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Abstract
Optimisation methods are widely used in complex data analysis, and as such, there
is a need to develop techniques that can explore huge search spaces in an efficient
and effective manner. Generalised simulated annealing is a continuous optimisation
method which is an advanced version of the commonly used simulated annealing
technique. The method is designed to search for the global optimum solution and
avoid being trapped in local optima. This paper presents an application of a specially
adapted generalised simulated annealing algorithm applied to a discrete problem,
namely simultaneous modelling and clustering of visual field data. Visual field data
is commonly used in managing glaucoma, a disease which is the second largest cause
of blindness in the developing world. The simultaneous modelling and clustering
is a model based clustering technique aimed at finding the best grouping of visual
field data based upon prediction accuracy. The results using our tailored optimisation
method show improvements in prediction accuracy and our proposed method appears
to have an efficient search in terms of convergence point compared to traditional
techniques. Our method is also tested on synthetic data and the results verify that
generalised simulated annealing locates the optimal clusters efficiently as well as
improving prediction accuracy.
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1 Introduction

In recent years data has been collected at a vastly increasing rate. This data is typically
complex in nature and high in both dimensionality and size. To cope with this data
explosion there is a need for efficient algorithms that can effectively “keep up”.

Generalised simulated annealing (GSA) is an improved version of the simulated
annealing (SA) algorithm, proposed by Tsallis and Stariolo (1996) and Xiang et al.
(2017). The algorithm generalises both types of SA, i.e. classical simulated annealing
(CSA) and fast simulated annealing (FSA). This family of stochastic algorithms was
inspired by the metallurgy process for making amoltenmetal reach its crystalline state
by employing an artificial temperature (Xiang et al. 1997). Unlike hill climbing (HC)
(Selman and Gomes 2006; Tovey 1985), SA and GSA methods are able to avoid local
optimum in the search due to the inherent statistical nature of themethod (Bohachevsky
et al. 1986).Worse solutions found in the search are acceptedwhen certain probabilistic
criteria are met, thus enabling the methods to escape local optima.

CSA is likely to find a global optimum solution in the search. However, the conver-
gence is fairly slow (Xiang et al. 1997). This is attributed to the nature of the visiting
distribution which uses a Gaussian distribution (local search distribution). Thus in
1987, Szu and Hartley (1987) proposed FSA which uses a Cauchy-Lorentz visiting
distribution (semi-local search distribution). The FSAmethod is quicker at finding the
optimum solution compared to the CSA since the jumps are frequently local, but can
occasionally be quite long. The cooling of temperature in the method is much faster
which makes the search more efficient.

Later in 1988, a generalisation of Boltzmann–Gibb statistics was introduced (Tsal-
lis 1988). GSA was invented for generalising both CSA and FSA methods according
to the Tsallis statistics. GSA uses a distorted Cauchy–Lorentz visiting distribution
where the distribution is controlled by the visiting index parameter (qv). This method
(GSA) was believed to be more efficient in terms of convergence and global opti-
mum in nonconvex problems (multiple extrema) compared to the precedence methods
of annealing. Because of these advantages, there are many studies have applied the
method in many fields.

Application of GSA in the field of biology, chemistry, physic and mathematics
(Andricioaei and Straub 1996; Brooks and Verdini 1988; dos R Correia et al. 2005;
Sutter et al. 1995;Xiang et al. 2017) have often the determination of the global optimum
of multidimensional continuous functions (Xiang et al. 2013). The GSA approach was
proven faster than the other simulated annealing algorithms (CSA and FSA) in the
study of mapping minima points of molecular conformational energy surfaces (Moret
et al. 1998). Xiang andGong (2000) have shown that theGSA algorithms are relatively
efficient in Thomsons model and nickel clusters compared to CSA and FSA. It was
also claimed that the more complex the system, the more efficient the GSA method.
A recent study Mojica and Bassrei (2015) on the simulation of 2D gravity inversion
of basement relief with synthetic data has found that the GSA method produces better
results with the calibrated parameters. Another recent study by Menin and Bauch
(2017) have used GSA in finding the source of an outbreak (patient zero). They found
that GSA is able to identify the location and time of infection of patient zero with
good accuracy. Meanwhile Feng et al. (2018) presented a case study of dynamic land
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using cellular automata simulation with GSA. Their GSA algorithm in the problem
took the least time in the optimisation process compared to other heauristics search
methods (particle swam optimisation and genetic algorithm).

The positive findings from the previous studies on GSA have inspired this study to
further investigate the compatibility of GSA algorithm with SMC to efficiently (with
high accuracy and fast convergence) cluster and classify high dimensional data such
as visual fields. Our work is an extension of the work done by Jilani et al. (2016) where
SMC was experimented on visual field data using simple optimisation methods such
as hill climbing to predict glaucoma progression. Since there is very little work has
been done in this problem, taking advantage of GSA that has been proven an efficient
method in literature, it is an open research opportunity.

We note that most of the studies have applied GSA towards solving continuous
problems (Advanced Glaucoma Intervention Study Investigators 1994); hence within
this paper we present a GSA algorithm for discrete optimisation. Our hypothesis
underpinning this research is that the GSA method finds the optimum solution more
efficiently than SA. Efficiency is measured in two ways, firstly we use prediction
accuracy and secondly we look at algorithmic convergence, i.e. the speed an algorithm
locates a high quality solution.

This paper is organised into the following sections: Sect. 2 details the background
of the data used in this study. Section 3 describes the application of GSA algorithm
towards simultaneous modelling and clustering. In Sect. 4, details regarding the exper-
imental setup are discussed. Section 5 describes the results of our experiments and
results are tabulated for comparison. The results are discussed in Sect. 6 and conclusion
and future work are presented in Sect. 7.

2 Background

2.1 Glaucoma

Glaucoma is the second leading cause of blindness disease in the world (Quigley and
Broman 2006) and is an irreversible disease that can seriously affect a sufferers quality
of life (McKean-Cowdin et al. 2007). The disease is typically caused by a build-up of
intraocular pressure in the eye that causes damage to the optic nerve, which delivers
image signals to the brain (Quigley 2011). In clinical practice, glaucoma is commonly
managed by performing a visual field test which captures the sensitivity of the eye to
light (Kristie Draskovic 2016; Westcott et al. 1997).

Much research has been done to study glaucoma deterioration such as statistical
analysis and data modelling using visual field data as presented by Pavlidis et al.
(2013), Swift and Liu (2002) and Ceccon et al. (2014). However, there is less work on
analysing and modelling visual field data using significant clustering arrangements of
the data.

Since there is no gold standard established in analysing glaucoma data (Schulzer
et al. 1994), applyingmachine learning techniques to find patterns of glaucomadeterio-
ration in visual field data helpsmedical practitioners to provide appropriate treatments,
i.e. the prediction of potential future visual field loss (Swift and Liu 2002; Tucker and
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936 M. Z. M. B. Jilani et al.

Garway-Heath 2010). Additionally, this piece of work is a novel approach of high-
dimensional data analysis in which a continuous optimisation method is applied in a
discrete problem finding the best clustering arrangement of visual field locations.

2.2 Visual field data

Visual field data is commonly used in glaucomamanagement. It is collected via a non-
invasive clinical procedure by means of computerised automated perimetry (Heijl and
Patella 2002). Typically 54 or 76 points (including the blind spot) are tested to deter-
mine a patients eye sensitivity to light (Fig. 1). A diagnosis of glaucoma using VF
data is often quantified by the Advance Glaucoma Intervention Studies (AGIS) score
(Advanced Glaucoma Intervention Study Investigators 1994). This metric is used to
classify the severity of a glaucoma patients condition. In this study we aim to predict
future values of this AGIS metric from previously recorded VF data observations,
i.e. VF data recorded at a time T is used to predict the AGIS score of the next visit
(T + 1) (Advanced Glaucoma Intervention Study Investigators 1994; Sacchi et al.
2013). In addition to envisage the level of glaucoma deterioration in the next VF test,
predicting AGIS with high accuracy prediction could equip physician to prepare an
appropriate treatment for patient. Table 1 shows the AGIS score used in this study
that have been classified into 3 categories for an efficient classification (Jilani et al.
2016; Sacchi et al. 2013). In clinical practices, the AGIS score is computed to deter-
mine patient glaucoma stage and most analyses in research use six nerve fibre bundle
(6NFB), which was established by Garway-Heath et al. (2000), for data modelling
and prediction.

Fig. 1 The 54 locations of the visual field test for the right eye
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Table 1 AGIS score
classification

AGIS score Agis category Reclassified category

0 None Mild defect

1–5 Mild

6–11 Moderate Moderate defect

12–17 Severe Severe defect

18–20 End-stage

2.3 Simultaneousmodelling and clustering of visual field data

Data clustering (Ghahramani 2004) techniques commonly use the data point structure
to group data based on similarity such as distance between object in data. However,
clustering technique such as those introduced by Banfield and Raftery (1993) have
introduced methods based on modelling the data. Datasets are clustered based on
object shape and structure rather than on proximity between data points. Likewise,
the introduced approach that is SMC a model-based clustering method that finding
clusters within data based on the best modelling result using an optimisation search
method. In this paper presents the extension on the approach using GSA method in
VF data. The SMC approach was used by Jilani et al. (2016) predicting the stages of
glaucoma progression usingVF data. The best clusters, which represent the collections
of visual field locations, are searched in the data to improve prediction of glaucomatous
progression as well as understanding the clusters arrangement. The motivation behind
SMC is that a search for the best clustering arrangement is made, where the worth of
such an arrangement is based on using the clusters to create compound variables that
in turn can be used to classify accurately and predict the AGIS score. The clusters
discovered in the search are hypothesised to be better than the six nerve fibre bundles
(6NFB) in terms of prediction accuracy. These nerve fibre bundles are effectively
a clustering arrangement that has been clinically determined through observing the
physiological layout of the retina and optic nerves. Currently there is no conclusive
evidence that this layout provides the best predictive accuracy, although there is some
work on modelling the data using them (Sacchi et al. 2013).

3 Method

3.1 Data pre-processing

The VF data consists of 13,739 records of 1580 patients obtained from Moorfields
Eye Hospital London (United Kingdom). The AGIS score was provided with the data
and the data were prepared into a time series record which each record has the next
visit AGIS (T + 1) score. As such, the cleaning dataset after excluded the most recent
record and consists of 12,159 records of VF data1.

1 Ethical approval was obtained and the records were completely anonymous.
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3.2 Clustering

Clustering, which is also known as unsupervised learning (Duda et al. 2000), is a data
analysis technique for finding similarity amongst objects and grouping similar objects
into the same cluster. The objects in the cluster share the common feature, function,
shape, and attribute. In classical data clustering, the distance between objects (e.g.
Euclidean) is commonly used (Jain and Dubes 1988). However, this study applies
model-based technique to cluster data based on classification performance.

3.3 Datamodelling

Data modelling is a key process involved in SMC. This process is also known as
supervised learning where the data are classified to a set of categories it belongs.
In this study, VF data is modelled by classifying the target variable (AGIS) which
indicates the stage of glaucoma disease. The VF data is classified into T + 1 of AGIS
which is the time series record. Since the target variable value is T + 1 of the AGIS,
the classification is a prediction of the patient glaucoma progression. The Naive Bayes
Multinomial Updateable (NBU) classifier is used in the modelling process owing to
the most efficient method in terms of runtime and has good accuracy when applied to
a number of different problem domains (Jilani et al. 2016; Rennie et al. 2003; Sundar
2013; Tao and Wei-hua 2010).

3.4 Simultaneousmodelling and clustering

The approach used in the SMC comprises of these twomain analysis techniques that is
clustering andmodelling. The 52VF locations are grouped into clusters randomly then
the clusters are used for data modelling as the validation to the clusters. The clusters
validation is measured as prediction accuracy. The SMC process uses optimisation
methods searching the best cluster with prediction accuracy as the fitness function.
The hypothesis underpinning this approach is that the higher prediction accuracy,
the better the quality of the associated clustering arrangement. This heuristic process
iterates for suitable number of iterations and searches for the best clusters using an
optimisation method. The final clusters arrangements (resulting bundles) of the VF
locations are captured. This SMC process is schematically illustrated in Fig. 2.

The final clusters obtained in the search using SMC are recorded and analysed using
theWeightedKappa statistic. TheWeightedKappa statistic (Table 2) (Viera andGarrett
2005) between the clustering arrangement of SMC and the 6NFB (Garway-Heath et al.
2000) (depicted in Fig. 3) is computed to measure the similarity of resulting clusters
with the 6NFB. The resulting clusters are also mapped on the VF to visualise the
association betweenVF location and bundles in order to comprehend the glaucomatous
progression. By looking at the bundles of VF points discovered by themethod, patterns
of glaucoma progression can be understood.
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Fig. 2 High level process of simultaneous modelling and clustering

Table 2 Weighted kappa
statistic metric

Kappa (K ) Agreement strength

− 1.0 ≤ k ≤ 0.0 Very poor

0.0 < k ≤ 0.2 Poor

0.2 < k ≤ 0.4 Fair

0.4 < k ≤ 0.6 Moderate

0.6 < k ≤ 0.8 Good

0.8 < k ≤ 1.0 Very good

Fig. 3 The 54 locations of the visual field data mapped to the six nerve fibre bundles

3.5 Generalised simulated annealing algorithm

The GSA method is distinct from SA in determining the temperature, the acceptance
probability value and the selection of a neighbouring point in the search space. These
parameter values regulate the methods behaviour such as convergence and cooling
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rate. The acceptance probability (Eq. 1) and artificial temperature (Eq. 2) use an
acceptance index (qa) and visiting index (qv) as parameters (Tsallis and Stariolo 1996).
Furthermore, the visiting index (qv) is used in the visiting distribution equation (Eq. 4)
(Tsallis and Stariolo 1996) to determine the size of change (in this study this is the
number of VF locations to be re-arranged between clusters) for the next potential
solution in theGSA search. The size of change (small change) inAlgorithm1 is defined
as a number of moves, i.e. exchanging two variables from two different clusters. Each
new better (in terms of fitness function) solution found in the search is accepted.
However, if the new solution is worse, a criterion of acceptance the solution is derived
by computing the acceptance probability according to Eq. 1. Then the acceptance
probability (p) value is compared with a random number (r) which obtained from a
uniform distribution (0,1). The new worse solution is accepted if p >r. This process
continues until a number of iterations are complete. The detailed procedure of the
GSA method is described in Algorithm 1.

pqA(xt → xt+1) = 1

[1 + (qA − 1)(E(xt+1) − E(xt ))/T A
qA ]1/(qA−1)

(1)

where xt is the current solution (VF clusters) of the current iteration, while xt+1 is the
new solution for next iteration. E(xt ) is defined as the fitness value of solution x. T A

qa
is the acceptance temperature at time t that decreasing from initial value to zero.

T V
qv(t) = Tqv(1)

2qv−1 − 1

(1 + t)qv−1 − 1
(2)

where T V
qV is the visiting temperature at time t .

a = [T V
qv

(t)]−D/(3−qv)

{
1 + (q − 1) (�xt )2

[T V
qv (t)]2/(3−qv)

}1/(qv−1)+(D−1)/2
(3)

As suggested by Advanced Glaucoma Intervention Study Investigators (1994) D
is set to 1.

gqv (�xt ) =
(qv − 1

π

)D/2Γ
(

1
qv−1 + D−1

2

)

Γ
(

1
qv−1 − 1

2

) × a (4)

According toTsallis andStariolo (1996), parameterqa andqv are calibrated depend-
ing upon the nature of the problemwhere the best value range for qv is between 1.66 to
2.70. However, they also presented that the GSAwas found having faster convergence
when qa < 1. Therefore in our study, the region of exploration for the qa variable is
between 0 and 1. Our new visit value (qv) is represented by the number of VF locations
(totalling 52 locations) to be re-arranged between the VF bundles in the next iteration
of the search.
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Algorithm 1: Simultaneous Modelling and Clustering Pseudo Code of Gener-
alised Simulated Annealing
Input : Raw data of visual field

iterations = Number of iterations
fd = Number of fold cross validation
temp = initial temperature
qa = acceptance index
qv = visiting index
Model= NaiveBayesUpdatable

1 Let bundles = a random bundles of visual field points
2 Let data = visual field data of the bundles
3 Let fitness = prediction accuracy of the current bundles with fd
4 for i=0 to iterations-1 do
5 Calculate smallChange (Eq. 4) new bundles = re-arrange bundles for n smallChange
6 Prepare data = visual field data of the new bundles
7 new fitness = prediction accuracy of data classification with fd
8 if new fitness > fitness then
9 fitness = new fitness

10 bundles = new bundles
11 else
12 different fitness = new fitness-fitness
13 Calculate probability acceptance (Eq. 1)
14 Let random = a uniformly distributed real random number between 0.0 and 1.0 inclusive
15 if probability > random then
16 fitness = new fitness
17 bundles = new bundles
18 else

19 end
20 end
21 Calculate temperature (Eq. 2)
22 end

Output: Visual field bundles, prediction accuracy

4 Experiment setup

4.1 GSA parameter exploration

Many studies have devised GSA algorithms and calibrate the parameters in the GSA
to suit the nature of the problem at hand. Determination of the best parameters value
(qa and qv) is the crucial part in developing the GSA algorithm. A study applied GSA
to protein folding (Agostini et al. 2006) has explored the best parameters values range
and discovered the best values ranges are between 1.10 to 2.60 and 1.50 to 2.60 for qa
and qv respectively. The study also introduced a new parameter (qt ) for the cooling
function to better control the temperature decreasing in the GSA system. Whereas
in this paper we use the Newton Raphson mathematical technique to compute the
suitable parameters values (qv and T0). The equations, which have three parameters
values to be determined, are simplified to a single parameter. With the knowledge of
the qa value and a few assumptions e.g. fitness value is between 0 to 1, equations are
manipulated using Newton Raphson method to get the qv . As such, Eqs. 1 and 2 are
simplified to derive T0, and thus qv is obtained.
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4.2 Newton Raphson

The Newton Raphson technique (Akram and Ann 2015; Kelley 2003) is a powerful
mathematical technique to solve numeric equations. It involves finding a value for the
root of a function. Finding a root in an equation is an iterative process by guessing the
initial value of x from the function ( f (x)) and the derivative of the function (tangent
line - f (x)) is used to obtain the intercept of the tangent line. The x-intercept will be
the enhanced approximation to the functions root. This iterates until x : f (x) = 0.
The Newton Raphson method is as follows,

Let f (x) be a continuous function.
x1 = x0 − f (x0)

f ′
(x0)

geometrically (x1, 0) is the intersection with the x-axis of the

tangent to the f (x) of (x0, f (x0)). This process iteratively repeats as xn+1 = xn −
f (xn)
f ′

(xn)
until a sufficient accurate value ( f (x) ≈ 0) is reached.

This method is used to solve the GSA equations in order to get the appropriate value
of parameter qv and T0 . This study manipulates the acceptance probability equation
(Equation 1) and temperature equation (Eq. 2) to derive the parameters values. We
define the acceptance probability at iteration zero as

P0 = 1

[1 + (qa − 1)(� f )/T0]1/qa−1 (5)

In order to get the initial temperature (T0) from this equation, some assumptions
have been made. We assume that the acceptance probability is 0.4 at iteration 1 in the
search. This is possible when the worst random solution obtain at iteration 1 would
have different of fitness 0.5 (50% deviates from the initial fitness value). This means
that when P0 is set to 0.4, there is a 40% chance of accepting a worse solution when
the prediction accuracy is 0.5 (50%) worse than the current accuracy. Thus Eq. 5 is
simplified as follows,

Assumptions (1 + q(� f /T0))
1/qa−1 = 1

P0
q� f
T0

= ( 1
P0

)q − 1

q = qa − 1 (1 + q(� f /T0)) = ( 1
P0

)q q
2.5T0

= 5q − 1

� f = 0.5 q(� f /T0) = ( 1
P0

)q − 1

P0 = 0.4 T0 = q
2.5(5q−1) (6)

P0 = 1
(1+q(� f /T0))1/qa−1

T (N ) = T0
[ 2qv−1−1

(1+N )qv−1−1

]
(7) TN (1 + N )s − T02s = TN − T0

where s = qv − 1, N is number of iteration TN (1+N )s

TN−T0
− T02

s

TN−T0
= 1 (8)

TN
(
(1 + N )s − 1

) = T0(2s − 1)
TN (1 + N )s − TN = T02s − T0

123



An application of generalised simulated annealing towards… 943

Within Eq. 11, the T0 value is obtained fromEq. 9 by selecting the qa (values ranged
between −0.5 to 1.6). With T0 and N (number of iterations, 100,000) in hand, the
Eq. 11 is used to derive the correspondent value of qv where TN is the final temperature
set as 0.001. Equation 11 is solved by means the Newton Raphson method. We know
that abx + cdx = 1 is non-linear. Therefore, Eq. 11 is written as a(1+ N )s + c2s = 1
, where a = Tn

Tn−T0
and −T0

Tn−T0
. Thus, the non-linear function of Eq. 11 is,

f (x) = a(1 + N )s + c2s − 1 (9)

f (x) = abx + cdx − 1 (10)

and the derivative of the function f (x) is,

f ′(x) = abxln(b) + cdxln(d) (11)

Thus with x1 = x0 − f (x0)
f ′(x0) iteratively repeats until f (x) ≈ 0 the value of x is

obtained to derived the value of qv .

4.3 Experiment strategy

The experiments were run on both VF and synthetic data [multivariate normal (MVN)
generated data] which consists of 12,159 and 1500 records respectively. However,
in order to avoid bias in the VF experiments, the data is resampled every iteration
resulting in 1580 records.

A synthetic dataset was constructed as a verification tool for the SMC approach.
Three samples (2500 in length) are generated from three multivariate normal distribu-
tions (15 variables each). Each distribution has a different mean vector and different
positive semi definite covariance matrix. The samples are then concatenated to form
a single 45 variable dataset of 2500 samples in length. Each row in the dataset is
given a class label defined by which 15 variables (from the original datasets) have
the highest average. For example, if the first 15 variables of a given row have a larger
average than the second or third set of 15 variables, then the class label is “1”. That
is, if the first 15 variables of a given row have a larger average than the second or
third set of 15 variables, then the class label is “1”, if the second 15 variable average
is the largest then the class label is “2”, for the third 15 variables “3” (as depicted in
Figure 4). The process (data generation) is repeated until the distribution of the three
classes are approximately equal. The expectation is that the SMC approachwill be able
to reverse engineer the original structure of the underlying data generation process,
i.e. three clusters of 15 variables each.

The GSA and SA algorithms were used in the experiments presented in this paper.
The experiments were modelled using three modelling strategies that is 10 folds cross
validation (10FCV) (Zhang 1993), 2 folds cross validation (2FCV)with 10 repeats and
no fold cross validation (NoCV). The classifier used in modelling is NBU. Each of the
experiment strategies was run for 25 times. Statistical values such as mean, maximum,
minimum of the prediction accuracy and convergence point of the search are observed.
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944 M. Z. M. B. Jilani et al.

Fig. 4 Visualisation of synthetic dataset for defining target variable class

These results are tabulated and compared between the optimisation methods and the
modelling strategies.

4.4 Simulated annealing

The SA algorithm has been selected as a comparison method with GSA since previous
work (Jilani et al. 2016; Vincent et al. 2017) have shown that SA is a very competitive
search method and can outperform a number of standard methods (random mutation
hill climbing and random restart hill climbing). We have also used the same strategy
for determining the SA algorithms parameters (initial temperature and cooling rate)
from previouswork (Swift et al. 2004).Within our formal experiment on SA, the initial
temperature (Eq. 15) obtained from a simulation in which the summation of different
fitness function evaluations (Eq. 13) is computed from a number of iterations. The
simulation was run for 5000 iterations and upon obtaining the initial temperature, the
formal experiment of SA resumes for another 95,000 iterations to complete 100,000
iterations as per the GSA experiment. The cooling rate of SA is then computed using
Eq. 14.

T0 = f

n
(12)

where n is 5% from the formal experiment of SA.

f =
n∑

i=1

� fi =
n∑

i=1

| f ′ − f | (13)

Titer = λi ter T0 (14)
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4.5 Generalised simulated annealing parameters

In the GSA optimisation method, preliminary experiments were conducted to find the
suitable value for the qa and qv index. Experiments were run for 10,000 iterations
(10 repeats) on both VF and synthetic data with 10-fold cross validation. Values
range between 0.1 and 0.5 (Tsallis and Stariolo 1996) were applied in exploration
experiments to determine the qa . Tables 3 and 4 show the corresponding fitness value
(predictive accuracy) and convergence point of the search to theqa forVF and synthetic
data respectively.

Our hypothesis is that the GSA method will converge earlier than SA, thus as tab-
ulated in Table 3 and 4, qa values with the minimum averaged convergence were
chosen for GSA experiments. Therefore, qa = 0.010 and qa = 0.009 were used in
our experiments for VF data and synthetic data respectively. Thereafter, the correspon-
dent values of qv for VF data and synthetic data were calculated using the Newton
Raphson.

Table 3 VF data parameter
fitness value

QA Fitness Convergence point

0.010 87.25 3934.0

0.300 87.27 4609.4

0.050 87.52 4716.9

0.200 87.29 4731.8

0.040 87.48 4747.6

0.003 87.55 5064.8

0.080 87.46 5208.1

0.004 87.39 5521.4

0.100 87.43 5233.4

0.090 87.46 5411.0

0.009 87.38 5463.2

0.006 87.37 5551.9

0.020 87.32 5621.9

0.400 87.38 5744.1

0.030 87.44 5808.2

0.005 87.37 6243.0

0.008 87.58 6300.2

0.001 87.32 6507.3

0.002 87.25 6729.4

0.060 87.36 6881.6

0.070 87.31 7136.7

0.007 87.38 7230.4

0.500 87.45 10000.9
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Table 4 Synthetic data
parameter fitness value

QA Fitness Convergence point

0.009 97.69 7416.1

0.100 97.52 7452.4

0.040 97.78 7906.0

0.005 97.78 8018.7

0.080 97.42 8032.8

0.008 97.17 8075.6

0.003 97.66 8178.7

0.007 97.79 8269.1

0.020 95.75 8365.5

0.001 96.37 8389.5

0.004 97.07 8448.5

0.200 97.80 8693.5

0.030 95.94 8697.6

0.050 96.38 8720.3

0.060 97.23 8807.7

0.006 96.79 8874.5

0.070 97.71 8980.4

0.090 97.47 9028.0

0.300 97.78 9054.8

0.400 96.70 9267.5

0.010 97.21 9292.8

0.002 97.65 9344.9

0.500 49.81 10000.7

5 Results

This section presents initial experiments and the main result of this work. The main
results include themodel prediction accuracy,Weighted Kappa statistic (WK), conver-
gence point and resultant clusters. Statistical values of the results for each modelling
strategy are tabulated for comparison.

5.1 Initial experiment

Initial experiments (25 samples) were conducted to evaluate the classification per-
formance on visual field data using 6NFB clustering arrangement. In this set of
experiment, the data are prepared in the 6NFB clustering arrangement for classifi-
cation. Additionally, another experiment (25 samples) was conducted with the same
purpose, which the data were clustered first using K-Means before classification.
Both experiments used Multinomial Naive Bayes Updatable classifier. The results
from these experiments are obtained to be the benchmark for our study. The results
are presented in following sub-sections:
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Table 5 Prediction accuracy of visual field data using 6NFB (sampled data)

Modelling strategy/result 10FCV 2FCV NoFCV
Accuracy (%) Accuracy (%) Accuracy (%)

Minimum 80.65 82.98 82.41

Maximum 85.31 84.67 85.00

Average 83.27 83.90 83.65

Table 6 Prediction accuracy of visual field data using K-Means resultants clusters (sampled data)

Modelling strategy/result 10FCV 2FCV NoFCV
Accuracy (%) Accuracy (%) Accuracy (%)

Minimum 82.49 82.91 83.17

Maximum 85.89 85.45 86.27

Average 84.30 84.22 84.47

6NFB experiment From Table 5, the average predictive accuracies of visual field data
using the 6NFB are 83.27%, 83.90% and 83.65% for 10FCV, 2FCV and NoFCV
respectively. On average result, 2FCV is slightly higher than the other two modelling
strategies. However, the experiment recorded maximum accuracy of 85.31% with
10FCV.
K-Means clustering experiment Meanwhile, predictive accuracies from K-Means
clustering arrangement experiment are consistently higher (slightly) than the 6NFB.
On average, the predictive accuracies are 84.30%—10FCV, 84.22%—2FCV and
84.47%—NoFCV as shown in Table 6. The NoFCV modelling strategy recorded
the highest predictive accuracy in the experiment with 86.27%.

5.2 Predictive accuracy: visual field data

Both methods predict the VF data better using the 10FCV strategy with 88.48 %
(Table 7) and 88.54% (Table 8) than 2FCV. The results of VF experiments show that
the GSA method improves the prediction accuracy better than SA in all modelling
strategies where the highest accuracy is 87.89% (average) in 10-fold cross validation
(Table 8). From the result we note that the average accuracy of 2FCV is slightly
lower than 10FCV and NoFCV. The WK values (average) in all experiments present
poor agreement with the 6NFB that is less than 0.005. The best average WK value is
recorded by the GSA method in 2FCV with 10 repeats (0.004 - Table 8). We compute
the confidence intervals (95%) of the accuracy in these 25 experiments, Tables 9 and
Table 10 show the confidence intervals for SA and GSA respectively. The 10FCV
strategy has a higher accuracy range (upper and lower limits) in both methods. With
the 10FCV modelling strategy, the GSA experiments show with a 95% confidence
that prediction accuracy is between 88.002% and 87.765%.
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Table 7 Prediction accuracy of SA for VF data

Modelling strategy/result 10FCV 2FCV NoFCV
Accuracy (%) (WK) Accuracy (%) (WK) Accuracy (%) (WK)

Minimum 86.32 85.94 86.27

Maximum 88.48 87.09 87.47

Average 87.76 (0.002) 86.45 (0.002) 86.63 (0.001)

Table 8 Prediction accuracy of GSA for VF data

Modelling strategy/result 10FCV 2FCV NoFCV
Accuracy % (WK) Accuracy % (WK) Accuracy % (WK)

Minimum 87.40 86.23 85.89

Maximum 88.54 87.17 87.28

Average 87.89 (0.001) 86.63 (0.004) 86.65 (−0.005)

Table 9 Confidence interval of SA for VF data

Modelling strategy /confidence interval 10FCV 2FCV NoCV

Upper limit 87.924 86.556 86.742

Lower limit 87.591 86.341 86.523

Table 10 Confidence interval of GSA for VF data

Modelling strategy/confidence interval 10FCV 2FCV NoCV

Upper limit 88.002 86.737 86.788

Lower limit 87.765 86.530 86.518

5.3 Predictive accuracy: synthetic data

Tables 11 and 12 show the prediction accuracy of the synthetic data by modelling
strategy for the SA and GSA method respectively. Prediction accuracy results in the
synthetic data experiments were found higher in both methods and modelling strate-
gies compared to visual field data (98.55%—SA and 98.59%—GSA). The synthetic

Table 11 Prediction accuracy of SA for synthetic data

Modelling strategy/result 10FCV 2FCV NoFCV
Accuracy (%) (WK) Accuracy (%) (WK) Accuracy (%) (WK)

Minimum 98.04 96.76 98.24

Maximum 98.46 97.04 98.60

Average 98.36 (0.868) 97.02 (0.987) 98.55 (0.940)
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Table 12 Prediction accuracy of GSA for synthetic data

Modelling strategy/result 10FCV 2FCV NoFCV
Accuracy (%) (WK) Accuracy (%) (WK) Accuracy (%) (WK)

Minimum 97.93 96.87 98.36

Maximum 98.56 97.04 98.60

Average 98.33 (0.884) 97.04 (0.999) 98.59 (0.965)

Table 13 Confidence interval of SA for synthetic data

Modelling strategy/confidence interval 10FCV 2FCV NoCV

Upper limit 98.400 97.0475 98.594

Lower limit 98.315 96.994 98.513

Table 14 Confidence interval of GSA for synthetic data

Modelling strategy/confidence interval 10FCV 2FCV NoCV

Upper limit 98.393 97.051 98.609

Lower limit 98.259 97.023 98.571

results do not show any pattern in prediction accuracy in both methods and mod-
elling strategies. However, the SA 10FCV outperforms the GSA 10FCV. Whilst with
2FCV and NoFCV, the GSA method accuracies are higher than the SA method. The
significant difference between these 2 methods on synthetic data can be seen in the
WK values. It can be concluded that the GSA recorded almost perfect WK (near 1.0)
which agrees with the expected synthetic clusters of the 45 variables. Table 13 (SA)
and Table 14 (GSA) show the 95% confidence intervals of the accuracy for the syn-
thetic dataset. Confidence interval in the synthetic dataset was found has higher range
in NoCV strategy in both methods (SA and GSA).

5.4 Convergence point

GSA methods are often described as having a very fast convergence in literature
(Bohachevsky et al. 1986; Penna 1995; Tsallis and Stariolo 1996). Thus, the itera-
tion point that the search has converged was captured. Since the fitness function of
both datasets is noisy (as depicted in Fig. 5), we established a rule to determine the
convergence point by calculating a noisy fitness tolerance. We define a noisy fitness
function as one that returns different fitness values each time it is evaluated on the same
solution. This will occur in this work due to both cross validation (different cross vali-
dation folds) and to sampling (a random pair of VF records is selected for each patient
for each fitness evaluation). This is not uncommon and other noisy fitness functions
can arise due to measurement limitations or the nature of training datasets used in
modelling (Rattray and Shapiro 1998). From the graph shown in Fig. 5, the search
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Fig. 5 Convergence point of the synthetic data with the GSA method (10FCV)

Table 15 Standard deviation of the data

Method/modelling strategy 10FCV 2FCV 10 Repeats No FCV

VF Syn. VF Syn. VF Syn.

SA 0.77 0.59 0.18 0.23 n.a n.a

GSA 0.79 0.54 0.23 0.20 n.a n.a

has converged before reaching the 10,000th iteration, however within the convergence
line, the fitness value (prediction accuracy) varies. This shows that with the GSA rule
(acceptance probability) for searching for the best solution, poorer solutions with a
certain degree of change are still being accepted. In order to cater for the inherent noisy
nature of the fitness function an investigation into tolerance limits was conducted. We
first ensure the fitness values in both data are normally distributed. We have shown
that the fitness values are normal distributed (with p-value 0.49) and Table 15 shows
the standard deviation of the data by methods and strategies.

FromTable 15, we found that the standard deviation of the fitness within the 10-fold
experiments is very high. This strongly indicates that the fitness for this strategy is
highly noisy. Using these standard deviation values, standard score (z-score) for each
of the modelling strategy were calculated in order to derive a noisy fitness tolerance
limit. The noisy fitness tolerance limits were calculated with z-score value 1.98 (Weiss
2013) which equivalent to 97.61% of the data lies under the defined limits (Table 16).
The noisy fitness tolerance limits tabulated in Table reftab:14 are used to determine
whether the change of fitness value is a significant change or not. At any point of the
search that has change in the fitness value (�F) within the limit are considered has
no significant change. The different of fitness values is calculated using Eq. 15.
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Table 16 Noisy fitness tolerance

Method/modelling strategy 10FCV 2FCV 10 repeats

VF Synthetic VF Synthetic

SA 1.539 1.182 0.347 0.464

GSA 1.569 1.065 0.453 0.392

Table 17 Average convergence point of VF data

Modelling strategy/method 10FCV 2FCV 10 repeats NoFCV

SA 11,643.16 19,938.04 47,304

GSA 2839.88 34,889.04 73,928.08

�F = Ft+1 − Ft (15)

Table 17 tabulates the average of convergence point of the individual experiments
for visual field data. It shows that the GSAmethod has converged fastest in 10FCV that
is in average at iteration 2839. This also can be shown in Fig. 6 for the 25 experiment
repeats convergence point in comparison with the SA method. However, for 2FCV
modelling strategy, the SA method is far outperformed the GSA method with average
19,938 (GSA: 34,889). The synthetic data convergence point results (Table 18) are
found consistent with the VF data. The best convergence point for the synthetic data
was the GSA method in 10FCV (7328).

To support these convergence point results, we run simulations (25 samples) on
the algorithms for SA and GSA on visual field data. The simulations comprised of
the same experiments property as the main experiments including 100,000 iterations
and Naive Bayes Multinomial Updatable classifier with 10FCV. The simulations were
conducted to capture the runtime (in s) for the algorithms. In these simulations, the
total effort of the experiments (entire SMC) and the effort for classification were cap-
tured. Classification effort includes data preparation within the iteration loops of the
experiment. The algorithm effort in terms of runtime is obtained by subtracting the
total effort and classification effort. The reason being is that based on our observation,
classification effort in SMC is not part of the algorithm (SA and GSA) process and
classification effort is dependent with number of moves which is more complex with
high number of moves. From Table 19, our simulation experiments reveal that algo-
rithmic computation time is taken by the fitness function where the GSA algorithm
only took 1.67% (meanwhile SA took 6.40%) from the total effort of SMC. This figure
indicates that GSA is 4.74% more efficient than SA.

5.5 Resultant clusters

The clusters size of each experiment was captured to see the range of clusters size
searched by the algorithms.We note that VF data experimentswith the SAmethod tend
to get lower clusters size when the number of fold cross validation is decreasing. There
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Fig. 6 Convergence point of VF data For 10FCV

Table 18 Average convergence point of synthetic data

Modelling strategy/method 10FCV 2FCV 10 repeats NoFCV

SA 19,582.4 30,365.04 44,843.68

GSA 7328 45,244.56 71,007

Table 19 Algorithm effort runtime

Method Total experiment runtime (s) Classification effort runtime (s) Algorithm effort (%)

SA 41,860.86 39,180.37 6.40

GSA 128,120.47 125,985.66 1.67

are 12–18 (minimum–maximum), 7–17, and 6–15 clusters sizes with the mode 15,
12 and 10 for 10FCV, 2FCV and NoFCV respectively. However the GSA method has
range between 3–12 (minimum–maximum) clusters size for both 10FCV and 2FCV
with 10 repeats, and 3–14 clusters size for NoFCV. All modelling strategies of the
GSA method have the same mode value of clusters size that is 7 clusters.

For the synthetic data, the range clusters size are 4–6 (minimum–maximum), 3–4,
and 4–7 in SA method for 10FCV, 2FCV with 10 repeats, and NoFCV respectively.
Knowing that the correct cluster size for the synthetic data is 3 clusters, we found that
the GSA method searches the clusters better than the SA method with the range of
clusters size are 4–5, (minimum–maximum), 3–4, and 4–4 for 10FCV, 2FCV with 10
repeats, and NoFCV respectively (with mode: 4, 3, and 4). Also, 2FCV strategy is the
efficient strategy finding the right cluster in the synthetic data when the WK value is
very near to 1.0.
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6 Discussion

Empirical observation on the experiments found that GSA appears to be an effective
algorithm to find good solutions (with high WK) in the synthetic data with 2FCV
modelling strategy as far as the reverse-engineer is concerned. In terms of prediction
accuracy (synthetic dataset), there was less significant difference (with only 0.04%)
between SA and GSA, where NoFCV and 10FCV have better prediction than 2FCV.
Having slightly higher accuracy in 10FCV and NoFCV can be due to a bias element
and overfitting (Varma and Simon 2006).

However, in the real data experiments, WK statistics indicate poor agreement
between the resultant clusters and the 6NFB. WK metric is not the main criteria
to indicate a quality solution (clustering arrangement) because the 6NFB is just a
common practice being used in clinical. Furthermore, the motivation of this research
is to find any other clustering arrangements in visual field data that can highly predicts
the AGIS score using an advanced optimisation method in SMC. Our finding is that
10FCV appears to be the best modelling strategy in SMC as this strategy consistently
produced higher accuracy in both methods, where GSA slightly outperformed SA.
This finding corresponds to Kohavi (1995).

Additionally, from our initial experiments results for K-Means and the 6NFB classi-
fication, SMCwith GSA has improved 3.90% and 3.42% prediction accuracy (average
results) from the 6NFB and K-Means respectively.

In terms of algorithm efficiency for SMC, GSA has proven in our experiments to
be more efficient than SA as the convergence points are best recorded in GSA with
10FCV (both datasets). The GSA method was 8.80% faster than the SA in visual field
data, while it was 12.25% faster in the synthetic data. In contrast, the SA method
is faster than the GSA in 2FCV in both data (14.95% and 14.88% visual field and
synthetic respectively). Whilst, our analysis results on algorithms effort runtime have

Fig. 7 Convergence point of VF data For 10FCV
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shown that GSA only took 1.67% from the total effort of the SMC process (meanwhile
SA used up 6.40% from the total SMCs runtime). This shows that GSA is 4.74%more
efficient than SA in terms of SMCs runtime.

Apart from the analysis of the experiments results on prediction, convergence and
resultant clusters size, we extended our analysis to visualise the resultant clusters by
mapping the VF locations on the VF grid map. Mapping the VF locations on the
grid is to comprehend the pattern of visual loss suggested by our algorithms. The
highest prediction accuracy of the GSA was selected for this analysis. Therefore, the
resultant clusters from the GSA method in 10FCV (88.54% accurate with 8 clusters)
are visualised in the 54 locations VF grid map (Fig. 7). From the visualisation of the
clusters, we found that the larger clusters size appears on the periphery of vision. This
can be seen from the Fig. 7 that clusters 2 and 4 are on the periphery of the VF grid.
Also, it exhibits that cluster 2 locations are near to the blind spot as well as cluster
5 which only in the center of the grid. These findings positively correspond to the
clinical evidence that glaucoma first starts at the periphery and near to the blind spot.

7 Conclusion

In this paper we have presented SMC that has been tailored with the GSA algorithm
to solve discrete optimisation problems. The method is arguably more efficient in
solving problems that have multiple local optima, in that it is less likely to get trapped
near a sub-optimal point in the search space (Tsallis and Stariolo 1996). Our proposed
algorithm in SMC for the problem has shown improvement in predictive accuracy by
3.90% and 3.42% compared to the 6NFB and K-Means respectively. Furthermore,
GSA appears to be compatible with SMC in terms of efficacy where our evaluation
on convergence points have shown significantly faster (with 10FCV) than SA. Also,
we have discovered that GSA uses little effort in the SMC process compared to SA
(evaluated in algorithms runtime).

The visiting distribution (qv) in the GSA method makes it distinct from the other
annealing methods. This parameter is responsible for controlling how the search space
is explored, allowing the method to locate high quality clustering arrangements of the
VF data in an efficient manner. The findings conclude that the GSA algorithm outper-
forms the SA method in terms of convergence point, which the algorithm effectively
locates the best clusters of VF as well as improving the predictive accuracy and an
efficient method in the search.

The effectiveness of the algorithm is also proven in our synthetic data experiments
where the correct clusters underlying the data were found in 24 out of the 25 experi-
ments (with aWK of 1.0) with 2FCVmodelling strategy. Furthermore, theWK results
of the other 2 strategies (10FCV and NoFCV) of GSA also outperformed SA in the
synthetic data.

Based on the positive finding from our study, a number of research opportunities
can be considered in future work. Application of SMC using an advanced optimisation
method and datasetsmanipulation can be further explored to reduce noisy fitness found
in this work. This includes applying an operator for solution selection in the algorithm
that could possibly reduce noisy fitness and by segmenting the data according to
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early, moderate and advance glaucoma. Secondly more extensive experiments are
needed to explore the visiting index and probability index of the GSA algorithm.
We note that the exploration of these parameters could be delegated to an automatic
configuration algorithm, for example Lpez-Ibez et al. (2016) and Hoos (2012). The
range of parameters for GSA can be established for a certain domain of problems based
on a dataset’s nature and the choice of fitness function as a reference. Furthermore,
improving algorithmic performance and developing a tool for clinicians would help
in providing better treatments for glaucoma patients and help in understanding the
nature of visual deterioration of the disease.
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