
Mobile Computing: Prototype Development of a Context
Dependent Location Tracking System

Sindre	Klavestad
 Department	of	Technology	
Kristiania	University	College,	

Norway
 klavestad@live.no

Tor-Morten	Grønli		
Department	of	Technology	
Kristiania	University	College,	

Norway		
tmg@kristiania.no

Tacha Serif
 Computer Engineering

 Yeditepe University
 Istanbul, Turkey

tserif@cse.yeditepe.edu.tr

Gheorghita	Ghinea
 Brunel University

 Dep. Computer Science
Uxbridge, UK State Country
Kristiania University College

 Oslo, Norway
 George.ghinea@brunel.ac.uk

ABSTRACT

The	 aim	 of	 this	 paper	 is	 to	 identify	 whether	 the	
development	 of	 a	 context-dependent	 location	 tracking	
prototype	 would	 be	 possible	 with	 technology	 already	
present	in	modern	smartphones.	To	do	this,	a	market	gap	
analysis	 of	 the	 current	 competitors,	 and	 how	 the	 final	
product	 would	 differentiate	 from	 the	 competitors	 are	
given.	 Furthermore,	 the	 chosen	 technologies	 and	
frameworks	are	described	briefly	followed	by	a	technical	
presentation	of	the	prototype	and	how	it	works.	Finally,	
the	concept	and	future	work	are	discussed.	As	a	result,	
the	 conclusion	 is	 that	 the	 prototype	 presented	 in	 this	
paper	 shows	 that	 it	 is	 possible	 to	 develop	 a	 context-
dependent	 location	 tracking	 system	 with	 technology	
present	 in	 modern	 smartphones	 and	 thus	 providing	
proof-of-concept.	

CCS CONCEPTS
• ..

KEYWORDS

Mobile	 Computing	 ·	 Context-awareness	 ·	 Location-
tracking	·	Geolocation	·	Smartphones	

1 Introduction
Have you ever started a conversation through text, phone
calls or online chat with a friend or family member,
wondering where they are? Most likely the answer to this
question is yes. As a consequence, there are multiple
applications that allow users to share their locations.
However, this often involves storage of exact geolocational
data on third-party databases, often in different countries
than your own, totally out of the user’s control. Most of these
applications also use a map, displaying the exact locations of
friends and family, which is arguably intrusive with regards
to privacy.

1.1 Problem Formulation

The aim of this paper is to identify whether the development
of a context-dependent location tracking system would be
possible with technology already present in modern
smartphones. To be more precise, we would like to
investigate, whether the development of a mobile application
prototype would be able to handle geolocational data, and
based upon certain events, export the contextual location of
where the user is. As a result, the exact locations of the user
will never be used, sent or stored on random third-party

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362652906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

databases. The proposed solution will only store the result of
the client-side events, triggered by user configured
geofences or activities. This data is the result of whether the
user is home, at work or out for a walk at this very moment
based upon said user configurations. Moreover, because the
stored information is displayed in the UI as generalized
icons, such as home, work or school, it’s contextually
different for a family member and a random stranger to know
this information. Furthermore, through the development of a
reactive solution, taking advantage of background
geolocation tracking including mobile and browser clients
the positions of friends and family can be monitored at a
glance, updated seamlessly from the mobile clients, even
when the application is not open.

1.2 Scoping

As a result of the project period being two weeks only, we
realized that a fully functioning and deployed mobile/web
application including the creation of new users and custom
configurations would be difficult. This is why we decided to
scope the project down and deliver a minimum valuable
product (MVP) for this first iteration. As a result, the product
delivered must be considered a prototype where the goal is
to provide proof-of-concept and facilitate the potential for
including more functionality later on.

2 Related Work

2.1 Background Literature

Location-based Services has come a long way since its first
introduction in the early 1990s as part of the Active Badge
project (Active Badge, 1992) in the Computer Laboratory,
Cambridge University, UK. Location-based services make
either use of the fine or coarse location of the user and
provide service offerings such as localization and navigation
on maps, search, identification, and checking of products
(Reichenbacher, 2004).

Notwithstanding its widespread adoption in real-time social
systems (Cheng et al, 2011), travel-related applications
(Pedrana, 2014), smart cities (Wang, 2016) and its value-
adding expedience to commerce (Heinemann and Gaiser,
2015), Location-based services have been a controversial
topic from the point of user privacy (Dobson & Fisher,
2003).

Accordingly, Joseph and Choudhury (Joseph & Choudhury,
2009) have proposed an anonymizer system for location data
that is called CacheCloak. Their system was a trusted
anonymizing server that generated mobility predictions from
historical data and submitted the intersecting predicted paths
simultaneously to the LBS. The predicted paths were made
to intersect with other users’ paths so that it ensured no
individual user’s path could be reliably tracked over time.

Similarly, Gruteser and Grunwald (Gruteser & Grunwald,
2003) proposed middleware architecture and algorithms that
can be used by a centralized location broker service. To
achieve the required level of anonymity and privacy, their
proposed adaptive algorithms adjust the resolution of
location information along spatial or temporal dimensions.
Using a model based on automotive traffic counts and
cartographic material, they try to estimate a realistically
expected spatial resolution for different anonymity
constraints. Based on their trials, the system's median
resolution generated by the algorithms is 125 meters, which
is sufficient accuracy needed for E-911 services.

From a different perspective, Li et al. (Li et al., 2017) aim to
achieve and enhanced privacy against the insider attack
launched by the service providers in mobile online social
networks. To tackle this problem, they propose a new
architecture with multiple location servers as a secure
solution supporting location sharing among friends and
strangers in location-based applications. In this system, the
user’s friend set in each friends’ query submitted to the
location servers is divided into multiple subsets by the social
network server randomly. Each location server can only get
a subset of friends, instead of the whole friends’ set of the
user.

Furthermore, the ability to develop location-based services
in the modern web browser using state-of-the-art web
technology, has made it easier and more ef- fective to
include location-based services across platforms and
devices. In the research conducted by Rost et al. (2010),
three location-based applications run- ning in the mobile
web-browser was explored. This included a self-reporting
solution, were users are able to check in at preconfigured
location manually, and furthermore two applications taking
advantage of the HTML5 geo-location API’s.

2.2 Research Gap Analysis

Various location-based tracking systems and services have
throughout the decade made an appearance in the market.
Either as native applications or as features integrated into
already existing applications and solutions. With regards to
native applications, most notably is the ”Find My Friends”
application developed by Apple (2018), which comes pre-

Mobile Computing: Prototype Development of a Context
Dependent Location Tracking System

installed on all new iPhones running iOS 9 or newer.
Additionally, cross-platform solutions from Life360 (2018),
Geozilla (2018) or Familionet (2018) is also worth
mentioning. Furthermore, location-based services have also
been implemented by various major companies as a feature
to their products. Most notably is Google Maps, Facebook
Messenger, and Whatsapp where sharing of real-time
location can be shared on-demand or Snapchat and its
implementation of a ”SnapMap”, displaying the current
location of all your friends. (Kleinman, 2017). Furthermore,
if enabled on Android phones, Google will track your
movements and display your every move throughout the day
on a timeline. (Google, 2018).

So how would a final version of the application proposed
in this paper differentiate from the solutions handled by the
big companies like Facebook and Apple? There are a couple
of reasons why our proposed solution is arguably more
privacy-friendly. As we propose client computation of
geolocation data, the exact location of the user will never be
sent or stored on random third-party databases. The
proposed solution will only store the result of client-side
events, triggered by user configured geofences or activities.
Moreover, because the stored information is displayed in the
UI as generalized icons, such as home, work or school, it’s
contextually different for a family member and a random
stranger to know this information. Thus giving the power
back to the user with regards to control of their geolocational
data, and with whoever they would like to share it.

 3 Design and Development

To build a functioning prototype we decided to take
advantage of various frameworks and technologies. The
sections below are giving a brief description of the
frameworks, plugins, and technologies used, and how they
were included in the project. Finally, a brief description of
the prototype and its functionality is given.

3.1 Meteor Framework

The foundation of the LCTN application is built upon the
Meteor framework. ”Meteor is a full-stack JavaScript
platform for developing modern web and mobile
applications. Meteor includes a key set of technologies for
building connected- client reactive applications, a build tool,
and a curated set of packages from the Node.js and general
JavaScript community.” (Meteor, 2018) The Meteor
framework was chosen to be able to rapidly develop a
reactive full-stack prototype, without the need for setup and

configuration of a database, server environment, client
handling, mobile integration and the connection between
said aspects. Based upon the narrow timeframe of the
project, this allowed us to utilize more resources towards
creating functionality for the actual application.

Installation of Meteor Installation of Meteor was quite
simple. By inserting	curl	https://install.meteor.com/	|	sh	
(Requires OSX/Linux) into the terminal, the latest release of
Meteor can be installed.	

Figure 1 Screen	dump	of	Browser	View	

3.2 Cordova

Although the native, ”out of the box” Meteor framework is
meant to build a full-stack web application (as seen in Figure
1), Meteor includes integration of Apache Cordova to be
able to include mobile platforms. ”Cordova wraps your
HTML/JavaScript app into a native container which can
access the device functions of several platforms. These
functions are exposed via a unified JavaScript API, allowing
you to easily write one set of code to target nearly every
phone or tablet on the market today and publish to their app
stores.” (Cordova, 2018) A logged in session on an iOS
simulator is shown in Figure 2

Although the solution is only tested for iOS as of writing
this, the chosen technologies and frameworks support both
iOS and Android platforms. As a consequence, a later
implementation of the Android platform should not be a
problem.

Integration of mobile platforms to the Meteor project To
integrate mobile platforms with the established Meteor
project, we simply used the following command in the
terminal Meteor add-platform <platform> where platform,
in this case, is iOS. When this is done, we are able to run the
project locally by using the following command Meteor run

<platform>-device. This requires an installation of tools like
XCode and Android Studio, including SDKs and
development kits to be able to debug and test in simulators,
as seen in emulators and physical devices.

Figure 2 iOS Simulator view

3.3 Cordova Background Geolocation Plugin

To be able to develop a ubiquitous and seamless application
we decided to use a technology that enabled tracking of user
locations, even when the application is not open. To do this,
the Transistorsoftware company has developed a plugin for
Cordova which they describe as ”The most sophisticated
background location-tracking & geofencing module with
battery-conscious motion-detection intelligence for iOS and
Android.” (Transistorsoftware, 2018) The plugin provides
methods and functions to gather various geolocation
information from the smartphone device. Namely, for this

project, the use of activity recognition methods and creation
and detection of geofencing events were used.

Furthermore, the plugin provides configurations to enable
battery-consciousness intelligent tracking, to avoid draining
the battery of the device by tracking 24/7. To avoid this, we
have configured the plugin so that the device will have to
move a minimum distance of 25 meters before any update
events will happen. This means that whenever the device is
not moving, the application will not track the user either.
Which in turn saves battery power, as seen in Figure 3.

Figure 3 Battery usage in stationary mode

Adding native Cordova plugins to a Meteor project To
include Cordova
plugins into the meteor project, the following command can
be used in the ter-
minal:	 meteor	 add	 cordova:<plugin	 name>@<github	
repository>#version	
where the plugin name, in this case, is cordova-background-
geolocation-lt, the
GitHub repository is
https://github.com/transistorsoft/cordova-background-
geolocation- lt.git and the version is 2.6.1.	

Mobile Computing: Prototype Development of a Context
Dependent Location Tracking System

3.4 MaterializeCSS

With regards to designing an application for multiple
platforms and screen sizes, it became clear to prioritize a
responsive design. As a consequence, we decided to
implement MaterializeCSS into the project. MaterializeCSS
is a framework based upon Material Design, a design
language ”Created and designed by Google, Material Design
is a design language that combines the classic	principles of
successful design along with innovation and technology.”
(MaterializeCSS, 2018a) As a result of this implementation,
we had access to the best practice design guidelines through
CSS classes. By adding these classes to the HTML elements,
we were able to rapidly design a responsive solution. All
icons used for the application is also conveniently gathered
from the MaterializeCSS library. (MaterializeCSS, 2018b)

Including MaterializeCSS to the Meteor project Because it
exists a MaterializeCSS package ready for Meteor, it is
simple to include it into the project. The following command
fetches and includes the MaterializeCSS package from the
meteor packaging environment AtmosphereJS
(https://atmospherejs.com/):	 meteor	 add	
materialize:materialize	

3.5 Heroku

To be able to fully test the application on the mobile device,
running the Meteor solution locally wasn’t sufficient, as the
client would not communicate with the servers when it
wasn’t on the same network. This made it impossible to
check whether the application was able to track if the user is
running or walking. This is why we decided to deploy the
solution to Heroku. ”Heroku is a cloud platform that lets
companies build, deliver, monitor and scale apps — we’re
the fastest way to go from idea to URL, bypassing all those
infrastructure headaches.” (Heroku, 2018) By doing this, the
deployment is available online at
https://www.lctn.herokuapp.com for browser devices,
however, the native mobile application installed on a mobile
device is still needed for fetching the actual location of the
users.

3.6 MongoDB

Meteor ships with the popular NoSQL document driven
database MongoDB natively, and is used to store current
location of users, and login information. However, when
deploying the solution to Heroku, we had to implement
mLab to the Heroku platform. ”mLab is a fully managed
cloud database service featuring automated provisioning and
scaling of MongoDB databases, backup and recovery, 24/7

monitoring and alerting, web-based management tools, and
expert support.” (mlab, 2018).

Through the free sandbox version, we were now able to
deploy a fully working prototype to using a cloud database
to insert and fetch data. To be able to do test runs on the
mobile device connecting to the cloud Heroku + mLab
solutions, however, we need to include some parameters in
the terminal start command. The following command will
connect to Heroku and mLab cloud solutions: env	ROOT	
URL=<Root	URL>	MONGO	URL=<MONGO	URL>	meteor	
run	<platform>	-device	--mobile-server	<Root	url	Where	
the	 Root	 URL	 is	 https://lctn.	 herokuapp.com	 and	
MONGO	 URL	 is	 mongodb://heroku	
z399m1w3:vsbk731hg	
5eimd4kqb5pf5t948@ds229918.mlab.com:29918/hero
ku	z399m1w3	

When updating the locations of a user, the database location
collection is built with the following structure, where each
of the 9 locations has an individual document like this one:

{	

”location”:	”<locations	>”,	”isSindreHere”:	false	,	
”isMadeleineHere”:	false	
}	

Furthermore, the rest of the application will reactively
update whenever one of the attribute is updated in the
database. Meaning that whenever the ”isSindreHere”
attribute turns to true instead of false, the location in the UI
will be updated accordingly.

4. Results & Discussion

The prototype includes a functional location tracking system
which can be accessed through web and mobile view, as seen
in Figure 1 and Figure 2. Although still just a prototype, the
following list displays the functionality included in this
prototype as of this iteration:

• –		Full-stack	environment	deployed	to	cloud	
solution	(https://www.lctn.heroku	app.com)	

• –		Login/Authentication	using	
username/password.	

• –		Login/Authentication	using	Github.	
• –		Reactive	UI	that	updates	whenever	the	

database	updates.	
• –		If	logged	in	as	Sindre	or	Madeleine	users	on	a	

mobile	device	running	the	

cordova	application,	the	user	is	able	to	start	
and	stop	geolocation	tracking,	which	will	
update	the	respective	user	location	whenever	a	
geofence	or	activity	event	is	triggered.	

• –		The	application	will	be	based	upon	motion	
and	geofence	functionality	in	order	to	update	
one	of	nine	generalizing	icons	in	the	UI.	This	
includes	Home,	School,	Work,	Running,	
Walking,	Bicycling,	Driving,	No	location	and	
”public”(standing	still	somewhere	that	is	not	
defined).	

”We believe this is only the beginning of the explosion of
mobile services and applications; an even bigger boom will
occur when many of these apps will be written for the mobile
web instead” (Rost et al., 2010).

6. Conclusion and Future Work

The aim of this paper was to identify whether the
development of a context- dependent location tracking
system would be possible with technology already present in
modern smartphones. To do this, a review of related work,
and how the final product would differentiate from the state-
of-the-art solutions was given. Furthermore, the chosen
technologies and frameworks are described briefly followed
by a technical presentation of the prototype and how it
works.

The prototype so far includes a full-stack reactive
client/server environment which will be updated by the
contextual location of Sindre or Madeleine users. This
information is based upon the current locations gathered
from mobile application clients where the Sindre and
Madeleine users are logged in. Now, this concludes that the
core functionality for tracking of users through modern
smart- phones work. However, the application would still
need a couple more development iterations in order to be
commercialized and sold to the market. As an example, there
is a need to build logic for user authentication to access the
location of other users. This could be done by creating a
group system, where users can add their friends and/or
family to multiple groups, and all users in a group would be
displayed similarly to how the Sindre and Madeleine users
are displayed in the current version. Furthermore, as of the
prototype version, the geofences is hardcoded into the client-
side logic. In a production version, the user would have to
configure their own geofences after the application is
installed, and moreover having access to a configuration
screen where the personal information can be added/edited.
And as a result, to avoid storing this information including
the exact location (which a geofence object includes) on

third-party databases, we propose implementing the built-in
localStorage functionality from Cordova, to store sensitive
user data directly on the device. By doing this, the users
would be able to include personalized geofences, without the
need to worry about exposure of sensitive data to third-
parties. Moreover, the ability to customize geofences will
allow the users to include the geolocations that will
contextually fit their unique lives, and not just Home, School
or Work. Furthermore, the application could even come
preinstalled with various public places like parks, landmarks
or airports for the users to be able to easily include as their
own geofences.

However, although the product will need a few more
development iterations to be commercialised and sold to
customers, we would like to conclude that the MVP /
prototype presented in this paper shows that it is possible to
develop a context-dependent location tracking system with
technology present in modern smartphones, thus providing
proof-of-concept.

7 References
Apple (2018). Find my friends. https://itunes.apple.com/us/app/
find-my-friends/id466122094?mt=8. Online; accessed 16 February
2018.

Cordova (2018). Supported platforms. https://cordova.apache.org/.
Online; accessed 14 February 2018.

J. E. Dobson and P. F. Fisher, “Geoslavery,” IEEE Technology and
Society Magazine, vol. 22, no. 1, pp. 47–52, 2003.  

Familionet (2018). Familio. https://www.familo.net/en/. Online;
accessed 16 February 2018.

Geozilla (2018). Geozilla. https://geozilla.com. Online; accessed
16 February 2018.

Google (2018). Timeline.
https://www.google.com/maps/timeline?pb. Online; accessed 16
February 2018.

Gruteser, Marco, and Dirk Grunwald. "Anonymous usage of
location-based services through spatial and temporal cloaking."
Proceedings of the 1st international conference on Mobile systems,
applications and services. ACM, 2003.

G. Heinemann and C. Gaiser, “Study: Status and potential of
location-based services,” in Social-Local-Mobile. Springer, 2015,
pp. 155–185.

Heroku (2018). What is heroku? https://www.heroku.com/what.
Online; accessed 15 February 2018.

Mobile Computing: Prototype Development of a Context
Dependent Location Tracking System

Kleinman, J. (2017). How to share your location in whatsapp and
other apps. https://lifehacker.com/ whatsapp-just-added-live-
location-sharing-heres-how-to-1819658511. Online; accessed 16
February 2018.

Li, J., Yan, H., Liu, Z., Chen, X., Huang, X., & Wong, D. S. (2017).
Location-sharing systems with enhanced privacy in mobile online
social networks. IEEE Systems Journal, 11(2), 439-448.

Life360 (2018). Life360. https://www.life360.com/. Online;
accessed 16 February 2018.

M. Pedrana, “Location-based services and tourism: possible
implications for destination,” Current issues in Tourism, vol. 17,
no. 9, pp. 753–762, 2014.

MaterializeCSS (2018a). About.
http://materializecss.com/about.html. Online; accessed 12
February 2018.

MaterializeCSS (2018b). Icons.
http://materializecss.com/icons.html. On- line; accessed 11
February 2018.

Meteor (2018). What is meteor? https://guide.meteor.com/.
Online; accessed 14 February 2018.

Meyerowitz, Joseph, and Romit Roy Choudhury. "Hiding stars
with fireworks: location privacy through camouflage." Proceedings
of the 15th annual international conference on Mobile computing
and networking. ACM, 2009.

mlab (2018). mlab: Database-as-a-service for mongodb.
https://mlab.com/ company/. Online; accessed 15 February 2018.

Rost, M., H. Cramer, N. Belloni, and L. E. Holmquist (2010).
Geolocation in the mobile web browser. In Proceedings of the
12th ACM International Conference Adjunct Papers on
Ubiquitous Computing - Adjunct, UbiComp ’10 Adjunct, New
York, NY, USA, pp. 423–424. ACM.

Transistorsoftware (2018). Cordova background geolocation.
https://github. com/transistorsoft/cordova-background-
geolocation-lt. Online; ac- cessed 15 February 2018.

C. Wang, “Location based services and location based behavior in
a smart city,” Ph.D. dissertation, Universite ́ de Lyon, 2016.

Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui, “Exploring millions
of footprints in location sharing services.” ICWSM, vol. 2011, pp.
81–88, 2011.

(Reichenbacher, 2004) T. Reichenbacher, Mobile cartography:
adaptive visualisation of geographic information on mobile
devices. Verlag Dr. Hut Munchen, 2004.

(Active Badge, 1992)
https://www.cl.cam.ac.uk/research/dtg/attarchive/ab.html

