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Abstract 

 

The buckling problem represents a way to evaluate the effect of in-plane forces in the behaviour of plates. The effect 
is distributed along the plate domain, and thus the Boundary Element Method (BEM) formulation of the problem 
requires domain integration. Several techniques can be used in the numerical implementation of the BEM to replace 
the domain integral with equivalent boundary integrals. This study adopted the Dual Reciprocity Method (DRM) to 
obtain a formulation without domain integrals. The bending model considered the effect of the shear deformation 
for better assessment of the relationship between the buckling load and the plate thickness. The analyses 
considered in-plane forces distributed in one or in both directions of the plate (normal forces), as well as in the 
tangential direction to the plate side (shear forces). The numerical results obtained for square and rectangular plates 
are compared with those available in the literature. 

Keywords: dual reciprocity method, plate buckling, shear deformation, Reissner plates, boundary elements. 

 

Introduction 

 

In-plane forces appear in the study of plates when the plate bending equilibrium includes the effect of geometrical 
non-linearity (GNL). In-plane forces affect the plate curvature in bending, and the reduction in the plate thickness 
considerably strengthens the effect of the in-plane forces on the plate behaviour. Timoshenko [1] presented a study 
of the equilibrium of plates under in-plane forces considering the effect of the geometrical non-linearity using the 
classical plate bending model. Several studies in the literature extended this development to bending models 
including the effect of shear deformation to analyse thin or moderately thick plates [2], and thick plates under some 
types of support along the plate boundary as discussed in [3]. The effect of shear deformation improves the accuracy 
of the plate bending model as shown by Reissner in the study of stress concentration around holes [4], or by Mindlin 
in wave propagation analyses [5] and carries a better assessment of the relationship between the buckling load and 
the plate thickness. 

Nardini and Brebbia [6] studied vibration analysis using plane elements, and the domain integral was transformed 
into an equivalent boundary integral using the divergence theorem and an auxiliary approximating function. They did 
not place auxiliary points on the domain but only on the boundary. The target of that paper was not to eliminate the 
domain integral, but it encouraged other researchers to develop further studies where an eigenvalue problem was 
used to replace the domain integration [7]. The first time the name DRM was used related to the conversion of the 
domain integral into equivalent boundary integrals was in studies on dynamic and heat transfer problems presented 
in [8]. Brebbia and Nardini presented further applications of the DRM and new researchers were attracted to study 
this technique and extend it to several engineering applications. Partridge, Brebbia and Wrobel gave a more detailed 
explanation of the DRM in a book [9], which included some computer codes used in the method. 
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Nowadays, the DRM is widely used in several formulations to solve engineering problems, including those related to 
plate bending after the first study presented by Kamiya and Sawaki [10] as summarised next. Silva and Venturini [11] 
studied the bending of plates on elastic foundations. Sawaki, Takeuche and Kamiya [12] studied the effect of finite 
displacements in the bending of thin plates. Elzein and Syngellakis [13] obtained the buckling parameters for thin 
plates. Davies and Moslehy [14] obtained the natural frequencies and vibration modes according to the classical 
bending model. Lin, Duffield and Shih [15] performed studies on the buckling of rectangular and circular plates. Wen, 
Aliabadi and Young [16] obtained results using the direct integration method and DRM for plate bending including 
the effect of shear deformation and presented the linear radial basis function used in the DRM for the analysis of 
plates and shells including the effect of the shear deformation in [17]. Wang, Ji and Tanaka [18] presented the 
solution for the plate-bending problem considering the effect of finite displacements using the von Kärmán 
equations, similarly to Wen, Aliabadi and Young [19] who have also included the effect of shear deformation in the 
bending model. Purbolaksono and Aliabadi [20] presented a comparison of the results obtained with the DRM versus 
domain integrations to account for the effect of GNL in buckling analyses using the Reissner model. Supriyono and 
Aliabadi [21] solved plate bending problems with the effect of the shear deformation and included effects of 
geometrical and physical non-linarites. Purbolaksono and Aliabadi [22] analysed large deflections in plate bending 
considering the effect of shear deformation. Yan, Feng and Zhou [23] presented the coupling between DRM, BEM 
and a meshless method for the plate solution according to the classical model. Purbolaksono, Dirgantara and 
Aliabadi [24] analysed crack problems in plate bending with effects of the shear deformation and geometrical non-
linearities. Useche and Albuquerque [25] performed the dynamic analyses of plates with the bending model 
including the effect of the shear deformation. Di Pisa and Aliabadi [26] performed a study of crack growth in 
assembled plate structures under fatigue effects. Useche [27] performed the vibration analysis of shallow shells 
including the effect of the shear deformation. Pomeranz and Hamill [28] showed a comparison between the Bessel 
function fundamental solution and the DRM to analyse the bending of plates in an elastic foundation. Uğurlu [29] 
performed the vibration analysis of plates with a coupled fluid according to the classical plate theory. Useche and 
Albuquerque [30] carried out a dynamic analysis under the transient condition for shallow shells including the effect 
of the shear deformation in the bending model, while Useche and Harnish [31] presented a modal analysis for thick 
and shallow shells. 

An alternative BEM formulation for buckling analyses in [32] employed two integrals containing the effect of GNL, 
with one computed in the domain and the other computed on the boundary. The use of first derivatives of the 
deflection in kernels of integrals related to the effect of GNL, instead of the second derivatives, and the fact that 
there was no need of relating the derivatives of in-plane forces were the main features of the alternative 
formulation. This present study concerns the application of the DRM to replace the domain integral by equivalent 
boundary integrals in the formulation presented in [32]. The numerical implementation employed quadratic shape 
functions to approximate displacements, plate rotations, distributed shears and moments in the boundary elements 
as implemented in [32], as well as the inverse iteration and Rayleigh quotient to compute the lowest eigenvalue with 
the corresponding eigenvector. Two types of radial basis functions for the DRM are considered in this study. The 
changes in the value of the buckling parameter according to the plate thickness of non-perforated plates are studied, 
and the results obtained for square and rectangular plates are compared to those in the literature. 

 

2 Boundary Integral Equations 

 

The present study considers a plate made of an isotropic and homogeneous material, under in-plane forces 
distributed in the domain, to perform buckling analyses. The well-known displacement boundary integral equations 
(DBIEs) for the buckling problem [33] are given next: 

 

1
2
𝐶𝐶𝑖𝑖𝑖𝑖(𝑥𝑥′)𝑢𝑢𝑖𝑖(𝑥𝑥′) + ��𝑇𝑇𝑖𝑖𝑖𝑖(𝑥𝑥′, 𝑥𝑥)𝑢𝑢𝑖𝑖(𝑥𝑥) − 𝑈𝑈𝑖𝑖𝑖𝑖(𝑥𝑥′, 𝑥𝑥)𝑡𝑡𝑖𝑖(𝑥𝑥)�𝑑𝑑Γ(𝑥𝑥)

Γ

 



= �𝑈𝑈𝑖𝑖3(𝑥𝑥′,𝑋𝑋) �
𝜕𝜕
𝜕𝜕𝑋𝑋𝛼𝛼

�𝑁𝑁𝛼𝛼𝛼𝛼
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑋𝑋𝛼𝛼

�� 𝑑𝑑Ω(𝑋𝑋)
Ω

                       (1) 

 
where Cij is an element of the matrix C related to the boundary geometry at the source point, which becomes the 
identity matrix when a smooth boundary is considered, uα is the plate rotation in direction α, and u3 is the plate 
deflection. Uij represents the rotation (j=1, 2) or the deflection (j=3) due to a unit couple (i=1, 2) or a unit point force 
(i=3). Tij represents the moment (j=1, 2) or the shear (j=3) due to a unit couple (i=1, 2) or a unit point force (i=3). Uij 
and Tij are related to the fundamental solution. In this study, Latin indices take on values {1, 2 and 3} and Greek 
indices take on values {1, 2}. 

The general constitutive equations are written next and using a unified notation for the Reissner and Mindlin plate 
models: 

 

 𝑀𝑀𝛼𝛼𝛼𝛼 = 𝐷𝐷 (1−𝜈𝜈)
2

�𝑢𝑢𝛼𝛼,𝛼𝛼 + 𝑢𝑢𝛼𝛼,𝛼𝛼 + 2𝜈𝜈
1−𝜈𝜈

𝑢𝑢𝛾𝛾,𝛾𝛾𝛿𝛿á𝛼𝛼� + 𝛿𝛿𝛼𝛼𝛼𝛼𝑞𝑞𝑞𝑞𝑞𝑞 (2) 

  𝑄𝑄𝛼𝛼 = 𝐷𝐷 (1−𝜈𝜈)
2

𝜆𝜆2�𝑢𝑢𝛼𝛼 + 𝑢𝑢3,𝛼𝛼� (3) 

with 

𝜆𝜆2 = 12
𝜅𝜅2

ℎ2
; 𝑞𝑞𝑞𝑞 =

𝜈𝜈
𝜆𝜆2(1 − 𝜈𝜈)

 

 

The plate has a uniform thickness h, D is the flexural rigidity, ν is Poisson’s ratio, q is the distributed load on the plate 
domain and δαβ is the Kronecker delta. The shear parameter κ2 is equal to 5/6 and π2/12 for the Reissner and Mindlin 
models, respectively. The product qRE in eqn. (2) corresponds to the linearly weighted average effect of the normal 
stress component in the thickness direction, which should be considered in the Reissner model [4] but not in the 
Mindlin model [5]. This term is null in the buckling problem because the distributed load q is equal to zero in the 
analysis.  

The kernel of the domain integral in eqn. (1) contains the generalised form of the effect of GNL. This kernel is usually 
simplified in the literature with the equilibrium equations for in-plane forces and assuming the absence of volume 
forces (i.e., Nαβ,α=0). The second derivatives of the deflection result from the simplification, as shown in eqn. (4): 

 

�𝑈𝑈𝑖𝑖3(𝑥𝑥′,𝑋𝑋) �
𝜕𝜕
𝜕𝜕𝑋𝑋𝛼𝛼

�𝑁𝑁𝛼𝛼𝛼𝛼
𝜕𝜕𝑢𝑢3(𝑋𝑋)
𝜕𝜕𝑋𝑋𝛼𝛼

�� 𝑑𝑑Ω(𝑋𝑋)
Ω

= �𝑈𝑈𝑖𝑖3(𝑥𝑥′,𝑋𝑋)𝑁𝑁𝛼𝛼𝛼𝛼
𝜕𝜕2𝑢𝑢3(𝑋𝑋)
𝜕𝜕𝑋𝑋𝛼𝛼𝜕𝜕𝑋𝑋𝛼𝛼

𝑑𝑑Ω(𝑋𝑋)
Ω

      (4) 

 

The alternative formulation in [32] employed the divergence theorem in the domain integral with the effect of GNL 
of eqn. (1 and did not use the additional condition for derivatives of in-plane forces (Nαβ,α=0), as done in eqn. (4). The 
algebraic manipulation used in [32] is shown next: 

 

�𝑈𝑈𝑖𝑖3(𝑥𝑥′,𝑋𝑋) �
𝜕𝜕
𝜕𝜕𝑋𝑋𝛼𝛼

�𝑁𝑁𝛼𝛼𝛼𝛼
𝜕𝜕𝑢𝑢3(𝑋𝑋)
𝜕𝜕𝑋𝑋𝛼𝛼

�� 𝑑𝑑Ω(𝑋𝑋)
Ω

= ⋯ 

= � 𝑛𝑛𝛼𝛼(𝑥𝑥)𝑁𝑁𝛼𝛼𝛼𝛼(𝑥𝑥)𝑢𝑢3,𝛼𝛼(𝑥𝑥)𝑈𝑈𝑖𝑖3(𝑥𝑥′, 𝑥𝑥)𝑑𝑑Γ(𝑥𝑥)
Γ

−�𝑁𝑁𝛼𝛼𝛼𝛼(𝑋𝑋)𝑢𝑢3,𝛼𝛼(𝑋𝑋)𝑈𝑈𝑖𝑖3,𝛼𝛼(𝑥𝑥′,𝑋𝑋)𝑑𝑑Ω(𝑋𝑋)
Ω

    (5) 



 

The final DBIE for buckling analyses using the alternative formulation in [32] is presented next: 

 

1
2
𝐶𝐶𝑖𝑖𝑖𝑖(𝑥𝑥′)𝑢𝑢𝑖𝑖(𝑥𝑥′) + ��𝑇𝑇𝑖𝑖𝑖𝑖(𝑥𝑥′, 𝑥𝑥)𝑢𝑢𝑖𝑖(𝑥𝑥) − 𝑈𝑈𝑖𝑖𝑖𝑖(𝑥𝑥′, 𝑥𝑥)𝑡𝑡𝑖𝑖(𝑥𝑥)�𝑑𝑑Γ(𝑥𝑥)

Γ

= ⋯. 

= � 𝑛𝑛𝛼𝛼(𝑥𝑥)𝑁𝑁𝛼𝛼𝛼𝛼(𝑥𝑥)𝑢𝑢3,𝛼𝛼(𝑥𝑥)𝑈𝑈𝑖𝑖3(𝑥𝑥′, 𝑥𝑥)𝑑𝑑Γ(𝑥𝑥)
Γ

−� 𝑁𝑁𝛼𝛼𝛼𝛼(𝑋𝑋)𝑢𝑢3,𝛼𝛼(𝑋𝑋)𝑈𝑈𝑖𝑖3,𝛼𝛼(𝑥𝑥′,𝑋𝑋)𝑑𝑑Ω(𝑋𝑋)
Ω

             (6) 

 
It is necessary to point out on the relation between the boundary integral with the GNL effect in eqn. (6) and the 
natural condition in the related part of the boundary when the deflection (u3) is not prescribed. According to the 
result in eqn. (17) in [32], the boundary integral containing the effect of the GNL should only be computed along the 
boundary part with the prescribed deflection. The GNL effect requires the computation of the gradient of the 
deflection in the analysis. The BIE for the first derivative of the deflection in direction γ at an internal point is written 
next: 

 

𝑢𝑢3,𝛾𝛾(𝑋𝑋′) = ��𝑛𝑛𝛼𝛼(𝑥𝑥)𝑀𝑀3𝛼𝛼𝛼𝛼,𝛾𝛾(𝑋𝑋′, 𝑥𝑥)𝑢𝑢𝛼𝛼(𝑥𝑥) + 𝑛𝑛𝛼𝛼(𝑥𝑥)𝑄𝑄3𝛼𝛼,𝛾𝛾(𝑋𝑋′, 𝑥𝑥)𝑢𝑢3(𝑥𝑥) + ⋯
Γ

 

…−𝑈𝑈3𝛼𝛼,𝛾𝛾(𝑋𝑋′, 𝑥𝑥)𝑡𝑡𝛼𝛼(𝑥𝑥) − 𝑈𝑈33,𝛾𝛾(𝑋𝑋′, 𝑥𝑥)𝑡𝑡3(𝑥𝑥)�𝑑𝑑Γ(𝑥𝑥) −� 𝑛𝑛𝛼𝛼(𝑥𝑥)𝑁𝑁𝛼𝛼𝛼𝛼(𝑥𝑥)𝑢𝑢3,𝛼𝛼(𝑥𝑥)𝑈𝑈𝑖𝑖3,𝛾𝛾(𝑋𝑋′, 𝑥𝑥)𝑑𝑑Γ(𝑥𝑥)
Γ

+ ⋯ 

… + � 𝑁𝑁𝛼𝛼𝛼𝛼(𝑋𝑋)𝑢𝑢3,𝛼𝛼(𝑋𝑋)𝑈𝑈33,𝛼𝛼𝛾𝛾(𝑋𝑋′,𝑋𝑋)𝑑𝑑Ω(𝑋𝑋)
Ω

                       (7) 

 

Eqn. (7) was written with kernels differentiated with respect to the field point coordinates. The tangential 
differential operator can be introduced in kernels of integrals in eqn. (7) to reduce the singularities resulting from 
the differentiation as shown in [36]. 

The equation for the generalised plane stress problem is solved once to obtain the in-plane force distribution used in 
the buckling analysis. The BIEs for the plane stress problem are written next, 

 

1
2
𝐶𝐶𝛼𝛼𝛼𝛼(𝑥𝑥′)𝑣𝑣𝛼𝛼(𝑥𝑥′) + � 𝑃𝑃𝛼𝛼𝛼𝛼(𝑥𝑥′, 𝑥𝑥)𝑣𝑣𝛼𝛼(𝑥𝑥)𝑑𝑑Γ(𝑥𝑥)

Γ

= � 𝑉𝑉𝛼𝛼𝛼𝛼(𝑥𝑥′, 𝑥𝑥)𝑝𝑝𝛼𝛼(𝑥𝑥)𝑑𝑑Γ(𝑥𝑥)
Γ

        (8) 

𝑁𝑁𝛼𝛼𝛾𝛾(𝑋𝑋′) = 𝑆𝑆𝛼𝛼𝛾𝛾𝛼𝛼𝛼𝛼 � 𝜎𝜎𝛼𝛼𝜅𝜅𝛼𝛼(𝑋𝑋′, 𝑥𝑥)𝐷𝐷𝛼𝛼𝜅𝜅�𝑣𝑣𝛼𝛼(𝑥𝑥)�𝑑𝑑Γ(𝑥𝑥)
Γ

− � 𝜎𝜎𝛼𝛼𝛼𝛼𝛾𝛾(𝑋𝑋′, 𝑥𝑥)𝑝𝑝𝛼𝛼(𝑥𝑥)𝑑𝑑Γ(𝑥𝑥)
Γ

   (9) 

 
where vβ and pβ are the displacement and traction in direction β of the plane stress problem, respectively. Vαβ and 
Pαβ represent the displacement and traction in direction β due to a unit force in direction α, respectively. Eqn. (9) 
presents the BIE for stresses at internal points and was written with the tangential differential operator Dαβ [44] and 
the Hooke tensor for isotropic media Sαβγθ. The transversal modulus (G) is multiplied by the plate thickness in the 
generalised plane stress problem. 

 



3 Application of the Dual Reciprocity Method 

 

The kernels in the domain integral of the DBIEs (eqn. 6,7) contain the product between the gradient of deflection 
from the fundamental solution, the in-plane forces tensor and the gradient of the plate deflection. A vector function 
(b) resulting from the product between the in-plane forces tensor and the gradient of plate deflection can be 
defined, i.e.: 

 

𝑏𝑏𝛼𝛼(𝑋𝑋) = 𝑁𝑁𝛼𝛼𝛼𝛼(𝑋𝑋)𝑢𝑢3,𝛼𝛼(𝑋𝑋)      (10) 

 

The DRM is introduced in the approximation of the vector function (b) using the following relation [9]: 

 

𝑏𝑏𝛼𝛼(𝑋𝑋) ≃ � 𝛼𝛼𝛼𝛼
𝑚𝑚𝑓𝑓𝑚𝑚

𝑁𝑁+𝐿𝐿

𝑚𝑚=1

             (11) 

 

The summation in eqn. (11) is extended along all points employed in the DRM, i.e. the total number of points placed 
on the boundary (N) and in the domain (L), fm and αm are sets of the approximating functions and weighting 
coefficients, respectively [9]. The relation between the particular solution ûj

m and the approximating function fm [9] 
is shown next: 

 

∇2(∇2𝜙𝜙) =
1
𝐷𝐷
𝑓𝑓(𝑟𝑟)                                    (12) 

∇2(û3) =
2

𝐷𝐷(1 − 𝜐𝜐)𝜆𝜆2
𝑓𝑓(𝑟𝑟) − ∇2𝜙𝜙        (13) 

û𝛼𝛼 = 𝜙𝜙,𝛼𝛼                                                        (14) 
 

Eqns. (12) to (14) are similar to those used to obtain the fundamental solution for the unit point load under the static 
condition in [36, 37] and the dynamic condition in [38]. Two types of radial basis functions fm were considered here, 
and corresponding particular solutions for each adopted radial basis function are shown next: 

 

𝑓𝑓𝑚𝑚 = 1 + 𝑟𝑟 ⇒

⎩
⎪
⎨

⎪
⎧û𝛼𝛼𝑚𝑚 =

1
𝐷𝐷
�

r3

16
+

r4

45
� 𝑟𝑟,𝛼𝛼

û3𝑚𝑚 =
2

𝐷𝐷(1 − 𝑣𝑣)𝜆𝜆2
�

r2

4
+

r3

9
� −

1
𝐷𝐷
�

r4

64
+

r5

225
�

                                                                                       (15) 

𝑓𝑓𝑚𝑚 = 1 + 𝑟𝑟 + 𝑟𝑟2 + 𝑟𝑟3 ⇒

⎩
⎪
⎨

⎪
⎧û𝛼𝛼𝑚𝑚 =

1
𝐷𝐷
�

r3

16
+

r4

45
+

r5

96
+

r6

175
� 𝑟𝑟,𝛼𝛼

û3𝑚𝑚 =
2

𝐷𝐷(1 − 𝑣𝑣)𝜆𝜆2
�

r2

4
+

r3

9
+

r4

16
+

r5

25
� −

1
𝐷𝐷
�

r4

64
+

r5

225
+

r6

576
+

r7

1225
�

               (16) 

 



The result in eqn. (15) is similar to those presented in [17]. The distributed shear and bending moments related to 
the particular solutions are obtained with the constitutive equations (2) and (3). The generalised tractions are 
obtained from the distributed shear and bending moments according to relations presented next: 

 

�̂�𝑡∝𝑚𝑚 = 𝑀𝑀�∝𝛼𝛼
𝑚𝑚 𝑛𝑛𝛼𝛼

�̂�𝑡3𝑚𝑚 = 𝑄𝑄�𝛼𝛼
𝑚𝑚𝑛𝑛𝛼𝛼

            (17) 

 

The first derivative of the deflection (Ui3,α) from the fundamental solution multiplies the term related to the effect of 
GNL in the DBIEs (eqn. 6). The introduction of the DRM to replace the domain integral requires the use of the BIE for 
the gradient of DBIEs. The BIE for the gradient of DBIEs with the kernel of the domain integral containing the 
function fm and using the particular solution ûj

m required to introduce the DRM [9] is shown next: 

 

𝑐𝑐𝑢𝑢�𝑖𝑖,𝛼𝛼
𝑚𝑚 (𝑥𝑥′) = ��𝑛𝑛𝛼𝛼(𝑥𝑥)𝑀𝑀𝑖𝑖𝛼𝛼𝛼𝛼,𝛼𝛼(𝑥𝑥′, 𝑥𝑥)𝑢𝑢�𝛼𝛼

𝑚𝑚(𝑥𝑥) + 𝑛𝑛𝛼𝛼(𝑥𝑥)𝑄𝑄𝑖𝑖𝛼𝛼,𝛼𝛼(𝑥𝑥′, 𝑥𝑥)𝑢𝑢�3𝑚𝑚(𝑥𝑥)
Γ

+ ⋯ 

…−𝑈𝑈𝑖𝑖𝛼𝛼,𝛼𝛼(𝑥𝑥′, 𝑥𝑥)�̂�𝑡𝛼𝛼
𝑚𝑚(𝑥𝑥) − 𝑈𝑈𝑖𝑖3,𝛼𝛼(𝑥𝑥′, 𝑥𝑥)�̂�𝑡3𝑚𝑚(𝑥𝑥)�𝑑𝑑Γ(𝑥𝑥) −� 𝑓𝑓𝑚𝑚(𝑋𝑋)𝑈𝑈𝑖𝑖3,𝛼𝛼(𝑥𝑥′,𝑋𝑋)𝑑𝑑Ω(𝑋𝑋)

Ω
     (18) 

 

Eqn. (18) was written with kernels differentiated with respect to the field coordinates, the scalar c is equal to 1 in 
case of collocation points located inside the domain and 0.5 in case of points placed on smooth parts of the 
boundary. The continuity of the first derivative of displacements at x` is required to apply eqn. (18) at points on the 
boundary. The DBIE for the buckling problem using eqn. (18) to introduce the DRM is given by: 

 

1
2
𝐶𝐶𝑖𝑖𝑖𝑖(𝑥𝑥′)𝑢𝑢𝑖𝑖(𝑥𝑥′) + ��𝑇𝑇𝑖𝑖𝑖𝑖(𝑥𝑥′, 𝑥𝑥)𝑢𝑢𝑖𝑖(𝑥𝑥) − 𝑈𝑈𝑖𝑖𝑖𝑖(𝑥𝑥′, 𝑥𝑥)𝑡𝑡𝑖𝑖(𝑥𝑥)�𝑑𝑑Γ(𝑥𝑥)

Γ

= ⋯. 

= � 𝑛𝑛𝛼𝛼(𝑥𝑥)𝑁𝑁𝛼𝛼𝛼𝛼(𝑥𝑥)𝑢𝑢3,𝛼𝛼(𝑥𝑥)𝑈𝑈𝑖𝑖3(𝑥𝑥′, 𝑥𝑥)𝑑𝑑Γ(𝑥𝑥)
Γ

+ � 𝛼𝛼𝛼𝛼
𝑚𝑚 �𝑐𝑐𝑢𝑢�𝑖𝑖,𝛼𝛼

𝑚𝑚 (𝑥𝑥′) + ⋯
𝑁𝑁+𝐿𝐿

𝑚𝑚=1

 

… … . .−��𝑛𝑛𝛼𝛼(𝑥𝑥)𝑀𝑀𝑖𝑖𝛼𝛼𝛼𝛼,𝛼𝛼(𝑥𝑥′, 𝑥𝑥)𝑢𝑢�𝛼𝛼
𝑚𝑚(𝑥𝑥) + 𝑛𝑛𝛼𝛼(𝑥𝑥)𝑄𝑄𝑖𝑖𝛼𝛼,𝛼𝛼(𝑥𝑥′, 𝑥𝑥)𝑢𝑢�3𝑚𝑚(𝑥𝑥)

Γ

+ ⋯ 

…−𝑈𝑈𝑖𝑖𝛼𝛼,𝛼𝛼(𝑥𝑥′, 𝑥𝑥)�̂�𝑡𝛼𝛼
𝑚𝑚(𝑥𝑥) − 𝑈𝑈𝑖𝑖3,𝛼𝛼(𝑥𝑥′, 𝑥𝑥)�̂�𝑡3𝑚𝑚(𝑥𝑥)�𝑑𝑑Γ(𝑥𝑥)�                   (19) 

 
The second derivatives of the deflection (U33,αγ) of the fundamental solution multiply the term related to the effect 
of GNL in the BIE for the gradient of the deflection (eqn. 7) used in the buckling analysis. The introduction of the 
DRM also requires the BIE for the second derivative of the deflection, as explained to obtain eqn. (19). The BIE for 
the second derivative of the deflection with the kernel of the domain integral containing fm shown next: 

 

𝑐𝑐𝑢𝑢�3,𝛾𝛾𝛼𝛼
𝑚𝑚 (𝑥𝑥′) + ��𝑛𝑛𝛼𝛼(𝑥𝑥)𝑀𝑀3𝛼𝛼𝛼𝛼,𝛾𝛾𝛼𝛼(𝑥𝑥′, 𝑥𝑥)𝑢𝑢�𝛼𝛼

𝑚𝑚(𝑥𝑥) + 𝑛𝑛𝛼𝛼(𝑥𝑥)𝑄𝑄3𝛼𝛼,𝛾𝛾𝛼𝛼(𝑥𝑥′, 𝑥𝑥)𝑢𝑢�3𝑚𝑚(𝑥𝑥)
Γ

+ ⋯ 

…−𝑈𝑈3𝛼𝛼,𝛾𝛾𝛼𝛼(𝑥𝑥′, 𝑥𝑥)�̂�𝑡𝛼𝛼
𝑚𝑚(𝑥𝑥) − 𝑈𝑈33,𝛾𝛾𝛼𝛼(𝑥𝑥′, 𝑥𝑥)�̂�𝑡3𝑚𝑚(𝑥𝑥)�𝑑𝑑Γ(𝑥𝑥) = � 𝑓𝑓𝑚𝑚(𝑋𝑋)𝑈𝑈33,𝛾𝛾𝛼𝛼(𝑥𝑥′,𝑋𝑋)𝑑𝑑Ω(𝑋𝑋)

Ω
     (20) 



Eqn. (20) was written with kernels differentiated with respect to the field coordinates, the scalar c is equal to 1 in 
case of collocation points located inside the domain and 0.5 in case of points placed on smooth parts of the 
boundary. The continuity of the second derivative of the deflection at x` is required to apply eqn. (20) at points on 
the boundary. The BIE for the gradient of the deflection using eqn. (20) to introduce the DRM is given next: 

 

𝑔𝑔𝑢𝑢3,𝛾𝛾(𝑥𝑥′) = ��𝑛𝑛𝛼𝛼(𝑥𝑥)𝑀𝑀3𝛼𝛼𝛼𝛼,𝛾𝛾(𝑥𝑥′, 𝑥𝑥)𝑢𝑢𝛼𝛼(𝑥𝑥) + 𝑛𝑛𝛼𝛼(𝑥𝑥)𝑄𝑄3𝛼𝛼,𝛾𝛾(𝑥𝑥′, 𝑥𝑥)𝑢𝑢3(𝑥𝑥) + ⋯
Γ

 

…−𝑈𝑈3𝛼𝛼,𝛾𝛾(𝑥𝑥′, 𝑥𝑥)𝑡𝑡𝛼𝛼(𝑥𝑥) − 𝑈𝑈33,𝛾𝛾(𝑥𝑥′, 𝑥𝑥)𝑡𝑡3(𝑥𝑥)�𝑑𝑑Γ(𝑥𝑥) −� 𝑛𝑛𝛼𝛼(𝑥𝑥)𝑁𝑁𝛼𝛼𝛼𝛼(𝑥𝑥)𝑢𝑢3,𝛼𝛼(𝑥𝑥)𝑈𝑈𝑖𝑖3,𝛾𝛾(𝑥𝑥′, 𝑥𝑥)𝑑𝑑Γ(𝑥𝑥)
Γ

+ ⋯ 

… + � 𝛼𝛼𝛼𝛼
𝑚𝑚  �𝑐𝑐𝑢𝑢�𝑖𝑖,𝛾𝛾𝛼𝛼

𝑚𝑚 (𝑥𝑥′) + ��𝑛𝑛𝛼𝛼(𝑥𝑥)𝑀𝑀𝑖𝑖𝛼𝛼𝛼𝛼,𝛾𝛾𝛼𝛼(𝑥𝑥′, 𝑥𝑥)𝑢𝑢�𝛼𝛼
𝑚𝑚(𝑥𝑥) + 𝑛𝑛𝛼𝛼(𝑥𝑥)𝑄𝑄𝑖𝑖𝛼𝛼,𝛾𝛾𝛼𝛼(𝑥𝑥′, 𝑥𝑥)𝑢𝑢�3𝑚𝑚(𝑥𝑥)

Γ

+
𝑁𝑁+𝐿𝐿

𝑚𝑚=1

.. 

…−𝑈𝑈𝑖𝑖𝛼𝛼,𝛾𝛾𝛼𝛼(𝑥𝑥′, 𝑥𝑥)�̂�𝑡𝛼𝛼
𝑚𝑚(𝑥𝑥) − 𝑈𝑈𝑖𝑖3,𝛾𝛾𝛼𝛼(𝑥𝑥′, 𝑥𝑥)�̂�𝑡3𝑚𝑚(𝑥𝑥)�𝑑𝑑Γ(𝑥𝑥)�                  (21) 

 

The scalar g in eqn. (21) has the same values explained to the scalar c in eqns. (18) and (20): 

 

4 Numerical Implementation 

 

The discretisation of the BIEs employed quadratic isoparametric boundary elements and the collocation points were 
always placed on the boundary. The same mapping function was used for conformal and non-conformal 
interpolations. The singularity subtraction [39] and the transformation of variable technique [40] were employed for 
the Cauchy and weak-type singularities, respectively, when integrations were performed on elements containing the 
collocation points. Hyper- and super-singular integrals in elements containing the collocation points were 
numerically evaluated using the computer code presented in [41]. The standard Gauss-Legendre scheme was 
employed for integrations on elements not containing the collocation points. 

The DBIE for the buckling problem with the DRM used eqn. (19), which included a BIE for the gradient of deflections 
to introduce the DRM. The collocation points should be placed inside the boundary elements when using the BIE for 
the gradient. According to this requirement, the collocation points were placed at positions (-0.67 and 0.0), in the 
range (-1, 1), in the case of quadratic elements with continuity of displacements/tractions at the last node, which 
means that it was used to continuous elements or mixed type elements with continuity at the last node. On the 
other hand, the collocation points were placed at positions (-0.67, 0.0, +0.67) when the discontinuity of 
displacements/tractions appears at the last node, which means that it was employed to discontinuous elements or 
mixed elements with discontinuity at the last node. The position of the collocation point of the first node was always 
shifted inside the boundary elements (-0.67), which means continuous or discontinuous elements had collocations 
points inside irrespective of the continuity condition at the first node. 

The DRM considered a uniform distribution of points in the domain. The DRM points on the boundary were always 
placed at the positions of the collocation points. 

It is noted that the algebraic manipulation shown in eqn. (5) introduced one integral performed on the boundary, 
which is related to the effect of GNL but not with the DRM. The first boundary integral on the left hand side (LHS) of 
eqn. (19) results from eqn. (5), as well as the second boundary integral on the LHS of eqn. (21). The discretisation of 
those boundary integrals assumed a constant value along each boundary element for the sum of products between 
the derivatives of the deflection and the in-plane forces, which values were obtained at the central node. The values 
of derivatives of the deflection computed at the central node used by the DRM were also used in the computation of 
those boundary integrals related to eqn. (5) 



The eigenvalue analysis used the basic inverse iteration with the Rayleigh quotient [42] as employed in [32] and 
summarised next: 

 

𝐴𝐴𝑥𝑥(𝑘𝑘+1) = 𝐵𝐵𝑥𝑥𝑘𝑘       (22) 

𝜆𝜆𝑘𝑘 =
�𝑥𝑥(𝑘𝑘+1), 𝑥𝑥𝑘𝑘�

(𝑥𝑥(𝑘𝑘+1), 𝑥𝑥(𝑘𝑘+1))
      (23) 

 

The vector xk is related to values of the first derivatives of the deflection at the centre of the cells. Eqn. (22) is the 
representation of the generalised eigenvalue problem and was not used explicitly; rather, the discretised forms of 
eqns. (19) and (21) were used, i.e. equations written in matrix form. Starting with an eigenvector x1 with elements 
equal to 1.0, the values of the displacements and tractions at the nodes of the boundary elements are found with 
eqn. (19); these values are introduced in eqn. (21) to obtain the deflection derivatives (elements of the eigenvector 
x2). The main difference with reference to the formulation using cell integration [32] appears in the need to 
computing elements αθ

m. The elements of α are recalculated at each iteration step according to values of the first 
derivative of the deflection introduced in eqns. (10) and (11). After the computation of elements bθ, the solution of 
the system of equations given by eqn. (11) carries the values of αθ

m as explained in detail in [9]. The index θ in 
elements of b and α is related to directions in the plane of the plate, which means that eqns. (10) and (11) are used 
twice and one set of α is obtained for each direction θ of the plate. 

 

5 Numerical Examples 
 

The present study considered non-perforated plates and the results obtained are compared to those presented in 
the literature but considering those obtained in [32], where the buckling analysis considered the domain integration 
using cells. The results are presented in terms of the buckling parameter k, which is a non-dimensional value related 
to the critical load of plates (Ncr), the length of the plate side (a) and the flexural rigidity (D). The buckling parameter 
k was obtained according to the following relation: 

𝑘𝑘 =
𝑎𝑎2𝑁𝑁𝑐𝑐𝑐𝑐
𝜋𝜋2𝐷𝐷

                           (24) 

Uniform in-plane loads on the domain were assumed. The Young’s modulus (E) and Poisson’s ratio (ν) were 206.9 
GPa and 0.3, respectively. The default value for the shear parameter κ2 was π2/12 for the Mindlin theory; otherwise, 
the value 5/6 was assigned when the results were obtained with the Reissner theory. 

The results for square plates under in-plane loading in one direction are presented in Table 1, while those for loading 
in both directions are presented in Table 2, and those for in-plane pure shear load are presented in Table 3. The 
boundary conditions were simply supported edge (S), clamped edge (C) and free edge (F). The results obtained with 
simply supported and with clamped edges used the hard condition (rotation restrained in the tangent direction) for 
comparison with results from the literature. Results obtained with the DRM were presented in two rows of Tables 1, 
2 and 3. The row with the label (DRM-f1) corresponds to results obtained with the function (1+r) whereas that 
labelled (DRM-f2) is related to the function (1+r+r2+r3). Different meshes were tested and the results presented in 
Tables 1 to 3 have differences of up to 3% to values in the literature (most of them have differences of only 1.5%). 
The values obtained with 256 cells [32] were included in the Tables but they were not used as the reference values 
to obtain the differences. The following meshes were used according to the Tables: 

Table 1- 256 quadratic boundary elements (516 nodes) and 64 internal points; 
Table 2- 384 quadratic boundary elements (772 nodes) and 256 internal points; 
Table 3- 512 quadratic boundary elements (1028 nodes) and 256 internal points. 
 



Table 1– Buckling parameter (k) of the first critical load of square plates under uniaxial in-plane loading 

Type h/a [43] Cells [32] DRM-f1 DRM-f2 
1) SSSS 0.001 4.0000 4.0127 4.0191 4.0316 

 

0.010 3.9977* 4.0104 4.0169 4.0299 
0.050 3.9437 3.9561 3.9624 3.9726 
0.100 3.7838 3.7952 3.8009 3.8074 
0.200 3.2558 3.2643 3.2685 3.2740 

2) SSSC 0.001 4.8471 4.8707 4.9074 4.9314 

 

0.010 - 4.8665 4.8938 4.9122 
0.050 4.7454 4.7681 4.7941 4.8097 
0.100 4.4656 4.4858 4.5090 4.5206 
0.200 3.6115 3.6250 3.6419 3.6507 

3) CSSS 0.001 5.7401 5.7598 5.7767 5.7868 

 

0.010 - 5.7539 5.7619 5.7782 
0.050 5.5977 5.6164 5.6241 5.6423 
0.100 5.2171 5.2335 5.2399 5.2556 
0.200 4.1364 4.1572 4.1972 4.1596 

4) SCSC 0.001 6.7431 6.7967 6.8904 6.9542 

 

0.010 - 6.7875 6.8779 6.9424 
0.050 6.5238 6.5742 6.6609 6.7187 
0.100 5.9487 5.9914 6.0663 6.1129 
0.200 4.4004 4.4260 4.4762 4.5087 

5) CSCS 0.001 7.6911 7.7542 7.8471 7.8791 

 

0.010 - 7.7372 7.8327 7.8625 
0.050 7.2989 7.3561 7.4440 7.4675 
0.100 6.3698 6.4139 6.4853 6.5097 
0.200 4.3204 4.3413 4.3815 4.3942 

6) FSSS 0.001 1.4014** 1.4038 1.4072 1.4060 

 

0.010 1.4000** 1.4029 1.3992 1.3999 
0.050 1.3813** 1.3849 1.3811 1.3837 
0.100 1.3270** 1.3442 1.3404 1.3457 
0.200 1.2138** 1.2167 1.2133 1.2156 

7) SSSF 0.001 2.3639 2.3690 2.3399 2.3361 

 

0.010  2.3530 2.3464 2.3487 
0.050 2.2442 2.2520 2.2423 2.2446 
0.100 2.0829 2.0908 2.0791 2.0852 
0.200 1.7105 1.7178 1.7037 1.7060 

8) FSCS 0.001 1.6522 1.6555 1.6643 1.6592 

 

0.010 - 1.6536 1.6469 1.6471 
0.050 1.6197 1.6245 1.6176 1.6208 
0.100 1.5558 1.5604 1.5537 1.5613 
0.200 1.3701 1.3738 1.3683 1.3710 

9) SCSF 0.001 2.3901 2.3951 2.3650 2.3591 

 

0.010 - 2.3788 2.3717 2.3737 
0.050 2.2667 2.2747 2.2644 2.2662 
0.100 2.1010 2.1090 2.0968 2.1027 
0.200 1.7200 1.7274 1.7130 1.7151 

10) FSFS 

 

0.001 0.9522 0.9537 0.9605 0.9588 
0.010 - 0.9532 0.9529 0.9549 
0.050 0.9431 0.9449 0.9446 0.9465 
0.100 0.9218 0.9236 0.9233 0.9252 
0.200 0.8501 0.8516 0.8512 0.8530 

11) SFSF 

 

0.001 2.0413 2.0455 2.0152 1.9990 
0.010 - 2.0308 2.0239 2.0238 
0.050 1.9457 1.9508 1.9409 1.9397 
0.100 1.8216 1.8270 1.8156 1.8155 
0.200 1.5333 1.5389 1.5253 1.5255 

12) CCCC 

 

0.001 10.0738*** 10.1605 10.2300 10.3656 
0.010  10.1382 10.2764 10.3840 
0.050 9.5588*** 9.6326 9.7637 9.8673 
0.100 8.2917*** 8.3411 8.4547 8.5390 
0.200 5.3156*** 5.3175 5.4807 5.4620 

* [44], ** [3], *** [2] 

 



The behaviour of the DRM formulation with the in-plane loading in one direction (uniaxial loading) is shown in 
Figures 1 to 3. The analysis employed nine meshes obtained by combination of three sets of boundary elements (BE) 
(64, 128, 256) meshes with three sets of points in the domain (DP) (16, 64, 256). 

  

 

  

a) f= 1+r      b) f=1+r+r2+r3 
Figure 1- Uniaxial loading and h/a=0.001 

  

a) f= 1+r      b) f=1+r+r2+r3 
Figure 2- Uniaxial loading and h/a=0.05  
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a) f= 1+r      b) f=1+r+r2+r3 
Figure 3- Uniaxial loading and h/a=0.10 

 

The results in Figures 1 to 3 were presented for ratios 0.001, 0.05 and 0.1. The ratio 0.05 was used instead of 0.01 
because most of the reference results in Table 1 were not presented for 0.01. The authors checked the behaviour of 
ratio 0.01 using values from [32] and the behaviour was not very different to that with ratio 0.05. According to 
Figures 1 to 3, the increase in the number of boundary elements was necessary to reduce the difference for the ratio 
0.001, whereas the increase in the number of domain points was necessary for other ratios. It is noted that the 
results in Figures 1 to 3 were organized to show this point. The behaviour for the ratio 0.2 was not presented 
because it was similar to those shown for ratios 0.05 and 0.1. On the other hand, the differences in the results 
obtained with the function (1+r) were lower than those with the function (1+r+r2+r3). 
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Table 2– Buckling parameter (k) of the first critical load of square plates under in-plane loading in both directions 

Type h/a [43] Cells [32] DRM –f1 DRM – f2 
SSSS 0.001 2.0000 2.0064 1.9983 2.0014 

 

0.005 1.9997 2.0061 1.9983 2.0006 
0.050 1.9718 1.9782 1.9705 1.9727 
0.100 1.8919 1.8980 1.8907 1.8927 
0.150 1.7722 1.7780 1.7712 1.7729 

SCSF* 0.001 1.1431 1.1467 1.1470 1.1428 

 

0.005 1.1412 1.1449 1.1419 1.1408 
0.050 1.1119 1.1159 1.1119 1.1108 
0.100 1.0641 1.0680 1.0635 1.0624 
0.150 1.0049 1.0087 1.0037 1.0026 

SSSF* 0.001 1.0548 1.0576 1.0567 1.0540 

 

0.005 1.0535 1.0564 1.0534 1.0530 
0.050 1.0322 1.0354 1.0318 1.0311 
0.100 0.9954 0.9986 0.9945 0.9938 
0.150 0.9476 0.9507 0.9462 0.9456 

SFSF* 

 

0.001 0.9321 0.9339 0.9373 0.9349 
0.005 0.9316 0.9335 0.9323 0.9325 
0.050 0.9207 0.9228 0.9214 0.9214 
0.100 0.8977 0.8998 0.8981 0.8982 
0.150 0.8650 0.8671 0.8651 0.8650 

CCCC 

 

0.001 5.3036** 5.3482 5.3009 5.3087 
0.001 5.2970*** 5.3460 5.3246 5.3234 
0.050 5.0840** 5.1254 5.1075 5.1055 
0.100 4.5400** 4.5741 4.5594 4.5577 
0.150 3.8727** 3.8992 3.8873 3.8861 

*κ2=5/6, ** [45], *** [46] 

 

The behaviour of the formulation with the in-plane loading in both directions (biaxial loading) is shown in Figures 4 
to 7. The analysis employed three meshes with 256 boundary elements (BE) and 16, 64, 256 points in the domain, 
four meshes with 256 domain points (DP) and having 320, 384, 440 and 512 boundary elements. According to 
Figures 4 to 7, the ratio 0.001 required more elements for the plate with all sides clamped. The function (1+r+r2+r3) 
presented lower differences for a lower number of domain points for the ratio 0.001, whereas the function (1+r) was 
better for other ratios. 

 

  

a) f= 1+r      b) f=1+r+r2+r3 
Figure 4- Biaxial loading and h/a=0.001 
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a) f= 1+r      b) f=1+r+r2+r3 
Figure 5- Biaxial loading and h/a=0.005 

 

  

a) f= 1+r      b) f=1+r+r2+r3 
Figure 6- Biaxial loading and h/a=0.05 
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a) f= 1+r      b) f=1+r+r2+r3 
Figure 7- Biaxial loading and h/a=0.10 

 

Table 3– Buckling parameter (k) of the first critical load of plates under in-plane pure shear loading (κ2=5/6, Reissner) 

Type h/a Value in  
reference Cells [32] DRM –f1 DRM – f2 

SSSS 0.001 9.3400 (a) 9.4260 9.2794 9.3777 

 

0.01 9.3780 (b) 9.4083 9.3295 9.3557 
0.05  8.9979 8.9250 8.9457 
0.1  7.9201 7.8570 7.8686 

0.20  5.3269 5.2745 5.2766 
CCCC 0.001 14.7100 (a) 14.8702 14.7703 14.7760 

 

0.01 14.6155 (b) 14.8109 14.7154 14.7103 
0.05  13.5493 13.4506 13.4469 
0.1  10.8454 10.7417 10.7410 

0.20  6.1662 6.3455 6.3304 
SCSC 0.001 12.5997 (c) 12.7360 12.8363 12.7571 

 

0.01 12.5800 (d) 12.6947 12.6850 12.6551 
0.05  11.7923 11.7643 11.7408 
0.1  9.7344 9.6784 9.6679 

0.20  5.8436 5.8987 5.8582 
SCFC 0.001 8.4289 (e) 8.5001 8.3867 8.4103 

 

0.01  8.4398 8.3653 8.3710 
0.05  7.7706 7.6947 7.6996 
0.1  6.4888 6.4213 6.4244 

0.20  4.1638 4.1184 4.1192 
FCFC 0.001 7.4869 (e) 7.5437 7.4953 7.5067 

 

0.01  7.4938 7.4492 7.4516 
0.05  6.9230 6.8758 6.8778 
0.1  5.8095 5.7628 5.7646 

0.20  3.7634 3.7290 3.7299 
CSSS 0.001 10.6000 (f) 10.8349 10.8321 10.8142 

 

0.01  10.8083 10.7609 10.7604 
0.05  10.2089 10.1560 10.1553 
0.1  8.7375 8.6809 8.6794 

0.20  5.5783 5.5194 5.5193 
(a) [47], (b) [48], (c) [49], (d) [50], (e) [51], (f) [13] 
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f= 1+r      b) f=1+r+r2+r3 
Figure 8- In-plane pure shear loading and h/a=0.001 

 

The behaviour of the formulation for in-plane pure shear load is shown in Figure 8. The analysis employed three 
meshes with 256 boundary elements and 16, 64, 256 domain points, four meshes with 256 domain points and 
having 320, 384, 440 and 512 boundary elements, which were the same meshes used for the in-plane loading in 
both directions. The ratio 0.001 was used because it was the ratio with more reference values in Table 3. The 
function (1+r+r2+r3).presented lower differences for this ratio and the convergence started with a lower number 
(320) of boundary elements than with the function (1+r). 

The results for rectangular plates under in-plane loading in one direction are presented in Table 4, those for loading 
in both directions are presented in Table 5, and those for in-plane pure shear load are presented in Table 6. The 
meshes had 64 boundary elements along the smaller side for uniaxial and biaxial loading, whereas those for shear 
loading had 128 boundary elements. The number of domain points was 256 irrespective of the ratio between the 
sides of the plate. The difference in results obtained to the reference values was up to 4%, but most of them were no 
higher than 1%. 
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Table 4a– Buckling parameter (k) of the first critical load of rectangular plates under uniaxial in-plane loading 

   

a/b h/a [45] Cells [32} DRM DIFF (%) [45] Cells [32] DRM DIFF (%) 

0.5 0.001 6.2499 6.2995 6.2567 0.11 19.3380 19.8473 19.4529 0.59 

0.5 0.050 6.0346 6.0807 6.0456 0.18 17.4347 17.6045 17.3410 -0.54 

0.5 0.100 5.4693 5.5067 5.4784 0.17 13.2568 13.2916 13.0718 -1.40 

0.5 0.150 4.7305 4.7581 4.7375 0.15 9.2233 9.3580 9.2946 0.77 

1.0 0.001 4.0000 4.0127 4.0034 0.08 10.0737 10.1605 10.0458 -0.28 

1.0 0.050 3.9437 3.9561 3.9463 0.07 9.5526 9.6326 9.5840 0.33 

1.0 0.100 3.7839 3.7952 3.7862 0.06 8.2733 8.3375 8.3002 0.33 

1.0 0.150 3.5446 3.5543 3.5465 0.05 6.7309 6.7769 6.8646 1.99 

1.5 0.001 4.3406 4.3595 4.3595 0.44 8.3504 8.4152 8.4026 0.63 

1.5 0.050 4.2559 4.2743 4.2670 0.26 7.9383 7.9973 7.9817 0.55 

1.5 0.100 4.0214 4.0377 4.0312 0.24 6.9467 6.9930 6.9803 0.48 

1.5 0.150 3.6831 3.6965 3.6911 0.22 5.7798 5.8130 5.8046 0.43 

2.0 0.001 4.0000 4.0127 4.0185 0.46 7.8671 7.9538 8.1359 3.42 

2.0 0.050 3.9437 3.9561 3.9543 0.27 7.4825 7.5353 7.7351 3.38 

2.0 0.100 3.7839 3.7952 3.7933 0.25 6.5605 6.6056 6.6254 0.99 

2.0 0.150 3.5446 3.5543 3.5524 0.22 5.4815 5.5117 5.5798 1.79 

 

 

Table 4b– Buckling parameter (k) of the first critical load of rectangular plates under uniaxial in-plane loading 

   

a/b h/a [52] Cells [32] DRM DIFF (%) [52] Cells [32] DRM DIFF (%) 

0.5 0.05 1.4696 1.4721 1.4678 -0.12 1.9464 1.9509 1.9444 -0.10 

0.5 0.10 1.3416 1.3433 1.3388 -0.21 1.8233 1.8271 1.8202 -0.17 

0.5 0.15 1.2080 1.2088 1.2042 -0.31 1.6839 1.6866 1.6796 -0.26 

1.0 0.05 1.9464 1.9508 1.9444 -0.10 2.2452 2.2520 2.2433 -0.09 

1.0 0.10 1.8233 1.8271 1.8201 -0.18 2.0852 2.0908 2.0815 -0.18 

1.0 0.15 1.6839 1.6866 1.6791 -0.29 1.9035 1.9075 1.8981 -0.29 

1.5 0.05 2.1466 2.1490 2.1427 -0.18 2.1920 2.1983 2.1883 -0.17 

1.5 0.10 2.0007 2.0084 1.9950 -0.28 2.0421 2.0472 2.0363 -0.28 

1.5 0.15 1.8753 1.8800 1.8264 -2.61 1.8705 1.8741 1.8628 -0.41 

2.0 0.05 2.1522 2.1737 2.1458 -0.30 2.1960 2.2024 2.1902 -0.27 

2.0 0.10 2.0085 2.0182 2.0119 0.17 2.0450 2.0502 2.0365 -0.41 

2.0 0.15 1.8437 1.8442 1.8561 0.67 1.8725 1.8762 1.8618 -0.57 

2.5 0.05 2.1903 2.2080 2.1958 0.25 2.1961 2.2024 2.1880 -0.37 

2.5 0.10 2.0402 2.0549 2.0404 0.01 2.0451 2.0503 2.0336 -0.56 

2.5 0.15 1.8689 1.8798 1.8639 -0.27 1.8725 1.8762 1.8583 -0.76 

3.0 0.05 2.1920 2.1983 2.1845 -0.34 2.1960 2.2023 2.1850 -0.50 

3.0 0.10 2.0421 2.0472 2.0300 -0.59 2.0450 2.0502 2.0297 -0.75 

3.0 0.15 1.8705 1.8741 1.8552 -0.82 1.8725 1.8762 1.8538 -1.00 

 



 

Table 4c– Buckling parameter (k) of the first critical load of rectangular plates under uniaxial in-plane loading 

  
a/b h/a [52] Cells [32] DRM DIFF (%) 

0.5 0.05 2.4840 2.4932 2.4822 -0.07 

0.5 0.10 2.2948 2.3022 2.2911 -0.16 

0.5 0.15 2.0829 2.0883 2.0775 -0.26 

1.0 0.05 2.2676 2.2747 2.2657 -0.09 

1.0 0.10 2.1033 2.1090 2.0995 -0.18 

1.0 0.15 1.9171 1.9212 1.9115 -0.29 

1.5 0.05 2.2071 2.2136 2.2035 -0.16 

1.5 0.10 2.0536 2.0589 2.0479 -0.28 

1.5 0.15 1.8786 1.8823 1.8709 -0.41 

2.0 0.05 2.1964 2.2027 2.1905 -0.27 

2.0 0.10 2.0453 2.0504 2.0368 -0.41 

2.0 0.15 1.8726 1.8764 1.8620 -0.57 

2.5 0.05 2.1962 2.2025 2.1880 -0.37 

2.5 0.10 2.0451 2.0503 2.0337 -0.56 

2.5 0.15 1.8726 1.8763 1.8583 -0.77 

3.0 0.05 2.1960 2.2024 2.1850 -0.50 

3.0 0.10 2.0450 2.0502 2.0297 -0.75 

3.0 0.15 1.8725 1.8762 1.8538 -1.00 

 

Table 5a– Buckling parameter (k) of the first critical load of rectangular plates under in-plane loading in both 
directions 

   
a/b h/a [45] Cells [32] DRM DIFF (%) [45] Cells [32] DRM DIFF (%) 

0.5 0.001 4.9999 5.0399 4.9902 -0.19 15.6930 16.0735 15.8062 0.72 

0.5 0.050 4.8277 4.8659 4.8227 -0.10 13.9625 14.2662 14.1169 1.11 

0.5 0.100 4.3754 4.4089 4.3716 -0.09 10.5408 10.7230 10.6282 0.83 

0.5 0.150 3.7844 3.8122 3.7818 -0.07 7.5254 7.6309 7.5723 0.62 

1.0 0.001 2.0000 2.0064 1.9966 -0.17 5.3036 5.3482 5.3007 -0.05 

1.0 0.050 1.9719 1.9782 1.9689 -0.15 5.0840 5.1254 5.1130 0.57 

1.0 0.100 1.8920 1.8980 1.8892 -0.15 4.5400 4.5741 4.5638 0.52 

1.0 0.150 1.7723 1.7779 1.7699 -0.14 3.8727 3.8992 3.8907 0.47 

1.5 0.001 1.4444 1.4478 1.4439 -0.04 4.1212 4.1482 4.1324 0.27 

1.5 0.050 1.4297 1.4330 1.4292 -0.04 3.9879 4.0132 4.0116 0.59 

1.5 0.100 1.3872 1.3904 1.3867 -0.03 3.6415 3.6628 3.6619 0.56 

1.5 0.150 1.3218 1.3248 1.3213 -0.03 3.1898 3.2067 3.2059 0.51 

2.0 0.001 1.2500 1.2525 1.2507 0.05 3.9234 3.9479 3.9456 0.57 

2.0 0.050 1.2389 1.2414 1.2396 0.05 3.8046 3.8276 3.8405 0.95 

2.0 0.100 1.2069 1.2093 1.2075 0.05 3.4906 3.5100 3.5216 0.89 

2.0 0.150 1.1571 1.1593 1.1577 0.05 3.0725 3.0876 3.0975 0.81 

 



 

Table 5b– Buckling parameter (k) of the first critical load of rectangular plates under in-plane loading in both 
directions 

   
a/b h/a [52] Cells [32] DRM DIFF (%) [52] Cells [32] DRM DIFF (%) 

0.5 0.05 0.9080 0.9101 0.9101 0.22 1.1449 1.1492 1.1449 0.01 

0.5 0.10 0.8875 0.8889 0.8892 0.19 1.0851 1.0893 1.0845 -0.06 

0.5 0.15 0.8577 0.8592 0.8589 0.14 1.0155 1.0186 1.0143 -0.12 

1.0 0.05 0.9207 0.9227 0.9217 0.11 1.0323 1.0352 1.0319 -0.036 

1.0 0.10 0.8977 0.8995 0.8985 0.08 0.9954 0.9983 0.9947 -0.08 

1.0 0.15 0.8651 0.8663 0.8654 0.04 0.9476 0.9497 0.9463 -0.14 

1.5 0.05 0.9324 0.9344 0.9341 0.18 0.9930 0.9954 0.9927 -0.02 

1.5 0.10 0.9086 0.9105 0.9100 0.15 0.9623 0.9648 0.9617 -0.07 

1.5 0.15 0.8747 0.8760 0.8756 0.10 0.9208 0.9225 0.9196 -0.13 

2.0 0.05 0.9408 0.9428 0.9431 0.25 0.9777 0.9799 0.9774 -0.03 

2.0 0.10 0.9168 0.9192 0.9188 0.21 0.9496 0.9518 0.9488 -0.08 

2.0 0.15 0.8824 0.8873 0.8838 0.16 0.9105 0.9121 0.9091 -0.15 

2.5 0.05 0.9467 0.9500 0.9495 0.30 0.9709 0.9731 0.9707 -0.02 

2.5 0.10 0.9226 0.9301 0.9590 3.94 0.9440 0.9461 0.9431 -0.10 

2.5 0.15 0.8878 0.8992 0.8925 0.53 0.9061 0.9076 0.9044 -0.19 

3.0 0.05 0.9509 0.9611 0.9548 0.42 0.9676 0.9697 0.9674 -0.03 

3.0 0.10 0.9267 0.9645 0.9513 2.65 0.9414 0.9435 0.9403 -0.11 

3.0 0.15 0.8917 0.9053 0.9121 2.29 0.9041 0.9055 0.9020 -0.23 

 

  



 

Table 5c– Buckling parameter (k) of the first critical load of rectangular plates under in-plane loading in both 
directions 

  
a/b h/a [52] Cells [32] DRM DIFF (%) 

0.5 0.05 1.7455 1.7549 1.7475 0.11 

0.5 0.10 1.6222 1.6305 1.6226 0.02 

0.5 0.15 1.4827 1.4887 1.4817 -0.07 

1.0 0.05 1.1190 1.1299 1.1125 -0.58 

1.0 0.10 1.0641 1.0677 1.0640 -0.01 

1.0 0.15 1.0049 1.0075 1.0041 -0.08 

1.5 0.05 1.0148 1.0175 1.0150 0.02 

1.5 0.10 0.9807 0.9834 0.9804 -0.04 

1.5 0.15 0.9356 0.9375 0.9346 -0.11 

2.0 0.05 0.9860 0.9883 0.9860 0.00 

2.0 0.10 0.9564 0.9588 0.9559 -0.06 

2.0 0.15 0.9158 0.9175 0.9145 -0.14 

2.5 0.05 0.9746 0.9757 0.9745 -0.01 

2.5 0.10 0.9470 0.9622 0.9462 -0.08 

2.5 0.15 0.9084 0.9254 0.9067 -0.18 

3.0 0.05 0.9695 0.9705 0.9693 -0.01 

3.0 0.10 0.9428 0.9573 0.9418 -0.10 

3.0 0.15 0.9051 0.9215 0.9031 -0.23 

 

Table 6a– Buckling parameter (k) of the first critical load of rectangular plates under in-plane pure shear loading 

   
a/b h/a [47] Cells [32] DRM DIFF (%) [47] Cells [32] DRM DIFF (%) 

0.5 0.001  26.9274 26.0301   42.7394 41.6464  

0.5 0.050  23.9614 23.4259   33.6784 32.6510  

0.5 0.100  17.7443 17.2345   21.2577 20.4331  

0.5 0.150  12.2767 11.8205   13.3468 12.7129  

1.0 0.001 9.3400 9.4260 9.2794 -1.56 14.7100 14.8702 14.7703 -0.67 

1.0 0.050  8.9979 8.9250   13.5493 13.4506  

1.0 0.100  7.9200 7.8570   10.8453 10.7417  

1.0 0.150  6.5963 6.5401   8.2270 8.1338  

1.5 0.001 7.1000 7.1254 7.1165 -0.13 11.5000 11.5923 11.5797 -0.11 

1.5 0.050  6.8879 6.8811   10.9795 10.7549  

1.5 0.100  6.2612 6.2517   9.1297 8.9411  

1.5 0.150  5.4326 5.4195   7.1367 7.0475  

2.0 0.001 6.6000 6.6162 6.6538 0.57 10.3400 10.3581 10.4093 0.49 

2.0 0.050  6.4089 6.4271   9.6753 9.7178  

2.0 0.100  5.8428 5.8568   8.1421 8.1628  

2.0 0.150  5.0902 5.0986   6.5061 6.5107  

 



 

Table 6b– Buckling parameter (k) of the first critical load of rectangular plates under in-plane pure shear loading 

  
a/b h/a [47] Cells [32] DRM DIFF (%) 

0.5 0.001  27.6157 26.9096  

0.5 0.050  24.9439 23.9350  

0.5 0.100  18.4455 17.8668  

0.5 0.150  12.4725 11.9802  

1.0 0.001 12.2800 12.7360 12.8346 0.77 

1.0 0.050  11.7916 11.7647  

1.0 0.100  9.7340 9.6786  

1.0 0.150  7.6082 7.5402  

1.5 0.001 11.1200 10.9085 10.8919 -0.15 

1.5 0.050  10.1715 10.1476  

1.5 0.100  8.5249 8.4940  

1.5 0.150  6.7780 6.7462  

2.0 0.001 10.2100 10.1129 10.1544 0.41 

2.0 0.050  9.4649 9.5008  

2.0 0.100  8.0000 8.0168  

2.0 0.150  6.4202 6.4234  

 

6 Conclusions 
 

The application of the DRM in the formulation presented in [32] for buckling analysis was carried out in this study. 
Simple radial basis functions fm were considered to approximate the effect of GNL on the domain and no shape 
parameter was adopted as well as no additional numerical strategy or tool was used to improve the convergence or 
the integrations over the boundary elements. The behaviour of the DRM considering both radial basis functions was 
comparable to the solution in [32], which employed constant cells in the domain to perform the domain integration. 
It was the reason to do not using other radial basis functions fm in the present analysis. According to Figures 1 to 8, 
the number of boundary elements had to be increased with reference to boundary element meshes employed in 
{32]. The role of increasing the number of boundary elements in the DRM is to improve the boundary integration 
which replaces the domain integration. In spite of the identity in eqns. (18) and (20) of the domain integral 
containing the radial basis function to equivalent boundary integrals, the integration of domain cells in [32] has 
worked with functions Ui3 or U33,γ, which have logarithmic and 1/r singularity types, respectively, when the field point 
approaches the collocation point. The equivalent boundary integrals in the DRM have kernels contained hyper- and 
super-singularities beyond the logarithmic and 1/r singularities. The analyses considering the ratio h/a equal to 0.001 
required more boundary elements in the present analysis using DRM as well as in the analyses presented in [32]. 
According to the literature on buckling analyses, this ratio should be considered in the evaluation of bending models 
containing the effect of shear deformation when the results are compared to values from the classical bending 
model; 

The authors believe this DRM formulation for buckling analysis presented a consistent behaviour and accurate 
results. On the other hand, the cost of the present formulation, which works with three types of BIEs, i.e. the 
displacement, the gradient and that for the second derivative, are acceptable in the DRM formulation. The BIE for 
the second derivate was used to approximate the GNL effect in the domain to equivalent boundary integrals rather 
than to introduce the effect of GNL in the DBIE, which happens in the buckling formulation during the algebraic 
manipulation shown in eqn. (4). 



The use of simple radial basis function (1+ r) to introduce the DRM was the target of this study on plate buckling 
considering the effect of shear deformation. The results were compared with those in [32] where a similar BEM 
formulation used constant cells in the domain discretization to perform the integration. An alternate radial basis 
function (1+r+r2+r3) obtained with the addition of terms on the simple function presented results slightly better than 
(1+r) only in few cases. In general, the behaviour of the simple function (1+r) was stable and better results are 
obtained when the number of points for DRM and boundary elements were increased in all cases as happened in 
[32] with reference to the increase of the number of constant cells on the domain. 
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