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To: Editor of Aquatic Toxicology 

 

 

January 18th, 2019 

 

Subject: Original manuscript submission for publication in Aquatic Toxicology. 

 

 
Dear Editor,  

 

With this letter, we are submitting the manuscript “Combined effects of environmental xeno-estrogens 

within multi-component mixtures: comparison of in vitro human- and zebrafish-based estrogenicity 

bioassays” by Hélène Serra, Martin Scholze, Rolf Altenburger, Wibke Busch, Hélène Budzinski, 

François Brion and Selim Aït-Aïssa, for publication as a research article in Aquatic Toxicology. 

 

In this study, we investigated differences between human and zebrafish cell-based assays in assessing 

estrogenic activity of mixtures of aquatic contaminants. By using a stepwise experimental approach 

based on the concentration addition model, we newly identify ER-response inhibiting chemicals in 

zebrafish cells and demonstrate that they negatively influenced the zebrafish cell response to two 12-

compound mixtures. Our study confirms previously reported differences between human and zebrafish 

bioassays in response to environmental pollutants and complex mixtures, and illustrates such differences 

using model aquatic pollutants. Another major outcome is the assessment of the estrogenic effects of 

mixtures including both ER activators and inhibitors, which has been rarely reported in such a 

methodological way, and the demonstration that deviation of additivity is likely to occur when present 

in environmental mixtures. These findings may have implication in environmental monitoring, i.e. need 

to consider bioassays that are specific to aquatic vertebrates when assessing estrogenic potency of 

samples issued from the aquatic environment, but also, more generally, in the assessment of mixture 

estrogenic effect, which can vary depending on the examined tissue or species. 

 

An assurance is given that the material has not been published or submitted elsewhere. 

 

We hope our paper will reach the standards allowing it to be published in Aquatic Toxicology and are 

looking forward to hearing from you. 

 

Yours sincerely, 

 

S. Aït-Aïssa 
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ABSTRACT 14 

In vitro bioassays based on estrogen receptor (ER) activation are commonly used to monitor the 15 

environmental contamination by xeno-estrogens. However, recent studies showed that fish- and 16 

human-based bioassays may have distinct responses to environmental samples, highlighting not 17 

only the need to better understand bioassay-specific ER response to environmentally more realistic 18 

mixtures of individual chemicals, but also how well these mixture responses can be explained by 19 

the default additivity model of concentration addition (CA). For this purpose, we investigated 20 

experimentally a 12-compound mixture in two different mixture ratios (M1 and M2) by testing the 21 

combination of (1) all 12 compounds, (2) only the ER activators present in this mixture, (3) only 22 

the ER inhibitors, and (4) ER activators and inhibitors combined. The mixture included well-known 23 

ER ligands such as bisphenol A (BPA) and genistein (GEN), but also non-estrogenic compounds 24 

that were considered as representatives of a freshwater background contamination. Studies were 25 

conducted on zebrafish (zf) liver cells stably expressing zfERα (ZELHα cells) or zfERβ2 (ZELHβ2 26 

cells) and human ER reporter gene (MELN) cells, with the main aim (1) to assess the robustness of 27 

CA, and (2) to evaluate the potentially confounding influence of environmental chemicals on 28 

additivity. The testing of individual chemicals revealed a higher prevalence of ER inhibiting 29 

chemicals in zebrafish than human cells (e.g. propiconazole, benzo(b)fluoranthene). We also 30 

identified chemicals that activated hER but inhibited zfER response (e.g. benzo(a)pyrene, 31 

triphenylphosphate). In MELN cells, the estrogenic activity of both 12-compound mixtures M1 and 32 

M2 was well predicted by CA. However, in ZELHβ2 cells, the same mixtures induced significantly 33 

lower estrogenic responses than expected by CA. In contrast, if only the two ER ligands BPA and 34 

GEN were tested as binary mixture, their mixture effects were in good agreement with CA 35 

expectations. The stepwise experimental approach of testing subgroups of only ER activators or/and 36 

inhibitors indicate that the observed deviation from additivity is due to ZELH-specific inhibiting 37 

chemicals. Thus, the very distinct responses of human- and zebrafish cell lines to M1 and M2 can 38 

entirely be explained by the presence of ER inhibiting chemicals selectively active in zebrafish 39 
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cells. Overall, this study provides novel information on the ability of environmental pollutants to 40 

interfere positively or negatively with zfER-signalling and shows that the response to a complex 41 

mixture of xeno-estrogens can be influenced by the presence of other (non- or anti-estrogenic) 42 

chemicals in a bioassay-specific manner.  43 

KEY WORDS: estrogenicity, anti-estrogen, mixture, in vitro reporter gene, human, zebrafish 44 

HIGHLIGHTS (IF NEEDED): 45 

- Human and zebrafish cells showed distinct estrogenic response to 12-component mixtures 46 

containing bisphenol A and genistein 47 

- Several ER inhibiting chemicals were identified only in zebrafish cells 48 

- Using a stepwise experimental approach, we showed that these inhibiting chemicals influenced 49 

negatively the zebrafish cells response to xeno-estrogens mixtures  50 
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1. Introduction 51 

The occurrence of numerous endocrine disrupting chemicals (EDC) in aquatic ecosystems 52 

has raised concern over their potential adverse effects in aquatic organisms, such as fish (Sumpter, 53 

2005). Many EDCs, such as natural and synthetic hormones, pesticides or industrial chemicals, are 54 

xeno-estrogens, i.e. they bind the estrogen receptors (ERs) and subsequently alter the transcription 55 

of target genes involved in key physiological functions (Sumpter, 2005). In vitro bioassays based 56 

on ER transactivation have been used to assess the estrogenic activity of chemicals, but also of 57 

environmental samples (Könemann et al., 2018; Zacharewski, 1997). In case of environmental 58 

monitoring, they are expected to enable an integrative detection of various ER-active contaminants 59 

within complex environmental mixtures considering both known and unknown xeno-estrogens. 60 

They provide a unique quantitative response which may be summarized as estradiol-equivalent (E2-61 

Eq, Kase et al., 2018).  62 

To date, a large majority of in vitro bioassays used in environmental bio-monitoring are 63 

based on mammalian or yeast cell systems that stably express a reporter gene  which expression is 64 

controlled by the human ER subtype α (hERα) (Könemann et al., 2018; Kunz et al., 2015). However, 65 

the relevance of using human-based assay to assess hazard and risk for aquatic species is a question 66 

of concern in environmental assessment (Hotchkiss et al., 2008). For instance, humans express two 67 

ER subtypes, ERα and ERβ, but most teleost fish express at least three ER subtypes, ERα, ERβ1 68 

and ERβ2 (Menuet et al., 2002; Tohyama et al., 2015). Fish and human ER have relatively low 69 

sequence homologies in their ligand binding domain (Menuet et al., 2002; Tohyama et al., 2015). 70 

These structural differences are believed to contribute to the distinct sensitivity to certain xeno-71 

estrogens (Miyagawa et al., 2014), along with other factors linked to the cell specificities, such as 72 

cell metabolic capacities (Le Fol et al., 2015), presence/absence of transcriptional cofactors or 73 

cross-talks with other signalling pathways (Navas and Segner, 2000; Ohtake et al., 2003). 74 
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In a recent study, we reported that some surface water samples were active on a zebrafish 75 

liver cell line stably expressing zebrafish ERβ2 (zfERβ2), the ZELHβ2 cells, but not on human 76 

breast cancer MELN cells that endogenously express hERα (Sonavane et al., 2016). Similarly, some 77 

effluent extracts from sewage treatment plants produced very different in vitro responses in cells 78 

expressing human or medaka ERα (Ihara et al., 2014). These differences were further confirmed in 79 

vivo by measuring vitellogenin induction in exposed male medaka (Ihara et al., 2015). In the latter 80 

study, the estrogenic chemicals identified were not sufficient to explain the distinct response of fish 81 

bioassays. However, the authors showed that the anti-estrogenic activity measured in the samples 82 

may contribute to the different responses of medaka and human ER. 83 

Several studies have addressed the combined effect of ER ligands in reconstituted mixtures, 84 

generally concluding on their additive effects based on concentration addition (CA) predictions 85 

(Kortenkamp, 2007). However, xeno-estrogens occur in the aquatic ecosystem together with other 86 

chemicals that have various and distinct modes of action (e.g. Escher et al., 2014; Neale et al., 2015, 87 

Busch et al., 2016). To date, few studies have investigated additive effects of xeno-estrogens in 88 

more diverse exposure scenarios, such as with non- or weak estrogenic chemicals (Evans et al., 89 

2012) or with anti-estrogenic chemicals (Yang et al., 2015). Recently, a mixture of 12 selected 90 

environmental chemicals was tested in zebrafish and human-based bioassays as part of a larger 91 

round-robin study. The aim was to investigate whether the estrogenic activity of the ER ligands in 92 

this mixture (e.g. genistein and bisphenol A) was detectable against the background of the other 93 

environmental pollutants (Altenburger et al., 2018). This study concluded that in human MELN 94 

cells the overall estrogenic activity of the mixtures was accurately predicted by an assumed 95 

additivity of the estrogenic chemicals. However, in zebrafish ZELHβ2 cells the measured estrogenic 96 

response of the mixture was lower than expected. The reasons of this discrepancy between human 97 

and zebrafish-based ER-reporter gene assays were unknown, and therefore raised the question about 98 

potential limitations of a presumed CA additivity. 99 
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In this context, the present study was designed as a follow-up of Altenburger et al. (2018) 100 

to investigate the different responses of zebrafish- and human-based in vitro reporter gene assays. 101 

We hypothesized that estrogenic chemicals within environmental mixtures have additive effects 102 

following default model of CA that are well detected by zebrafish and human-based bioassays. In 103 

such way, we investigated (1) the additivity of xeno-estrogens in zebrafish and human-based 104 

bioassays and (2) the influence of non-estrogenic chemicals of the mixtures. As in Altenburger et 105 

al. (2018), we used the same 12-compound mixture in two different mixture ratios (M1 and M2), 106 

which included xeno-estrogens (e.g. bisphenol A and genistein), and non-estrogenic chemicals 107 

representatives of a freshwater contamination background. The general experimental set-up design 108 

is outlined in Figure 1. Firstly, each chemical was tested for both estrogenic and anti-estrogenic 109 

activities in zebrafish-and human-based bioassays. Secondly, combinations of chemicals that 110 

proved to be active at M1 and M2 mixture ratios (either ER activating, ER inhibiting, or both) were 111 

tested and then discussed in relation to the outcomes from the 12-component mixture response. The 112 

concentration addition model was used to evaluate the additivity of active chemicals in each mixture 113 

scenario. 114 

2. Material and methods 115 

2.1 Chemical selection, mixtures design and experimental approach 116 

Twelve environmentally relevant chemicals were selected following (1) a prioritization 117 

exercise based on occurrence, hazard and available environmental quality standard (Busch et al., 118 

2016), and (2) a screening of prioritized contaminants through multiple bioassays (Neale et al., 119 

2017a). As a result, two fixed-ratio mixtures of 12 chemicals with dissimilar mode of actions were 120 

designed (Table SI-1) and tested as part of a benchmarking exercise (Altenburger et al., 2018). The 121 

first mixture ratio (M1) was composed in such way that the diverse bioactivities of the individual 122 

chemicals had a chance to be detected experimentally by an array of 19 bioassays. The second 123 

mixture ratio (M2) was chosen to mimic a realistic freshwater contamination scenario. In the current 124 
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study, all 12 chemicals were tested individually for their capacity to induce or inhibit ER-mediated 125 

luciferase response in different cellular assays. Based on the information on the activity of 126 

individual chemicals in each bioassay, chemicals predicted to contribute to M1 and M2 responses 127 

based on CA prediction were identified. Subgroup mixtures were then designed containing either 128 

only ER activators or only ER inhibitors, or both ER activators and inhibitors (Figure 1, Table 1). 129 

These mixtures were designed such that their relative concentration ratios agreed to that from the 130 

original M1 and M2 mixtures (i.e. real sub-mixtures), to allow the best possible comparison to the 131 

outcomes from the 12 compound mixtures. 132 

2.2 Chemicals and reagents 133 

17β-estradiol (E2, CAS#50-28-2, purity of >98%), triclosan (TCS, CAS#3380-34-5, purity 134 

of 97% - 103%), bisphenol A (BPA, CAS#80-05-7, purity of 97%), genistein (GEN, CAS#446-72-135 

0, purity of > 98%), propiconazole (CAS#60207-90-1, purity of >98%), diclofenac (CAS#15307-136 

79-6), diazinon (CAS#333-41-5, purity of >98%), diuron (CAS#330-54-1, purity >98%), cyprodinil 137 

(CAS#121552-61-2, purity of >98%), triphenylphosphate (TPP, CAS#115-86-6, purity >99%), 138 

benzo(a)pyrene (BaP, CAS#50-32-8, purity >96%), benzo(b)fluoranthene (BbF, CAS#205-99-2, 139 

purity of 98%), chlorophene (CAS#120-32-1, purity of 95%), hydroxy-tamoxifen (OH-TAM, 140 

CAS#68392-35-8, purity of >98%) and dimethylsulfoxide (DMSO) were purchased from Sigma-141 

Aldrich (France). The cell culture medium and reagents Leibovitz 15 culture medium (L-15), fetal 142 

calf serum (FCS), 4-(2-hydroxy-ethyl)-1-piperazineethanesulfonic acid (HEPES), epidermal 143 

growth factor (EGF), G418, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazoliumbromide (MTT) 144 

and D-luciferin were purchased from Sigma Aldrich (St-Quentin Fallavier, France); Dulbecco's 145 

Modified Eagle Medium (DMEM), DMEM High Glucose (DMEM HG) powder, F-12 nutrient 146 

mixture (Ham's F12) powder, penicillin and streptomycin were purchased from Gibco (France); 147 

insulin, hygromycin B and sodium bicarbonate were purchased from Dominique Dutscher (France).  148 

2.3 In vitro bioassays: cell lines, luciferase and cell viability assays 149 
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The zebrafish in vitro assays have been derived from the zebrafish liver (ZFL) cell line 150 

(Cosnefroy et al., 2012). ZFL were stably transfected, first, with an ERE-driven firefly luciferase 151 

gene, yielding the ZELH cell line, and then either with zfERα subtype, yielding the ZELHα cell 152 

line, or with zfERβ2 subtype yielding the ZELHβ2 cell line (Cosnefroy et al., 2012). Establishment 153 

of these cell models and their response to different classes of well-known xeno-estrogens have been 154 

previously described (Cosnefroy et al., 2012; Sonavane et al., 2016). The human-derived MELN 155 

cell line (Balaguer et al., 1999) was kindly provided by Dr Patrick Balaguer (INSERM Montpellier, 156 

France). It is derived from the breast cancer MCF-7 cells, which endogenously express the hERα, 157 

but no functional hERβ (P. Balaguer, personal communication). MELN cells were stably 158 

transfected with an ERE-driven firefly luciferase reporter gene. 159 

Conditions for routine cell culture have been detailed previously (Balaguer et al., 1999; 160 

Cosnefroy et al., 2012). The cells used were pathogen-free and controlled on a regular basis. For 161 

exposure experiments, ZELH-derived cells were seeded in 96-well white opaque culture plates 162 

(Greiner CellStar™, Dutscher, France) at 25,000 cells per well in phenol red-free LDF-DCC 163 

medium (containing L-15 50%, DMEM HG 35%, Ham's F12 15%, HEPES 15 mM, 0.15 g/L 164 

sodium bicarbonate, 0.01 mg/mL insulin, 50 ng/mL EGF, 50 U/mL penicillin and streptomycin 165 

antibiotics, 5% v/v stripped serum). MELN were seeded at 80,000 cells per well in phenol red-free 166 

DMEM medium containing 5% v/v stripped serum. Cells were left to adhere for 24h. Then, they 167 

were exposed in triplicates to serial dilutions of test compound for either 72h at 28°C for zebrafish 168 

cells or 16h at 37°C for MELN cells. Each plate included both solvent and positive controls (in two 169 

triplicates each). E2 was used as a positive quality control for ER activation, and hydroxy-tamoxifen 170 

(OH-TAM) for ER inhibition. In addition, a serial dilution of 7 to 8 concentrations of E2 was tested 171 

in each experiment. At the end of exposure, the culture medium was removed and replaced by 50 μL 172 

per well of medium containing 0.3 mM luciferin. The luminescence signal was measured in living 173 

cells using a microtiter plate luminometer (Synergy H4, BioTek).  174 

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472



9 

The cell viability was assessed by using the 3-(4,5-dimethyl-thiazol-2-yl)-2,5diphenyl 175 

tetrazolium bromide (MTT) assay (Mosmann, 1983). After cell exposure, the culture medium was 176 

removed and replaced by 100 μL of medium containing 0.5 mg/mL MTT. Cells were incubated for 177 

3h. In metabolically active cells, MTT is reduced onto a blue formazan precipitate, which is 178 

dissolved by adding 100 μL of DMSO after removal of MTT-containing medium. Plates were read 179 

at 570 nm against a 640 nm reference wavelength on a microplate reader (KC-4, BioTek 180 

Instruments, France) and results are expressed as absorbance units relative to control cells.  181 

2.4 Testing of multi-component mixtures 182 

The mixture compositions are given in Table SI-1, SI-2 and SI-3. The two 12-component 183 

mixtures were prepared in methanol (as part of a round robin study on bioassays, Altenburger et al., 184 

2018). Stocks solutions and serial dilutions of single chemicals and 2-, 3-, 4- and 5-component 185 

mixtures were prepared in DMSO. The response of MELN cells to TPP and BPA using either 186 

DMSO or methanol as vehicle were similar (data not shown), thus, no significant effect of the 187 

solvent was to expect. To investigate the anti-estrogenic activity of the chemicals or mixtures, the 188 

cells were exposed in the presence of E2 at a concentration leading to 80% of maximal response, 189 

i.e. 0.1 nM in MELN and ZELHβ2 and 1 nM in ZELHα assays. The ZELH cells, that correspond 190 

to the parent cell line of ZELHα and ZELHβ2 cells but lack functional ER, were used additionally 191 

as a control for non-specific luciferase modulation. As for the other cell lines, cytotoxicity was 192 

measured in parallel in the way previously described. Final solvent concentrations in culture 193 

medium were 0.1% v/v (agonist assay) or 0.15% v/v (in case of co-exposure with E2), which do 194 

not affect luciferase expression or cell viability. Stock solutions of chemicals in DMSO and 195 

methanol were maintained at -20°C for up to three months. 196 

2.5 Data analysis 197 

2.5.1 Data treatment and analysis 198 
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Luciferase activity (LUC) was normalized to a response range between 0 and 1 on an 199 

experiment-to-experiment basis as follows:   200 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =
𝐿𝑈𝐶𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙−𝐿𝑈𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝐿𝑈𝐶𝐸2−𝐿𝑈𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙
   (1) 201 

where LUCchemical is the luminescent signal induced by the tested chemical, LUCcontrol is the average 202 

luminescent signal of the solvent controls and LUCE2 is the average luminescent signal of the E2 203 

positive controls. Concentration-effect data analysis was performed in the same way for individual 204 

compounds and mixtures. In short, a nonlinear regression model best-fit approach was used to 205 

describe pooled data sets in the best possible way (Scholze et al., 2001). If different regression 206 

functions led to similar goodness-of-fits, the logit model (which is a re-parameterised form of the 207 

Hill equation) was given preference. To account for inter-study variations we included experiments 208 

as random factor in the best-fit data analysis (nonlinear mixed effect model). A detailed description 209 

can be found in Altenburger et al. (2018).  210 

2.5.2 Mixture prediction and uncertainty assessment 211 

The combined response from individual substances was assumed to follow the concept of 212 

concentration addition (CA). Here we used the standard form of non-interaction, i.e.:  213 

∑ (
𝐶𝑖

𝐸𝐶𝑥𝑖
)𝑛

𝑖=1 = 1  (2) 214 

where Ci is the concentration of the ith substance in the mixture expected to produce a mixture 215 

response X, and ECxi the concentration of the ith substance leading to the same response X as 216 

expected for the mixture.  217 

To account for the statistical uncertainty in the CA prediction, a combination of Monte-Carlo (MC) 218 

simulations and bootstrapping nonlinear regression functions (Tibshirani and Efron, 1993) was 219 

conducted to simulate approximate 95% confidence limits around the predicted mean response of 220 

the mixture. Here the MC step is responsible for linking the data input from the single compounds 221 
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(i.e. estimates about ECs or individual effects) to the mixture prediction, and the bootstrapping step 222 

is responsible for generating data information relevant for input variables (i.e. uncertainty 223 

distributions around the single substance EC’s or effects). We followed a parametric bootstrap with 224 

resamples drawn from the fitted nonlinear mixed effect model. Differences between predicted and 225 

observed mixture effects (concentration) were deemed statistically significant when the 95% 226 

confidence belts of the prediction did not overlap with those of the experimentally observed mixture 227 

effects (Altenburger et al., 2018). The comparative assessment was performed on mixture 228 

concentrations leading to 20% ER activation (EC20) or inhibition (IC20).   229 

3. Results 230 

3.1. Activation and inhibition of ER response by single chemicals  231 

The results of ER activation and inhibition by all 12 chemicals and the reference compounds (E2 232 

and OH-TAM) on MELN, ZELHα and ZELHβ2 cells are presented in Table 2, and the 233 

concentration-response data are provided in supplementary information (Figure SI-1 for ER 234 

activation and SI-2 for ER inhibition). 235 

As expected, genistein and BPA were active in all cell lines, but at different sensitivity and 236 

efficacy levels. MELN cells responded to BPA with an EC20 of 0.12 µM and a maximal induction 237 

of 86% of the positive E2 control response, while ZELHα and ZELHβ2 cells showed a lower 238 

sensitivity with an EC20 of 2.1 µM and 5.0 µM, respectively, and a maximum luciferase induction 239 

around 30 % (Table 2). In case of genistein, MELN (EC20 of 0.0121 µM) and ZELHβ2 cells (EC20 240 

of 0.015 µM) were more responsive than ZELHα cells (EC20 of 1.4 µM). BaP, TPP and diazinon 241 

weakly induced luciferase activity in MELN cells with an EC20 of 0.57 µM, 4.1 µM and 15 µM, 242 

respectively, whereas no activity was recorded at non-cytotoxic concentrations in zebrafish cells.  243 

No other chemicals showed any estrogenic response up to 30 µM in any bioassays. 244 
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The inhibition of ER response by the 12 chemicals revealed distinct response between the 245 

bioassays (Table 2). Overall, several chemicals were identified as new ER inhibitors, mainly in 246 

ZELH-zfERs cells. TPP and BaP decreased ER response in ZELHα and ZELHβ2 cells at 247 

concentrations where they did not affect cell viability or the luciferase activity in the ER-negative 248 

ZELH cells. Conversely, benzo(b)fluoranthene and propiconazole decreased E2-induced luciferase 249 

activity up to 90% in ZELHα and ZELHβ2 and in ER-negative ZELH cells. Cyprodinil decreased 250 

E2-induced luciferase activity across all the cell lines with similar sensitivity, suggesting a likely 251 

non-specific effect of this chemical on luciferase activity (Table 2, Figure SI-3). 252 

3.2. Combined effects of xeno-estrogens in multi-component mixtures 253 

The concentration-response curves estimated for the single chemicals were used to predict 254 

the ER activation and ER inhibition of M1 and M2 mixtures using the CA model. Since CA can 255 

describe only ER activation or ER inhibition, but not their co-occurrence, the additive response of 256 

a mixture containing both ER activators and inhibitors is predicted solely from the ER activators in 257 

case of ER activation or from the ER inhibitors in case of ER inhibition. Therefore, the chemicals 258 

expected to induce ER activation or ER inhibition in M1 and M2 mixtures were identified for each 259 

cell line based on CA prediction. They were then tested as subgroup mixtures containing either ER 260 

activating (M1_A, M2_A), ER inhibiting (M1_I, M2_I), or both ER activating and inhibiting 261 

chemicals (M1_A+I, M2_A+I) (Table 1). The relative concentration ratios were always kept in 262 

accordance to the 12-compound mixtures M1 and M2. All subgroup mixture results are presented 263 

in Figure 2 (mixture composition according to M1) and Figure 3 (mixture composition according 264 

to M2), together with the outcomes for M1 and M2 (Altenburger et al., 2018). Details about the 265 

mixture composition are given in Tables SI-1 (12-component mixtures) and in SI-2 and SI-3 266 

(subgroup mixtures). 267 

3.2.1 Additivity of ER activating or inhibiting chemicals  268 
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Regarding subgroup mixtures of ER activating chemicals, there was overall a good 269 

agreement between observed and predicted EC20 across all cell lines and for both mixtures M1 and 270 

M2 compositions. In MELN cells, TPP, BPA and genistein at M1 mixture ratio had additive effects 271 

very well predicted by CA model with a ratio between observed and predicted EC20 of 1.3 272 

(M1_AMELN, Figure 2A, Table 3). In comparison, the measured estrogenic activity of BPA and 273 

genistein in M2_AMELN was below the predicted response, although not statistically significant 274 

(M2_AMELN, Figure 3A, Table 4). BPA and genistein were the only two identified estrogenic 275 

chemicals in ZELHα and ZELHβ2 cells. Their binary mixture induced an estrogenic response in a 276 

good agreement with CA prediction at M1 and M2 concentration ratios in ZELHα (Figure 2E and 277 

3E) and ZELHβ2 cells (Figure 2I and 3I). The ratio of observed against predicted EC20 was of 0.40 278 

and 0.55 in ZELHα cells, and 0.71 and 0.73 in ZELHβ2 cells for M1 and M2, respectively.  279 

As observed for single chemicals, ER inhibiting chemicals were more prevalent in ZELHα 280 

and ZELHβ2 cells than in MELN cells. In MELN cells, cyprodinil was predicted to inhibit E2 281 

response in M1, but only at high concentrations (M1_IMELN, Figure 2B), and no inhibiting chemical 282 

was identified for M2. In contrast, TPP, chlorophene and propiconazole were identified as ER 283 

inhibiting chemicals of M1 in ZELHα and ZELHβ2 cells. In subgroup mixtures, they induced a 284 

strong ER inhibition in ZELHα (M1_IZELHα, Figure 2F) and ZELHβ2 cells (M1_IZELHβ2, Figure 2J), 285 

well predicted by the CA model (EC20 ratio of 0.87 and 0.83, respectively). Similarly, the subgroup 286 

mixtures of ER inhibitors based on M2 mixture ratio induced a strong inhibition, well predicted by 287 

CA model (M2_IZELHα, figure 3F and M2_IZELHβ2, Figure 3J, respectively). Overall, the combined 288 

effects of ER activating or ER inhibiting chemicals were in good agreement with CA predictions 289 

for both M1 and M2 mixture ratios and across all cell lines.  290 

3.2.2 Estrogenic response to the 12-component mixtures: influence of inhibiting 291 

chemicals 292 
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For each cell line, the combined effects of activator and inhibitor subgroup mixtures 293 

(M1_A+I and M2_A+I) were determined and compared to the results of the 12 component mixtures 294 

M1 and M2 (Figures 2 and 3, right part). The observed and predicted EC20 or IC20 of each mixture 295 

are presented in Tables 3 (M1) and 4 (M2).  296 

In MELN cells, the estrogenic activity of M1_A+IMELN (Figure 2C) was well predicted by 297 

CA, and this accuracy was not impacted negatively by the presence of 9 other environmental 298 

substances (M1, Figure 2D). No active ER inhibitors were present at non-cytotoxic concentration 299 

in the mixture M2, and therefore a mixture of activators and inhibitors was not tested. Nevertheless, 300 

the mixture effect of all 12 substances was well explained by the additivity of the only two 301 

estrogenic chemicals identified, BPA and genistein (M2, Figure 3D). 302 

In zebrafish ZELHα cells, M1 was not expected to induce any estrogenic response in the 303 

range of tested concentrations, and indeed no estrogenic response was observed neither with the 5-304 

component mixture (M1_A+IZELHα, Figure 2G) nor with the 12-component mixture M1 (Figure 305 

2H). Conversely, a strong ER inhibiting response was measured (up to 80% inhibition) for both the 306 

5- and 12-component mixtures, which was well predicted by the CA model (IC20 ratio of 0.74 and 307 

0.95, respectively). Thus, the ER inhibition measured remained unaffected by addition of estrogenic 308 

and inactive chemicals. In case of M2, the estrogenic activity of ER activating and inhibiting 309 

chemicals was correctly predicted by CA model (Figures 3G and 3H). However, the estrogenic 310 

activity measured was lower than that of BPA and genistein binary mixture results (Figure 3E), 311 

suggesting an influence of ER inhibiting compounds. 312 

In zebrafish ZELHβ2 cells, an estrogenic response was expected according to CA for the 313 

mixture of activators and inhibitors, as supported by the additive outcomes from the binary mixture 314 

of BPA and genistein (M1_AZELHβ2, Figure 2I). However, M1_A+IZELHβ2 did not induce any 315 

estrogenic response at test concentrations (Figure 2K). Instead, a strong inhibition of ER response 316 

was measured, which was in line with the M1_IZELHβ2 results and CA prediction (Figure 2J). As 317 
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observed for the subgroup mixture of ER activating and inhibiting chemicals (M1_A+IZELHβ2), M1 318 

mixture did not induce any estrogenic activity but inhibited E2-induced response (Figure 2H). 319 

Hence, these results indicate that inhibiting chemicals in M1 indeed influenced ER response in 320 

ZELHβ2 cells. Compared with M1, the estrogenic activity measured for the subgroup mixture of 321 

ER activators and inhibitors corresponding to M2 mixture ratio was well predicted by CA model 322 

(M2_A+ IZELHβ2, Figure 3K), although the maximal efficacy observed was well below the one of 323 

the BPA and genistein binary mixture (M2_AZELHβ2, Figure 3I). When ER activating and inhibiting 324 

chemicals were grouped with inactive chemicals in M2, the estrogenic activity was well predicted 325 

by CA up to 20% (Figure 3L), but the maximal estrogenic response remained lower than expected 326 

based on the M2_AZELHβ2 mixture results (Figure 3I). In comparison, the inhibition of ER response 327 

was well predicted by CA for both M2_A+IZELHβ2 (Figure 3K) and M2 (figure 3L). The results of 328 

the 4-component mixture M2_A+IZELHβ2 on ZELHβ2 cells are very similar to M2 results, 329 

considering both ER activation and inhibition (Figure 3K and 3L). 330 

4. DISCUSSION 331 

The current study investigated the distinct responses of zebrafish ZELHα and ZELHβ2 and human 332 

MELN cells ER reporter gene bioassays to 12-component mixtures composed of xeno-estrogens 333 

and other environmental relevant chemicals (Altenburger et al., 2018). By using a stepwise 334 

experimental approach from individual chemicals to subgroup mixture testing, we were able to 335 

explain the distinct response of human and zebrafish bioassays to the same 12-component mixtures.  336 

4.1. Distinct responses of human and zebrafish cell lines to individual chemicals 337 

BPA and genistein are well-known ER agonist ligands and were indeed active in all ER-338 

based bioassays, in agreement with previous studies using the same cellular models (Balaguer et 339 

al., 1999; Cosnefroy et al., 2012; Le Fol et al., 2017; Sonavane et al., 2016). Apart from these two 340 
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compounds, the screening of individual chemicals highlighted some marked differences between 341 

cell assays for some of the 10 chemicals.  342 

One major outcome relates to the higher prevalence of chemicals inhibiting E2-induced 343 

luciferase activity in ZELH-zfERs cells than in MELN cells (Table 2). Some chemicals had opposite 344 

responses in zebrafish and human cells. For instance, BaP -a known AhR-ligand- and TPP were 345 

estrogenic in MELN cells but decreased E2-induced response in ZELHα and ZELHβ2 cells. The 346 

mechanistic interaction between AhR and ER signalling pathways has been documented in human 347 

(Matthews and Gustafsson, 2006; Ohtake et al., 2003) and in fish (e.g. Navas and Segner, 2000). 348 

The prototypical AhR ligand TCDD was shown to induce a weak estrogenic response in MELN 349 

cells (Balaguer et al., 1999) while it decreased E2 response in all ZELH-zfER cells (Sonavane, 350 

2015). The distinct responses to BaP in ZELH-zfERs and MELN cells might thus be explained, at 351 

least partially, by AhR-ER interactions. In comparison, less information is available on the ability 352 

of TPP to interact with ER signalling. Previous studies have reported a weak agonist effect on hERα 353 

transactivation (Kojima et al., 2013), as observed in the current study in MELN cells, while some 354 

TPP metabolites are reported to have an anti-estrogenic activity on hERβ transactivation (Kojima 355 

et al., 2016). However, TPP was unable to induce the ER-regulated brain aromatase expression gene 356 

in transgenic cyp19a1b-GFP zebrafish embryos (Neale et al., 2017a). Considering the anti-357 

estrogenic activity of TPP evidenced in zebrafish liver cells, further research would be warranted 358 

to assess whether TPP (or metabolites) either binds directly zfERs or alters zfER transactivation 359 

through cross-talk(s) with other signaling pathways.   360 

Other chemicals, such as propiconazole and cyprodinil, decreased E2-induced estrogenic 361 

activity in an ER non-specific manner, i.e. they decreased firefly luciferase also in the parent cell 362 

line ZELH that does not express functional zfER (Table 2, Figure SI-5). Such inhibition may reflect 363 

either a direct effect on luciferase enzyme or an indirect effect on baseline transcriptional machinery 364 

in the promoter region of the reporter gene, irrespectively of ER activity. Despite a weak estrogenic 365 
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activity on hERα reported in vitro (Medjakovic et al., 2014; Schlotz et al., 2017), cyprodinil 366 

decreased firefly luciferase activity in all cells, irrespectively of E2 addition. The structural 367 

similarities of cyprodinil with known firefly luciferase inhibitor (Auld and Inglese, 2004) and its 368 

capacity to interfere with ATP production (Coleman et al., 2012) suggest a possible effect on the 369 

reporter gene system. In case of propiconazole, a weak hERα agonist activity was reported in the 370 

high µM range in MVLN cells (Kjeldsen et al., 2013) and anti-proliferative effects measured in 371 

MCF-7 cells (Kjaerstad et al., 2010). In fish, interference of propiconazole with estrogen signalling 372 

pathway has been reported in vivo (Skolness et al., 2013) but no information on ER agonist or 373 

antagonist activity is available. Thus, additional assays would be warranted to assess the specific 374 

activity of propiconazole and cyprodinil on ER-signalling pathway in zebrafish.  375 

4.2. Deciphering cell-specific response to xeno-estrogen mixtures  376 

BPA and genistein were the main drivers for ER agonistic response in M1 and M2. When 377 

combined as binary mixture, they induced in all zebrafish and human-based bioassays responses 378 

that were in good agreement with CA predictions. This additivity is consistent with several previous 379 

studies which reported additive effects of selected estrogens on different biological models such as 380 

mammalian cells (Ghisari and Bonefeld-Jorgensen, 2009; Heneweer et al., 2005) or in vitro fish 381 

cells (Le Page et al., 2006; Petersen and Tollefsen, 2011) and in vivo in fish (Brian et al., 2005; 382 

Brion et al., 2012). Furthermore, our results demonstrate for the first time the suitability of the 383 

ZELH-zfER cell line to investigate mixture effects of ER agonists at the receptor level in a zebrafish 384 

cell context.  385 

The screening for anti-estrogenic activity showed that some inhibiting chemicals active on 386 

ZELH-zfER cells were present at effective concentrations in M1 and M2, e.g. TPP and 387 

propiconazole. Although the underlying mechanism of ER inhibition remains unclear, the subgroup 388 

mixtures of inhibiting chemicals had additive effects in ZELHα and ZELHβ2 cells, in all co-389 

exposure scenario, i.e. with inactive and/or estrogenic chemicals. In case of M1, a decreased 390 
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luciferase activity was also observed in ZELH cells, well predicted by the additive effects of TPP 391 

and propiconazole (Figure SI-4). These results indicate that the inhibition observed in ZELH-zfERs 392 

cells for M1 may involve non-ER specific luciferase inhibition. 393 

Interestingly, we observed in ZELHβ2 cells that the addition of the inhibiting chemicals to 394 

the binary mixture of BPA and genistein resulted in a decrease in the expected estrogenic response 395 

to a similar level as observed in the 12-component mixtures M1 and M2. In case of M1, the presence 396 

of inhibiting chemicals silenced entirely the estrogenic activity expected, whereas in M2, only the 397 

efficacy of the response was decreased. To a lesser extent, a similar trend was observed for M2 in 398 

ZELHα cells. The experimental approach consisting of testing ER activating and inhibiting 399 

chemicals separately and then together allowed us to evidence the role of inhibiting chemicals in 400 

the deviation from expected additivity of genistein and BPA in ZELHβ2 cells. The experimental 401 

results from the stepwise testing approach demonstrate that the response to the 12-chemical 402 

mixtures in each bioassay can entirely be explained by the individual responses of the 12 chemicals. 403 

4.3. Differences between zebrafish and human-based bioassay responses 404 

Our results highlight marked differences between human and zebrafish cells responses. Each 405 

cell line displays cell-specific features, such as co-activator recruitment or metabolic capacities. For 406 

instance, ZELH cells originate from zebrafish liver cells and have retained some metabolic 407 

capacities qualitatively similar to zebrafish hepatocytes but distinct from MELN cells (Le Fol et al., 408 

2015), which may have played a role in the specific response to inhibiting chemicals in our study. 409 

Indeed, metabolism has been previously suggested to negatively influence the response to xeno-410 

estrogen mixtures in rainbow trout hepatocytes (Petersen and Tollefsen, 2011) and in the E-411 

SCREEN assay (Evans et al., 2012). The characterization of internal concentrations of chemicals 412 

in MELN and ZELH-zfER cells would be needed to estimate the influence of metabolism on the 413 

xeno-estrogen response. 414 
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To further investigate the relevance of the estrogenic mixture response in fish, both M1 and 415 

M2 were tested on transgenic zebrafish embryos expressing GFP under control of cyp19a1b 416 

promoter in radial glial cells in the EASZY assay (Brion et al., 2012). Indeed, in previous studies, 417 

we showed that ZELH-zfER response profile to individual chemicals or environmental samples was 418 

better correlated than the MELN assay with in vivo estrogenic activity measured in the EASZY 419 

assay (Neale et al., 2017b; Sonavane et al., 2016). As a result, no estrogenic activity was measured 420 

for both M1 and M2 mixtures because of a high embryo mortality, especially for M1 (Altenburger 421 

et al., 2018). Thus, we could not confirm in vitro combined effects in zebrafish in vivo. 422 

4.4. Implication for quantifying the estrogenic activity of samples 423 

A consistent body of literature exist regarding the assessment of additivity of xeno-estrogens 424 

according to CA. However, very few studies investigated the robustness and validity of CA model 425 

in more complex and realistic mixture scenarios. In the current study, the main factors 426 

differentiating zebrafish and human ER response to M1 and M2 was the presence of inhibiting 427 

chemicals that had higher influence on zfER activation in zebrafish cells. This agrees well with the 428 

findings of Ihara et al. (2014) that evidenced that anti-estrogenic activity in wastewater treatment 429 

plant extracts was a key factor to explain the different estrogenic activity measured in human and 430 

medaka ERα transactivation in vitro.  431 

The 12-component mixtures were designed to mimic a simplified scenario of environmental 432 

surface water contamination. To assess whether the mixture context would have influenced the 433 

quantification of estrogenic activity mediated by xeno-estrogens, the mixture results were used to 434 

quantify estradiol-equivalents (E2-Eq) in each bioassay (Table SI-4). Overall, M2 was predicted to 435 

be more estrogenic (mean E2-Eq > 10 µM) than M1 (mean E2-Eq < 1 µM). In MELN cells, the 436 

estrogenicity of M1 and M2 was almost not affected by the mixture context: the ratio of observed 437 

to predicted E2-Eq was close to 1 for both mixtures. In contrast, ZELHα and ZELHβ2 responses to 438 

xeno-estrogens in this specific mixture scenario were more susceptible to co-occurrence of 439 
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inhibiting chemicals: the estrogenic activity was underestimated in M1 and M2, whenever 440 

quantified.  In case of ZELHβ2 cells, similar IC20 were derived for both M1 and M2, however, the 441 

inhibiting chemicals abolished the estrogenic response in case of M1, while they only partially 442 

decreased the maximal efficacy level in case of M2, without altering significantly the EC20 443 

measured. These results suggest the presence of a balance between estrogenic and ER inhibiting 444 

chemicals which can influence the detection, and thus the quantification, of xeno-estrogens in 445 

ZELHβ2 cells.  446 

5. CONCLUSION 447 

In summary, this study demonstrates that BPA and genistein had additive effects in vitro in 448 

zebrafish bioassays, comforting their use to assess combined effects of xeno-estrogens. In addition, 449 

we show that the distinct responses of zebrafish and human-based bioassays to a 12-component 450 

mixture were due to newly identified ER inhibiting chemicals selectively active in ZELHα and 451 

ZELHβ2 cells (e.g. TPP, propiconazole) and altering zfER response to xeno-estrogens. In the 452 

context of water bio-monitoring, this study illustrates the need for a mindful consideration of the 453 

bioassay specificities (e.g. fish vs human ER, cell context) to ensure a proper interpretation of 454 

results, as environmental chemicals may interfere with ER response, positively or negatively, in a 455 

cell-specific manner.  456 
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TABLES AND FIGURES 656 

 657 

Table 1: Overview of mixtures and their abbreviations tested on four different cell lines. More 658 

details about the composition of the mixtures are provided in the Supplementary Information 659 

(Tables SI 1-3). (1) published in Altenburger et al; (2) corresponds to cyprodinil which was the only 660 

ER inhibitor. 661 

 662 

 ER activation ER inhibition 

mixture M1 M2 M1 M2 

MELN 

activators M1_AMELN M2_AMELN - - 

inhibitors - - M1_IMELN 
(2) - 

activators + inhibitors M1_A+IMELN - M1_A+IMELN - 

activators + inhibitors + 

inactives 
M1 

(1) M2 
(1) M1 - 

ZELHα 

activators M1_AZELHα M2_AZEsLHα - - 

inhibitors - - M1_IZELHα M2_IZELHα 

activators + inhibitors M1_A+IZELHα M2_A+IZELHα M1_A+IZELHα M2_A+IZELHα 

activators + inhibitors + 

inactives 
M1 

(1) M2 
(1) M1 M2 

ZELHβ2 

activators M1_AZELHβ2 M2_AZELHβ2 - - 

inhibitors - - M1_IZELHβ2 M2_IZELHβ2 

activators + inhibitors M1_A+IZELHβ2 M2_A+IZELHβ2 M1_A+IZELHβ2 M2_A+IZELHβ2 

activators + inhibitors + 

inactives 
M1 

(1) M2 
(1) M1 M2  

ZELH 

inhibitors - - M1_IZELH M2_IZELH 

inhibitors + inactives - - M1 M2 

663 
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Table 2: ER activation (EC20) and inhibition (IC20) of 12 test substances in MELN, ZELHα, ZELHβ2 and ZELH cells. Results are expressed in 

EC20 (activation) or IC20 (inhibition) are expressed in M concentration. E2 and OH-TAM were the positive control substances for ER activation 

and inhibition, respectively. Data originate from at least 2 independent experiments done in triplicates. Chemicals were tested in the 0.01 – 30×10-6 M 

range, except for genistein (from 10-9 M). All concentration-response data are presented in SI-1 and SI-2.  

 ER activation (EC20) ER inhibition (IC20) 

 MELN ZELHα ZELHβ2 MELN ZELHα ZELHβ2 ZELH 

 mean (95% CI)  mean (95% CI) mean (95% CI) mean (95% CI) mean (95% CI) mean (95% CI) mean (95% CI) 

E2 
3.4 ×10-12 

(2.6 x10-12 - 4.3 x10-12) 

1.3 ×10-10 

(1.1 ×10-10 - 1.6 ×10-10) 

6.0 ×10-12 

(4.74×10-12 - 7.7 ×10-12) 
- - - - 

OH-TAM - - - 
5.2 ×10-9 

(4.5 ×10-9 - 6.0 ×10-9) 

1.8 ×10-9 

(9.4 ×10-10 - 3.4 ×10-9) 

1.9 ×10-9 

(1.4 ×10-9 - 2.8 ×10-9) 
> 3 ×10-5 

Bisphenol A 
1.2 ×10-7 

(8.2 ×10-8 -1.7 x10-7) 

2.1 ×10-6 

(1.3 ×10-6 - 3.6 ×10-6) 

5.0 ×10-6 

(2.4 ×10-6 - 6.1 ×10-6) 
> 3 ×10-5 

2.02 ×10-5 

(1.1 ×10-5 - 3.6 ×10-5) 

8.8 ×10-6 

(8.7 ×10-7 - 1.3 ×10-5) 
> 3 ×10-5 

Genistein 
1.21 ×10-8 

(6.0 ×10-9 - 2.9 ×10-8) 

1.4 ×10-06 

(9.5 ×10-7 - 1.9 ×10-6) 

1.5 ×10-8 

(6.9 ×10-9 - 3.1 ×10-8) 
> 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 

Diazinon 
1.5 ×10-5 

(1.2 ×10-5 - 1.9 ×10-5) 
> 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 

Triphenylphosphate 
4.1 ×10-6 

(2.9 ×10-6 - 5.7 ×10-6) 
> 3 ×10-5 > 3 ×10-5 > 3 ×10-5 

8.0 ×10-6  

(3.2 ×10-7 - 1.3 ×10-5) 

1.7 ×10-6 

(8.3 ×10-7 - 3.5 ×10-6) 

1.1 ×10-5 

(3.0 ×10-7 - 1.3 ×10-5) 

Benzo(a)pyrene 
5.7 ×10-7 

(4.6 ×10-7 - 7.2 ×10-7) 
> 3 ×10-5 > 3 ×10-5 > 3 ×10-5 

4.2 ×10-6 

(2.5 ×10-6 - 7.3 ×10-6) 

1.4 ×10-6 

(7.7 ×10-7 - 2.4 ×10-6) 
> 3 ×10-5 

Benzo(b)fluorantene > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 
1.95 ×10-6 

(1.1 ×10-6 - 3.4 ×10-6) 

1.5 ×10-6 

(5.4 ×10-7 - 4.1 ×10-6) 

1.8 ×10-6 

(7.2 ×10-7 - 4.4 ×10-6) 

Chlorophene > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 
1.0 ×10-5 

(2.6 ×10-6 - 1.7 ×10-5) 

6.2 ×10-6 

(3.4 ×10-6 - 9.8 ×10-6) 
>1 ×10-5 

Propiconazole > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 
8.1 ×10-6 

(3.1 ×10-6 - 1.9 ×10-5) 

4.4 ×10-6 

(2.6 ×10-6 - 7.7 ×10-6) 

2.4 ×10-6 

(3.7 ×10-7 - 1.4 ×10-5) 

Cyprodinil > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 
4.9 ×10-6  

(3.0 ×10-6 - 8.1 ×10-6) 

2.0 ×10-6 

(1.2 ×10-6 - 3.4 ×10-6) 

4.2 ×10-6 

(1.4 ×10-6 - 1.3 ×10-5) 

4.1 ×10-6 

(2.6 ×10-6 - 1.6 ×10-5) 

Triclosan > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 

Diuron > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 

Diclofenac > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 > 3 ×10-5 
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Table 3: Observed and predicted ER activation and inhibition for mixture M1 and its subgroups in MELN, ZELHα and ZELHβ2 cells. All 

concentrations are in M.  (-) not tested as none of the individual compounds showed activity below its cytotoxic concentration range. (n.a.): the 

calculation is not applicable.  Star indicates statistical significance (p<0.05). (a) re-calculated from Altenburger et al., 2018; (b) corresponds to 

cyprodinil which was the only ER inhibitor; (c) above cytotoxic concentration range. 

  ER activation (EC20) ER inhibition (IC20) 

  Observed Predicted Ratio  Observed Predicted Ratio  

Cell line Mixture (name) Mean (95% CI)  Mean (95% CI) obs/pred Mean (95% CI)  Mean (95% CI) obs/pred 

MELN M1_AMELN 
1.2 ×10-6 

(9.3 ×10-7 - 1.6 ×10-6) 

8.9 ×10-7 

(5.9 ×10-7 - 1.3 ×10-6) 
1.3 - - - 

 M1_IMELN - - - 
4.9 ×10-6 (b) 

(3.0 ×10-6 - 8.2 ×10-6) 

4.9 ×10-6 (b) 

(3.0 ×10-6 - 8.2 ×10-6) 
1 

 M1_A+IMELN 
2.1 ×10-6 

(1.5 ×10-6 - 2.9 ×10-6) 

2.6 ×10-6 

(1.7 ×10-6 - 3.8 ×10-6) 
0.81 > 2 ×10-5 (4) 

8.3 ×10-5 

(5.0 ×10-5 - 1.4 ×10-4) 
n.a. 

 M1 
6.1 ×10-6 (a) 

(3.9 ×10-6 - 9.2 ×10-6) 

6.7 ×10-6 (a) 

(4.4 ×10-6 - 9.5 ×10-6) 
0.91 

3.4 ×10-5 

(1.1 ×10-5 - 1.0 ×10-4) 

5.9 ×10-4 (c) 

(3.6 ×10-4 - 9.8 ×10-4) 
0.058* 

ZELHα M1_AZELHα 
8.2 ×10-7 

(6.5 ×10-7 - 1.6 ×10-6) 

2.0 ×10-6 

(1.0 ×10-6 - 3.0 ×10-6) 
0.41 - - - 

 M1_IZELHα - - - 
2.7 ×10-6 

(1.9 ×10-6 - 3.6 ×10-6) 

3.1 ×10-6 

(1.2 ×10-6 - 1.2 ×10-5) 
0.87 

 M1_A+IZELHα > 4 ×10-5 (c) 
2.1 ×10-4 

(1.3 ×10-4 - 3.2 ×10-4) 
n.a. 

4.2 ×10-6 

(1.9 ×10-6 - 9.5 ×10-6) 

5.7 ×10-6 

(2.4 ×10-6 - 2.3 ×10-5) 
0.74 

 M1 > 10-5 (c) 
3.0 ×10-4 

(1.8 ×10-4 - 4.6 ×10-4) 
n.a. 

4.2 ×10-6 

(2.0 ×10-6 - 8.7 ×10-6) 

4.4 ×10-6 

(1.7 ×10-6 - 1.7 ×10-5) 
0.95 

ZELHβ2 M1_AZELHβ2 
8.6 ×10-8 

(3.7 ×10-8 - 1.8 ×10-7) 

1.2 ×10-7 

(5.5 ×-8 - 2.4 ×10-7) 
0.71 - - - 

 M1_IZELHβ2 - - - 
2.9 ×10-6 

(2.0 ×10-6 - 4.0 ×10-6) 

3.5 ×10-6 

(2.1 ×10-6 - 5.1 ×10-6) 
0.83 

 M1_A+IZELHβ2 > 2 ×10-5 (c) 
1.3 ×10-5 

(5.8 ×10-6 - 2.5 ×10-5) 
n.a. 

4.4 ×10-6 

(3.0 ×10-6 - 6.3 ×10-6) 

6.4 ×10-6 

(4.0 ×10-6 - 9.0 ×10-6) 
0.69 

 M1 > 3 ×10-5 (c) 
1.8 ×10-5 

(8.1 ×10-6 - 3.5 ×10-5) 
n.a. 

3.7 ×10-6 

(2.1 ×10-6 - 6.3 ×10-6) 

5.0 ×10-6 

(3.0 ×10-6 - 7.1 ×10-6) 
0.74 
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Table 4: Observed and predicted ER activation and inhibition for mixture M2 and its subgroups. All concentrations are in M. (-) not tested as 

none of the individual compounds showed activity below its cytotoxic concentration range. (n.a.): the calculation is not applicable.  Star indicates 

statistical significance (p<0.05). (a) re-calculated from Altenburger et al., 2018; (b) maximal induction measured below 20%. 

 

  ER activation (EC20) ER inhibition (IC20) 

  Observed Predicted Ratio  Observed Predicted Ratio  

Cell line Mixture (name) Mean (95% CI)  Mean (95% CI) obs/pred Mean (95% CI)  Mean (95% CI) obs/pred 

MELN M2_AMELN 
1.6 ×10-7 

(8.2 ×10-8 - 2.9 ×10-7) 

6.4 ×10-8 

(4.0 ×10-8 - 9.5 ×10-8) 
2.5 - - - 

 M2 
1.5 ×10-7 (a) 

(6.8 ×10-8 - 2.8 ×10-7) 

2.08 ×10-7 (a) 

(1.3 ×10-7 - 3.3 ×10-7) 
0.72 - - - 

ZELHα M2_AZELHα 
1.1 ×10-6 

(7.4 ×10-7 - 1.7 ×10-6) 

2.0 ×10-6 

(1.2 ×10-6 - 3.1 ×10-6) 
0.55 - - - 

 M2_IZELHα - - - 
6.7 ×10-6 

(2.9 ×10-6 - 1.3 ×10-5) 

6.1 ×10-6 

(2.2 ×10-6 - 1.1 ×10-5) 
1.1 

 M2_A+IZELHα 
1.5 ×10-6 

(7.8 ×10-7 - 2.8 ×10-6) 

4.9 ×10-6 

(3.0 ×10-6 - 7.5 ×10-6) 
0.31* 

7.6 ×10-6 

(5.3 ×10-6 - 1.0 ×10-5) 

1.0 ×10-5 

(3.7 ×10-6 - 1.7 ×10-5) 
0.76 

 M2 > 1.5 ×10-7 (b) 
6.6 ×10-6 

(4.0 ×10-6 - 1.0 ×10-5) 
n.a. 

8.3 ×10-6 

(6.0 ×10-6 - 1.1 ×10-5) 

1.4 ×10-5 

(5.3 ×10-6 - 2.4 ×10-5) 
0.59 

ZELHβ2 M2_AZELHβ2 
1.1 ×10-7 

(3.3 ×10-8 - 3.2 ×10-7) 

1.5 ×10-7 

(7.0 ×10-8 - 3.0 ×10-7) 
0.73 - - - 

 M2_IZELHβ2 - - - 
7.5 ×10-6 

(5.3 ×10-6 - 1.0 ×10-5) 

6.6 ×10-6 

(1.7 ×10-6 - 8.2 ×10-6) 
1.1 

 M2_A+IZELHβ2 
1.2 ×10-6 

(2.9 ×10-7 - 4.5 ×10-6) 

3.7 ×10-7 

(1.7 ×10-7 - 7.3 ×10-7) 
3.2 

7.7 ×10-6 

(2.1 ×10-6 - 1.8 ×10-5) 

6.8 ×10-6 

(1.8 ×10-6 - 8.6 ×10-6) 
1.1 

 M2 
1.8 ×10-6 

(3.2 ×10-7 - 6.6 ×10-6) 

5.0 ×10-7 

(2.3 ×10-7 - 9.8 ×10-7) 
3.6 

4.1 ×10-6 

(3.2 ×10-6 - 5.1 ×10-6) 

9.2 ×10-6 

(2.4 ×10-6 - 1.2 ×10-5) 
0.44 
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Figure 1: Experimental approach selected to study the combined effects of ER activating and 

inhibiting chemicals within the 12-component mixtures.  
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Figure 2: Predicted and measured effects of multi-component mixtures based on M1 

concentration ratios. Data represent the mean (+/- SD) of a minimum of 3 independent 

experiments done in triplicates and pooled together. The green line represents CA prediction for 

ER activation and the orange line ER inhibition, and their respective dotted line represent the 

95% CI belt. Cytotoxic concentrations (measured by MTT) were removed.  
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Figure 3: Predicted and measured effects of multi-component mixtures based on M2 

concentration ratios. Data represent the mean (+/- SD) of a minimum of 3 independent 

experiments done in triplicates and pooled together. The green line represents CA prediction for 

ER activation and the orange line ER inhibition, inhibition, and their respective dotted line 

represent the 95% CI belt. Cytotoxic concentrations (measured by MTT) were removed.  
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Table SI 3: Composition of mixtures of ER activator (M2_A), ER inhibitors (M2_I) or combined 

ER activators and inhibitors (M2_A+I) tested in MELN, ZELHα, ZELHβ2 and ZELH cells. 

 

Table SI 4:  Estrogenic activity of the M1 and M2 expressed in estradiol equivalent. 

 

Figure SI 1: Response of the 12 chemicals on ER activation in MELN, ZELHα and ZELHβ2 cells. 

 

Figure SI 2: Response of the 12 chemicals on E2-induced ER inhibition in MELN, ZELHα, 

ZELHβ2 and ZELH cells. 

 

Figure SI 3: Cyprodinil response in MELN, ZELHα, ZELHβ2 and ZELH cells. 

 

Figure SI 4: Predicted and observed effects of inhibiting chemicals on ZELH cells. 
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Table SI 1: Composition of the 12 compound mixtures M1 and M2 and the highest substance 

concentration tested in vitro. 

 

M1 M2 

Concentration 

(M) 
proportion1) 

Concentration 

(M) 
proportion1) 

Benzo(a)pyrene 6,00E-08 0,05% 9,47E-09 0,06% 

Benzo(b)fluorantene 1,00E-07 0,08% 9,51E-09 0,06% 

Bisphenol A 7,00E-07 0,58% 4,17E-06 27,70% 

Chlorophene 9,00E-06 7,50% 6,40E-06 42,51% 

Cyprodinil 1,00E-06 0,83% 1,87E-07 1,24% 

Diazinon 6,00E-09 0,00% 1,96E-08 0,13% 

Diclofenac 3,00E-05 24,99% 2,90E-06 19,26% 

Diuron 6,00E-07 0,50% 2,08E-07 1,38% 

Genistein 1,00E-07 0,08% 4,47E-07 2,97% 

Propiconazole 6,00E-05 49,97% 8,48E-08 0,56% 

Triphenylphosphate 1,50E-05 12,49% 2,32E-07 1,54% 

Triclosan 3,50E-06 2,92% 3,89E-07 2,58% 

Mixture 1.2E-4 100% 1.51E-5 100% 

1) mixture composition according to Altenburger et al., (2018) 
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Table SI 2: Composition of mixtures of ER activator (M1_A), ER inhibitors (M1_I) or 

combined ER activators and inhibitors (M1_A+I) tested in MELN, ZELHα, ZELHβ2 and 

ZELH cells. The mixture composition is based on their relative proportion in the 12-compound 

mixture M1 (Table SI 1). 

 

  MELN ZELHα / ZELHβ2 ZELH 

Type of mixture Activators Inhibitors 
Inhibitors + 

activators 
Activators Inhibitors 

Inhibitors + 

activators 
Inhibitors 

Mixture name M1_AMELN M1_IMELN M1_A+IMELN 
M1_AZELHα, 

M1_AZELHβ2 

M1_IZELHα, 

M1_IZELHβ2 

M1_I+AZELHα, 

M1_I+AZELHβ2 
M1_IZELH 

Genistein 1% - 1% 13% - 0.2% - 

Bisphenol A 4% - 4% 87% - 0.8% - 

Triphenylphosphate 95% - 89% - 18% 17.7% 20% 

Cyprodinil - 100% 6% - - - 1% 

Diclofenac - - - - - - - 

Chlorophene - - - - 11% 10.6% - 

Propiconazole - - - - 71% 70.8% 79% 

Total 100% 100% 100% 100% 100% 100% 100% 
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Table SI 3: Composition of mixtures of ER activator (M2_A), ER inhibitors (M2_I) or 

combined ER activators and inhibitors (M2_A+I) tested in MELN, ZELHα, ZELHβ2 and 

ZELH cells. The mixture composition is based on their relative proportion in the 12-compound 

mixture M2 (Table SI 1). 

 

  MELN ZELHα ZELHβ2 ZELH 

Type Activators Activators Inhibitors 
Inhibitors + 

activators 
Activators Inhibitors 

Inhibitors + 

activators 
Inhibitors 

Name M2_AMELN M2_AZELHα M2_IZELHα M2_I+AZELHα M2_AZELHβ2 M2_IZELHβ2 M2_I+AZELHβ2 M2_IZELH 

Genistein 10% 10%  4,0% 10%  4,0%  

Bisphenol A 90% 90%  37,2% 90% 38,6% 37,2%  

Triphenylphosphate   3,5% 2,0%  2,1% 2,1% 77% 

Chlorophene   96,4% 56,6%  59,3% 57,1%  

Propiconazole        23% 

Benzo(a)pyrene   0,14% 0,08%     

Total 100% 100% 100% 100% 100% 100% 100% 100% 
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Table SI 4:  Estrogenic activity of the M1 and M2 expressed in estradiol equivalent. 

Estradiol-equivalents (E2-Eq, in µM) were calculated for the 12-component mixtures on the 

bases of their predicted and observed EC20s in relation to the EC20 of E2 (derived from all 

pooled control data). The E2-Eq(observed) is the ratio between the EC20(E2) and the 

regression-estimated EC20(mixture), and E2-Eq(predicted) is the ratio between the EC20(E2) 

and the CA predicted EC20(mixture). n.a.: not applicable (not estrogenic activity measured).  

 

 M1 E2-Equivalent (µM) M2 E2-Equivalent (µM) 

 Observed Predicted Ratio Observed Predicted Ratio 

 Mean Mean Observed/Predicted Mean Mean Observed/Predicted 

MELN 0.56 0.51 1.1 22.7 16.3 1.39 

ZELHα n.a. 0.43 n.a. n.a. 19.7 n.a. 

ZELHβ2 n.a. 0.33 n.a. 3.33 12 0.278 
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Figure SI 1: Response of the 12 chemicals on ER activation in MELN, ZELHα and ZELHβ2 cells. Data represent each replicate and their mean 

(red dash) of at least 2 independent experiments done in triplicates. Chemicals were tested in the 10 nM - 30 µM range, except for genistein (from 1 

nM). 17β-estradiol (E2) was used as positive control. The horizontal dotted line at 20% figures the threshold of effect.  
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MELN - Bisphenol  A
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MELN - diazinon

10 - 9 10 - 8 10 - 7 10 - 6 10 - 5 10 - 4

0.0

0.5

1.0

    




Exp1

Exp2

Mean all

Exp3

Concentration (M)

L
U

C
 a

c
ti
v

it
y

(r
e

la
ti
v

e
 t
o

 E
2

 1
0

n
M

)
ZELH  - diazinon

10 - 9 10 - 8 10 - 7 10 - 6 10 - 5 10 - 4

0.0

0.5

1.0

      

Exp2

Mean all

Exp1

Exp3

0.2

Concentration (M)

L
U

C
 a

c
ti

v
it

y

(r
e

la
ti

v
e

 t
o

 E
2

 1
0

n
M

)

ZELH2 - diazinon

10 - 9 10 - 8 10 - 7 10 - 6 10 - 5 10 - 4

0.0

0.5

1.0

      

Exp2

Mean all

Exp3

0.2

Exp1

Concentration (M)

L
U

C
 a

c
ti

v
it

y

(r
e

la
ti

v
e

 t
o

 E
2

 1
0

n
M

)

MELN - diclofenac

10- 9 10 - 8 10 - 7 10- 6 10 - 5 10 - 4

0.0

0.5

1.0

 
    

Exp1

Mean all

Exp3

Exp2

0.2

Concentration (M)

L
U

C
 a

c
ti
v

it
y

(r
e

la
ti
v

e
 t
o

 E
2

 1
0

n
M

)

ZELH  - diclofenac

10 - 9 10 - 8 10 - 7 10 - 6 10 - 5 10 - 4

0.0

0.5

1.0


    



Exp1

Mean all

Exp2

0.2
Exp3

Concentration (M)

L
U

C
 a

c
ti

v
it

y

(r
e

la
ti

v
e

 t
o

 E
2

 1
0

n
M

)

ZELH2 - diclofenac

10- 9 10 - 8 10 - 7 10 - 6 10- 5 10 - 4

0.0

0.5

1.0

      

Exp1

Mean all

Exp2

Exp3

0.2

Concentration (M)

L
U

C
 a

c
ti

v
it

y

(r
e

la
ti

v
e

 t
o

 E
2

 1
0

n
M

)

MELN - diuron

10 - 9 10 - 8 10 - 7 10 - 6 10 - 5 10 - 4

0.0

0.5

1.0

      

Exp1

Mean all

Exp2

0.2 Exp3

Concentration (M)

L
U

C
 a

c
ti

v
it

y

(r
e

la
ti

v
e

 t
o

 E
2

 1
0

n
M

)

ZELH  - diuron

10- 9 10 - 8 10 - 7 10 - 6 10 - 5 10 - 4

0.0

0.5

1.0

      

Exp1

Mean all

Exp2

0.2
Exp3

Concentration (M)

L
U

C
 a

c
ti

v
it

y

(r
e

la
ti

v
e

 t
o

 E
2

 1
0

n
M

)

ZELH2 - diuron

10 - 9 10 - 8 10 - 7 10 - 6 10 - 5 10 - 4

0.0

0.5

1.0




  




Exp2

Mean all

Exp3

Exp1

0.2

Concentration (M)

L
U

C
 a

c
ti

v
it

y

(r
e

la
ti

v
e

 t
o

 E
2

 1
0

n
M

)

 

2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252



41 

MELN - genisteine
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MELN - Triclosan
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Figure SI 2: Response of the 12 chemicals on E2-induced ER inhibition in MELN, ZELHα, ZELHβ2 and ZELH cells. Data represent each replicate 

and the mean (red dash) of at least 2 independent experiments done in triplicates. Chemicals were tested in the 10 nM - 30 µM range. MELN and ZELHβ2 

cells were co-exposed with 0.1 nM E2, and ZELHα and ZELH cells with 1 nM E2. Cell viability (MTT) was measured for at least one experiment and is 

represented in green full circles (mean +/- SD).  The horizontal dotted line at 80% figures the threshold of effect. Hydroxy-tamoxifen (OH-TAM) was 

used as positive control.  
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Figure SI 3: Cyprodinil response in MELN, ZELHα, ZELHβ2 and ZELH cells. The 

response was measured with cyprodinil alone (ER, luciferase induction relative to DMSO 

control) or in presence of E2 (antiER, luciferase induction relative to E2 positive control). Data 

represent the mean (+/- SD) of a minimum of 2 independent experiments done in triplicates and 

pooled together. 
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Figure SI 4: Predicted and observed effects of inhibiting chemicals on ZELH cells. Results 

of subgroup mixtures M1_IZELH (A), M2_IZELH (B), and 12-component mixtures M1 (B) and 

M2 (D). Mixture effects were predicted according to CA model (orange line, 95% CI belt). 

Luciferase (LUC) activity was measured in absence (black circles) or in presence of E2 (co-

exposure with E2 at 1 nM, grey open circles). The data (mean +/- SD) originate from at least 2 

independent experiments done in triplicates and pooled together. Cytotoxic concentrations 

(measured by MTT) were removed. 
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