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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

In 2017, 11.41 million refrigerators and 1.85 million freezers were sold in USA alone; each unit consuming approximately 500 
kWh/year with an average life expectancy of 12 years. Traditionally, fridges and freezers have been insulated with polyurethane 
foam (thermal conductivity >0.020 W/m.K). There is a significant scope of reducing the heat gain by the cooled interior space from 
external environment by employing better insulation materials such as vacuum insulation panels (VIPs) than polyurethane foam. 
VIPs can achieve a thermal conductivity of <0.002 W/m.K. This paper presents an overview of heat transfer theory for VIPs and 
historical research into VIPs suitable for fridges, freezers and reefer trucks. A refrigerator with 56% of its external surface area 
covered with VIPs is reported to reduce the energy consumption by 21% compared to that consumed when using polyurethane 
foam. This means a potential energy saving of 1260 kWhp over the lifetime of a refrigerator and 5 billion kWhp if 25% of all fridges 
were VIP insulated. A proportionate reduction in the concomitant carbon emissions is predicted. 
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1. Introduction 

In 2017, 11.41 million refrigerators and 1.85 million freezers were sold in USA alone [1], as seen in figure 1. Each 
refrigerator unit consumes approximately 500 kWhp/year leading to total consumption of 6 MWhp of electrical energy 
over its life time. Cooling up food contributes just 6% of the total thermal load of the fridge [2]; the major contributor 
being heat gain by conduction through the side walls, see figure 2. The rate of heat gain ( ) is governed by the Fourier’s 
law (equation 1). 

 

 

where,  is the heat gain in cold compartment from outside,  is the thermal conductivity of the wall,  is the cross-
sectional area of wall,  is the temperature difference across the wall and  is the thickness of the wall. Temperature 
difference, which depends on the cooling demand and ambient conditions, has an average value of 55 °C for fridges 
and 75 °C for freezers [2]. The marginal benefit one gets by decreasing temperature difference is not justified for the 
effort it requires. For example, a drop of 2 °C in temperature difference results in just 1.8% drop in electrical energy 
input. Decreasing wall area will mean decreasing volume of the fridge, which is again undesirable. Increasing 

insulation thickness can either mean increasing the outer volume or decreasing the inner volume of fridge both of 
which are undesirable from customer’s perspective. The best option to reduce the heat gain through side walls is to 
employ insulation materials with lower thermal conductivity. 

1.1. History of refrigerator insulation 

Towards the last decade of 1800s, many American households stored their perishable food in an insulated icebox 
that was usually made of wood and lined with tin or zinc. In 1927 General Electric started supplying affordable 
commercial refrigerators named Monitor Top with 88.9 mm thick insulation [3,4]. Later, refrigerators were insulated 
using fiberglass, which offered a thermal conductivity (k) of 0.033 W/mK [5]. Poor lateral strength, water permeability 
and high thermal conductivity of fiberglass led to the adoption of rigid polyurethane foam (k = 0.022-0.035 W/mK) 
[6]. The rigid polyurethane (PU) foam additionally imparts mechanical strength to the walls. 

PU foam can be either open or closed cell. While closed-cell foams have stronger resistance against moisture and 
air leakage, the material is much denser (30-50 kg/m3), expensive (£950/m3 - £2000/m3) and has lesser thermal 
conductivity (k=0.020-0.030 W/mK) [7,8]. Open cell foams are lighter (7-20 kg/m3), cheaper (£600/m3 – £1200/m3) 
and have higher thermal conductivity (k=0.030-0.040 W/mK) because the pores are filled with air [9,10]. Gases with 
lower thermal conductivity, such as n-pentane, isopentane and nitrogen, can be added to these pores for reducing 
overall thermal conductivity. After a growing concern over ozone layer depletion potential of chlorofluorocarbons / 

Figure 1. Refrigerator and Freezer sales data (in millions) for USA [1] Figure 2. Major heat gain areas in refrigerator [2] 
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employ insulation materials with lower thermal conductivity. 
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Towards the last decade of 1800s, many American households stored their perishable food in an insulated icebox 
that was usually made of wood and lined with tin or zinc. In 1927 General Electric started supplying affordable 
commercial refrigerators named Monitor Top with 88.9 mm thick insulation [3,4]. Later, refrigerators were insulated 
using fiberglass, which offered a thermal conductivity (k) of 0.033 W/mK [5]. Poor lateral strength, water permeability 
and high thermal conductivity of fiberglass led to the adoption of rigid polyurethane foam (k = 0.022-0.035 W/mK) 
[6]. The rigid polyurethane (PU) foam additionally imparts mechanical strength to the walls. 

PU foam can be either open or closed cell. While closed-cell foams have stronger resistance against moisture and 
air leakage, the material is much denser (30-50 kg/m3), expensive (£950/m3 - £2000/m3) and has lesser thermal 
conductivity (k=0.020-0.030 W/mK) [7,8]. Open cell foams are lighter (7-20 kg/m3), cheaper (£600/m3 – £1200/m3) 
and have higher thermal conductivity (k=0.030-0.040 W/mK) because the pores are filled with air [9,10]. Gases with 
lower thermal conductivity, such as n-pentane, isopentane and nitrogen, can be added to these pores for reducing 
overall thermal conductivity. After a growing concern over ozone layer depletion potential of chlorofluorocarbons / 

Figure 1. Refrigerator and Freezer sales data (in millions) for USA [1] Figure 2. Major heat gain areas in refrigerator [2] 
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hydro chlorofluorocarbons, R11 and R123 were phased out and blowing agents such as pentane and methylformate 
came into use. Since 2003, all polyurethane foams have been HCFC-free in the EU [11]. The substitution of 
environmentally harmful blowing agents led to an increase in the conductivity; foams blown with HCFC-123, HCFC-
141b and CO2, showed an increase of conductivity by 5.5%, 11.7% and 45% respectively as compared against CFC-
11 blown foam after one year of ageing [12,13]. 

Currently, vacuum insulation panels are being 
increasingly considered as the potential next 
generation insulation for refrigerators due to 
excellent thermal properties (k = 0.002-0.008 
W/mK [14]). Figure 3 shows the sale figures for 
VIP insulated fridges in North American and 
European regions. 

2. Vacuum Insulation Panels (VIPs) 

It is well known that vacuum leads to supress 
convective heat transfer. Dewar flask, invented by 
Sir James Dewar, works on this principle. Forming 
a vacuum insulation panel, however, faces 
challenges such as large compressive forces caused 
by the difference between atmospheric pressure and the pressure in vacuumed space. For example, a compressive 
force of 4kN will act on the surface of an evacuated panel of area 200 mm x 200 mm held at a pressure of 10 mbars.  
 
2.1. Basic structure and commonly used materials 

In the conventional VIPs, a core material with high porosity and compressive strength is evacuated and sealed 
inside an envelope, see figure 4. The core material is desired to have low density and open cell structure. Several core 
materials employed in research studies and commercial products are mentioned in Table 1.  
 

Table 1. VIP cores employed in research 
Powder cores Foams Fibres Composites 
Fumed silica [15-17] PUR foam [12,26] Glass fibres [28,29] Aerogel based composites [31,32] 
Aerogel [18-22] Phenolic foam [27] Stratified fibres [30] Fumed silica based composites [33-36] 
Other silicas [23-25] 

      

2.2. Heat transfer phenomena in VIPs 

Figure 3. Historical and predicted sale volume of VIP insulated fridges in 
North America, Europe and Middle East 

Figure 4. Schematic of a VIP 

Figure 5. Ranges of typical thermal conductivities of conventional 
insulation materials and VIPs [51]. 
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Although evacuation leads to suppression of convective heat transfer, but solid conduction, gaseous conduction 
and radiation still simultaneously exist in a VIP core. It is important to understand the factors on which these modes 
of heat transfer depend to characterise the thermal performance of VIPs. Effective thermal conductivity of an 
evacuated VIP core can be mathematically written as shown in equation (2). 
 

���� � ��� � �� � �� � ������ ��� 
where 
�� is the effective thermal conductivity of VIP core, 
�� is the gaseous conductivity, 
�� is the radiative conductivity, 
����� is the coupling conductivity 
 

2.2.1. Solid conductivity ( ��)
Solid conduction is a result of heat transfer through the matrix of core material. Its theoretical prediction is difficult 

due to a high degree of randomness in packing and defects. Fricke [37] presented an empirical correlation (equation 
3) for solid conductivity. 

 
�� � �� ��� 

 
where ρ is the density of the material and α an index whose value is unity for foams and 1.5-2 for nanomaterials. 
This correlation provides a good starting point to get a relative value of solid conductivity and compare it across 
different materials, but it requires large amount of experimental data to calculate the absolute value of  �� and validate 
the value of α. It doesn’t include the effect of factors like particle’s properties including size, thermal conductivity, 
elastic modulus or Poisson’s ratio or the orientation (in case of fibres). Kwon et al. [38] analytically calculated the 
solid conductivities of porous materials, such as powder, foam and fibre, using simplified elementary cell model, as 
summarised in Table 2. 
 

Table 2. Analytical correlations for solid conduction [38]  
Material Expression Solid conduction (��� 
Powders �� �������

������
� �� �⁄ � ��� � ��� ������
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In table 2, �� is the thermal conductivity of a particle, ���� the atmospheric pressure, � and � the elastic modulus 
and the Poisson’s ratio of a particle or a fibre strand, ��� the thermal conductivity of foam strut, t the thickness and 
the height of strut, L the length of a unit cell, �� the thermal conductivity of a fibre strand, � the orientation of fibre 
strands and Π the porosity. 

For powders, Kwon et al. [38] assume that a minimum thermal conductivity can be calculated when the particles 
are arranged in simple cubic fashion having porosity of 0.48, whereas, in reality the porosity of powders used in 
conventional VIPs ranges between from 0.8 (for perlites) to 0.95 (for fumed silica and aerogel). A higher porosity 
significantly lowers the solid conductivity value for these materials. Also, the effect of factors like particle size 
distribution and surface roughness of particles on the thermal conductivity has not been covered by the model. In the 
case of foam, one requires values of thermal conductivity of foam strut and porosity to calculate solid conductivity. 
Porosity can be measured by porosimetry test, but thermal conductivity of foam strut is difficult to measure or 
compute. The values obtained by Kwon et al. [38] for typical materials are reported in table 2. 

2.2.2. Gaseous conductivity ����
The gaseous conductivity at vacuum pressures maintained inside a VIP core is lower than the thermal conductivity 

of free gas. This is because, at low pressures, the mean free path length of gas molecules increases due to which they 
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are unable to transfer energy to each other and instead collide with the solid matrix walls [39] of narrow pore spaces. 
This is known as Knudsen effect. The gaseous thermal conductivity in pores can be calculated by employing Kaganer’s 
model [40], equation (4): 

�� � � ���
� � 2��� � ��� 

 
where ��� is the gaseous conductivity of free gas, � is a coefficient depending on accommodation coefficient and the 
adiabatic coefficient of the gas, and �� is known as Knudsen number and is defined as the ratio of molecular mean 
free path length to characteristic size, or the distance between heat exchanging surfaces i.e. pore size. The mean free 
path length, ��, can be calculated by equation (5). 
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where �� is the Boltzmann constant, � is the temperature of the gas, �� is the diameter of gas molecule and �� is the 

gas pressure in porous media. Figure 6 shows the measured variation of effective thermal conductivity with sealing 
pressure for typical core materials [41]. Figure 7 shows the variation of gaseous thermal conductivity as a function 
of gas pressure for materials with varying characteristic pore size. Materials like aerogel and fumed silica, having 
mean pore size 2 nm – 10 nm, show remarkable overall thermal conductivity even at high sealing pressures because 
of their low gaseous thermal conductivity.  
 
2.2.3. Radiative conductivity ����

The amount of radiative heat transferred through a sample with large optical thickness and isotropic scattering is 
given by diffusion approximation provided in equation (6) [42]. 
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where �� is the one dimensional rate of heat transfer per unit area due to radiation, �� the blackbody emissive power, 
�� the Rosseland mean extinction coefficient, � the Stefan Boltzman constant, n the refractive index of the material 
and ���� the gradient of temperature in the direction of heat transfer. 

The heat transferred by radiation mode can be expressed in terms of Fourier’s law (equation 7). 
 

Figure 7. Variation of gaseous thermal conductivity with sealing 
pressure for core samples with varying characteristic pore size using 

equation  (4). 

Figure 6. Variation of gaseous thermal conductivity with sealing 
pressure for core samples for various materials [41]. 
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Radiative conductivity (��) can be then derived from equations (6) and (7) as in equation (8): 
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Specific extinction coefficient ������ is an intrinsic property of a material and is a measure of scattering and 
absorption of electromagnetic waves caused by a material placed in the path of radiation. Fourier-transform infrared 
spectroscopy (FTIR) is used to calculate the radiative transmittance of materials by mixing them with potassium 
bromide [43,44]. Extinction coefficient ������ is defined as product of density of the sample ���� and the specific 
extinction coefficient ������.  If scattering in the original beam is neglected, the relationship between transmittance 
and specific extinction coefficient is based on Beer’s law shown in equation (9). 
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where ���� is the wavelength dependent transmission, �� is the density of the sample and L is the path length of 
radiation in the medium. If the material to be tested is homogenously mixed in the potassium bromide pellet, equation 
(9) can be written as equation (10). 
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Wavelength dependent transmittance���� can be derived from FTIR measured data as the ratio of incident intensity 
to transmitted intensity. Opacifiers such as carbon black and silicon carbide, which have high extinction coefficients, 
are added to the base core materials to lower the radiative conductivity. Figure 8 shows the variation of radiative 
conductivity with wavelength for samples with varying opacifier (silicon carbide) concentration [43]. The overall 
radiative conductivity decreases as the concentration of opacifier is increased. For engineering applications, Rosseland 
mean of extinction coefficient (��) is used to account for the overall effect of energy decay. It is calculated using 
equation (11). 
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where ��� is the spectral blackbody emissive power.  
 
2.2.4. Coupling conductivity 

Previous studies [45-47] have indicated that coupling conduction occurs because of thermal bridging effect caused 
by the presence of gas molecules in the inter-particle spaces. It results from interference of gaseous conductivity and 
solid conductivity. Heat flux along the powder solid skeleton is enhanced by the gas molecules in the gap between 
linked particles. For powder cores, equation (12) [61] was proposed to calculate �����. 
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where � is the mean pore size of aerogel, �� the aerogel particle diameter, �� the particle’s thermal conductivity and 
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 the thermal conductivity of gas inside pore. Though useful, the validity has been verified only to aerogel. 
To date, to the best knowledge of the authors, no publication has reported coupling conductivity calculation for fibre 
or foam cores, where it is expected to play a significant role. Further research is required to develop analytical 
correlations for full range of core materials. Other models which have attempted to predict effective thermal 
conductivity of aerogel have been well captured in Tang’s review [48]. 

 
 

 

3. VIPs in cold chain equipment 

Studies [6,49-51] have reported the performance of refrigerators when installed with vacuum insulation panels 
against conventional PU foam, not only in terms of reduced thermal conductivity but also the reduced ozone layer 
depletion potential. 

Thiessen et al. [49] performed reverse heat leak tests on 16 refrigerators, originally insulated with cycloisopentane-
expanded PU, with a wall thickness of 70 and 50 mm respectively for fresh food compartment and freezer 
compartment. Fibre glass core VIPs, 8 mm thick, were fixed onto the inner surfaces of metallic wall, in series with 
PU insulation. The data collected was used to develop correlations for energy consumption ( ) and thermal load 
( ) with varying area coverage in fresh food ( ) and freezer compartments ( ), and presented in equations (13) 
and (14) 

 
 
 

 
The constant term represent the average  and  in the absence of VIPs. The coefficients of  and  show the 

sensitivity of adding a VIP on  and . The negative sign represent that  and  reduce as the VIP coverage area 
is increased. It was also noted that the installation of 8 mm thick panels on 56 % of the refrigerator surface area caused 
a reduction of 21 % in the energy consumption. 

Tao et al. [50] compared the performance of a baseline refrigerator with and without VIPs and vacuum glazing 
(VG). The baseline refrigerator consisted of triple glass layer with air inside in the display case (figure 9). The VIPs 
comprised of open celled PU foam core (800mm x 600mm x 2mm), with thermal conductivity of 0.008 W/mK at a 
core pressure of 0.05 mbars were applied onto the rear and side exterior surfaces of the display case refrigerator. VG 
consisted of double layer glass sheet with gap evacuated to 1.3x10-4 mbars supported by stainless steel pillars. The 
results from their reverse heat flux experiments are summarised in table 3. 

Hammond et. al. [51] did thermal modelling for a range of fridges and freezers with and without VIPs assembled 

Figure 8. Variation of radiative conductivity with wavelength for samples with varying concentration of opacifier. 
Sample information is as provided [43]. 
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inside the insulating walls. The major barriers for widespread of VIP insulation in cold chain equipment according to 
them were cost of VIPs, application and fabrication cost and vulnerability of the barrier film. They calculated the 
potential energy savings and payback period for cold chain equipment with VIPs (600mm x 500mm x 20mm) with 
thermal conductivity of 0.004 W/mK costing £38/m2 compared with PU foam (thermal conductivity 0.025 W/mK). 
Heat gain for different cases were calculated by thermal modelling and converted to electricity input required by 
coefficient of system performance (1.5 for fridge and 0.9 for freezer) and ultimately to payback period which came 
out to be 9.7 years for fridges and 4.5 years for freezers. 

 
Table 3. Power consumption of display case refrigerator for different cases [50]. 

 Heat power (W) Fan power (W) Heat loss rate (W) Percent decrease in heat loss rate (%) 
Baseline 157.5 40.7 198.2 0 
VG 138.7 40.7 179.4 9.5 
VG + unevacuated space with 
glass pane 

120.0 40.7 160.7 18.9 

VIP 135.4 40.7 176.1 11.1 
VG + unevacuated space with 
glass pane + VIP 

100.2 40.7 140.9 28.9 

 

Table 4 shows carbon footprint calculations for a typical refrigerator with a COP of 2 and single wall area of 0.89 
m2 and a temperature difference of 55°C across 30 mm thick walls. Considering an emission factor of 0.283 
kgCO2e/kWh [52], the energy usage of the refrigerator translates to CO2e emissions of 388.2 kg. If this refrigerator 
were VIP insulated, carbon footprint would radically reduce by 1.9 times. 

 

Table 4. Thermal and carbon footprint performance of a typical refrigerator 
 Polyurethane foam [53] Phenolic foam [54] Fumed silica core VIP 
Thermal conductivity (W/mK) 0.035 0.032 0.008 
Rate of heat gain from side walls (W) 178.5 166.3 31.4 
Total heat gain rate (W) 313.1 300.9 166.0 
CO2 produced per year (kg) 388.2 373.1 205.8 

A similar analysis for any cold storage system can be done. The underlying assumption is that heat gain from side 
walls comprises of 57% of the total heat gain in the refrigerator insulated with PU foam [2]. Heat gain rate from other 
sources is kept constant as the insulation is changed and hence total heat gain rate is calculated. 

Refrigeration systems consume a tremendous amount of energy leading to large quantities of GHG. Furthermore, 
about 20% of the total global refrigerant emissions come from mobile air conditioning and refrigeration systems [55]. 
Usually, polyurethane foam is used for insulating the walls of reefer truck which provides a U-value of 0.38 [56]. If 
the walls were VIP insulated, the thickness required to provide same U-value would be 21 mm (Table 5). The thinner 
insulation directly contributes to the increased container storage volume decreasing the carbon footprint of the food. 

Typical reefer truck consumes 20 gallons of fuel per day travelling 200 kms, which translates to an emission of 5.1 
tonnes of CO2 per month [57]. Use of VIPs in place of PU foam will increase the internal volume by about 3%. For 
illustration, consider 1030 tonnes of food is to be transported in reefer trucks, each weighing 5 tonnes with a capacity 
of 10 tonnes. Clearly, 103 journeys will be required to complete the task, but if these trucks are VIP insulated, they 
can carry 10.3 tonne food each requiring 100 journeys. 

Figure 9. Display case of the refrigerators used in Tao et al.’s experiments [50]. (a) Baseline, (b) VG, (c) VG + unevacuated space 

(a (b) (c
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or foam cores, where it is expected to play a significant role. Further research is required to develop analytical 
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inside the insulating walls. The major barriers for widespread of VIP insulation in cold chain equipment according to 
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Table 5. Calculations for a reefer truck wall insulation. 
  Polyurethane foam [53] Phenolic foam [54]   Fumed Silica based VIP 
Thermal conductivity (W/mK) 0.035 0.032 0.008 
Density (kg/m3) 80 60 200 
Thickness for U-value = 0.38 W/m2K (mm) 92.1 84.2 21.1 
Weight per unit area (kg/m2) 7.4 5.1 4.2 

 
4. Conclusion 
 

Vacuum insulation panels are proposed to be an excellent alternative for present PU foam insulation. The adoption 
of VIPs in cold chain market is increasing but its full potential has not been reached yet.  The major reasons for slow 
uptake of VIPs include high cost and lack of knowledge about the complex technological phenomena (materials, heat 
transfer, permeation of gas and vapours through envelope) that are yet to be fully deciphered and employed for 
developing reliably performing VIPs over full length of useful life. This knowledge gap leads to usage of materials 
and manufacturing processes that potentially increase VIP cost, extend payback period and reduce user confidence.  
These issues can be addressed by further research into understanding and characterising relevant heat, fluid and vapour 
exchange phenomena, ageing effect and thermal bridging due to envelopes. 
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Table 5. Calculations for a reefer truck wall insulation. 
  Polyurethane foam [53] Phenolic foam [54]   Fumed Silica based VIP 
Thermal conductivity (W/mK) 0.035 0.032 0.008 
Density (kg/m3) 80 60 200 
Thickness for U-value = 0.38 W/m2K (mm) 92.1 84.2 21.1 
Weight per unit area (kg/m2) 7.4 5.1 4.2 

 
4. Conclusion 
 

Vacuum insulation panels are proposed to be an excellent alternative for present PU foam insulation. The adoption 
of VIPs in cold chain market is increasing but its full potential has not been reached yet.  The major reasons for slow 
uptake of VIPs include high cost and lack of knowledge about the complex technological phenomena (materials, heat 
transfer, permeation of gas and vapours through envelope) that are yet to be fully deciphered and employed for 
developing reliably performing VIPs over full length of useful life. This knowledge gap leads to usage of materials 
and manufacturing processes that potentially increase VIP cost, extend payback period and reduce user confidence.  
These issues can be addressed by further research into understanding and characterising relevant heat, fluid and vapour 
exchange phenomena, ageing effect and thermal bridging due to envelopes. 
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