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Abstract

In complex supply chains, individual downstream buyers would often rather re-
plenish from intermediaries than directly from manufacturers. Direct replenishment
from manufacturers can be a less costly alternative when carried out by the buyers
collaboratively. This paper constructs a general model to study collaborative replen-
ishment in multi-product supply chains in the presence of intermediaries. We introduce
a class of associated cooperative games, outline a sufficient condition for their stability,
and formulate a lower bound for individual allocations in the core. Drawing upon a
class of associated two-stage games, we investigate the choice of allocation rule and
its effect on the individuals’ strategic decisions about participation in the collabora-
tive organization. We prove that the Shapley value coordinates the supply chain as it
makes complete participation the best individual choice for all buyers under complete
or incomplete information. We show if the collaborative organization disregards the
replenishment options from the intermediaries, so that they would be handled individ-
ually, no allocation rule could always coordinate the supply chain.

1 Introduction

Intermediaries are economic entities who arbitrate transactions in between upstream suppli-
ers and downstream buyers (Wu, 2004). According to the intermediation theory of the firm
(Spulber, 1996), a firm is created when the gains from intermediated exchange exceed the
gains from direct exchange. The gains created by intermediaries in many supply chains stem
from aggregating demands of competing downstream buyers to achieve economy of scale,
and consolidating upstream supply to reduce order and delivery costs. Traditionally, supply
chain intermediaries generate these benefits via procuring products, holding inventories, and
reselling them at a margin. This paper investigates the possibilities of increasing supply
chain efficiency by reducing additional intermediation costs due to double marginalization
(Spengler, 1950) and excessive inventory holding costs—an objective that is attainable by
collaboration among downstream buyers.
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The role of supply chain intermediaries are more significant in industries with high degree
of product variability, market fragmentation, and sourcing globalization, e.g., in fashion and
agro-food sectors as studied in Purvis et al. (2013) and Appel et al. (2014) respectively. This
paper is particularly motivated by supply chain intermediation in the automotive after-sale
market. The automotive after-market deals with thousands of products, comprises many
echelons—e.g., manufacturers, importers, wholesalers, garages, and car owners—and is filled
with excessive inventories and inefficiencies at various echelons (AASA, 2012). Collaborative
purchasing and replenishment in this context is becoming an emerging trend to reduce costs
and improve efficiency (London Economics, 2006).

The enduring presence of intermediaries in certain supply chains implies that individual
downstream buyers find it worthwhile to replenish indirectly even though intermediaries
charge considerably higher prices than manufacturers. Despite price disparity, replenishing
from intermediaries often provides the opportunity to bundle orders for several products and
receive them in one delivery, instead of dealing with numerous manufacturers whose minimum
volume requirements, fixed ordering costs, or farther geographical distance impose higher
replenishment costs and/or longer lead-times. By creating a critical mass, collaborative
replenishment and group purchasing could remedy some of the challenges involved in dealing
directly with manufacturers.

In this paper, we formally introduce Collaborative Replenishment in the presence of In-
termediaries (CRI) situations as a general framework for collaborative replenishment of
multiple products by several downstream buyers with direct and indirect sourcing options
from manufacturers and local intermediaries. The downstream buyers are points of sale
to the market. Each manufacturer produces a single product. Intermediaries themselves
procure products from the manufacturers, keep them in the stock, and offer the products
to the downstream buyers. The natural conditions exerted on cost functions capture the
potential conflict between the economies of scale in dealing with direct and indirect replen-
ishment sources: per-product replenishment costs could decrease either if buyers replenish
more products from intermediaries or if collaborative replenishments from manufacturers are
carried out by more buyers. The collaborative organizations of downstream buyers take ad-
vantage of both direct and indirect replenishment sources to achieve the lowest possible costs
by selecting the best replenishment policies for the participating buyers. Figure 1 depicts
an example of a CRI situation with four players who must replenish four products. It also
demonstrates a replenishment policy which determines the player-products pairs that would
be replenished from either of the sources by the players. For instance, player 2 in this exam-
ple replenishes products 1 and 2 from the intermediary, product 3 from the manufacturer 3
(jointly with players 3 and 4), and product 4 from the manufacturer 4 (jointly with players
1, 3, and 4). To the best of our knowledge, this paper is the first to consider such mixed
policies in collaborative settings.

The starting point in our study of CRI situations is to elaborate on the underlying
optimization problems and the optimal replenishment policies. To understand the nature of
collaboration among the buyers, we construct a cooperative cost game associated with these
situations and study the possibility of achieving stability, i.e., finding allocations in the core
(Gillies, 1959) of these games. We extend our analysis by allowing downstream buyers to
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Figure 1: Graphical representation of a replenishment policy

strategically decide about the extend of their participation in the collaborative replenishment
organization. In order to do so, we introduce a class of two-stage games associated with CRI
situation. In the first stage of a two-stage CRI game the buyers individually choose the
products whose replenishment sources will be decided by the collaborative organization.
Each buyer replenishes its withheld product set individually from the intermediaries. In the
second stage, the cooperative CRI game induced by the participation strategies of the buyers
is played where joint costs are divided according a known allocation rule. We examine the
choice of allocation rule and its effect on the coordination of the supply chain, i.e., to achieve
the minimum total cost of the corresponding centralized system. Finally, we elaborate on the
necessity of including indirect replenishment options in the cooperative stage to coordinate
the supply chain.

The results obtained in this paper are of two types: (1) results pertaining to general CRI
situations, and (2) results pertaining to the class of submodular CRI situations, i.e., situations
whose total replenishment cost functions for every group of buyers are submodular on their
replenishment choice sets. As we prove, the class of submodular CRI situations contains sit-
uations wherein the replenishment cost components from intermediaries and manufacturers
are themselves submodular. Single-source instances of such joint replenishment models are
extensively studied in Meca et al. (2004), Anily and Haviv (2007), Zhang (2009), Van den
Heuvel et al. (2007), Hartman et al. (2000), and Özen et al. (2011) among others. There-
fore, the second type of results presented in this paper holds for multi-product-multi-source
extensions of aforementioned models.

Generally, obtaining the optimal replenishment policies for a group of buyers requires
solving a combinatorial optimization problem. For submodular CRI situations, we show
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that the optimal replenishment policies exhibit a nested property meaning that if it is opti-
mal for a group of buyers to replenish a product directly from its manufacturer, doing so by
those buyers remains optimal in every group of buyers containing the former group. There-
fore, direct replenishers of a product never grow smaller as more buyers join the collaborative
organization. Although the cooperative CRI games are in general subadditive, the nested
property of optimal replenishment policies for submodular CRI situations allows us to prove
that their associated cooperative games are concave and their cores are always non-empty.
For general CRI games we show that whenever the core is non-empty, every buyer has to
pay at least the entire cost of its indirect replenishments from the intermediaries. Thus, core
allocations for CRI games never subsidize the indirect replenishment costs of any buyer. In
order to divide the joint costs among the buyers, we suggest the Shapley value (Shapley,
1953). While the Shapley value constitutes a core allocation in games associated with sub-
modular CRI situations, it also has the ability to coordinate the supply chain once buyers
are allowed to partially participate in the collaborative organization.

To formally assess the strategic participation of buyers in the collaborative replenishment
organization, we investigate two-stage CRI games. Intuitively, it is to the benefit of the
aggregate system that all buyers participate with all their products in the collaborative
organization so that the grand coalition could execute the centrally optimal replenishment
policies. But individual buyers may choose other strategies if they perceive that partial
participation would be to their interest. For general CRI situations, we show that with
the Shapley value as the allocation rule for the cooperative stage, individual buyers can
never make a better move than adopting the complete participation strategies irrespective
of others’ strategic moves, that is, the complete participation strategy profile is always a
weakly dominant strategy profile. In this sense the Shapley value implements the centrally
optimal replenishment policies in dominant strategies. Maskin and Sjöström (2002) explain
that this is the most demanding form of implementation which is often impossible to achieve.
As the complete participation strategy of an individual buyer is unaffected by the attributes
of the other buyers, it is optimal for each buyer to participate completely in the cooperative
organization even if no information about the other buyers is available. We conclude that
the Shapley value has the ability to coordinate the supply chain in CRI situations. As
the final intuition of the paper, we demonstrate that if indirect replenishment options from
intermediaries are disregarded in the collaborative organization, so that the collaborative
organization always replenish directly from manufacturers, no allocation rule can guarantee
that the supply chain would always be coordinated. Hence, upon availability of indirect
replenishment options, collaborative organizations of replenishing buyers must explicitly take
those options into consideration if supply chain coordination is sought after.

The rest of this paper is organized as following. In Section 2, we briefly overview the
relevant literature. Section 3 contains an overview of main concepts used in this paper. We
formally present the CRI situations in Section 4. In Section 5 we discuss the replenishment
policies and some of their properties. The cooperative cost games associated with CRI
situations are introduced in Section 6 where the corresponding cost-sharing problem is also
addressed. The two-stage CRI games are investigated in Section 7. The necessity of including
the replenishment options from intermediaries are discussed in Section 8. Section 9 concludes
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the paper.

2 Literature Review

Several papers in the literature elaborate on the opportunities for consolidating costs, ob-
taining lower purchase prices, carrying less stocks, and reducing risks of supply/demand
uncertainty as the result of collaboration in replenishment and procurement activities. Dror
and Hartman (2011) and Fiestras-Janeiro et al. (2011) provide surveys of cooperative and
non-cooperative games associated with replenishment and procurement situations.

An important advantage in collaborative replenishment is the possibility of aggregating
order and/or delivery costs. Drawing upon basic EOQ model, Meca et al. (2004) introduce
the class of inventory games where downstream players aggregate their logistics costs by
placing joint orders and show that the total cost is submodular on the set of players. Dror
and Hartman (2007) extend the basic inventory game to the setting which takes into account
the player-specific order costs in the joint replenishment process. They show that collabora-
tive replenishment may not necessarily be beneficial if players could only place joint orders
simultaneously. However, Anily and Haviv (2007) prove that if replenishment policies follow
the powers-of-two (Jackson et al., 1985) structure, so that downstream players are not forced
to synchronize all of their orders, the collaborative replenishment is always beneficial and the
total cost is submodular on the set of players. Zhang (2009) extends this result to situations
where players are allowed to have a joint inventory stocking point and obtains similar re-
sults. Van den Heuvel et al. (2007) introduce and investigate the class of economic lot-sizing
games wherein players face periodic, yet deterministic, demand and have the option to place
joint orders. They introduce cases in which the joint cost function is submodular. Timmer
et al. (2013) extend the model in Meca et al. (2004) to Poisson demand and conjecture the
submodularity of the corresponding cost function.

The collaborative replenishment problem has also been investigated in settings with
strategic players. Meca et al. (2003) study a single-item inventory game in strategic form
with players announcing their desired replenishment cycles to an intermediary who places
orders with the manufacturer. Alternative games with players announcing their contribution
to ordering costs are investigated by Körpeoğlu et al. (2012) and Körpeoğlu et al. (2013).
The latter models allow players to be privately informed about their types. Finally, Bylka
(2011) analyze an inventory batching game in strategic form and describe the structure of
Nash equilibria.

In addition to consolidating fixed costs, collaborative replenishment can also reduce the
risks associated with stochastic demands. The extensive line of research on risk pooling in
inventory management and procurement starts with the work of Hartman et al. (2000) and in
the context of newsvendor problem. Slikker et al. (2005) further study these situations while
allowing downstream players to transship unused products amongst themselves and show
that allocations in the core always exists. Özen et al. (2011) particularly study situations
where the corresponding collaborative replenishment models have submodular cost functions.
Montrucchio et al. (2012) provide a review of cooperative newsvendor games. Infinite-horizon
versions of inventory risk pooling games are studied in Karsten et al. (2012) and Karsten
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and Basten (2014) in the context of expensive and low-demand spare parts.
Another stream of research focuses on the cost-sharing problems in collaborative pur-

chasing organizations that take advantage of suppliers’ discount schedules. Nagarajan et al.
(2009) compare some of the well-known allocations for dividing the joint costs in such situa-
tions. Schotanus et al. (2008) discuss the unfairness of the equal price allocation method in
purchasing groups. Schaarsberg et al. (2013) introduce and analyze the class of maximum
collaborative purchasing situations and their associated games where the purchase price of
a group of players is determined by the largest order quantity of the players in the group.
In the context of health-care supply chains, the effect of group purchasing organizations on
distribution of profit and providers’ total purchasing cost have been investigated in Hu et al.
(2012).

A number of papers in the operations management literature investigate two-stage games
with a non-cooperative first stage game played in anticipation of a related cooperative game
played in the second stage. Brandenburger and Stuart (2007) provide an axiomatic approach
to these games which they refer to as biform games. Stuart (2005) use the biform game
structure to investigate the pricing decisions following the inventory decisions among a group
of competing newsvendors. In the context of inventory pooling and transshipments, Anupindi
et al. (2001) study the choice of allocation rules for the cooperative game in second stage
and its effect on the first stage strategies. They show that the use of dual allocations (Owen,
1975) makes the centrally optimal order quantities a Nash equilibrium (Nash, 1950) in the
first stage non-cooperative game. Including the supplier into the analysis, Kemahlioglu-Ziya
and Bartholdi (2011) show that with the Shapley value as the allocation rule, the retailers
have incentive to join the inventory pooling coalition and the supplier carries the level of
inventory that is optimal for the coalition. Özen et al. (2008) study a two-stage inventory
pooling game with warehouses and show that the set of payoff vectors resulting from strong
Nash equilibria corresponds to the core of the cooperative game played in the second stage.

3 Preliminaries

Set functions Given a finite set Ω, and its power set ℘(Ω), f ∶ ℘(Ω)→ R is a set function
that gives real values to subsets of Ω. The following properties of set functions are of interest:

• f is non-decreasing if for every A ⊂ B ⊆ Ω we have f(A) ≤ f(B).

• f is subadditive if for every A,B ⊂ Ω, A ∩B = ∅, we have f(A ∪B) ≤ f(A) + f(B).

• f is submodular if for every A ⊆ B ⊂ Ω and every element a ∈ Ω ∖ B it holds that
f(B ∪ a) − f(B) ≤ f(A ∪ a) − f(A).1

The returned value of a non-decreasing set function never decreases as the result of including
more elements. Subadditivity limits the amount of increase due to including more elements
so that the value of union of two disjoint sets does not exceed their sum. A submodular set

1For notational convenience we do not use braces for union and exclusion of single element sets. That is,
we write A ∪ a instead of A ∪ {a} and A ∖ a instead of A ∖ {a}.
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function demonstrates a diminishing returns property which makes it analogous to concave
continuous functions.

Cooperative games A Transferable Utility (TU) cooperative cost game is a pair (N, c)
where N is a finite set of players and c ∶ ℘(N) → R a set function with c(∅) = 0 that
determines the cost to be paid by each group of players. The game (N, c) is subadditive
if c is subadditive on the set of players and it is concave if c is submodular on the set of
players. An allocation for players in N is β = (βi)i∈N such that βi ∈ R for every i ∈ N . An
allocation β is efficient for (N, c) if ∑i∈N βi = c(N). An allocation rule is stable for (N, c) if
for any S ⊆ N it holds that ∑i∈S βi ≤ c(S). The core of a game contains all of its efficient and
stable allocations. An allocation in the core provides sufficient incentives for all players not
to break apart from the grand coalition while dividing the total cost entirely among players.

Non-cooperative games A cost game in strategic form is a triple (N,A, z) where N
denotes the set of players, A = (Ai)i∈N is the vector of strategy sets of players and z = (zi)i∈N
is the vector of player-specific cost functions which assign values to every strategy profile
L = (Li)i∈N with Li ∈ Ai for every i ∈ N . For S ⊆ N , let LS be the reduction of L to players
in S and let L−S be the reduction of L to players in N ∖ S. The following strategy profiles
are of interest in this paper:

• L is a Nash equilibrium if for every i ∈ N and every L
′

i ∈ Ai it holds that zi(L) ≤
zi(L

′

i, L−i).

• L is a weakly dominant strategy profile if for every i ∈ N and every L
′ ∈ ∏i∈N Ai it

holds that zi(Li, L
′

−i) ≤ zi(L
′).

Unilateral deviations from a Nash equilibrium does not reduce the cost of any players. A
weakly dominant strategy for a player is its best choice of strategy irrespective of other
players’ choices. The last concept is a refinement of Nash equilibrium meaning that if L is
a weakly dominant strategy profile, it is also a Nash equilibrium. The reverse does not hold
necessarily.

4 Mathematical Model

Consider a supply chain with a set of downstream buyers, hereafter the players, represented
by the index set N = {1, ..., n}, replenishing a variety of different products to sell in their
local markets. The set of products replenished by a player i ∈ N is denoted by Ei. The vector
E = (Ei)i∈N denotes the player-specific product sets. Each product is produced and sold by a
distinct manufacturer. Thus the set of all products, i.e., E = ⋃i∈N Ei, also represents the set of
manufacturers. In addition to the manufacturers, supply chain intermediaries,e.g., regional
wholesalers or volume distributors, also sell some or all products in E . The intermediaries by
themselves procure products from the manufacturers and keep them in stock. The players
have the option to obtain each product either from its corresponding manufacturer or from
an intermediary who sells it.
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4.1 Replenishments from the Intermediaries

When a player i ∈ N replenishes a subset of its products Li ⊆ Ei from the intermediaries, it
will do so by optimally choosing corresponding decision variables—i.e., batch sizes, ordering
cycles, selection of intermediaries etc.—to attain the minimum possible per-period replen-
ishment cost. We refrain from the operational details at this level and instead introduce
the indirect replenishment cost function rwi ∶ ℘(Ei) → R that gives the minimum per-period
replenishment cost from intermediaries of player i for subsets of products. we let rwi (∅) = 0
for every i ∈ N . The vector rw = (rwi )i∈N denotes indirect replenishment cost functions for
all players.

It is natural to assume that for every i ∈ N the indirect replenishment cost function rwi is
non-decreasing and subadditive on its product set Ei. The first condition reflects the fact that
replenishing more products never results in a reduction in costs. The second condition asserts
that by combining the replenishments of multiple sets of products from the intermediaries,
their total per-period replenishment cost does not increase—although in practice it is usu-
ally the case that joint replenishments of multiple products provide opportunities to obtain
additional savings by taking advantage of discounts or batch deliveries. The non-decreasing
condition of indirect cost functions is not formally needed in this paper.

We assume that replenishment costs from intermediaries are additive over the set of
players, that is, intermediaries cater to players on the individual bases and no savings can
be obtained by combining the indirect replenishments of different players. This justifies our
expression of indirect replenishment cost functions in terms of individual players.

4.2 Replenishments from the Manufacturers

Every product can be replenished directly from its manufacturer. Although factors such
as high order costs may render direct replenishments unattractive for individual players, by
aligning replenishment cycles and placing joint orders, groups of players could obtain savings
when replenishing a product directly from its manufacturer. When a group of players jointly
replenish a product from its manufacturer, corresponding decision variables would be chosen
to minimize the per-period replenishment cost of that product for the group. Abstracting
away from the operational details, we introduce the direct replenishment cost function rml ∶
℘(N)→ R as the set function that obtains the minimum per-period replenishment cost from
manufacturer of product l ∈ E for different groups of players. We let rml (∅) = 0 for every
l ∈ E . The vector rm = (rml )l∈E denotes direct replenishment cost functions for all products.

Similar to the previous case, we impose basic conditions on direct replenishment cost
functions. For every l ∈ E , we require rml to be non-decreasing and subadditive on the set of
players N . That is, including more players in joint orders from a manufacturer never results
in lower total costs although it can be cheaper to replenish a product directly as a single
group instead of replenishing it in separate groups.

As each manufacturer produces a distinct product, we assume that direct replenishment
costs from the manufacturers are additive over the set of products. Thus orders for multiple
products from different manufacturers cannot be consolidated to make any savings. This
explains our expression of direct replenishment cost functions in terms of distinct products.
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4.3 CRI Situations

We introduce CRI situations in order to succinctly encapsulate the relevant information
necessary to formalize the settings described above. An instance of CRI situations can be
described by the tuple

Γ = (N,E, rw, rm)

with its elements defined as above. The vector of indirect and direct replenishment costs, rw

and rm, are refereed to as the cost components of the situation. The set of all CRI situations
with player set N is denoted by Γ.

5 Replenishment Policies

Replenishment polices, which represent the various choices regarding the replenishment
sources of different products for different players, are the main decision variables in CRI
situations. In this paper we assume that the choices of replenishment sources of all prod-
ucts and all players are binary, i.e., every single product required by every player is sourced
entirely either from an intermediary or its corresponding manufacturer. Thus, in order to
completely describe the replenishment actions of all players with regard to all products, it is
sufficient to underline the replenishments from one of the sources only.

Let Γ = (N,E, rw, rm) be an arbitrary CRI situation. We define the replenishment choice
set of a player i, i ∈ N , as the set of all player-product pairs specific to i and denote it by

X Γ
i = {(i, l)∣l ∈ Ei}.

The replenishment choice sets for groups of players are obtained accordingly by concatenating
their individual choice sets. For every S ⊆ N , we denote the replenishment choice set of S
by

X Γ
S =⋃

i∈S
X Γ
i .

We define a replenishment policy, X, as a collection of player-product pairs that are
replenished directly from the manufacturers. A replenishment policy X is feasible for players
in S ⊆ N whenever X ⊆ X Γ

S . Note that with this definition a feasible replenishment policy
for a subset of players is also feasible for other subsets of players which contain the former
players. However, the reverse does not hold necessarily.

In order to develop the total replenishment cost in CRI situations we define two auxiliary
functions that explicitly determine the replenishment actions of groups of players. Given a
replenishment policy X and a product l ∈ E , the direct replenishers of l in X, i.e., individual
players who obtain the product l from its corresponding manufacturer, are denoted by

IΓ
l [X] = {i ∈ N ∣(i, l) ∈X}.

A replenishment policy readily reveals the products that are replenished from the man-
ufacturers by the players. The other element needed for calculating the total cost of a
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replenishment policy is the set of products that each player replenishes from the intermedi-
aries. This can be obtained by excluding the directly replenished products of a player from
its specific product set. Given a replenishment policy X and a player i ∈ N , the indirectly
replenished products of i in X are denoted by

P Γ
i [X] = {l ∈ Ei∣(i, l) ∉X}.

We are now ready to calculate the total replenishment cost associated with a replen-
ishment policy for a subset of players. For every S ⊆ N , we define the replenishment cost
function for S, rΓ

S ∶ ℘(X Γ
S ) → R, such that for every feasible replenishment policy for S,

X ⊆ X Γ
S , we have

rΓ
S(X) =∑

i∈S
rwi (P Γ

i [X]) +∑
l∈E
rml (IΓ

l [X]). (1)

Hence the cost of a given replenishment policy X for S is the sum of replenishment costs
from intermediaries of players in S for their indirectly replenished products in X plus the
sum of replenishment costs from manufacturers of all products for their direct replenishers in
X. The following lemma illustrates a relation between the costs of a feasible replenishment
policy for two subsets of players.

Lemma 1. Let Γ = (N,E, rw, rm) ∈ Γ and consider S ⊂ T ⊆ N . Let X be a feasible replen-
ishment policy for S. We have rΓ

T (X) = ∑i∈T∖S r
w
i (Ei) + rΓ

S(X).

Proof. Since X ⊆ X Γ
S , for every player i ∈ T ∖ S there exists no l ∈ E such that (i, l) ∈ X.

Therefore, for every i ∈ T ∖ S we have P Γ
i [X] = Ei. Consequently, from definition of rΓ in

(1) we have

rΓ
T (X) = ∑

i∈T
rwi (P Γ

i [X]) +∑
l∈E
rml (IΓ

l [X])

= ∑
i∈T∖S

rwi (Ei) +∑
i∈S
rwi (P Γ

i [X]) +∑
l∈E
rml (IΓ

l [X])

= ∑
i∈T∖S

rwi (Ei) + rΓ
S(X).

Lemma 1 allows one to evaluate the cost of a replenishment policy X that is feasible for
S ⊂ N for its supersets. To do so, indirect replenishment costs of the entire product sets of
extra players must be added to the replenishment cost of X for S.

An optimal replenishment policy for a subset of players has the lowest replenishment
cost among all feasible replenishment policies for those players. The cost of an optimal
replenishment policy for S ⊆ N is denoted by:

cΓ(S) = min
X⊆XΓ

S

rΓ
S(X) (2)
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5.1 Submodular CRI Situations

We call a CRI situation submodular if the replenishment cost function of every group of
players is submodular on its replenishment choice set. The following definition formalizes
this.

Definition 1. A CRI situation Γ ∈ Γ is submodular if for every S ⊆ N , rΓ
S is submodular on

X Γ
S .

We let Γsm ⊂ Γ be the set of all submodular CRI situations. Submodularity of a CRI
situation has interesting consequences which we will discuss below in this paper. Before
elaborating on such consequences, however, we present a critical observation with regard to
a sufficient condition for submodularity of a CRI situation—a condition which enable us to
extend many single-source joint replenishment models in the literature.

Theorem 1. Let Γ = (N,E, rw, rm) ∈ Γ with rwi submodular on Ei for every i ∈ N and rml
submodular on N for every l ∈ E . We have Γ ∈ Γsm.

Proof. Fix S ⊆ N . Let X,X
′ ⊆ X Γ

S be arbitrary feasible replenishment policies of S such that
X

′ ⊆ X. Consider a player-product pair (j, h) with j ∈ S, h ∈ Ej, and (j, h) ∈ X Γ
S ∖X. The

replenishment cost function rΓ
S is submodular on X Γ

S if

rΓ
S(X ∪ (j, h)) − rΓ

S(X) ≤ rΓ
S(X

′ ∪ (j, h)) − rΓ
S(X

′). (3)

We continue in two steps:
(Step 1) By definition of P Γ

i we have P Γ
i [X ∪ (j, h)] = P Γ

i [X] for every i ∈ S ∖ j, and
P Γ
j [X ∪ (j, h)] = P Γ

j [X]∖h. Similar statements hold for X
′

as well. The assumption X
′ ⊆X

implies that for every i ∈ S we have P Γ
i [X

′] ⊇ P Γ
i [X]. Submodularity of rwj on Ei implies

that
rwj (P Γ

j [X
′]) − rwj (P Γ

j [X
′] ∖ h) ≤ rwj (P Γ

j [X]) − rwj (P Γ
j [X] ∖ h)

or equivalently

rwj (P Γ
j [X] ∖ h) − rwj (P Γ

j [X]) ≤ rwj (P Γ
j [X

′] ∖ h) − rwj (P Γ
j [X

′]). (4)

Adding∑i∈S∖j r
w
i (P Γ

i [X∪(j, h)])−rwi (P Γ
i [X]) = 0 and∑i∈S∖j r

w
i (P Γ

i [X
′∪(j, h)])−rwi (P Γ

i [X
′]) =

0 to the left and right sides of (4) respectively obtains

∑
i∈S
rwi (P Γ

i [X ∪ (j, h)]) − rwi (P Γ
i [X]) ≤∑

i∈S
rwi (P Γ

i [X
′ ∪ (j, h)]) − rwi (P Γ

i [X
′]). (5)

(Step 2) By definition of IΓ
l we have IΓ

l [X ∪ (j, h)] = IΓ
l [X] for every l ∈ E ∖ h, and

IΓ
h [X ∪ (j, h)] = IΓ

h [X] ∪ j. Similar statements hold for X
′

as well. The assumption X
′ ⊆ X

implies that for every l ∈ E we have IΓ
h [X

′] ⊆ IΓ
h [X]. On the other hand submodularity of

rmh on N yields

rmh (IΓ
h [X] ∪ j) − rmh (IΓ

h [X]) ≤ rmh (IΓ
h [X

′] ∪ j) − rmh (IΓ
h [X

′]).
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By adding∑l∈E∖h r
m
l (IΓ

l [X∪(j, h)])−rml (IΓ
l [X]) = 0 and∑l∈E∖h r

m
l (IΓ

l [X
′∪(j, h)])−rml (IΓ

l [X
′]) =

0 to the left and right sides of the above inequality respectively we get

∑
l∈E
rml (IΓ

l [X ∪ (j, h)]) − rml (IΓ
l [X]) ≤∑

l∈E
rml (IΓ

l [X
′ ∪ (j, h)]) − rml (IΓ

l [X
′]). (6)

To conclude the proof, add (5) and (6) to get

∑
i∈S
rwi (P Γ

i [X ∪ (i, h)]) +∑
l∈E
rml (IΓ

l [X ∪ (i, h)]) − (∑
i∈S
rwi (P Γ

i [X]) +∑
l∈E
rml (IΓ

l [X]))

≤ ∑
i∈S
rwi (P Γ

i [X
′ ∪ (i, h)]) +∑

l∈E
rml (IΓ

l [X
′ ∪ (i, h)]) − (∑

i∈S
rwi (P Γ

i [X
′]) +∑

l∈E
rml (IΓ

l [X
′])) .

which is equivalent to (3). Thus rΓ
S is submodular on X Γ

S .

According to Theorem 1, submodularity of the cost components is a sufficient condition
for a CRI situation to be submodular. The last observation is a significant result as it im-
plies that CRI situations whose components follow several single-source joint replenishment
models in the literature are submodular. These models include, but are not limited to, de-
terministic joint replenishment problems discussed in Meca et al. (2004), Anily and Haviv
(2007), Zhang (2009), special cases in Van den Heuvel et al. (2007), as well as stochastic
models considered in Hartman et al. (2000) and Özen et al. (2011). As we elaborated in the
literature review section, the cost functions in the latter models are submodular.

The submodularity of CRI situations provides some immediate insights with regard to the
benefits of joint replenishments from the manufacturers. Assume that for two replenishment
policies X and X

′

and an arbitrary player i ∈ N it holds that P Γ
i [X] = P Γ

i [X
′] and IΓ

l [X] ⊇
IΓ
l [X

′] for every l ∈ E . This means that while player i does exactly the same in X
′

as in
X, direct replenishers of any product l in X include direct replenishers of l in X

′

as well.
Then it follows from the submodularity of rΓ

N that even if including i to IΓ
h [X

′], h ∈ Ei, does
not obtain a less costly replenishment policy than X

′

, including i to IΓ
h [X] could obtain a

less costly replenishment policy than X. When IΓ
h [X] ⊃ IΓ

h [X
′] this means that, all other

things held constant, the larger the set of direct replenishers of a product, the more likely
that the inclusion of a new player yields a less costly policy. This demonstrates the economy
of scale in direct replenishments from the manufacturers. Also, inclusion of i to IΓ

h [X] could
obtain a less costly replenishment policy than X (even if this is not the case in X

′

) when
IΓ
h [X] = IΓ

h [X
′] and for some l ∈ E ∖h we have IΓ

l [X] ⊃ IΓ
l [X

′]. Thus, expansion of the direct
replenishers of any product may render direct replenishments profitable in general. This
reflects a spill-over effect with regard to the products replenished from the manufacturers.

The submodularity of CRI situations also has important consequences with regard to
the tractability of the optimization problem in (2). Grötschel et al. (1988) show that for a
submodular function, the Ellipsoid method can be used to construct a strongly polynomial
algorithm for its minimization. Hence, submodularity of a CRI situations implies that the
optimal replenishment policies can be found efficiently in CRI situations. In the remain-
der of this section we elaborate on certain properties of optimal replenishment policies in
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submodular CRI situations.

Lemma 2. Let Γ = (N,E, rw, rm) ∈ Γsm. The following two statements hold:

(i) If alternative optimal replenishment policies exist for S ⊆ N , their union is also an
optimal replenishment policy for S.

(ii) Let X∗
S be an optimal replenishment policy for S ⊂ N . For every T ⊆ N , T ⊃ S, there

exists an optimal replenishment policy X∗
T such that X∗

T ⊇X∗
S.

Proof. (i) Let X∗ and X̂∗ be alternative optimal replenishment policies for S ⊆ N . By the
submodularity assumption it holds that

rΓ
S(X∗ ∪ X̂∗) − rΓ

S(X∗) = rΓ
S(X∗ ∪ (X̂∗ ∖X∗)) − rΓ

S(X∗)
≤ rΓ

S((X̂∗ ∩X∗) ∪ (X̂∗ ∖X∗)) − rΓ
S(X̂∗ ∩X∗)

= rΓ
S(X̂∗) − rΓ

S(X̂∗ ∩X∗)
≤ 0

where the last inequality follows by the assumption that X̂∗ is an optimal replenishment
policy for S. Therefore rΓ

S(X∗∪X̂∗) ≤ rΓ
S(X∗) which implies that X∗∪X̂∗ is also an optimal

replenishment policy.
(ii) Fix T as above and assume that for an arbitrary optimal replenishment policy for T ,

i.e., X∗
T , we have X∗

S ∖X∗
T ≠ ∅. Let XT = X∗

T ∪X∗
S . Clearly XT is a feasible policy for T

and furthermore XT ⊇ X∗
S . We show that XT has the lowest possible cost among all other

feasible policies. We have

rΓ
T (XT ) − rΓ

T (X∗
T ) = rΓ

T (X∗
T ∪ [X∗

S ∖X∗
T ]) − rΓ

T (X∗
T )

≤ rΓ
T ([X∗

S ∩X∗
T ] ∪ [X∗

S ∖X∗
T ]) − rΓ

T (X∗
S ∩X∗

T )
= rΓ

T (X∗
S) − rΓ

T (X∗
S ∩X∗

T )
= rΓ

S (X∗
S) − rΓ

S (X∗
S ∩X∗

T )
≤ 0.

First equality uses the fact that XT = X∗
T ∪ [X∗

S ∖X∗
T ]. Subsequent inequality follows from

submodularity of rΓ
T . Second equality holds as X∗

S = [X∗
S ∩X∗

T ] ∪ [X∗
S ∖X∗

T ]. Since X∗
S and

X∗
S ∩X∗

T both are feasible policies for S, last equality can be obtained by using Lemma 1.
Final inequality follows from the optimality of X∗

S for S. Therefore rΓ
T (XT ) − rΓ

T (X∗
T ) ≤ 0.

By assumption, X∗
T is an optimal replenishment policy for T , thus it can only be the case

that rΓ
T (XT ) = rΓ

T (X∗
T ) which implies that XT is also an optimal replenishment strategy for

T .

The first part of Lemma 2 states that the union of two optimal replenishment policies for
a group of players is in itself another optimal replenishment policy. Thus, it can be inferred
that for every group of players, there exists an optimal replenishment policy with the most
number of player-product pairs replenished from the manufacturers. The second part of
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Lemma 2 shows a nested property in growing subsets of players. That is, if it is optimal
for a subset of players to collectively replenish certain products from their manufacturers,
it would also be optimal that this subset of players keep on doing the same in any other
subset that contains the former players. The latter can be interpreted in an alternative way:
in submodular CRI situations, the set of direct replenishers of a product never shrink as
the result of including more players to the collaborative organization. A direct consequence
of the nested property of optimal replenishment policies in Lemma 2 is that in submodular
CRI situations the optimal policies for larger subsets of players can be built upon those of
the smaller subsets.

6 Cooperative CRI Games

In this section we study the collaboration among players in CRI situations with the help
of a class of cooperative cost games associated with these situations. The cooperative cost
games associated with CRI situations, hereafter cooperative CRI games, can be constructed
by considering the set of players N and defining the characteristics function to be the op-
timal replenishment cost function. Thus, for every CRI situation Γ ∈ Γ, one can define an
associated cooperative cost game by (N, cΓ) where for every S ⊆ N , cΓ(S) is defined as in
equation (2). The next theorem exhibits the subadditivity of general CRI games.

Theorem 2. For every Γ ∈ Γ, the associated cooperative game (N, cΓ) is subadditive.

Proof. Let Γ be a CRI situation and (N, cΓ) its associated cooperative game. Consider
S,T ⊆ N such that S ∩ T = ∅ and let X∗

S and X∗
T be optimal replenishment policies for S

and T respectively. Let X = X∗
S ∪X∗

T and observe that X is a feasible replenishment policy
for S ∪ T . By definition of P Γ

i it follows that for every i ∈ S we have P Γ
i [X] = P Γ

i [X∗
S] and

for every i ∈ T we have P Γ
i [X] = P Γ

i [X∗
T ]. By definition of IΓ

i , on the other hand, it follows
that for every l ∈ E we have IΓ

l [X] = IΓ
l [X∗

S] ∪ IΓ
l [X∗

T ]. Thus we have

cΓ(S ∪ T ) ≤ rΓ
S∪T (X)

= ∑
i∈S
rwi (P Γ

i [X∗
S]) +∑

i∈T
rwi (P Γ

i [X∗
T ]) +∑

l∈E
rml (IΓ

l [X∗
S] ∪ IΓ

l [X∗
T ])

≤ ∑
i∈S
rwi (P Γ

i [X∗
S]) +∑

i∈T
rwi (P Γ

i [X∗
T ]) +∑

l∈E
rml (IΓ

l [X∗
S]) +∑

l∈E
rml (IΓ

l [X∗
T ])

= rΓ
S(X∗

S) + rΓ
T (X∗

T ) = cΓ(S) + cΓ(T )

where the last inequality follows from the subadditivity of rml .

Subadditivity of CRI games implies that the optimal replenishment cost for the case
where all players are participating in the collaborative organization is never higher than the
sum of the costs of any other partitionings of the players into independent collaborative
organizations. Notice that the proof of Theorem 2 only uses the subadditivity of direct
replenishment cost functions and does not require the subadditivity of indirect replenishment
costs.
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6.1 Concavity of CRI Games

In a concave game the contributions of players to the cost of growing subsets of players
are non-increasing. The concavity of a cooperative game has important implications with
regard to its stability which will be discussed in the next section. Our main result in this
section asserts that cooperative games associated with submodular CRI situations are con-
cave. Remember that for a submodular CRI situation the replenishment cost function of
each coalition is submodular on its corresponding replenishment choice set while concavity
of the associated game requires that the optimal replenishment cost function be submodular
on the set of players. Thus, proving that the former implies that latter is non-trivial.

Theorem 3. For every Γ ∈ Γsm, the associated cooperative game (N, cΓ) is concave.

Proof. Let Γ = (N,E, rw, rm) ∈ Γsm. Consider a player i ∈ N and let S ⊂ T ⊆ N ∖ i. In
the rest of the proof we use the shorthand notation Si = S ∪ i. Let X∗

T i , X
∗
T , X∗

Si , and X∗
S

be the optimal replenishment policies for T i, T , Si, and S respectively in such a way that
X∗
T i ⊇ X∗

T ⊇ X∗
S , and X∗

T i ⊇ X∗
Si ⊇ X∗

S . From Lemma 2, parts (i) and (ii), we know that such
optimal replenishment policies always can be found. Since X∗

T i is an optimal replenishment
policy for T i, it is at most as costly as any other feasible replenishment policy for T i. By
the fact that X∗

T ∪ [X∗
Si ∖X∗

T ] ⊆ X Γ
Si , it can be inferred that X∗

T ∪ [X∗
Si ∖X∗

T ] is a feasible
replenishment policy for T i. Therefore:

rΓ
T i(X∗

T i) − rΓ
T i(X∗

T ) ≤ rΓ
T i (X∗

T ∪ [X∗
Si ∖X∗

T ]) − rΓ
T i (X∗

T )
≤ rΓ

T i ([X∗
Si ∩X∗

T ] ∪ [X∗
Si ∖X∗

T ]) − rΓ
T i (X∗

Si ∩X∗
T )

= rΓ
T i (X∗

Si) − rΓ
T i (X∗

Si ∩X∗
T )

= rΓ
Si (X∗

Si) − rΓ
Si (X∗

Si ∩X∗
T )

≤ rΓ
Si (X∗

Si) − rΓ
Si (X∗

S)

Second inequality follows from the fact that X∗
Si∩X∗

T ⊆X∗
T i and drawing upon the submodu-

larity of rΓ
T i (by Theorem 1). First equality follows since [X∗

Si∩X∗
T ]∪[X∗

Si∖X∗
T ] =X∗

Si . Second
equality holds as both X∗

Si and X∗
Si ∩X∗

T are feasible policies for Si and by Lemma 1 we have

rΓ
T i (X∗

Si) = rΓ
Si (X∗

Si)+∑j∈T i∖Si rwj (Ej) and rΓ
T i (X∗

Si ∩X∗
T ) = rΓ

Si (X∗
Si ∩X∗

T )+∑j∈T i∖Si rwj (Ej).
Last inequality holds since X∗

Si∩X∗
T is a feasible replenishment policy for S which means that

rΓ
S (X∗

Si ∩X∗
T ) ≥ rΓ

S (X∗
S) therefore rΓ

S (X∗
Si ∩X∗

T )+ rwi (Ei) ≥ rΓ
S (X∗

S)+ rwi (Ei) and eventually

rΓ
Si (X∗

Si ∩X∗
T ) ≥ rΓ

Si (X∗
S). Therefore,

rΓ
T i(X∗

T i) − rΓ
T i(X∗

T ) ≤ rΓ
Si(X∗

Si) − rΓ
Si(X∗

S).

By adding rwi (Ei) to both sides of the above inequality and noting (with the help of Lemma
1) that rΓ

T (X∗
T ) = rΓ

T i(X∗
T ) − rwi (Ei) and rΓ

S(X∗
S) = rΓ

Si(X∗
S) − rwi (Ei) we get

rΓ
T i(X∗

T i) − rΓ
T (X∗

T ) ≤ rΓ
Si(X∗

Si) − rΓ
S(X∗

S).

Thus we have cΓ(T i) − cΓ(T ) ≤ cΓ(Si) − cΓ(S).
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In light of the sufficient condition for submodularity of CRI situation presented in The-
orem 1, one can infer that the CRI games associated with situations with submodular cost
components are concave.

6.2 Allocation Rules

An important question in every cooperative situation concerns the division of joint costs
among the participants. The subadditivity of CRI games has already established that co-
operation among players in their replenishment activities could reduce their total costs.
However, since the decisions with regard to joining the collaborative organization are made
by rational and self-interested players, it is crucially important to ensure that when dividing
the total costs, every player is satisfied with its individual allocation. This is the main theme
of the cost-sharing problem discussed in this section.

There are certain properties that a desirable allocation must satisfy. One of the most
basic desirable properties of an allocation is the efficiency property which requires that the
total cost of the set of all players (grand coalition) is entirely divided among the players.
Another desirable property is the stability property that ensures players do not break apart
from the grand coalition. The allocations in the core satisfy both of these properties. Due
to the appealing features of allocations in the core, an important question with regard to
every cooperative game is the nonemptiness of its core.

In general the core of CRI games can be empty. Below we provide an example where the
core of the game associated with a CRI situation is empty.

Example 1. Consider the situation Γ as following. There are three players N = {1,2,3},
replenishing a single product E1 = E2 = E3 = {a}. The cost of replenishment from the
intermediaries are 4 for all players, i.e., rwi ({a}) = 4 for all i ∈ N . The cost of replenishment
from the manufacturer is as follows: rma (S) = 5 if ∣S∣ = 1, rma (S) = 5 if ∣S∣ = 2, and rma (N) = 9.
It is straightforward to check that in this situation we have cΓ(S) = 4 if ∣S∣ = 1, cΓ(S) = 5
if ∣S∣ = 2, and cΓ(N) = 9. The game is symmetric so if the core is not empty, then the
equal allocation of 9/3 = 3 for every player must be in the core. However, every two player
coalition can achieve the cost of 5 which is smaller than 3+ 3 = 6. Thus the core of the game
associated with Γ is empty. △

Nevertheless, the core of a concave game is always non-empty (Shapley, 1971). Our
results in the previous section regarding the concavity of CRI games also guarantees the
existence of allocations in the core.

Corollary 1. For every Γ ∈ Γsm, the core of the associated cooperative CRI game (N, cΓ) is
non-empty.

When the core of a cooperative game is non-empty, it may contain an infinite number
of distinct allocations. To provide insights about the nature of allocations in the core of
CRI games, we present an observation with regard to the minimum amount of payment that
every player must pay in core allocations.
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Theorem 4. Let Γ = (N,E, rw, rm) ∈ Γ such that the core of its associated game (N, cΓ) is
non-empty. For every allocation β in the core, every optimal replenishment policy for the
grand coalition X∗, and every player i ∈ N it holds that βi ≥ rwi (P Γ

i [X∗]).

Proof. Let β be an allocation in the core of (N, cΓ). By definition of core allocations, it must
be that ∑j∈N∖i βj ≤ cΓ(N ∖ i). Also the efficiency of β requires that ∑j∈N βj = cΓ(N). Thus
we can write

βi = cΓ(N) − ∑
j∈N∖i

βj ≥ cΓ(N) − cΓ(N ∖ i)

Let X∗ be an optimal replenishment policy for N and consider a player i ∈ N . To complete
the proof it suffices to show that cΓ(N) − cΓ(N ∖ i) ≥ rwi (P Γ

i [X∗]). Let X = X∗ ∩X Γ
N∖i. For

every j ∈ N ∖ i it holds that P Γ
j [X] = P Γ

j [X∗]. Also we have IΓ
l [X] = IΓ

l [X∗] ∖ i. Since X is
a feasible replenishment policy for N ∖ i, we can write:

rΓ
N∖i(X) = ∑

j∈N∖i
rwj (P Γ

j [X∗]) +∑
l∈E
rml (IΓ

l [X∗] ∖ i)

Every optimal replenishment policy for N ∖ i is at most as costly as X, thus cΓ(N ∖ i) ≤
rΓ
N∖i(X). We have

cΓ(N) − cΓ(N ∖ i) ≥ cΓ(N) − rΓ
N∖i(X)

= ∑
j∈N

rwj (P Γ
j [X∗]) +∑

l∈E
rml (IΓ

l [X∗]) − ∑
j∈N∖i

rwj (P Γ
j [X∗]) −∑

l∈E
rml (IΓ

l [X∗] ∖ i)

= rwi (P Γ
i [X∗]) +∑

l∈E
rml (IΓ

l [X∗]) − rml (IΓ
l [X∗] ∖ i).

For every l ∈ E the function rml is non-decreasing on N thus rml (IΓ
l [X∗])−rml (IΓ

l [X∗]∖ i) ≥ 0
and consequently we have cΓ(N) − cΓ(N ∖ i) ≥ rwi (P Γ

i [X∗]) which completes the proof.

Theorem 4 asserts that in every core allocation, each player has to pay at least its
indirect replenishment cost for the products it obtains from the intermediaries. Therefore,
irrespective of the contribution of a player to the total cost savings in the grand coalition,
the indirect replenishment cost of no player would be subsidized in any core allocation.

In order for the cooperating organization to be able to repeatedly carry out joint replen-
ishments without the need of renegotiating the appropriate allocations, a formal scheme for
allocating the costs in different situations should be in place. This requirement is formalized
with the notion of allocation rule. An allocation rule is a function σ which determines an
allocation for every game in its domain of definition. The desirability of an allocation rule
can be evaluated by the desirable properties of the allocations it generates. For example, an
allocation rule is called efficient if it always generates efficient allocations. The allocation to
player i under allocation rule σ is denoted with σi.

A well-known allocation rule in cooperative games literature is the celebrated Shapley
value (Shapley, 1953). The Shapley value of a cost game2 (N, c), i.e., Φ(N, c), is calculated

2Note that the Shapley value is originally proposed for saving games.
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by the following formula:

Φi(N, c) = ∑
S⊆N∖i

∣S∣!(n − ∣S∣ − 1)!
n!

[c(S ∪ i) − c(S)] , for every i ∈ N. (7)

The Shapley value divides the total cost of grand coalition according to the average contri-
butions of players in all subsets that they are a member of. Although in general the Shapley
value of a game might not belong to its core, in concave games the latter is always the case
(Shapley, 1971). Therefore, in submodular CRI games players can always divide the costs
among themselves in a stable and efficient way by implementing the Shapley value. In the
next section we demonstrate another appealing property of the Shapley value for cooperative
CRI games.

7 Strategic Participation in Two-stage CRI Games

An implicit assumption made in the cooperative CRI game studied in previous section was
that once a player decides to join the collaborative organization, it puts forward its entire
player-specific product set so that their replenishment sources are decided by the collabora-
tive organization in order to optimize the replenishment cost of the grand coalition. However,
in reality the players’ decisions with regard to their participation in collaborative replenish-
ment activities is more nuanced. One of the most important dimensions of such decisions
is the extent of the players’ participation in the collaborative organization in terms of the
products whose replenishment policies are delegated to the collaborative organization. In
this section, the players have the option to strategically choose the products they replenish
individually outside of the collaborative organization. Thus, by allowing players to with-
hold some of their required products from the collaborative organization, they are able to
partially collaborate. The participation decision with respect to each product is binary, i.e.,
each product is entirely replenished either within the collaborative organization or outside it.
The question we investigate is the conditions under which centrally optimal outcomes would
be achieved decentrally, i.e., strategic participation of the players would not negatively affect
the total replenishment cost of the supply chain.

A crucial input to the players’ strategic decision making processes is the allocation rule
that will be implemented in the collaborative organization to divide the joint costs. Hence,
our analysis in this section enables us to comment on appropriate allocation rules for col-
laborative organizations in CRI situations. In order to achieve the latter, we construct a
two-stage game comprising a non-cooperative stage followed by a subsequent cooperative
stage. The sequence of events in our two-stage CRI game is as follows. First, the allo-
cation rule for the collaborative organization is set and announced to the players. With
this knowledge the players simultaneously make their decisions regarding the extend of their
participation in the collaborative organization. That is, each player strategically chooses
the products it would replenish by itself outside the collaborative organization from the in-
termediaries and announces the rest of its products to the collaborative organization. The
cooperative CRI game played in the second stage is associated with the modified version of
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Figure 2: Sequence of events in a two-stage CRI game

the original CRI situation which is induced by the players’ participation strategies in the
first stage. The total cost of the grand coalition in the induced CRI situation in the second
stage will be distributed according to the pre-fixed allocation rule. Figure 2 illustrates the
sequence of events. We start by assuming that all information contained in the situation is
known by all players.

We formulate the players’ participation strategies in two-stage CRI games in terms of
products they withhold from the collaborative organization and replenish individually from
the intermediaries (this formulation of strategies is for notational convenience). Given a CRI
situation Γ = (N,E, rw, rm) and a player i ∈ N , let Li ⊆ Ei be the set of withheld products of
i. In this manner, Li is the participation strategy of player i. A vector of players’ strategies
L = (Li)i∈N is referred to as a participation strategy profile.

As players withhold some of their products from the collaborative organization, the coop-
erative game they play in the second stage can be associated with a situation different than
the original CRI situation. A participation strategy profile induces a CRI situation wherein
only the products intended by the players are present. The modified situation induced by
the participation strategy profile L is denoted by Γ∖L and obtained in the following manner:

Γ ∖L = (N,E ∖L, rw, rm) (8)

where E∖L = (Ei∖Li)i∈N is the modified vector of player-specific product sets. Subsequently,
the game associated with the modified situation, to be played in the second stage, is defined
by (N, cΓ∖L). The following lemma present a useful observation regarding the modified CRI
situations.

Lemma 3. Let Γ = (N,E, rw, rm) ∈ Γ, and L = (Li)i∈N with Li ⊆ Ei for all i ∈ N . For every
S ⊆ T ⊆ N we have,

cΓ∖L−S(T ) ≤∑
i∈S
rwi (Li) + cΓ∖L(T ). (9)

Proof. Let X∗ be an optimal replenishment policy for T in situation Γ ∖ L. The left hand
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side of inequality (9) can be written as

∑
i∈S
rwi (Li) + cΓ∖L(T ) = ∑

i∈S
rwi (Li) + rΓ∖L

T (X∗)

= ∑
i∈S
rwi (Li) +∑

i∈T
rwi (P Γ∖L

i [X∗]) +∑
l∈E

(IΓ∖L
l [X∗])

≥ ∑
i∈T
rwi (P

Γ∖L−S
i [X∗]) +∑

l∈E
(IΓ∖L−S
l [X∗])

= rΓ∖L−S
T (X∗)

≥ cΓ∖L−S(T ).

The first inequality uses that subadditive property of rwi and the fact that IΓ∖L
l ([X∗]) =

IΓ∖L−S
l ([X∗]). The last inequality follows since X∗ is also a feasible replenishment policy for
T in situation Γ∖L−S and consequently its corresponding cost is never less than an optimal
policy for T in that situation.

Lemma 3 states that the replenishment cost of a group of players never decreases if a
subgroup of players withhold some of their products from the collaborative organization and
replenish them individually from the intermediaries. This observation is justified by the fact
that if it is to the benefit of the group that certain players replenish parts of their product
sets from the intermediaries, the group’s optimal replenishment policy would recommend
this.

Given a CRI situation Γ = (N,E, rw, rm) and an allocation rule σ for CRI games, the
two-stage participation game under allocation rule σ is the triple (N,℘(E), zΓ,σ) where
℘(E) = (℘(Ei))i∈N is the vector of individual participation strategy sets—i.e., power sets of
player-specific product sets—and zΓ,σ is the vector of player-specific cost functions with its
i’th element, i ∈ N , defined such that for a participation strategy profile L we have

zΓ,σ
i (L) = rwi (Li) + σi(N, cΓ∖L). (10)

The player-specific cost function of player i is comprised of the indirect replenishment cost
of player i for its withheld products and its allocation under σ in the cooperative CRI game
induced by L, i.e., the game associated with the modified CRI situation Γ ∖L.

In two-stage CRI games, the individual decision making processes of the players are in-
tertwined as the player-specific cost functions of players will be affected by the other players’
choices of strategies as well. The rational players choose their individual participation strate-
gies in anticipation of the other players’ moves in order to minimize their player-specific cost
functions. A particularly interesting outcome for the system is when the strategic choices of
players coincide with the strategies that minimize the total replenishment costs of the entire
system, i.e., when a centrally optimal participation strategy profile is selected individually by
the players. In the latter case the supply chain would be coordinated. The following lemma
highlights a centrally optimal participation strategy profile in two-stage CRI games.

Lemma 4. Let Γ = (N,E, rw, rm) ∈ Γ be a CRI situation and σ be an efficient allocation
rule for cooperative CRI games. In the two-stage CRI game associated with Γ, the complete

20



participation strategy profile Lo = (Loi = ∅)i∈N minimizes the sum of player-specific cost
functions so that the total equals cΓ(N).

Proof. For a strategy profile L ∈∏i∈N ℘(Ei) the sum of player-specific cost functions in (10)
can be written as

∑
i∈N

zΓ,σ
i (L) = ∑

i∈N
[rwi (Li) + σi(Γ ∖L)]

= ∑
i∈N

rwi (Li) + cΓ∖L(N)

≥ cΓ(N)

where the second equality follows from efficiency of σ and the inequality is deduced from
Lemma 3. Therefore, the sum of player-specific cost functions of all players with any par-
ticipation strategy profile cannot be less than cΓ(N). For complete participation strategy
profile Lo we have ∑i∈N z

Γ,σ
i (Lo) = cΓ(N). Hence, Lo is an optimal participation strategy for

N .

With the choice of complete participation strategy profiles there would be no loss of ef-
ficiency in the two-stage CRI games. However, despite the central optimality of complete
participation strategy profiles in two-stage CRI games, players may choose other partici-
pation strategies if such strategies result in lower player-specific costs for them. A critical
variable in this setting is the allocation rule chosen for cooperative games played in the
second stage. The following definition captures the formal relation between the choice of
allocation rules and the players’ participation strategies in two-stage CRI games.

Definition 2. The allocation rule σ implements the participation strategy profile L in Nash
equilibrium (or weakly dominant strategies) in a two-stage CRI game if L is a Nash equilib-
rium (or weakly dominant strategy profile) in that game.

Definition 2 introduces two types of implementations. Remember from Section 3 that
every weakly dominant strategy profile is also a Nash equilibrium. Thus, if an allocation
rule could implement a participation strategy profile in weakly dominant strategies it can
also implement that strategy in Nash equilibrium. The reverse, however, may not hold
necessarily. It has been argued that implementation in (weakly) dominant strategies is the
most demanding form of implementation (Maskin and Sjöström, 2002). In the next step we
present the main result of this section regarding the ability of the Shapley value to implement
centrally optimal participation strategy profiles in two-stage CRI games.

Theorem 5. The Shapley value implements the complete participation strategy profile in
weakly dominant strategies in every two-stage CRI game.

Proof. Let Γ = (N,E, rw, rm) ∈ Γ and (N,℘(E), zΓ,σ) be its associated two-stage CRI game.
We show that for every player i ∈ N and every L ∈ ∏i∈N ℘(Ei), it holds that zΓ,Φ

i (L) ≥
zΓ,Φ
i (L−i,∅), or equivalently

rwi (Li) +Φi(N, cΓ∖L) ≥ Φi(N, cΓ∖L−i). (11)
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Using the definition of the Shapley value in (7), the left hand side of (11) can be written
as

rwi (Li) +Φi(N, cΓ∖L) = rwi (Li) + ∑
S⊆N∖i

∣S∣!(n − ∣S∣ − 1)!
n!

[cΓ∖L(Si) − cΓ∖L(S)]

= ∑
S⊆N∖i

∣S∣!(n − ∣S∣ − 1)!
n!

[rwi (Li) + cΓ∖L(Si) − cΓ∖L−i(S)]

≥ ∑
S⊆N∖i

∣S∣!(n − ∣S∣ − 1)!
n!

[cΓ∖L−i(Si) − cΓ∖L−i(S)]

= Φi(N, cΓ∖L−i).

The second equality uses the facts that ∑S⊆N∖i ∣S∣!(n− ∣S∣−1)!/n! = 1 and cΓ∖L(S) = cΓ∖L−i(S)
(since i ∉ S). The inequality follows from Lemma 3.

Theorem 5 exhibits an appealing feature of the Shapley value in CRI situations. That
is, if the Shapley value is set as the allocation rule, no player can obtain any benefit by
withholding some of its products from the collaborative organization. The power of the
Shapley value in enforcing the centrally optimal strategies in CRI situations becomes clearer
once we realize that the complete participation strategy is a feasible choice for every player
in every CRI situation. The next observation follows immediately.

Corollary 2. Let i ∈ N be a player. With the Shapley value as the allocation rule, the
complete participation strategy Loi = ∅ is an optimal strategy for player i in every two-stage
CRI game.

Corollary 2 has important consequences in terms of the information available to every
player and its effect on the choice of centrally optimal participation strategies. Since complete
participation strategies are always best choices of strategies at the individual level under the
Shapley value, the players do not need to know the specific details of the situation in order
to realize that announcing their complete player-specific product sets to the collaborative
organization is their best options. We conclude that the Shapley value can lead to the
coordination of the decentralized system under study even in settings without complete
information.

8 Disregarding Intermediaries in the Cooperative Stage

Drawing upon the logic of two-stage games elaborated upon previously, the purpose of this
section is to answer the following question: is it really necessary to consider the replenishment
options from the intermediaries in the cooperative stage? Alternatively, what happens if the
collaborative organization disregards the options to replenish from intermediaries in the
second stage? The motivation for this question is two-fold. First, it has already been
established that in every optimal replenishment policy, one can separate the player-product
pairs that are replenished from the intermediaries from those that are replenished from the
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manufacturers. Thus, in a strategic game where players are free to withhold some of their
products and replenish them from the intermediaries, there can be strategy profiles with
partial cooperation which result in minimum total costs of corresponding centralized system.
Second, from practical point of view it might be easier to set up the collaborative organization
to only deal with direct replenishments from the manufacturers and replenishments from
intermediaries be left out for players to manage individually. In this section we prove that
for the optimal performance of the system it is vital that indirect replenishment options also
be considered in the collaborative organization.

To carry out the analysis, we construct an alternative cooperative game which disregards
the options to replenish from the intermediaries. Given the CRI situation Γ = (N,E, rw, rm),
define the direct CRI game (N, c̃Γ) where for every S ⊆ N :

c̃Γ(S) = rΓ
S(X Γ

S ) =∑
l∈E
rml (IΓ

l [X Γ
S ]) (12)

The cost to every coalition in the direct CRI game is the direct replenishment cost of all
products of every player. In this manner, direct CRI games disregard the intermediaries.
Subsequently, we define an alternative two-stage game associated with CRI situations in the
same spirit as in the previous section. In the first stage of this alternative two-stage game,
each player decides its withheld product set which would be replenished individually from
the intermediaries. In the second stage of the alternative two-stage game, the direct CRI
game induced by the chosen strategies is played and the costs will be divided according to a
pre-fixed allocation rule for the direct CRI games. We refer to these two-stage games as the
alternative two-stage CRI games.

The alternative two-stage CRI game associated with situation Γ = (N,E, rw, rm) under
allocation rule σ is the triple (N,℘(E), z̃Γ,σ) where ℘(E) = (℘(Ei))i∈N is the vector of
individual participation strategy sets and z̃Γ,σ is the vector of alternative player-specific cost
functions with its i’th element, i ∈ N , defined such that for a strategy profile L ∈∏i∈N ℘(Ei)
we have

z̃Γ,σ
i (L) = rwi (Li) + σi(N, c̃Γ∖L). (13)

From the above definition it must be evident that there is a bijection between the set of
participation strategies for an alternative two-stage CRI game and the replenishment choice
set of players in the situation. Drawing upon the latter fact, the next observation, which
we provide without proof, shows a centrally optimal participation strategy profile for an
alternative two-stage CRI game that minimizes the sum of player-specific cost functions of
the players so that the total boils down to the minimum total replenishment cost of the
corresponding centralized system.

Lemma 5. Let Γ = (N,E, rw, rm) be a CRI situation, X∗ be an optimal replenishment policy
for N , and σ be an efficient allocation rule for direct CRI games. In the alternative two-stage
CRI game associated with Γ, the participation strategy profile LP = P Γ[X∗] minimizes the
sum of player-specific cost functions so that the total equals cΓ(N).

Lemma 5 asserts that if the supply chain is managed centrally, then there would be no
efficiency lost at optimality when the options to replenish from intermediaries are disregarded
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in the second stage. In fact, minimum total replenishment cost of the centralized system
can be achieved if each player withholds the same set of products from the collaborative
organization that it would have replenished from intermediaries in an optimal replenishment
policy for the corresponding CRI situation. But is there an allocation rule for direct CRI
games that motivate players to choose latter participation strategy profiles in alternative two-
stage CRI games? Modifying the notion of implementation in Definition 2 for alternative two-
stage CRI games, next we investigate the existence of allocation rules that could implement
centrally optimal participation strategy profiles in these games. As we show below, such
allocation rules do not exists even if we require implementation in the weaker form, i.e., in
Nash equilibrium.

Theorem 6. There exists no efficient allocation rule for direct CRI games that could imple-
ment the centrally optimal participation strategy profiles in every alternative two-stage CRI
game.

Proof. Consider the CRI situation Γ with N = {1,2}, E1 = {a, b} and E2 = {a}. For i ∈ N we
have rwi ({a}) = rwi ({b}) = 9 and rwi ({a, b}) = 16, and for l ∈ E we have rml ({1}) = rml ({2}) = 10
and rml (N) = 15. It can be seen that cΓ({1}) = rw1 (E1) = 16, cΓ({2}) = rw2 (E2) = 9, and
cΓ(N) = rw1 ({b})+rma (N) = 9+15 = 24. Observe that the only centrally optimal participation
strategy profile in the alternative two-stage game associated with Γ is LP = (LP1 = {b}, LP2 =
∅). The modified situation associated with the latter participation strategy profile is Γ∖LP =
({1,2}, ({a},{a}), rw, rm).

Next, consider the situation Γ̂ with N = {1,2}, E1 = {a} and E2 = {a, b} and cost
components that are identical to those in Γ. It can be seen that cΓ̂({1}) = 9, cΓ̂({2}) = 16,
cΓ̂(N) = 24. The unique optimal participation strategy profile in the alternative two-stage
game associated with Γ̂ is L̂P = (L̂P1 = {b}, L̂P2 = ∅). The modified situation associated

with the latter participation strategy profile is Γ̂ ∖ L̂P = ({1,2}, ({a},{a}), rw, rm). As seen
above, the modified situations associated with Γ and Γ̂ are identical thus cooperative games
associated with them are also identical. For the direct CRI game associated with situation
Γ̇ = Γ ∖LP = Γ̂ ∖ L̂P we have c̃Γ̇({1}) = c̃Γ̇({2}) = 9, and c̃Γ̇(N) = 15.

Suppose that an efficient allocation rule σ is chosen that divides the costs between the
players in such a way that σ1(N, c̃Γ̇) ≥ σ2(N, c̃Γ̇). Consider the situation Γ. With allocation
rule σ, it would be the case that

z̃Γ,σ
1 (LP ) = rw1 ({b}) + σ1(N, c̃Γ∖LP ) ≥ 9 + 7.5 = 16.5.

In this situation, if player 1 deviates from choosing LP1 and instead chooses L1 = {a, b},
while player 2 chooses LP2 , player 1 would get z̃Γ,σ

1 (L1, LP2 ) = 16 < z̃Γ,σ
1 (LP ). Therefore the

allocation rule which gives player 1 a cost allocation which is equal to or higher than that
of player 2 cannot implement the optimal participation strategy profile in Nash equilibrium
in this situation.

To remedy this, suppose a different allocation rule σ
′

is chosen such that σ
′

1(N, c̃Γ̇) <
σ
′

2(N, c̃Γ̇). However, once we consider the original situation Γ̂, it can be seen that an allo-
cation rule that gives player 2 a higher allocation than 1 is unable to implement the corre-
sponding centrally optimal participation strategy profile in Nash equilibrium. We conclude
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that there exists no allocation rule that could implement the optimal participation strategy
profiles in Nash equilibrium in alternative two-stage CRI games associated with situations
Γ and Γ̂ simultaneously.

In light of last result we conclude that the optimal participation of players in collabora-
tive replenishment organizations which disregard the presence of intermediaries cannot be
guaranteed. Hence, to obtain the system wide optimal performance, it is crucial that the
collaborative replenishment organizations do consider the players’ options for replenishments
from the intermediaries.

9 Final Remarks

In this paper, we investigated potential opportunities for direct replenishments from manu-
facturers for collaborating downstream buyers when supply chain intermediaries provide an
alternative source for replenishments. In a typical situation with the intermediaries offering
low order costs, possibility to bundle multiple products in one order, yet higher unit costs
than manufacturers, the incentives for replenishing from different sources are conflicting. The
main insight obtained from our study is that under certain conditions cooperation enables
downstream buyers to bypass the intermediaries and directly replenish from the original man-
ufacturers. However, the indirect replenishment from the intermediaries may still be a part
of the optimal replenishment policy. For example, the optimal replenishment policy might
require buyers to obtain low-demand products from the intermediaries and high-demand
products from the manufacturers. When possible, the downstream cooperation increases the
supply chain efficiency by eliminating double marginalization and excessive inventories.

We showed that the Shapely value possesses several desirable properties for being the
allocation rule of choice in CRI situations. Firstly, it would provide stable allocations for a
considerable category of CRI situations which extend the existing submodular single-source
joint replenishment models in the literature. Secondly, the Shapley value implements com-
plete participation strategy profiles in all CRI situations in such a way that for every player,
delegating the replenishment decisions of all products to the collaborative organization is
the best strategy, even if no information about the other players is known. We further
showed that if replenishments from the intermediaries are viable options in the supply chain,
disregarding them in the collaborative organization hinders the coordination of the supply
chain.

There are many other perspectives to consider when horizontal collaboration in supply
chains are carried out in the presence of intermediaries. Joint replenishment activities are
likely to affect the pricing schemes of manufacturers, intermediaries, and downstream buy-
ers. So an important direction for future research is to study the dynamics stemming from
price competitions among supply chain entities. This would be in line with the work of
James and Dana (2012) who study the impact of collaborative purchasing organizations on
price competition among the suppliers. It is worth mentioning that although collaborative
purchasing results in lower purchasing prices for the downstream players, competition in
price-setting may leave them worse off—an instance of this situation discussed by Chen and
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Roma (2011). Another possible extension of our work is to address the additional costs faced
by the organizations of collaborating buyers. It has been observed in the literature, e.g., in
Hezarkhani and Kubiak (2013), that increasing collaboration costs can be a threat to the
stability in supply chains. Hence, it is important to understand to what extend collaborative
organizations can afford the increasing costs of required communication, negotiations, and
infrastructure. We leave these for future research.
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