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Abstract 26 

Classical Swine Fever Virus (CSFV) is an ongoing threat to the pig industry due to its high 27 

transmission and mortality rates associated with infection. Live attenuated vaccines such as the 28 

CSFV C strain vaccine are capable of protecting against infection within 5 days of vaccination, 29 

but the molecular mechanisms through which this early protection is mediated have yet to be 30 

established. In this study, we compared the response of pigs vaccinated with the C strain to 31 

non-vaccinated pigs both challenged with a pathogenic strain of CSFV. Analysis of 32 

transcriptomic data from the tonsils of these animals during the early stages after vaccination 33 

and challenge reveals a set of regulated genes that appear throughout the analysis. Many of 34 

these are linked to the ISG15 antiviral pathway suggesting it plays a key role in the rapid and 35 

early protection conferred by C strain vaccination. 36 

 37 
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Introduction 50 

Classical Swine Fever (CSF) is a contagious, haemorrhagic and often fatal disease of suidae 51 

such as pigs and wild boar, caused by the classical swine fever virus (CSFV).  CSFV is an 52 

enveloped, single stranded RNA virus that belongs to the pestivirus genus of the Flaviviridae 53 

family (Moennig, 2000).  The  positive-sense RNA genome of approximately 12.3kb is 54 

translated as a single polyprotein that is then cleaved by both host and native proteases to form 55 

11 proteins, 4 of which are structural components of the virion (Blome et al., 2017). Of these 56 

structural proteins 2 envelope glycoproteins, E1 and E2, are required for virus entry into the 57 

cell through clathrin-dependent, receptor-mediated endocytosis (Shi et al., 2016). The primary 58 

site of replication are the tonsils and oropharangyeal lymph nodes. From here, the virus is 59 

transported through the lymphatic system to the primary lymph nodes, where further rounds of 60 

replication occur until the virus eventually reaches all other organs in the body via the 61 

circulatory system (Gavier-Widen et al., 2012). Interferon signalling is a key component of 62 

how the innate immune system responds to challenge with CSFV. High levels of interferon-α 63 

(IFN- α) are a characteristic feature of acute disease (Summerfield and Ruggli, 2015). The 64 

levels of induction are associated with the virulence of the strain, with highly virulent strains 65 

inducing the highest levels (Durand et al., 2009a; Durand et al., 2009b; Renson et al., 2010). 66 

Despite the classical functional role of IFNs during viral infection, which is to induce the 67 

expression of a cohort of antiviral proteins, these high levels of IFN-α are counterproductive, 68 

do not limit virus replication, and lead to the development of disease-associated 69 

immunopathology observed through severe lymphoid depletion, lymphocyte apoptosis and 70 

thrombocytopenia. This immune dysfunction presents clinically as a viral haemorrhagic fever 71 

(Summerfield and Ruggli, 2015). 72 
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CSF is endemic to parts of South East Asia, Russia and South America. Within Europe, 73 

stringent controls such as a stamping out policy, movement restrictions and epidemiological 74 

surveillance measures have been in place since 1990 to prevent the spread of the disease, 75 

however, sporadic outbreaks have occurred, for example in Lithuania and Latvia, and the recent 76 

reoccurrence of CSF in Japan after 26 year absence highlight that CSFV remains an epizootic 77 

threat (van Oirschot, 2003; Schulz et al., 2017). CSF is amenable to control by vaccination 78 

with a number of different live attenuated vaccines available, the most widely used of which is 79 

the C strain vaccine (van Oirschot, 2003). However, the inability to distinguish serologically 80 

between animals that have been vaccinated or are infected with the virus (DIVA) means its use 81 

as an outbreak control tool is limited in CSF-free countries (Blome et al., 2017) .  The C strain 82 

vaccine was generated through serial passage in rabbits until it was no longer pathogenic. It 83 

provides a rapid and complete protection of pigs against infection and also prevents viral 84 

transmission within 5 days of vaccination (Leifer et al., 2009; Graham et al., 2012).  The 85 

immunological signalling cascades behind the early protection afforded by C Strain are poorly 86 

understood, but precede the adaptive response, where IFNγ+ CD8+ cells precede the detection 87 

of a humoral, virus neutralising response (Kaden and Lange, 2001; Dewulf et al., 2004; 88 

Franzoni et al., 2013). As the C strain vaccine has been the most widely used vaccine for CSFV 89 

to date, deciphering the precise innate immune signalling pathways underpinning its 90 

effectiveness may help shape and optimise the current generation of marker and subunit 91 

vaccines. To achieve a greater insight into the host response to vaccination with C strain, 92 

porcine microarrays were utilised to analyse the differences in gene expression in tonsil tissue 93 

between pigs that were vaccinated with C strain or given a mock inoculum. These pigs were 94 

then subsequently challenged with a virulent strain of CSFV five days post immunisation, thus 95 

before an effective adaptive response could be mounted. In this study we have examined 96 
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transcriptional changes in tonsils at early time points to identify subsets of genes that may be 97 

integral to this rapid protection and could support the induction of an early adaptive immune 98 

response. 99 

Materials and Methods 100 

Viruses. C strain CSFV (AC Riemser Schweinepestvakzine, Riemser Arzneimittel AG, Riems, 101 

Germany) and the virulent CSFV Brescia strain were propagated in PK15 cell monolayers. 102 

Both mock virus and virus stocks were prepared, and titers were determined, as described 103 

previously (Franzoni et al., 2013). 104 

Ethics statement. All animal work was approved by the Animal and Plant Health Agency  105 

(APHA) Animal Welfare and Ethical Review Board, and all procedures were conducted in 106 

accordance with the Animals  (Scientific Procedures) Act 1986  (United Kingdom) under 107 

project license permits PPL 70/6559. Each animal was euthanized on predetermined days by 108 

stunning and exsanguination.  109 

Animals. Eighteen Large White/Landrace crossbreed pigs of 9 weeks of age were randomly 110 

assigned to one of two groups. On day 0 the animals in group 1 (n = 9) were vaccinated with 2 111 

ml of C strain vaccine into the brachiocephalous muscle (as recommended by the 112 

manufacturer), and group 2 (n = 9) was intranasally inoculated with tissue culture supernatant 113 

(mock). For intranasal inoculations 1ml per nostril was administered using a mucosal 114 

atomization device (MAD300; Wolf Tory Medical, USA). On day 5 post vaccination (DPV), 115 

both groups were inoculated intranasally with 105 TCID50 of CSFV Brescia strain. EDTA anti-116 

coagulated blood samples were collected in Vacutainers (BD Biosciences) prior to and after 117 

challenge from the external jugular vein.  Three animals from each group were euthanized on 118 

dpv 5 (prior to challenge), dpv 8 and dpv10 and the tonsils were collected.  119 
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Clinical, hematological, and virological methods. The animals were inspected by the APHA 120 

Animal Sciences Unit staff twice daily  (am and pm), and 10 parameters relevant to an 121 

indication of CSF  (temperature, liveliness, body shape and tension, breathing, walking, skin, 122 

eye/conjunctiva, appetite, and defecation) were examined and scored as 0  (normal), to 3  123 

(severely altered; known CSF sign) (Everett et al., 2010) . A total clinical score for each animal 124 

was assigned twice daily, and their temperatures were monitored by rectal thermometer 125 

readings and recorded once daily. Peripheral blood leukocytes and CSFV RNA were monitored 126 

in EDTA blood samples collected every 3 days using volumetric flow cytometry and real-time 127 

reverse transcription-quantitative RT-PCR  (RRT-qPCR), respectively (Everett et al., 2010).  128 

Gene expression microarray analysis 129 

At days 5, 8 and 10 post-vaccination animals were euthanized, the tonsils removed, chopped 130 

into fine pieces and stored at -80oC in RNAlater (Sigma-Aldrich). RNA was extracted using 131 

MagMax 96 microarray total RNA isolation kit which includes a Turbo DNAse treatment to 132 

remove contaminating genomic DNA. Elimination of genomic DNA was confirmed by q-PCR 133 

detection of porcine β-actin gene with and without reverse transcription. The Ovation PicoSL 134 

WTA System v2 kit (NuGEN, Leek, The Netherlands) was used to amplify cDNA from 50ng 135 

total RNA. The MinElute Reaction Cleanup Kit (Qiagen) was used to purify cDNA, and 1 μg 136 

was then labelled using a one-color DNA labelling kit (NimbleGen, Madison, USA). For each 137 

sample, 4 μg labelled cDNA was hybridised to a custom NimbleGen 12 × 135 K porcine array 138 

designed using the Sus scrofa 10.2 genome build and incorporating a total of 19,351 genes, 139 

each represented on the array by a set of six different probes  (116,106 probes in total) (Edwards 140 

et al., 2017) . The microarray also contained a large number (24,179) of random probes. 141 

Hybridised arrays were scanned at 2 μm resolution on a microarray scanner (Agilent, 142 

Wokingham, UK). Microarray images were processed using DEVA v1.2.1 software to obtain 143 
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a pair report containing the signal intensity values for each probe. To correct for differences in 144 

the overall intensity levels between slides robust multi-array (RMA) normalization was used. 145 

Data was then processed using GeneSpring GX using the manufacturer’s guidelines. RMA 146 

normalized pair files were imported and empirical Bayesian unpaired comparison  (moderated 147 

t-test, P<0.05) combined with a Westfall and Young Permutation to correct for multiple testing 148 

was carried out to generate a list of genes with significantly altered expression between C strain 149 

and mock inoculated pigs of greater than twofold. The raw microarray data (background-150 

corrected signal) can be assessed at Gene Expression Omnibus (GEO accession GSE111486. 151 

Reviewer access code: mzurkuggzdylleh). 152 

Gene Ontology and Pathway Analysis 153 

To aid in the analysis of the data, where possible human orthologue of porcine genes were used 154 

for further analysis. Gene Ontology analysis was performed using BiNGO within Cytoscape 155 

3.2 (Shannon et al., 2003; Maere et al., 2005). BiNGO analysis was performed using a 156 

hypergeometric test with a Bejamini Hochberg False Discovery Rate correction and 157 

significance value of 0.05, the ontology file used was GO_Biological_Process. PANTHER 158 

Overrepresentation Analysis (release 20171205) was performed using the annotation 159 

Reactome version 58 (Release 20161207) using a Binomial test with a Bonferoni Correction 160 

for multiple comparison (Ashburner et al., 2000; Gene Ontology, 2015). Network analysis was 161 

performed using NetworkAnalyzer tool in Cytoscape, nodes and label sizes are mapped based 162 

on betweenness centrality (Shannon et al., 2003).  163 

 164 

Results 165 
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Vaccination, challenge and clinical observations 166 

Samples for transcriptomic analysis were generated from animals vaccinated, or mock 167 

inoculated, 5 days prior to challenge with virulent CSFV (Franzoni et al., 2013). Tonsil samples 168 

were collected prior to challenge at 5 dpv and also at day 8 and day 10 pv  (3 and 5 days post-169 

challenge (dpc))  (Fig. 1A). C strain vaccinated animals were protected from the challenge with 170 

no clinical signs or temperature increase detected. The mock inoculated animals had early 171 

clinical signs of CSF from 4-5 dpc and elevated rectal temperatures (Fig. 1B and C). CSFV 172 

RNA and leukopenia was detected in blood samples from 8 dpv in the mock inoculated animals 173 

but not in vaccinated animals (Fig. 1D and E). This level of protection corresponds with 174 

previous studies in that complete protection from challenge with CSFV was observed within 5 175 

days of vaccination, thus before the onset of an adaptive immune response, which then rapidly 176 

develops after challenge  (Graham et al., 2012). 177 

Intramuscular vaccination produces a robust transcriptional response in tonsil cells of 178 

naïve pigs. 179 

At day 5 post-vaccination (prior to challenge), when vaccinated pigs were compared to mock 180 

inoculated pigs, 448 genes were differentially regulated; 255 genes were down-regulated and 181 

193 genes upregulated (Table 1, Sup.Table 1). Gene Ontology analysis (Maere et al., 2005) 182 

highlighted over representation of gene categories associated with response to virus among the 183 

upregulated genes as expected since the C strain vaccine is a live, attenuated virus  (Fig. 2A). 184 

Among the downregulated genes a number of different metabolic processes were over-185 

represented (Fig. 2B).  186 

At day 8 pv, i.e. 3 dpc and thus when viral RNA was detected in the unvaccinated animals (Fig. 187 

1E) 138 genes were differentially regulated, with 118 genes significantly less expressed in 188 
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tonsils of C strain vaccinated pigs compared to mock inoculated pigs  (Table 2, Sup. Table 2). 189 

In terms of gene ontology over-representation, an inversion occurred whereby pathways 190 

associated with response to virus were now overrepresented in those pigs that were not 191 

vaccinated (Sup. Fig 1).  192 

At 10 dpv, thus 5 dpc, 142 genes were differentially regulated, with 126 of these genes 193 

expressed less in the vaccinated animals compared to the mock inoculated group (Table 3, Sup. 194 

Table 3). Ontology analysis yielded similar observations as was seen at day 8 with an over-195 

representation of pathways associated with a response to a virus (Sup. Fig 2) in pigs that were 196 

not vaccinated. Notably, among the few genes that were up regulated in the C strain vaccinated 197 

pigs was eomes, a gene that encodes a transcriptional regulator known to play a role in CD8+ 198 

T cell differentiation (Martinet et al., 2015). This corresponds with previously published data 199 

where CSFV specific CD8+ T cells were detected in the same animal cohort (Franzoni et al., 200 

2013).  201 

Specific sub-sets of genes fluctuate in response to CSFV regardless of strain virulence. 202 

Analysis of all the significantly differentially expressed genes at day 5, 8 and 10 post-203 

vaccination revealed a cohort of genes that were differentially expressed at all of the time 204 

points. This suggested that these genes were integral to the response to both the C strain vaccine 205 

and the virulent CSFV strain Brescia. These genes were significantly upregulated in C strain 206 

vaccinated pigs at 5 dpv (Fig. 3A). However, by day 8 and day 10 the expression of these genes 207 

in vaccinated animals had alleviated suggesting they were no longer induced. Remarkably, this 208 

same subset of genes was instead induced significantly in the mock inoculated animals at 8 209 

days (Fig. 3B) and 10 days (Fig. 3C) post-vaccination (3 and 5 days post-challenge) (Fig3D). 210 

The expression of these genes corresponds with exposure to either strain of the virus and may 211 
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play a key role in enabling vaccinated pigs to overcome challenge. Indeed, among this cohort 212 

are a number of genes coding for antiviral effectors, such as IFIT1, IFIT2, IFIT3, IFIT5 which 213 

encode proteins that directly interact with viral RNA preventing the initiation of translation 214 

(Schmeisser et al., 2010; Ablasser and Hornung, 2011; Pichlmair et al., 2011; Cho et al., 2013; 215 

Hsu et al., 2013; Wetzel et al., 2014), as well as MX1 and MX2, proteins that can directly 216 

prevent viral ribonucleoprotein complex formation (Jin et al., 1999; Salomon et al., 2007; 217 

Verhelst et al., 2012; Cai et al., 2013; He et al., 2014; Zhang et al., 2015; Wang et al., 2016). 218 

The increase in expression of the genes encoding these antiviral effectors, as well as other 219 

proteins involved in the innate immune response, such as RSAD2 (Viperin), DDX60 and 220 

DHX58, at the time of challenge may be integral to the early protection offered by C strain 221 

vaccination.   222 

The ISG15 pathway is activated in response to C strain vaccination. 223 

The proteins encoded by the subset of genes differentially expressed across all three time points 224 

were subjected to an interaction analysis using Cytoscape and pathways from the InnateDB 225 

database. This network analysis revealed that many of the proteins within this cohort are 226 

capable of directly interacting with at least one other protein in the cohort and also highlighted 227 

ISG15 as the best connected node within the network (Fig. 4).   This is likely to be expected 228 

given the nature of ISG15, which functions in a pathway similar to the ubiquitination pathway, 229 

in that ISG15 is conjugated to a range of host and non-host proteins modifying their function 230 

in a process known as ISGylation (Zhao et al., 2013). Indeed among our common cohort of 231 

genes differently expressed at all time points were a number of known ISG15 conjugation 232 

targets such as IFIT1-3, IFIT5, DHX58, MX1 (Zhao et al., 2005), as well as other components 233 

of the ISG15 pathway including key enzymes HERC5 and USP18, which are directly involved 234 
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in the ISGylation conjugation and deconjuguation process, respectively (Sadler and Williams, 235 

2008).  236 

Gene overrepresentation analysis using the Reactome Database identified the Interferon 237 

signalling pathway and also identified the ISG15 pathway as being significantly 238 

overrepresented across all time points (p< 4.04E-09, Sup. Table 4), albeit in different groups 239 

at each time point. It was overrepresented in C strain vaccinated pigs at 5 dpv (p < 5.99E-03, 240 

Sup. Table 5), but in mock inoculated pigs at day 8 (p< 1.83E-07, Sup. Table 6) and 10 dpv 241 

(p< 6.97E-06, Sup. Table 7).  242 

The early induction of the ISG15 pathway may play a key role in the early protection afforded 243 

by the C strain vaccination as it ensures that an innate immune response that is producing 244 

numerous antiviral effectors (IFIT1, IFIT2, IFIT3, IFIT5, MX1 and MX2) is elevated during 245 

this early window.  246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 
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Discussion 255 

Since its introduction in the early 1960’s the C strain vaccine, has proven remarkably effective 256 

and is still the most used vaccine to control CSFV in endemic settings for example in SE Asia  257 

(Brown and Bevins, 2018). It has been shown to stimulate an adaptive cell mediated immune 258 

response within 8 - 10 dpv (Franzoni et al., 2013). However, vaccinated pigs are protected 259 

already 5 dpv, with partial protection observed even earlier (Leifer et al., 2009, Graham et al., 260 

2012). Understanding the molecular mechanisms underpinning this early immunity may aid in 261 

the development of more effective, rapid vaccines and in the optimization of vaccines that are 262 

currently available. In this study we used a transcriptomic approach to identify a subset of genes 263 

that are regulated after both vaccination and challenge and that are linked to a distinct antiviral 264 

pathway that is up-regulated during this early protective window.  265 

Type I IFN is known to play a key role in generating a robust host immune response to viral 266 

infection and the according expression of interferon stimulated genes (ISG) with vaccination 267 

or challenge had been expected since it is known that CSFV is a strong inducer of type I IFNs 268 

(Cao et al., 2015). The interaction of type I IFN with CSFV has been extensively studied, not 269 

least as CSFV also exhibits ways to suppress type I IFN (Fiebach et al., 2011). However, the 270 

interferon response comprises of over 300 ISGs (Der et al., 1998) and the precise mechanism 271 

through which this signalling cascade mediates these numerous antiviral responses is yet to be 272 

fully elucidated. We focussed here on a set of genes that was significantly regulated across 273 

both studied conditions (vaccination and challenge) and was significantly regulated at all time 274 

points studied in this early period post exposure to either virus.  275 

Expression of the ISG15 gene has previously been shown to be induced in response to virulent 276 

strains of CFSV in vitro (Cai et al., 2017; Li et al., 2018), however, this is the first study to 277 
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demonstrate induction of the ISG15 pathway in response to vaccination with C strain in vivo 278 

and specifically that this induction occurs in the tonsil, the primary site of CSFV replication. 279 

Importantly, the ISG15 pathway was up-regulated in C strain vaccinated strains during the 280 

window in which a protective immune response exists and the adaptive immunity develops. 281 

Although the C strain vaccine was given intramuscularly it is well established that CSFV has 282 

a tropism for tonsil tissue which is the primary site of replication of CSFV (Gavier-Widen et 283 

al., 2012), the elevation of the ISG15 pathway in this specific tissue is ideally placed to prevent 284 

challenge by the most likely natural route of infection. 285 

ISG15 plays a central role in mediating IFN-induced host antiviral responses. ISG15 is a 15 286 

kDa protein that is covalently attached to its target proteins via the action of a group of 3 287 

enzymes (UBE1L, UBCH8 and HERC5), which are also induced in response to type I IFN. 288 

This pathway is similar to that of ubiquitination, however unlike ubiquitination, conjugation of 289 

ISG15 to host target proteins does not prime them for degradation but instead stabilises or 290 

activates them. Over 150 host ISG15 conjugation targets have been identified thus far (Zhao et 291 

al., 2005) Among this cohort of ISGylation targets are some anti-viral proteins whose mRNA 292 

has been identified as differentially regulated through our analysis such as IFIT1, IFIT2, IFIT3, 293 

IFIT5 MX1 and MX2. These proteins target a number of different aspects of the viral 294 

replication cycle such as RNA translation and virion assembly (Jin et al., 1999; Salomon et al., 295 

2007; Ablasser and Hornung, 2011; Pichlmair et al., 2011; Cai et al., 2013; Cho et al., 2013). 296 

Some of the proteins such as MX1, have direct antiviral activity against CSFV (He et al., 2014; 297 

Zhang et al., 2015), other proteins are known to be active against other Flaviviruses, such as 298 

IFIT2 which restricts growth of West Nile virus (Cho et al., 2013). Moreover, the free 299 

unconjugated form of the ISG15 has antiviral activity and can protect mice against another 300 

RNA (Toga-)virus, the Chikungunya virus infection (Werneke et al., 2011).  301 
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Conjugation of ISG15 to viral proteins results in their loss of function and the evolutionary 302 

importance of this pathway in controlling viral infection is demonstrated by the emerging 303 

number of viral proteins that have evolved to disrupt this pathway. For example, the NS1 304 

protein of influenza A and B viruses inhibits ISG15 conjugation (Yuan and Krug, 2001; Tang 305 

et al., 2010; Zhao et al., 2010; Zhao et al., 2013) and NSP2 of porcine reproductive and 306 

respiratory syndrome virus, another important pig pathogen, inactivates ISG15 (Sun et al., 307 

2012). 308 

Further to those proteins directly linked with the ISG15 pathway, we also saw the upregulation 309 

of a number of other ISGs. These included IFI44 which is known to have antiviral activity 310 

although the precise mechanism of action remains to be characterised (Power et al., 2015) and 311 

RSAD2 (Viperin) which inhibits many DNA and RNA viruses, including CSFV through 312 

interaction with the E2 structural protein (Li et al., 2017). Importantly, RSAD2 has also been 313 

implicated in DC maturation and CD4 cell activation (Sezin et al., 2017; Jang et al., 2018) and 314 

may thus be one of the genes that links the innate and adaptive immune system. One porcine 315 

gene LOC100157244 was differentially regulated that has not previously been characterised 316 

but is predicted to be a ATP-dependent RNA helicase similar to DDX60. This protein may be 317 

a novel component of the pig host’s immune response to viral infection and future work needs 318 

to focus on characterising this gene, as well as establishing if some of the other genes 319 

upregulated that have not yet been directly related to the ISG15 pathway could represent as yet 320 

uncharacterised ISG15 conjugation targets.  321 

The role of IFN I in CSFV infection has been discussed (Summerfield and Ruggli, 2015) and 322 

it is proposed that the type I IFNs contribute to the pathology of haemorrhagic fever. However, 323 

it is well known that IFN I induce anti-viral effects in cells that have been treated before 324 

infection, so that ISGs can be induced, and that a single dose IFN I does not induce a long 325 
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lasting anti-CSFV effect (Fernandez-Sainz et al., 2015). In light of our analysis, we propose a 326 

model whereby C strain vaccination is giving vaccinated pigs a head start during which a wide 327 

range of innate antiviral effectors are produced, which serve to contain viral replication, should 328 

exposure to a virulent strain of CSFV take place prior to the onset of adaptive responses. In 329 

naïve hosts, a virulent strain of CSFV will replicate faster, as the innate response cannot 330 

produce enough antiviral effectors in time to contain the infection (Fig. 5). While many of the 331 

proteins described have been shown to have direct antiviral activity against CSFV, this 332 

response is not necessarily specific to CSFV, but since C strain targets the tonsil, which is also 333 

the primary site of CFSV replication, it is particularly effective at protecting against CSFV. 334 

The up-regulation of the ISG15 pathway in unvaccinated pigs after CSFV Brescia challenge is 335 

most likely associated with the failed attempt of the immune system to induce an antiviral 336 

response after infection, contributing to clinical disease including leukopenia (Zhao et al., 337 

2013; Summerfield and Ruggli, 2015).    338 

 339 

  340 
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Figure 1: C Strain Vaccination and Subsequent Challenge: (A) Schematic outline of the 526 

vaccine/challenge study highlighting key time points of vaccination and challenge. Three 527 

animals per group were euthanized at day 5, 8 and 10 pv for sample acquisition (B) Mean 528 

clinical score data from both C strain vaccinated and mock inoculated animals from before the 529 

study commenced until completion. (C) Rectal temperatures of animals throughout the course 530 

of the study. (D) Peripheral blood leukocyte counts in EDTA blood samples throughout the 531 

study (E) CSFV RNA as detected in blood by reverse transcription-quantitative RT-PCR. Error 532 

bars indicate SD.   533 

Figure 2: Overrepresented Gene Ontologies in tonsils 5 days after vaccination: (A) Gene 534 

ontologies overrepresented as determined by the BiNGO Cytoscape application in the subset 535 

of genes upregulated in C-Strain vaccinated pigs at 5 days post vaccination. (B) Gene 536 

ontologies overrepresented in the subset of genes downregulated in C- strain vaccinated pigs 537 

at 5 days post vaccination. Hypergeometric Test used to determine significance (p<0.05). Level 538 

of significance indicated by yellow to orange colouring. 539 

Figure 3: Differential expression of a cohort of genes at identified at each time point: (A) 540 

Expression of a cohort of 14 genes at day 5 post vaccination comparing the C Strain vaccinated 541 

animals to those that received the mock inoculation. (B) Expression of a cohort of 14 genes at 542 

day 8 post vaccination (3 dpc) comparing the C Strain vaccinated animals to those that received 543 

the mock inoculation. (C) Expression of a cohort of 14 genes at day 10 post vaccination (5 dpc) 544 

comparing the C Strain vaccinated animals to those that received the mock inoculation. (D) 545 

Heat map showing the gene expression changes as they occurred over the course of the study. 546 

Expression values are from 3 pigs per condition per time point. Significance was determined 547 

using a moderated t-test p< 0.05 considered as significant. 548 
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Figure 4: Network analysis of Co-expressed Genes: Network assembled from 14 gene cohort 549 

significantly differentially regulated at each time point. Network based on interactions defined 550 

in the InnateDB. Nodes and label sizes are mapped based on betweenness centrality. Network 551 

assembled using Cytoscape 3.2 552 

Figure 5: Head Start Immunity Model: Upon vaccination with C strain, the induction of 553 

interferon results in induction of ISGs, including the ISG15 antiviral pathway activation 554 

resulting in the induction and activation via ISGylation of a wide variety of antiviral effectors. 555 

These antiviral effectors accumulate over the 5 days post vaccination, priming the host in an 556 

antiviral state and, for example via induction of RSAD2, instigating the adaptive immune 557 

response. If during this window a virulent strain of CSFV attempts to infect the host, the 558 

multitude of antiviral effectors are already present within the cell and can immediately prevent 559 

the replication of the virus and ultimately assist in preventing the establishment of infection. 560 

Without prior vaccination, replication of a virulent strain of CFSV is allowed as although the 561 

antiviral effectors of IFN and ISG15 pathways are induced by the virulent virus these cannot 562 

keep pace with the replication rate of virulent strains of CSFV and thus are not able to 563 

sufficiently control viral replication before adaptive responses can be activated, leading to the 564 

onset of clinical disease. 565 
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