds (3.104)

= 1{0≤t<1}
1

4π
√
t
e−

b21
2t (3.105)

+1{t>1}

(
e−

b21
2t

1

4π
√
t
N
(
b2
√
t− 1√
t

+
b2 − b1√
t
√
t− 1

)
(3.106)

+e−
(2b2−b1)2

2t
1

4π
√
t
N
(
b2
√
t− 1√
t

− b2 − b1√
t
√
t− 1

))
. (3.107)
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where the derivation from (3.103) to (3.105) is:

1{0≤t<1}

∫ t

0

−b2√
2πs3

e−
b22
2s

1

4π
√
t− s

e−
(b2−b1)2

2(t−s) ds (3.108)

= 1{0≤t<1}

∫ b2√
t

−∞

1

2π
√

2π

−x√
x2t− b22

e−
x2

2 e
− (b2−b1)2x2

2(tx2−b22) dx (3.109)

= 1{0≤t<1}e
− b

2
2

2t e−
(b2−b1)2

2t

∫ ∞
0

1

2π
√

2πt
e
− 1

2t

(
x2+

(b2−b1)2b22
x2

)
dx (3.110)

= 1{0≤t<1}
1

2
e−

b22
2t e−

(b2−b1)2

2t

(∫ ∞
0

1 + (b2−b1)b2
x2

2π
√

2πt
e
− 1

2t

(
x− (b2−b1)b2

x

)2

e−
1
2t (2(b2−b1)b2)dx(3.111)

+

∫ ∞
0

1− (b2−b1)b2
x2

2π
√

2πt
e
− 1

2t

(
x+

(b2−b1)b2
x

)2

e
1
2t (2(b2−b1)b2)dx

)
(3.112)

= 1{0≤t<1}
1

4π
√
t
e−

b21
2t . (3.113)

Likewise, we also have

L−1
(
E
(
e−βTb2 1{Tb2<1}

) 1

4
√
πβ

)
= 1{0≤t≤1}

1

4π
√
t
e−

b22
2t +1{t>1}

1

2π
√
t
e−

b22
2tN

(
−b2

√
t− 1

t

)
.

(3.114)

Finally, L0(t) is the sum of (3.102) and (3.114), and L̃0(t) is the difference of (3.102)

and (3.114), so this gives us the result. �

Corollary 1. For 0 ≤ b1 < b2, on the set Tb1 < 1, we have

f b2b1 (t, τ+b2 < τ−b1 , Tb1 < 1) = f−b1−b2 (t, τ−−b2 < τ+−b1 , T−b1 < 1) (3.115)

f b2b1 (t, τ−b1 < τ+b2 , Tb1 < 1) = f−b1−b2 (t, τ+−b1 < τ−−b2 , T−b1 < 1). (3.116)

Proof. The results are due to the symmetry of Brownian motion. The positive

barriers can be reflected to give the same result as in the case with negative barriers.

�

4. Pricing a Double barrier Parisian call option

In the previous section, we obtained a recursive formula for the density of the double

barrier Parisian stopping time, for each of the three cases where we start in between
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the barrier (b1 ≤ 0 ≤ b2), above both barriers (b1 < b2 ≤ 0), and below both barriers

(0 ≤ b1 < b2). In this section, we will show how we can use the densities to compute

the price of a double barrier Parisian min-in call option.

4.1. Double barrier Parisian min-in call

A double barrier Parisian min-in call is a call option that gets knocked in if τ b2b1 ≤ T .

We denote by Cdoublei (x, T, L1, L2,K) the price of such an option with strike price K,

barrier level L1 and L2, where L1 < L2, window length D = 1, initial underlying price

x and maturity T . The payoff at maturity of such an option is 1{τb2b1≤T}
(ST −K)+.

When the underlying asset price follows a Geometric Brownian motion, and when it is

in between the two barriers L1 and L2, we have the following pricing formula.

Theorem 4.1. For L1 ≤ S0 ≤ L2 (b1 ≤ 0 ≤ b2), the risk neutral price of a double

barrier Parisian min-in call with maturity T > 1 is given by

∗Cdoublei (x, T, L1, L2,K) (4.1)

=
√

2π

(∫ T

0

f b2b1 (t, τ−b1 < τ+b2)(xψ(σ +m,hb1 , b1, ρ, t)−Kψ(m,h′b1 , b1, ρ, t))dt (4.2)

+

∫ T

0

f b2b1 (t, τ+b2 < τ−b1)(xψ(−(σ +m), hb2 ,−b2,−ρ, t)−Kψ(−m,h′b2 ,−b2,−ρ, t))dt

)
,(4.3)

where we have used the following functions in order to simplify notations:

ψ(x, y, b, ρ, t) := e
x2(1+T−t)+2bx

2

(
Z(−x)N

(
−xρ− y√

1− ρ2

)
− ρZ(y)N

(
−x− ρy√

1− ρ2

)
(4.4)

−x (N (−x)−Nρ(−x, y))) , (4.5)

with Nρ(·, ·) denoting the joint cumulative distribution of a pair of bivariate normal

random variables with correlation coefficient ρ, and

hb :=
1√

1 + T − t
(k − b− (σ +m)(1 + T − t)) , (4.6)

h′b :=
1√

1 + T − t
(k − b−m(1 + T − t)) , (4.7)

ρ :=
1√

1 + T − t
. (4.8)
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Proof. As discussed in (2.7) and (2.8), we have

∗Cdoublei (x, T, L1, L2,K) = EP

[
1{τb2b1≤T}

emZT (xeσZT −K)+
]
. (4.9)

We denote by Ft = σ(Zs, s ≤ t) the natural filtration of the Brownian motion (Zt, t ≥

0). For ease of notation, since there is no ambiguity here, we refer to the double barrier

stopping time τ b2b1 as just τ . Then τ is an Ft-stopping time, and by the strong Markov

property of Brownian motion,

∗Cdoublei (x, T, L1, L2,K) = EP
[
1{τ≤T}E

[
emZT (xeσZT −K)+|Fτ

]]
(4.10)

= EP

[
1{τ≤T}1{τ−b1<τ

+
b2
}EP

[
emZT (xeσZT −K)+|Fτ

]]
(4.11)

+EP

[
1{τ≤T}1{τ+

b2
<τ−b1

}EP
[
emZT (xeσZT −K)+|Fτ

]]
(4.12)

We have split into the two cases, τ−b1 < τ+b2 and τ+b2 < τ−b1 . In the first case, (4.11) is

equal to

EP

[
1{τ≤T}1{τ−b1<τ

+
b2
}EP

[
emZT (xeσZT −K)+|Fτ

]]
(4.13)

= EP

[
1{τ≤T}1{τ−b1<τ

+
b2
}

∫ ∞
−∞

emy(xeσy −K)+
1√

2π(T − τ)
e−

(y−Zτ )2

2(T−τ) dy

]
.(4.14)

Since the stopping time τ1{τ−b1<τ
+
b2
} is independent of the Brownian meander Zτ−b1

, and

the density of Zτ−b1
is

v(dz) = P (Zτ−b1
∈ dz) = (b1 − z)e−

(z−b1)2

2 1{z<b1}dz, (4.15)

(4.14) is equal to

∫ T

0

∫ b1

−∞
f b2b1 (t; τ−b1 < τ+b2)ν(dz)

∫ ∞
k

emy(xeσy−K)
1√

2π(T − t)
e−

(y−z)2
2(T−t) dydzdt, (4.16)

for k = 1
σ ln

(
K
x

)
. Making use of the calculations in [Dassios and Lim (2013)], we have

x

∫ b1

−∞

∫ ∞
k

1

2π
√
T − t

e(σ+m)y(b1 − z)e−
(z−b1)2

2 e−
(y−z)2
2(T−t) dzdy (4.17)
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= xe
(σ+m)2(1+T−t)+2b1(σ+m)

2
1

2π
√

1− ρ2

∫ −(σ+m)

−∞

∫ ∞
hb1

(−v − (σ +m))e
−u

2−2ρuv+v2

2(1−ρ2) dudv(4.18)

= xe
x2(1+T−t)+2b1x

2

(
Z(−(σ +m))N

(
−(σ +m)ρ− hb1√

1− ρ2

)
+ ρZ(hb1)N

(
−(σ +m)− ρ√

1− ρ2

))
(4.19)

−xe
x2(1+T−t)+2b1x

2 (σ +m) (N (−(σ +m))−Nρ(−(σ +m), hb1)) (4.20)

= xψ(σ +m,hb1 , b1, ρ, t)−Kψ(m,h′b1 , b1, ρ, t), (4.21)

where we have used the transformation u = y−(b1+(σ+m)(1+T−t)√
1+T−t and v = z− (b1 +(σ+

m)), and denoted the function ψ(x, y, b, ρ, t), hb, h
′
b, and ρ as in (4.4)-(4.8). Similar

calculations for the expectation (4.12) leads to the price of the option given in (4.2)

and (4.3). �

Theorem 4.2. For S0 ≤ L1 < L2 (0 ≤ b1 < b2), the price of a double barrier Parisian

in call with maturity T > 1 is given by

∗Cdoublei (x, T, L1, L2,K) (4.22)

= xφ(σ +m)−Kφ(m) (4.23)

+
√

2π

(∫ T

0

f b2b1 (t, τ−b1 < τ+b2 , Tb1 < 1)(xψ(σ +m,hb1 , b1, ρ, t)−Kψ(m,h′b1 , b1, ρ, t))dt (4.24)

+

∫ T

0

f b2b1 (t, τ+b2 < τ−b1 , Tb1 < 1)(xψ(−(σ +m), hb2 ,−b2,−ρ, t)−Kψ(−m,h′b2 ,−b2,−ρ, t))dt

)
,(4.25)

and for L1 < L2 ≤ S0 (b1 < b2 ≤ 0), the price of a double barrier Parisian in call with

maturity T > 1 is given by

∗Cdoublei (x, T, L1, L2,K) (4.26)

= xφ′(σ +m)−Kφ′(m) (4.27)

+
√

2π

(∫ T

0

f b2b1 (t, τ−b1 < τ+b2 , Tb2 < 1)(xψ(σ +m,hb1 , b1, ρ, t)−Kψ(m,h′b1 , b1, ρ, t))dt (4.28)

+

∫ T

0

f b2b1 (t, τ+b2 < τ−b1 , Tb2 < 1)(xψ(−(σ +m), hb2 ,−b2,−ρ, t)−Kψ(−m,h′b2 ,−b2,−ρ, t))dt

)
.(4.29)
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In the above, we have defined the functions φ(x) and φ′(x) to be:

φ(x) := e
x2T
2

(
N (b− x)−N 1√

T

(
b− x, k − xT√

T

))
(4.30)

−e
x2T+4bx

2

(
N (−b− x)−N 1√

T

(
−b− x, k − 2b− xT√

T

))
, (4.31)

φ′(x) := e
x2T
2

(
N̄ρ
(
b− x, k − xT√

T

)
− e

x2T+4bx
2 N̄ρ

(
−b− x, k − (2b+ xT )√

T

))
.(4.32)

Proof. For S0 ≤ L1 < L2 (0 ≤ b1 < b2),

∗Cdoublei (x, T, L1, L2,K) = EP

[
1{Tb1≥1}E

[
emZT (xeσZT −K)+|Fτ

]]
(4.33)

+EP

[
1{Tb1<1}1{τ≤T}E

[
emZT (xeσZT −K)+|Fτ

]]
.(4.34)

If Tb1 ≥ 1, we have τ = 1. Furthermore, the law of Z1 on the set {Tb1 ≥ 1} is

P (Z1 ∈ dz, Tb1 ≥ 1) = P (Z1 ∈ dz)− P (Z1 ∈ dz, Tb1 < 1) (4.35)

=
1√
2π

(
e−

z2

2 − e−
(z−2b1)2

2

)
dz. (4.36)

Hence, we have

EP

[
1{Tb1≥1}E

[
emZT (xeσZT −K)+|Fτ

]]
(4.37)

=
1√

2π(T − 1)

∫ b1

−∞

∫ ∞
k

emy(xeσy −K)e−
(y−z)2
2(T−1)

1√
2π

(
e−

z2

2 − e−
(z−2b1)2

2

)
dydz(4.38)

= xφ(σ +m)−Kφ(m), (4.39)

for φ(x) defined in (4.30)-(4.31). (4.34) is the same as before with the density of the

stopping time now being restricted to the set {Tb1 < 1}, and the pricing formula in

(4.23)-(4.25) thus follows. For L1 < L2 ≤ S0 (b1 < b2 ≤ 0), we have

∗Cdoublei (x, T, L1, L2,K) = EP

[
1{Tb2≥1}E

[
emZT (xeσZT −K)+|Fτ

]]
(4.40)

+EP

[
1{Tb2<1}1{τ≤T}E

[
emZT (xeσZT −K)+|Fτ

]]
.(4.41)
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The law of Z1 on the set {Tb2 ≥ 1} is

P (Z1 ∈ dz, Tb2 ≥ 1) =
1√
2π

(
e−

z2

2 − e−
(z+2b2)2

2

)
dz. (4.42)

Expression (4.40) is thus

EP

[
1{Tb2≥1}E

[
emZT (xeσZT −K)+|Fτ

]]
(4.43)

=
1√

2π(T − 1)

∫ ∞
b2

∫ ∞
k

emy(xeσy −K)e−
(y−z)2
2(T−1)

1√
2π

(
e−

z2

2 − e−
(z+2b2)2

2

)
dydz(4.44)

= xφ′(σ +m)−Kφ′(m), (4.45)

where φ′(x) is as defined in (4.32). Since (4.41) is the same as before with the density

of the stopping time being restricted to the set {Tb2 < 1}, we have the pricing formula

(4.27)-(4.29). �

4.2. Double barrier Parisian out call

The double barrier Parisian out call is a call option which gets knocked out when

the price of the underlying asset goes beyond the barriers. Hence it has payoff (ST −

K)+1{τ≤T} at time T . We denote by Cdoubleo (x, T, L1, L2,K) the price of such an

option with initial price x and time to maturity T . Then since

EP

[
e−rT (ST −K)

+
]

= EP

[
e−rT (ST −K)

+
1{τ≤T}

]
+EP

[
e−rT (ST −K)

+
1{τ>T}

]
,

(4.46)

we have for L1 ≤ S0 ≤ L2 (b1 ≤ 0 ≤ b2),

Cdoubleo (x, T, L1, L2,K) = CBS(x, T )− Cdoublei (x, T ), (4.47)

where CBS(x, T ) denotes the price of the vanilla call option with payoff (ST −K)+ at

maturity T . For S0 ≤ L1 < L2 (0 ≤ b1 < b2), the Parisian out call becomes useless if

Tb1 > 1, hence we have

Cdoubleo (x, T, L1, L2,K) = EP

[
e−rT1{Tb1<1}1{τ>T}(ST −K)+

]
(4.48)

= EP

[
1{Tb1<1}e

−rT (ST −K)+
]
− EP

[
1{Tb1<1}e

−rT1{τ≤T}(ST −K)+
]

(4.49)



24 Angelos Dassios, Jia Wei Lim

=

∫ 1

0

b1√
2πt3

e−
b21
2tCBS(L1, T − t)dt−

(
Cdoublei (x, T, L1, L2,K)− (xφ(σ +m)−Kφ(m))

)
.(4.50)

For L1 < L2 ≤ S0 (b1 < b2 ≤ 0), the Parisian out call becomes useless if Tb2 > 1, hence

we have

Cdoubleo (x, T, L1, L2,K) = EP

[
e−rT1{Tb2<1}1{τ>T}(ST −K)+

]
(4.51)

= EP

[
1{Tb2<1}e

−rT (ST −K)+
]
− EP

[
1{Tb2<1}e

−rT1{τ≤T}(ST −K)+
]

(4.52)

=

∫ 1

0

−b2√
2πt3

e−
b22
2tCBS(L2, T − t)dt−

(
Cdoublei (x, T, L1, L2,K)− (xφ′(σ +m)−Kφ′(m))

)
.(4.53)

5. Numerical Results

In this section, we compute the prices of the two-sided Parisian in call options

and compare the prices across different initial asset price S0, and different window

length D. We demonstrate the correctness of these results by comparing them with

the numerical prices obtained in [Anderluh and van der Weide (2009)] using Fourier

transform inversion. We note that since we have chosen the window length D as the

unit of time, all parameters (r, σ) are correspondingly normalised depending on the

window length.

The table below is a comparison of the prices of double barrier Parisian in calls across

different S0 between 80 and 100, and D between 2 weeks and 3 months, fixing the

parameters σ = 0.2, r = 0.05, T = 1 year, K = 90, and L1 = 80 and L2 = 100.
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Table 1: Price of Parisian min-in call for L1 = 80, L2 = 100

S0 D = 1/25 D = 1/12 D = 1/6 D = 1/4

80 3.894968 3.540956 2.844183 2.210231
82 4.650542 4.245481 3.478998 2.782763
84 5.526743 5.082531 4.256382 3.498445
86 6.525658 6.055637 5.182448 4.366187
88 7.644386 7.161490 6.255264 5.387473
90 8.877623 8.394327 7.470518 6.561364
92 10.21816 9.746352 8.821621 7.884263
94 11.65736 11.20818 10.29992 9.349889
96 13.18567 12.76930 11.89502 10.94943
98 14.79303 14.41847 13.59514 12.67189
100 16.39683 16.03719 15.23193 14.31076

The prices decrease with longer window lengths, as it becomes more difficult to

knock in the option. For comparison, we have computed the same call prices for the

case when the barriers are widened to L1 = 70 and L2 = 110. As can be expected,

the options become cheaper as it is now more difficult for the option to be knocked in.

This is shown in the following table.

Table 2: Price of Parisian min-in call L1 = 70, L2 = 110

S0 D = 1/25 D = 1/12 D = 1/6 D = 1/4

80 2.192441 1.780915 1.240433 0.857615
82 2.814304 2.332982 1.679245 1.199394
84 3.563176 3.007037 2.229091 1.639840
86 4.444798 3.811887 2.902650 2.194032
88 5.462882 4.754442 3.711202 2.876336
90 6.618767 5.839241 4.663993 3.699677
92 7.911251 7.068144 5.767730 4.674874
94 9.336592 8.440194 7.026212 5.810075
96 10.88864 9.951636 8.440122 7.110332
98 12.55912 11.59608 10.00698 8.577325
100 14.33796 13.36478 11.72125 10.20927

The convolutions are evaluated using the convolve function in R. Due to the

recursions, computation time decreases with the window length and are recorded in

the following table:
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Table 3: Computation time in seconds

D = 1/25 D = 1/12 D = 1/6 D = 1/4

Elapsed time 38.23 6.24 2.42 1.75
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