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A Molecular Dynamics (MD) parallel to the Control Volume (E¥6rmulation of fluid mechanics is devel-
oped by integrating the formulas of Irving and Kirkwood, heth. Phys. 18, 817 (1950) over a finite cubic
volume of molecular dimensions. The Lagrangian molecufatesn is expressed in terms of an Eulerian CV,
which yields an equivalent to Reynolds’ Transport Theorenttie discrete system. This approach casts the dy-
namics of the molecular system into a form that can be readitypared to the continuum equations. The MD
equations of motion are reinterpreted in terms of a Lagam¢p-Control-Volume £CV) conversion function
¥;, for each moleculé. The LCV function and its spatial derivatives are used to exprese&$land relevant
forces across the control surfaces. The relationship lestwiee local pressures computed using the Volume
Average (VA, Lutsko, J. Appl. Phys 64, 1152 (1988) ) teche®and the Method of Planes (MOP , Todd et al,
Phys. Rev. E 52, 1627 (1995) ) emerges naturally from théntrexat. Numerical experiments using the MD CV
method are reported for equilibrium and non-equilibriutaisup Couette flow) model liquids, which demon-
strate the advantages of the formulation. The CV formutatibthe MD is shown to be exactly conservative,
and is therefore ideally suited to obtain macroscopic ptegefrom a discrete system.
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I. INTRODUCTION tion to the differential form of continuum fluid mechanics.

. . . . However, the resulting equations at a point were expressed
The macroscopic and microscopic descriptions of mechaqh terms of the Dira® function — a form which is difficult

ICS hlfve trad|t|(_)nally been StUd.'ed mdgpgndently. Th'z'fm to manipulate and cannot be applied directly in a molecular
invokes a continuum assumption, and aims to reproduce thg, ation.  Furthermore, a Taylor series expansion of the

large-scale behaviour of solids and fluids, without the teed .-+ s 't nctions was required to express the pressure ten-

reso_lve th? mlcro-s_cale details. Qn thg ot_hgr hand, mOIeCUs'or. The final expression for pressure tensor is neither easy
lar simulation predicts the evolution of individual, buten-

; . T ____to interpret nor to computel[9]. As a result, there have been
acting, molecules, which has application in hano and MICTO%;merous attempts to develop an expression for the pressure
> . . R&hsor for use in MD simulatio [9=21]. Some of these ex-
description, which represents the evolution of the aveodge ressions have been shown to be equivalentin the apprepriat
many microscopic trajectories through phase space. It-is aéi)mit. For example, Heyest al. [22]) demonstrated equiva-
vantageous to cast the fluid dynamics equations in a ConSi"I;énce between Me’Ehod of Planes (MOP Tatidl. [13]) and

tent form for both the molecular, mesoscale and continuum,; ;me Average (VA Lutskd [16]) at a surface.

approaches. The current works seeks to achieve this objec- In order to avoid use of the Dirakfunction. the current

tive by introducing a Control Volume (CV) formulation for work adopts a Control Volume representatior; of the MD sys-

the_,\rﬂwolcecularls\y;s}em. his widelv ad di tem, written in terms of fluxes and surface stresses. This ap-
e Control Volume approach Is widely adopted in con-, gac s jn part motivated by the success of the control vol-

tinuum fluid mechanics, where Re_ynolds Transport 'I_'heor_e me formulation in continuum fluid mechanics. At a molecu-
[1] relates Newton's laws of motion for macroscopic flu!d lar scale, control volume analyses of NEMD simulations can
parcels to fluxes through a .CV' Inlth|s form, fluid mechamcsf cilitate evaluation of local fluid properties. Furthemapo
has had great success in simulating both fundam_éﬂtEll [2, Fhe CV method also lends itself to coupling schemes between
and practical [4-6] flows. However, when the continuum 8She continuum and molecular descriptions [23-34].

sumption fails, or when macroscopi_c gon_stitutivg equation o equations of continuum fluid mechanics are presented
are lacking, a molecular-scale description is requiredrx SectiorlllA] followed by a review of the Irving and Kirk-
ples mcI_ude nano-flo_vys,_ moving contact Imes,_sohd-lthw wood @] procedure for linking continuum and mesoscopic
boundaries, non-equilibrium fluids, and evaluation of $ran properties in SectidABl. In sectiodlI] a Lagrangian to Con-
port properties such as viscosity and heat conductivity [7] ~ tro1\olume (CCV) conversion function is used to express the

Molecular Dynamics (MD) involves solving Newton's mesoscopic equations for mass and momentum fluxes. Sec-

equations of motio_n fqr an a_sser_nbly of interacting discretqion [MTCl focuses on the stress tensor, and relates the cur-
molecules. Averaging is required in order to compute PFOPET ant formulation to established definitions within the ite

ties of interest, e.g. temperature, density, pressure tagsks ture [18/ 15, 17]. In Sectidi/] the CV equations are derived

Wh'Ch can vary on a local scale espeC|aII_y out of equ'“b'forasingle microscopic system, and subsequently intedrat
rium [7]. A rigorous link between mesoscopic and continuUM;y, ime in order to obtain a form which can be applied in MD

properties was established in the seminal work of Irving an(iimulations. The conservation properties of the CV formula
Kirkwood [€], who related the mesoscopic Liouville equa- o are demonstrated in NEMD simulations of Couette flow

in SectiorflVCl
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Il. BACKGROUND andr;, respectively, andV is the number of molecules in a

. . . _ .__single system. The momentum density at a point in space is
This section summarizes the theoretical baCkground"F'rSEim%Iarlyydefined by y P P

the macroscopic continuum equations are introduced, fol-

lowed by the mesoscopic equations which describe the evolu- N

tion of an ensemble average of systems of discrete molecules p(r, u(r,t) = Z <pi5(ri 1) f>, 8)
The link between the two descriptions is subsequently dis- =

cussed.

where the molecular momentum, = m;f;. Note thatp, is

the momentum in the laboratory frame, and not the peculiar
The continuum conservation of mass and momentum balaluep,; which excludes the macroscopic streaming term at

ance can be derived in an Eulerian frame by considering ththe location of moleculé, u(r;), ﬂ],

fluxes through a Control Volume (CV). The mass continuity

A. Macroscopic Continuum Equations

equation can be expressed as, — ;
; P pi=m (B~ uiry). ©
(2
5 [oav == pu-as (1) | o
ot Jy S The present treatment usgsin the lab frame. A discussion

of translating CV and its relationship to the peculiar momen
pm is given in Appendifél
Finally, the energy density at a pointin space is defined by

wherep is the mass density and is the fluid velocity. The
rate of change of momentum is determined by the balance d
forces on the CV,

P N
a1 ), V= }{SP““ +dS+ Fsurtacet Foody  (2) prEM D= <ei6<ri - r>;f>, (10)
i=1

The forces are split into ones which act on the bounding sur-
faces,Fsurface and body forcesFpoqy. Surface forces are where the energy of thé" molecule is defined as the sum of
expressed in terms the pressure tensbr,on the CV sur-  the kinetic energy and the inter-molecular interactiorepet
faces, tial ¢;;

]l

Fsurface: - 72 IT-dS. (3)

Pl
e = 21% +t5 E bij (11)
The rate of change of energy in a CV is expressed in terms of ! J#i

fluxes, the pressure tensor and a heat flux vegtor S o _
It is implicit in this definition that the potential energy ah

2 [ interatomic interactiong; ;, is divided equally between the
— dv = — IT- -dS 4 . . ij
ot Jy pedv %g[pgu + utd ’ “) two interacting molecules,and;.

As phase space is bounded, the evolution of a property,

here the energy change due to body forces is not includeg, 1ime is governed by the equation

The divergence theorem relates surface fluxes to the diver-
gence within the volume, for a variahlg N

a< > < dap; 8a>

. —(a;f) = Fimoe +— 7 f), (12)
}{A~d8:/ V- AdV (5) ot ; Cop om0

S \%4

In addition, the differential form of the flow equations can b WhereF; is the force on moleculg anda = a(r;(2), p;(t))
recovered in the limit of an infinitesimal control volunie[[35 IS @n implicit function of time. Using Eq.[IQ), Irving and
Kirkwood [€] derived the time evolution of the mass (from
V.A= lim ij{ A.dS ©6) Eq.[7), momentum density (from E@) and energy density
v=oV Jg (from Eq[I0) for a mesoscopic system. A comparison of the
resulting equations to the continuum counterpart provaled
B. Relationship Between the Continuum and the Mesoscopic ~ t€rm-by-term equivalence. Both the mesoscopic and contin-
Descriptions uum equations were valid at a point; the former expressed in
Amesoscopic description is atempora| and Spatia| averag’@rms of Diracd and the latter in differential form. In the
of the molecular trajectories, expressed in terms of a probacurrent work, the mass and momentum densities are recast
bility function, f. Irving and Kirkwood [8] established the Within the CV framework which avoids use of the Dirac
link between the mesoscopic and continuum descriptions udtinctions directly, and attendant problems with their firac
ing the Diracs function to define the macroscopic density at cal implementation.
a pointr in space,
I1l. THE CONTROL VOLUME FORMULATION
p(r,t)zi\f: <mz‘5(fz _ r);f>. @) In orQer to cast the gove_rning eq_uations_for a discrete
system in CV form, a ‘selection function; is introduced,
which isolates those molecules within the region of interes
The angled bracketsy; /) denote the inner product efwith  This function is obtained by integrating the Diracfunc-
f, which gives the expectation of for an ensemble of sys- tion, 6(r; — r), over a cuboid in space, centeredraand
tems. The mass and position of a moleciuége denotedn; of side lengthAr as illustrated in figuré(a) [B7]. Using

i=1
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FIG. 1. (Color online) The CV function and its derivative &pg to a system of molecules. The figures were generated) tkenVMD
visualization packagel_[36]. From left to right, (a) Schéimaf ¥; which selects only the molecules within a cube, (b) Locatibcube
centerr and labels for cube surfaces, (c) Schematio®f/ox which selects only molecules crossing the andz ™~ surface planes.

o(ry—r)=10d(z;
integral is,

—2)0(yi —y)o(z

eyt ot

/ y/ / (i — )5 (i — )3

z; — z)dxdydz

et iyt
- H[H@c G| ||
= [H(@zt —2;) — Hx™ — z;)]
x [Hy" —yi) — Hly~ —ui)]
x [H(z" —2) — H(z~ —2)],
(13)

whereH is the Heaviside function and the Iimits of integra-
, for each

tion are defined as,” =r — T andrt=r + 4

— z), the resulting triple

and similarly for the left surfacelS_, the total flux Eq.09)
in any directiorr is then,

09

o = dst — dSs; =ds;.
The LCV function is key to the derivation of a molecular-
level equivalent of the continuum CV equations, and it will
be used extensively in the following sections. The approach
in sectiondITA] MBlandID]shares some similarities with
the work of Serrano and Espafibl [38] which considers the
time evolution of Voronoi characteristic functions. Howeev
the LCV function has precisely defined extents which allows
the development of conservation equations for a microscopi
system. In the following treatment, the CV is fixed in space
(i.e.,r is not a function of time). The extension of this treat-
ment to an advecting CV is made in Appeniix

(17)

A. MassConservation for a Molecular CV
In this section, a mesoscopic expression for the mass in a

direction (see Fig[L(b). Note thaty; can be mterpreted as cuboidal CV is derived. The time evolution of mass within

a Lagrangian-to-Control-Volume conversion functidiCy’)
for molecules.

It is unity when molecule is inside the

a CV is shown to be equal to the net mass flux of molecules
across its surfaces.

cuboid, and equal to zero otherwise, as illustrated in Fig. The mass inside an arbitrary CV at the molecular scale can

[I(a) Using L'Hopital’s rule and definingAV = AzAyAz,
the LCV function for molecule reduces to the Dirag func-
tion in the limit of zero volume,

o(r—ry) =

li L
A\I/Igo AV

The spatial derivative in the direction of theCLCV function
for moleculei is,

ov;  0Y; N R f— '
o om [5(z+ —x;) — o(x ;)] Szi,  (14)
whereS,; is
Sei=[H(y" —vi) — Hly™ - vi)]
[H(z" —2) — H(z~ — z)]. (15)

Eq. (9 isolates molecules on a 2D rectangular patch in the
yz plane. The derivativé; /0x is only non-zero when

moleculei is crossing the surfaces marked in FIgc), nor-

mal to thez direction. The contribution of th&” molecule

be expressed in terms of t&) as follows,
/ (r,t)dV = / Z<ml f>dV

- Zi[: /+ y/ / < f>dxdydz

:; <mﬂ9i;f>. (18)

Taking the time derivative of Eq18) and using Eqli2),
N

0 0
5/‘/p(r,t)dV =5 ; <mﬂ92,f>

N
p, O 0
;<mi 8rimz19@+ i apimzﬂm>

(19)

The termom;¥;/0p; = 0, as¥; is not a function ofp;.

to the net rate of mass flux through the control surface is exJ herefore,

pressed in the fornp; - dS;. Defining for the right: surface,

dSh=6(at — 2;)Sy, (16)

N

0 09;
5/‘/pdV2<pi o f>

i=1

(20)
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where the equalitydd;/or; = —0d9;/0r has been used. where the continuum expressifpuu, } T is the average flux
From the continuum mass conservation given in B, the  through a flat region in space with ardad” = AyAz. This
macroscopic and mesoscopic fluxes over the surfaces can kimetic component of the pressure tensor is discussedeiurth
equated, in Sectior[IT’C1

The configurational term of Eq24) is,

Z/ pu- dsf—z<pi-dsi;f>. (21) :i<l 9 79“](> i<mi;f>, 27)

faces = CT e 8p =0 pat
The mesoscopic equation for evolution of mass in a control
volume is given by, where the total forc&; on particlei is the sum of pairwise-

additive interactions with potential;;, and from an external
o X N potentiaky;.
29D (mavit) - > (pi-dsit). (2
1= 1=
0iF; = Z bij + Ui

AppendixBlshows that the surface mass flux yields the Irving
and Kirkwood [8] expression for divergence as the CV tends s

to a point (i.e.V — 0), in analogy to Eq[). It is commonly assumed that the potential energy of an inter-
atomic interactiong;;, can be divided equally between the

B. Momentum Balance for a Molecular CV . . ) .
fwo interacting moleculeg,andy, such that,

In this section, a mesoscopic expression for time evolutio

of momentum within a CV is derived. The starting point is to
integrate the momentum at a point, given in ), bver the Z Pij _ ¢ZJ Pji (28)
cV, = or, 2 I or il
N N _ N
/ p(r, tu(r, t)dV = Z <pA19i.f>' (23) where the notatiol} ; ", 1 >_j=; has beenintroduced
v ’ N\ for conciseness. Therefore the conflguratlonal term can be

expressed as,
Following a similar procedure to that in sect[BbA] the for-

mula [I2) is used to obtain the time evolution of the momen- 1 X N
tum within the CV, Cr=3 Z <f ﬂzyaf> Z <fzext19z, f> (29)
7 1
a a N 'l _] Z
ot p(r, t)u(r, t)dV = g Z <pll92,f> where fij = —(’)qb?-j/c’)ri = 8¢ﬂ/c’)r and flext :
4 i=1 —0p; /0. The notationy; ; = ; — v}, is introduced, which

is non-zero only when the force acts over the surface of the

9 ; L
— E ’ CV, as illustrated in Fig2
< m; 6rl p’ﬂ +Fi ap; plﬁl’f> (24)

K1 cr

where the termdCs andCy are the kinetic and configura-
tional components, respectively. The kinetic part is,

al p;, 0 o p,p;  0Y;
= oo 2y 9.f) = L
’CT Zzl<mz aripz (3l > Zzl< mi ari7 >7
(25)
wherep,p; is the dyadic product. For any surface of the CV,

herezT, the molecular flux can be equated to the continuurr
convection and pressure on that surface,

/+ p(‘r+a Y, %, t)u($+a Y, %, f)u$($+, Y, %, ﬁ)dyd'z
S,

x
o~ /P
+/S+ Kidydz =" < ;l:‘”dsjl,f>,

x =1
whereK} is the kinetic part of the pressure tensor due to
molecular transgressions across #heCV surface. The av-
erage molecular flux across the surface is then,

FIG. 2. (Color online) A section through the CV to illustrates
role of 9;; in selecting only the andj interactions that cross the
pzpm + bounding surface of the control volume. Due to the limitatheof
Z TSN, (26) ! . . .
i interactions, only the forces between the internal (redlecwes:
and external (blue) moleculgsear the surfaces are included.

{puux}Jr + K:;:F A+
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Substituting the kinetic k) and configurational (1) engineering literature, the stress and pressure tenswes ha
terms, from Eqs.[Z5) and into Eq. 29), the time evo-  opposite signs,

lution of momentum within the CV at the mesoscopic scale
is, II=k-o. (33)

N N The separation into kinetic and configurational parts isenad
2 Z <pi19i;f> - _ Z <% . dsi;f> to accommodate the debate concerning the inclusion of ki-
ot —~ A\ netic terms in the molecular stre55[9} B9, 40].

L N In order to avoid confusion, the stress, is herein de-

e a9 9. fined to be due to the forces only (surface tractions). This,

3 Z <f”19”’ f> + Zl <fZeXt19“ f>' (30) combined with the kinetic pressure temm yields the total
Z’] = pressure tensdi first introduced in Eq[3).
Equations[22) and B0 describe the evolution of mass and
momentum respectively within a CV averaged over an en- 1. Irving Kirkwood Pressure Tensor
semble of representative molecular systems. As proposed by
Evans and Morrisg [7], it is possible to develop microscopic The virial expression for the stress cannot be applied lo-
evolution equations that do not require ensemble averagingally as itis only valid for a homogeneous systelm| [12]. The
Hence, the equiva'ents of Eqm and m are derived for IrVing and Kirkwood @] technique for eVaIUating the non-
a single trajectory through phase space in se@i@f] inte-  equilibrium, locally-defined stress resolves this issunei ia
grated in time in sectiofiyB] and tested numerically using herein extended to a CV. To obtain the stressthe inter-
molecular dynamics simulation in sectiiviCl molecular force term of Eq3{) is defined to be equal to the
The link between the macroscopic and mesoscopic trealivergence of stress,

ments is given by equating their respective momentum Eqs. N

@ and B0), 0 = i Vigs
Va-o'dv§izj fzﬂ%]af
— f{g putt - dS+ Fgyrtacet Fbody |

_ 7% <% . dSZ-;f> - %%/V <fij [6(r; =1) = d(rj —1)] ;f>dv. (34)
i=1 v

Irving and Kirkwood [8] used a Taylor expansion of the Dirac

1 Y N ¢ functions to express the pair force contribution in the form
5 > (Figdigsf) + D (figyisf ). (31)  ofa divergence,
i, i=1
As can be seen, each term in the continuum evolution of mo- fij [6(r; —1) = d(r; —r1)] = ~r FijrijOijo(ri — 1),
mentum has an equivalent term in the mesoscopic formula- ) .
tion. wherer;; = r; —r;, andO;; is an operator which acts on the
The continuum momentum Eq2)(can be expressed in Diracé function,
terms of the divergence of the pressure tenBgiin the con- n—1
trol volume from, O:: = 1_er,3+_.__£ r..i +... .
5 Y 2 Y or; n! \ Y or;
a /. pudV = — 72 [puw +I1] - dS+ Fpogy ~ (322) (35)
) Equation[B9) can therefore be rewritten,
= —/ = - [puu +TI]dV + Fpogy-  (32b)
v 9 1 )
In the following subsection, the right hand side of EHBI)( / a oV =3 Z/ <5 “fijri
is recast first in divergence form as in EG2f), and then in v i’V

terms of surface pressures as in [374.
P Ol-jé(rl- — r);f>dV. (36)
C. ThePressure Tensor

The average molecular pressure tensor ascribed to a con'® Taylor expansion in Dira€ functions is not straightfor-
trol volume is conveniently expressed in terms of @V yvard to evql_uate. This operatl_on can be bypassed by integrat
function. This is showrinter alia to lead to a number of iNg the position of the molecuieover phase spade [11], or by
literature definitions of the local stress tensor. In thet firs éPlacing the Dirad with a similar but finite-valued function
part of this section, the techniques of Irving and Kirkwood ©f compact SU_Ppoﬂ,iﬂE@Zl]_- Inthe current treatment
[@] are used to express the divergence of the stress (as WimeLC_V_ functlc_)n,ﬂ, is used, which is advantageogs because
the right hand side of EqBZB) in terms of intermolecu- it explicitly defines both the extent of the_CV qnd its surface
lar force. Secondly, the CV pressure tensor is related to thluxes. The pressure tensor can be written in terms of the
Volume Average (VA) formula {[1€, 17]) and, by considera- LCY functlon by exploiting the following identities (see Ap-
tion of the interactions across the surfaces, to the Method g?endix of Ref. B,

Planes (MOP)([13, 14]. Finally, the molecular CV ERQY 1
is written in analogous form to the macroscopic E223.

The pressure tensdi, can be decomposed into a kinetic O56(ri —1) = /6(r = Fi+shij)ds, (37)

k term, and a configurational stress In keeping with the 0
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Equation[86) can therefore be written as,

N
) 1 )
—Z gdV == = I S
/Var 7 /V2%:<ar ij"i

1
X /6([' —r; + srzj)ds,f>dV (38)
0

Equation Eq.[88 leads to the VA and MOP definitions of
the pressure tensor.

2. VA Pressure Tensor

definition of the stress tensor of Lutsko [16] and Cormier
et al. [17] can be obtained by rewriting E@8) as, "/

B
ﬁ./vo-dV——— /‘/22<fmrm

1
X /6(r —r; + srij)ds;f>dV. (39)
0

FIG. 3. (Color online) A plot of the interaction length givey the
integral of the selecting functioti; defined in Eq.[(411) along the

Equating the expressions inside the divergence on botk siddn® betweenr; andr;. The cases shown are for two molecules
q g P 9 wh|ch area) both inside the volumel{; = 1) andb) both outside

of Eqb?g) [iﬁﬂ ?ndl assum‘}ng the sfress is Consta?t thl the volume with an interaction crossing the volume, wligrés the
an arbitrary local volumeAV, gives an expression for the fraction of the total length betweerand inside the volume. The
VA stress, line is thin (blue) outside and thicker (red) inside the vo&i

1
_ o N applied to obtain the volume averaged kinetic component of
B 2AV/ Z <f”r”0/5(r fit Srl])ds’f>dv' the pressure tensd€r, in Eq. 25),

(40) VA  vya
{puu}+ '
Swapping the order of integration and evaluating the irglegr ’ )
. ; . . PiP; pzpz
of the Dirac) function overAV gives a different form of the Z - dS;; f 8 Z : 19 ;
£CV function,ds, i—1 N T
Note that the expression inside the divergence includds bot
1955/ O(r —rj+sry;)dV = VA
the advection{puu}, and kinetic components of the pres-
[H(er zi + swij) — H(x™ — 2 + sxy5)] sure tensor. The VA form [17] is obtained by comblnlng the
x [H(y T+ syij) — Hy™ — yi + syij)] above expression with the configurational stress
X [H T+ sz5) — H(z™ — 2z + szw)] , (41 VA VA

VA VA VA
{puu}+x — o = {puu}+ IT
which is non-zero if a point on the line between the two

moleculesy; — sr;;, is inside the cubic region (c.f,; with Pi pz19 £ f 43
;). Substituting the definitionys (Eq.41), into Eq. BQ) AV Z i) Z iglaglissf ). (43)
gives,

In contrast to the work of Cormieat al. [17], the advection
term in the above expression is explicitly identified, inerd

T = oAV Z< ijViglis >v (42) 1o be compatible with the right hand side of E@2H) and
definition of the pressure tensal.,.

wherel;; is the integral fromr; (s = 0) tor; (s = 1) of the 3. MOP Pressure Tensor

15 function, . .
The stress in the CV can also be related to the tractions

1 over each surface. In analogy to prior use of the molecular
lij */ Usds LCYV function,?;, to evaluate the flux, the stregg) func-
tion, 95, can be differentiated to give the tractions over each
Therefore/;; is the fraction of interaction length betweén surface. These surface tractions are the ones used in the for
andj which lies within the CV, as illustrated in Figl The  mal definition of the continuum Cauchy stress tensor. The
definition of the configurational stress in Eg2j is the same  surface traction (i.e., force per unit area) and the Kirtis-
as in the work of Lutskd [16] and Cormiet al. [17]. The  sure on a surface combined give the MOP expression for the
microscopic divergence theorem given in Apper@lizan be  pressure tensolr [113].
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In the context of the CV, the forces and fluxes on the six
bounding surfaces are required to obtain the pressureeinsic
the CV. It is herein shown that each face takes the form o
the Han and Leé [14] localization of the MOP pressure com-
ponents. The divergence theorem is used to express the le
hand side of Eq[38) in terms of stress across the six faces
of the cube. The mesoscopic right hand side of Bg) ¢an
also be expressed as surface stresses by starting wifitthe
functionds,

Z / o - de—Z<f2‘er‘j~/a§98d8 f>
0

faces ,J

The procedure for taking the derivative®§ with respect to

r and integrating over the volume is given in Appeniix
The result is an expression for the force on the CV rewritter
as the force over each surface of the CV. ForiHeface, for
example, this is,

N
1
/S+ o- CZSS;r =1 Z <fij [ sgn(z™ — ;)
i7j

xT

_ sgn(ac+ _ SE)} St -f FIG. 4. (Color online) Representation of those moleculéscsed
v iy throughdS,.;; in Eq. [48) with moleculeson the side of the surface

o ) ) inside the CV (red) and moleculgn the outside (blue). The CV

The combination of the signum functions and ﬁﬁj term s the inner square on the figure.

specifies when the point of intersection of the line betwieen

and; is located on thet surface of the cube (see Appendix o ]

0. Correspondmg expressions for thend - faces are de- Selects the force contributions across the two oppositesfac

fined byS s whena = {y, 2} respectively. similar notation to the surface molecular flu§;; = dSJr -

The full expressmn for the MOP pressure tensor, whichdS;; (c.f. Eq. [[D), is used. The case of the twoplanes
includes the kinetic part given by Edq2@), is obtained by Iocated on opposite sides of the cube is illustrated in[#ig.

assuming a uniform pressure over thie surface, Taking all surfaces of the cube into account yields the final
form,
+1‘I-de{ = [k — o] -nfAAT
Sz 6 3
= [Kf - T ] AAT =PI AAT, (44) > o-dSp=—= < Z aijs >
wheren is a unit vector aligned along thecoordinate axis, faces"2f a=l
nt = [+1,0,0]; T, is the configurational stress (traction) 1 N
andP; the total pressure tensor acting on a plane. Hence, 3 Z < - dS;j; >
1 X 1
+ _ iPi , + _ S

o = aaT 2<ﬁ6($’ )S“’f> 2 izj<g” ds”’f>' (40)

+— Z < i sgn(a™ —x;) — sgn(at — ;) Sjij; f>, The vectom, obtained in Appendi& is unity in each direc-
A0 Az i, tion. The tensog;; is defined, for notational convenience, to
(45)  be the outer product of the intermolecular forces with

where the peculiar momentuip; has been used as in Todd

et al. [13]. If the 2T surface area covers the entire domain ) Jrij Saij Jzij
(S+ — 1in Eq. @9), the MOP formulation of the pressure  Sij = —Tiji = —fi; [L 1 1] = — | fyij fyij [uij
is recoveredﬂlS] [zij fzz'j fzij

The extent of the surface is defined throu@)ﬁ in Eq.
@ which is the localized form of the pressure tensor Coan this form theﬂw function for all interactions over the
sidered by Han and Le& [14] applied to the six cubic facescube’s surface is expressed as the sum of six selection func-
For a cube in space, each face has three components of streigns for each of the six faces, i.6;; = — >3 | dSy;.
which results in18 independent components over the total
control surface. The quantity,
4. Relationship to the continuum

1
dS.ii == [sgn(rt —ry;) — sgn(rt —ry;)| St
a9 [sgn(ra = 7aj) = sgn(ra = rai)] Sai; The forces per unit area, or 'tractions’, acting over each

face of the CV, are used in the definition of the Cauchy stress

1
_Z — ) i) ST _ :
[sgn(ry —raj) — sgn(rg — raq)] aij tensor at the continuum level. For thé surface, the traction

2
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vector is the sum of all forces acting over the surface, surfaces — an important requirement for accurate unsteady
coupled simulations as outlined in the finite volume couplin
n 1 X of Delgado-Buscalioni and Covenéy [45]. For solid coupling
Tz = T AAATZL fij[sgn(a™ — ;) schemes/[30], the principle of virtual work can be used with
6. tractions on the element Cﬁners (the MD CV) to give the
state of stress in the elementl[48],
— sgn(:z:Jr — zi)]S;;j;f>, 47 [48]
which satisfies the definition, / o - VNV = f NgTdS, (50)
1% S

T;t =0- n;t,
where N, is a linear shape function which allows stress to
be defined as a continuous function of position. It will be
demonstrated numerically in the next sectlidM, that the CV
Kxi — k- ni formulation is exactly conservative: the surface tractiand
Pt _I.nt fluxes entirely define the stress within the volume. The trac-
T z tions and stress in EGRQ) are connected by the weak formu-
lation and the form of the stress tensor results from thegghoi
of shape functionV,.

of the Cauchy traction [42]. A similar relationship can be
written for both the kinetic and total pressures,

wheren is a unit vectornt = [+1 0 0]7

The time evolution of the molecular momentum within a
CV ( Eq. 30), can be expressed in a similar form to the
Navier-Stokes equations of continuum fluid mechanics. Di-
viding both sides of Eq@0) by the volume, the following D. Energy Balancefor aMolecular CV

form can be obtained; note that this step requires Egs. E%f In this sec_:ir?_n, agw\?gozcopicdexg\refssion for timg evolution
@9, Eq. 5 and Eq.@D: energy within a CV is derived. As for mass and momen-

tum, the starting point is to integrate the energy at a point,
1 o X {puaugh* — {puaug)™ given in Eq.[@0), over the CV,
77 D paitif) + =

AV Ot “ ATB
=1 , N
K;FB - Ko . chﬁ ~T . L ; /V p(r,)Er, t)dV = Z <eﬂ9i; f>. (51)
Arg Arg AV aiext! =1
(49) The time evolution within the CV is given using formul&},
where index notation has been used (€lg: = TE,) with
the Einstein summation convention. N
Inthe Iimit_of zero_volum_e, each_expression would be simi- 9 / p(r, OE(r, )dV = 9 Z <€z‘19@';f>
lar to a term in the differential continuum equations (altgb ot Jyv ot =

the pressure term would be the divergence of a tensor and not 5 5
the gradient of a scalar field as is common in fluid mechan- .
ics). The Cauchy stress tenser, is defined in the limit that Z <_ ' _6“9 +Fi 0 Ze"ﬂi’ f> (52)
the cube’s volume tends to zero, so tfiat and T~ are re-
lated by an infinitesimal difference. This is used in contin-
uum mechanics to define the unique nine component CaucHyvaluating the derivatives of the energy add) function
stress tensotio /dz = lima,_,o[TT + T~]/Az. Thislimit ~ results in,
is shown in AppendiBlto yield the Irving and Kirkwood [8]
stress in terms of the Taylor expansion in Difaftinctions. N N

Rather than defining the stress at a point, the tractions? Z <ei§i.f> _ 1 Z< [& i+ P fl] 19@,.]:>
can be compared to their continuum counterparts in a fluiddt = ’ 7 my ’
mechanics control volume or a solid mechanics Finite Ele- N
ments (FE) method. Computational Fluid Dynamics (CFD) p; p;
is commonly formulated using CV and in discrete simula- - Z <€z‘% 1S —Fi- Hiﬁi;f>'
tions, Finite Volumel[4]. Surface forces are ideal for cang!
schemes between MD and CFD. Building on the pioneering
work of O’Connell and Thompson [23], there are many MD Using the definition of;, Newton’s 3rd law and relabelling
to CFD coupling schemes — see the review paper by Moindices, the intermolecular force terms can be expressed in
hamed and Mohamad [43]. More recent developments foterms of the interactions over the CV surfadg;,
coupling to fluctuating hydrodynamics are covered in a re-
view by Delgado-Buscalioni [44]. A discussion of coupling

: . . ! N N

schemes is outside the scope of this work, however finite vol- 0 Z el f Z o Pi ds;; f
ume algorithms have been used extensively in coupling meth- ot v " my '
ods [31] 32| 45-47] together with equivalent control volsme =1

defined in the molecular region. An advantage of the herein p; p;

. . += tof.9, + ? f
proposed molecular CV approach is that it ensures conser- 2 E : m; Y ijif § : ml fiext? :
vation laws are satisfied when exchanging fluxes over cell L, =
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The right hand side of this equation is equated to the rightvhere the total force on moleculdas been decomposed into
hand side of the continuum energy &j. surface and ‘external’ or body terms. The time evolution of
. energy in a molecular control volume is obtained by evaluat-
energy flux heat flux pressure heating .
—_—— S ——— Ing,

—%pgu-dS—j{q-dS—y{H-u-dS
S S S

N Zez'ﬂz =
B P B ot
-3 (Bl asi)

1

Mz

;e
[ ot +Eﬂl]

i=1

N
Zez:j dSZ+ZpZ pzﬁ
+= Z<_ Sij - d81j3f>a (53) = ' =1

1
| N

. = + fiil 9

where the energy due to the external (body) forces is ne- 2 ZZ { Y m; ﬂ} !
glected. Thd;;v;; has been re-expressed in terms of surface "

ractions,s;; - dS;j, using the analysis of the previous sec- using,dp,/dt = F; and the decomposition of forces. The

tion. In its current form, the microscopic equation does noctIn . : . . :
X P nipulation pr in the m i m iel
delineate the contribution due to energy flux, heat flux an anipulation proceeds as in the mesoscopic system to yield,

pressure heating. To achieve this division, the notion ef th N
peculiar momentum at the molecular Iocatlmm ) is used 9 Z 9. — _Ze_& LdS;
together with the velocity at the CV surface& ), follow- ) e “m;

ing a similar process to Evans and Morrigs [7].

N N
1 P P;
IV. IMPLEMENTATION +5 Z #Z 305 + Z HZZ FioxtVis (56)
=

In this section, the CV equation for mass, momentum and
energy balance, Eq@3), (30 and £3), will be proved to ap-
ply and demonstrated numerically for a microscopic syste
undergoing a single trajectory through phase space.

The average of many such trajectories defined through Egs.
nm (&5 and BB gives the mesoscopic expressions in Egs.

22, 30) and B3, respectively. In the next subsection, the

A. TheMicroscopic System time integral of the single trajectory is considered.
Consider a single trajectory of a set of molecules through

phase space, defined in terms of their time dependent coor- B. Timeintegration of the microscopic CV equations
dinatesr; and momentunp,. The LCV function depends on Integration of Eqs.[{4), (55 and ) over the time inter-
molecular coordinates, the location of the center of theecub val [0, 7] enables these equations to be usable in a molecular
r, and its side lengthAr, i.e, ¥; = 9;(r;(¢),r,Ar). The simulation. For the conservation of mass term,
time evolution of the mass within the molecular control vol-

ume is given by, N o
53 o, 2 2 mi [0i(7)_19i(0)]:_/Zpi-dsidt. (57)
. 2 >
E;miﬂi(ri(t%r,Ar) = ;mla_tz : /

N N The surface crossing termiS;, defined in Eq.[I6), involves
_ Z m dri 00; Z 0; - dS; G4 2 Diracd function and therefore cannot be evaluated directly.
‘ ¢ ’ Over the time interval0, 7], moleculei passes through a
givenz position at timest,,; ., wherek = 1,2, ..., Ny, [49]
using,p; = mydr;/dt. The time evolution of momentumin . The positional Dirad can be expressed as,
the molecular control volume is,

E 8ri N _Z'=1

N,
"5t — tyig)

T Ar O(wi(t) — ) = —_ (58)
3 zp, ) @0 =) = 2, 5
_ Z [ iy @ﬂ ] where |i;(t,; )| is the magnitude of the velocity in the
b ot direction at timet,; .. Equation Eq.&9) is used to rewrite

N dS; in Eq. 59 in the form,
= Z % _Z dplﬂ
— L dt 8rl v

As, dp;/dt = F;, then,

En Z p;vi = Z [—% -dS; + Fﬂ%]
i=1 ‘ wherea = {z,y, z}, and the fluxes are evaluated at times,
+ —
p,p 1 Lo ) @Ndt . for the right and left surfaces of the cube, re-
= _ZT;—ZZ ~dS; + 9 Zfijﬂij + Zfiextﬂi7 (55) spect|vely Usmg the above expression, the time integral i
=1 J ' Eg. ED can be expressed as the sum of all molecule cross-

dSpi k= [sgn(tm p—T) — sgn(t;rl & 0)} S;ri,k(t;ri,k)

- [Sgn(t;iJ{;iT) Sgn(taz k- ):| Sojz k( az,k)’
(59)
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ings, Nt = Nt + N, + Ny, over the cube’s faces, The Eq.[62) demonstrates that the time average of the fluxes,
stresses and body forces on a CV during the inteival 7,

Accumulation completely determines the change in momentum within the

N N 3 A CV for a single trajectory of the system through phase space
> mi [0 9] =3 "m > |paf|dsai7k_ (i.e. an MD simulation). The time evolution of the micro-
ic1k—1  a—1 Poi scopic system, Eq.[6@), can also be obtained directly by
Adveetion evaluating the derivatives of the mesoscopic expresEifn (

(60) and invoking the ergodic hypothesis, hence replaging )

) ) _ ) with % Jo adt. The use of the ergodic hypothesis is justified
In other words, the mass in a CV at time= T minus its  provided that the time intervat, is sufficient to ensure phase
initial value att = 0 is the sum of all molecules that cross its space is adequately sampled.
surfaces during the time interval. Finally, there are no new techniques required to integrate
The momentum balance equation EBS)( can also be  the energy EJ58
written in time-integrated form,

N
_ [ei ()0 (T) — €;(0)9;(0)]
Zl —p;(0)9:(0)] = 2
K]
M pp 1 N /Tivjp ds; 1§:pifq9 it (63)
. - _ e i gg  ZNTPifo
—/ > 7;: -dS; — §Zfij19ij = Figei | dt, T "m; 2 4= m R
o Li=1 ij i=1
and using identityF9), which gives the final form, written without external forcing
Accumulation Advection Accumulation Advection
N N Ny » N N Nt 3 »
> Ipi(r)oi(r)—p +ZZpZZ i ‘“|d wi D L) e OO D ei ) o dSai
i—1 i—1k=1 a=1Poi i=1 imlk=1 a=1 Poi
N 7 N 7 N T
: 1 p; (t
Z/fw Dig ()t + D [ figg(t) = 52/ ;E_) i (4)0;5 () dt .
»J 0 =17 %J 0 !
Forcing Forcing
(61) (64)

The integral of the forcing term can be rewritten as the sum,as in the momentum balance equation, the integral of the

T N, forcing term can be approximated by the sum,
/fz‘j(t)ﬂz'j(ﬁ)dt ~ ALY i (tn) Vi (tn) |
0 n=1

[ it A (£)03 ()t

. . . my
where N, is the number time steps. Equatid@l) can be 0
rearranged as follows, Ny 0:(tn)
~ At D £y (tn) Ui (tn)
Z Pai(T)0i(T) — pai(0)9;(0) nz::l i
TAV ] ]
whereN is the number time steps.
{puaus}t — {puaug}~ FJB — Kup In the next section, the elements, Accumulation, Advec-
A == A tion and Forcing in the above equations are computed indi-
TB TB . . . . )
. N vidually in an MD simulation to confirm Eqse0), 1) and
To3— T_ T (©&4) numerically.
L v AV S5 faioa(tn)diltn), (62)
6 i=1n=1 C. Resultsand Discussion

Molecular Dynamics (MD) simulations in 3D are used in
s section to validate numerically, and explore the stiati
cal convergence of, the CV formalism for three test cases.

where the overbar denotes the time average. The tim%i
averaged traction if6Q) is given by,

N Nr The first investigation was to confirm numerically the con-
_aiﬂ AA Z Z foij(tn dggtw( n)s servation properties of an arbitrary control volume. The se
N 4AAg ij n=1 ond simulation compares the value of the scalar pressure ob-

tained from the molecular CV formulation with that of the
virial expression for an equilibrium system in a periodic do
main. The final test is a Non Equilibrium Molecular Dy-
7 Z Z Pai(tk)pgi(tr) dSE (1) namics (NEMD) simulation of the start-up of Couette flow
Kap = T 2AA5 Ipgi(th)] Bik "k initiated by translating the top wall in a slit channel geom-
i etry. The NEMD system is analyzed using the CV expres-
—{puaug}™. sions Eqs.[80), 61 and E4), and the shear pressure was

The time-averaged kinetic surface pressur@p) (s,

i=1 k=1
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computed by the VA and CV routes. Newton’s equations of

motion were integrated using the half-step leap-frog VYerle 0.3F T
algorithm, [50]. The repulsive Lennard-Jones (LJ) or Weeks (a) :
Chandler-Anderson (WCA) potential [51], 02 .
7\ 12 /\6 :':.
D(rij) = 4e (Tz‘j) <Tz‘j> +e€, 15 <1, (65) o1 o ::

. . . . £ x X :' x
was used for the molecular interactions, which is the § % X% "
Lennard-Jones potential shifted upwardsetgnd truncated “E’ O’W*;;x;“' R 'f(‘ s didnl b
at the minimum in the potentiak;; = r. = 21/6¢ The 2 "xxx" \a/
potential is zero for;; > r.. The energy scale is set hy —01}
the length scale by and molecular mass by.. The results 0; :
reported here are given in terms®t andm. A timestep of ' i
0.005 was used for all simulations. The domain size in the  —0.2 _OE'MW"
first two simulations was3.68, which containedV = 2048 o
molecules, the density was = 0.8 and the reduced tem- —03} ‘ ‘ ]
perature was set to an initial value f = 1.0. Test cases 0 0.2 0.4 0.6
1 and 2 described below are for equilibrium systems, and Time
therefore did not require thermostatting. Case 3 is for a non
equilibrium system and required removal of generated heat
which was achieved by thermostatting the wall atoms only. 0.3F

(b)
1. Casel 0.2
In case 1, the periodic domain simulates a constant energ '
ensemble. The separate terms of the integrated mass, m¢ * x
mentum and energy equations given[@0); €I) and 0.1t 4 X X
were evaluated numerically for several sizes of CV. The mass __ X F' X
conservation can readily be shown to be satisfied as it simply £ 0}$W)_<>:X_x:‘_ N VR *x,‘x_ I
requires tracking the number of molecules in the CV. The & X xx"‘ "
momentum and energy balance equations are convenientl xx xx "
checked for compliance at all times by evaluating the resid- -0.1} ) * ::
ual quantity, L "
n
Residual = Accumulation— Forcing+ Advection (66) -0.2} -(1) = T :E
n
which must be equal to zero at all times for the CV equations 2 ! ::
to be satisfied. This was demonstrated to be the case, as mé  ~0-3¢ ‘ ‘ A
be seen in Figg(a)and5(b} for a cubic CV of side length 0 0.2 Time 0.4 0.6

1.52 in the absence of body forces. The evolution of momen-

tum inside the CV is shown numerically to be exactly equal . . ‘ o
to the integral of the surface forces until a molecule cresseF!G: 5. The various components in EQJ 66, ‘Accumulation:)(
the CV boundary. Such events give rise to a momentum fluf€ time integral of the surface force, ‘Forcingk}, and momen-
contribution which appears as a spike in the Advection andum flux term, ‘Advection’ (- - -) are shown. ‘Forcing’ symbare

. : . p— . shown every 4th timestep for clarity and the insert showsftiile
Accumulation terms, as is evident in The residual ordinate scale over the same time interval on the absciseam F

nonetheless remains identically zero (to machine pregisio 1oy to pottom, (a) Momentum Control Volume, (b) Energy Cohtr
at all times. The energy conservation is also displayed inpume.

Fig.[5(b] The average error over the period of the simulation

(100 MD timeunits) was less than 1%, where the average er;, . - ; ; I
) . . arises from the intermolecular interactions across thiegier
ror is defined as the ratio of the mel@esidual| to the mean op

) . . . ndari 2]. The CV formula for th lar pr rei
| Accumulation| over the simulation. The error is attributed boundaries[12]. The CV formula for the scalar pressure is,

to the use of the leapfrog integration scheme, a conclusion 1, 4 3 N B N B
supported by the linear decrease in error as timeateps 0. ey =¢ (Piy+Prp+Pyy+ Py +PL+P),  (68)
2. Case2 where theP, normal pressure is defined in E&5 and

As in case 1, the same periodic domain is used in case @cludes both the kinetic and configurational components
to simulate a constant energy ensemble. The objective®f thion each surface. Both routes involve the pair forcgs,
exercise is to show that the average of the virial formula forHowever, the CV expression which uses MOP counts only
the scalar pressurél,;,., applicable to an equilibrium peri- those pair forces which cross a plane while VA (Virial) sums
odic system, fijrij over the whole volume. It is therefore expected that
there would be differences between the two methods at short

1 p,-p; 1 N times, converging at long times. A control volume the same
Iy = 3V - <TZ + D) Z fij - Tijs f> (67)  sizeasthe periodic box was taken. The time averaged control
=1 i#] volume, (Iy/) and virial (1,;,-) pressure values are shown
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FIG. 6. IL,; andIlcy from Egs. [6Y) and{88) respectively. The
configurational and kinetic pressures are separated witfigtoa-
tional values typically having greater magnitudes 4.0) than ki-

FIG. 7. The percentage relative difference between thalvamd
control volume time-accumulated scalar pressures (PD et&fim
the text). Values for the kinetic, configurational and td®®) are

netic (~ 0.6). Continuous lines are control volume pressures andshown.
dotted lines are virial pressure.
system out of equilibrium.

in Fig.[6lto converge towards the same value with increasing
time. The simulation is started from an FCC lattice with a
short range potential (WCA) so the initial configurational In this simulation study, Couette flow was simulated by
stress is zero. It is the evolution of the pressure from thigntraining a model liquid between two solid walls. The top
initial state that is compared in Fil The virial kinetic ~ wall was set in translational motion parallel to the bottom
pressure makes use of the instantaneous values of the domé4gtationary) wall and the evolution of the velocity profite t
molecule’s velocities at every time step. In contrast, thewards the steady-state Couette flow limit was followed. The
CV kinetic part of the pressure is due to molecular surfacevelocity profile, and the derived CV and VA shear stresses are
crossings only, which may explain its slower convergence&compared with the analytical solution of the unsteady éliffu
to the limiting value than the kinetic part of the virial Sion equation. Four layers of tethered molecules were used
expression. To quantify this difference in convergence foito represent each wall, with the top wall given a sliding ve-
the two measures of the pressure, the standard deviatiol®city of, Uy = 1.0 at the start of the simulation, tinte= 0.
SD(z), is evaluated, ensuring decorrelatibn|[47] using blockThe temperature of both walls was controlled by applying the
averaging([51]. For the kinetic virial, SB,;-) = 0.0056,  Nosé-Hoover (NH) thermostat to the wall atorns|[52]. The
and configurational, S@;.) = 0.0619. For the kinetic ~two walls were thermostatted separately, and the equations
CV pressure SDicy) = 0.4549 and configurational —of motion of the wall atoms were,

SD(ocy) = 0.2901. The CV pressure, which makes

3. Case3

use of the MOP formula, would therefore require more r = Pi + Ugn, (69a)
samples to converge to a steady state value. However, the ) i

MOP pressures are generally more efficient to calculate Pi = Fi + figyq — P (69b)
than the VA. More usefully, from an evaluation of only the 9 4

interactions over the outer CV surface, the pressure in a fiext = Fig (4k4rio + GkGTiO) ’ (69¢)
volume of arbitrary size can be determined. 1 T 5 .5

Figurddlis a log-log plot of the Percentage Discrepancy (PD) E=— lz Pn Pn 3T, |, (69d)
between the two RD = [100 x [y — [yir| /Tlyir])- Q¢ = ™

After 10 million timesteps or a reduced time 6fx 10%,

the percentage discrepancy in the configurational part hagheren; is a unit vector in the:—direction,m,, = m, and
decreased t®.01%, and the kinetic part of the pressure fiext is the tethered atom force, using the formula of Petravic
matches the virial (and kinetic theory) to withinl%. The  and Harrowell[[58] g4 = 5 x 103 andkg = 5 x 10°). The
total pressure value agrees to wittiini % at the end of this vector,r;, =r;—ro, is the displacement of the tethered atom,
averaging period. The simulation average temperature wass from its lattice site coordinateg. The Nosé-Hoover ther-
0.65, and the kinetic part of the CV pressure was statis-mostat dynamical variable is denoted §iyly = 1.0 is the
tically the same as the kinetic theory formula prediction,target temperature of the wall, and the effective time camist
key = pkpT = 0.52 [51]. The VA formula for the pressure or damping coefficient, in Eq6@d was given the value,
in a volume the size of the domain is by definition formally Q. = NAt. The simulation was carried out for a cubic do-
the same as that of the virial pressure. The next test caseain of sidelengt27.40, of which the fluid region extent
compares the CV and VA formulas for the shear stress in aas20.52 in they—direction. Periodic boundaries were used
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FIG. 8. (Color online) Schematic diagram of the NEMD simigliat 0 02 04 06 08 1
geometry consisting of a sliding top wall and stationarydiotwall, ylL
both composed of tethered atoms. The simulation domairaswetd
a lattice of contiguous CV used for pressure averaging (slimythe  FIG. 9. They— dependence of the streaming velocity profile at
small boxes) while the thicker line denotes a single CV doirig timest = 2" forn = 0, 2, 3,4, 5, 6 from right to left. The squares

the entire liquid region. are the NEMD CV data values and the analytical solution to the
continuum equations of Ed_{72) is given at the same six tiases

. . . . . continuous curves.
in the streamwisex() and spanwisez( directions. The re-

sults presented are the average of eight simulation tmaject
ries starting with a different set of initial atom velocgieThe . : : ;
lattice contained 6384 molecules and was at a density of 21dy = L, respectively. The Fourier series solution of these
p = 0.8. The molecular simulation domain was sub-divided€duations with inhomogeneous boundary condition’s [55] is,
into 4096 (163) control volumes, and the average velocity
and shear stress was determined in each of them. A larger ~ Vo y=1L
single CV encompassing all of the liquid region of the do- . (nTy
ma?n, shown bougded b%/ the thick Iige in F?ﬂ was also ua(y,t) = { D un(t)sin (T) O<y<L (72)
considered. =1 0 _o

The continuum solution for this configuration is consid- vy=
ered now. Between two plates, there are no body forces and

_ 2 ‘e i
the flow eventually becomes fully developed, [54] so that Eq.Where)‘” = (nm/L)” andun(t) is given by,
)=

(@ can be simplified and after applying the divergence theo- 2Wo(—1)" [e ( Anit
= X —_
9 pudV = —/ Vv - 11dV, The velocity profile resolved at the control volume level
v

rem from Eq.[B) it becomes, un(t)
ot Jy is compared with the continuum solution in Fi@. There
g werel6 cubic NEMD CV of side length .72 spanning the
system in they direction, with each data point on the figure
being derived from a local time average @b time units.
The analytic continuum solution was evaluated numerically
dpuig Oy from Eqg. [72 with n = 1000 andp = 1.6, the latter a
o *a—y- literature value for the WCA fluid shear viscosity@at 0.8
andT = 1.0, [56]. There is mostly very good agreement
For a Newtonian liquid with viscosity, [54], between the analytic and NEMD velocity profiles at all
times, although some effect of the stacking of molecules
near the two walls can be seen in a slight blunting of the
fluid velocity profile very close to the tethered walls (Icexht
by the horizontal two squares on the far left and right of the
this gives the 1D diffusion equation, figure) which is an aspect of the molecular system that the
continuum treatment is not capable of reproducing.

where the bottom and top wall-liquid boundaries arg at 0

nm

which is valid for any arbitrary volume in the domain an
must be valid at any point for a continuum. The shear pres
sure in the fluid]I., (y), drives the time evolution,

Hmy = . (70)

Qug _ 1 0%us
ot p oy’

(71) The VA and CV shear pressure, given by Ed83)(

_ o _ _ _ and @5, are compared at timé = 10 in Fig. [0 The
assuming the liquid to be incompressible. This can be solvedomparison is for a single simulation trajectory resolved

for the boundary conditions, into 16 cubic volumes of siz&.72 in the y—direction, with
averaging in ther and z directions and ovef.5 in reduced
uz(0,8) =0 ug(L,t) =Uo  uz(y,0) =0, time. The figure shows the shear pressure on the faces of the
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FIG. 10. They—dependence of the shear pressure-at10, aver-  FIG. 11. As Fig[ID, except that the NEMD results are averaged
aged overl 00 timesteps and for a single simulation trajectory. The a set of eight independent simulationspf00 timesteps reduced
VA value from Eq.[[4B) are the squares. The CV surface tractio time units) each. The simulation-derived VA and CV sheaspre
from Eq. [45) is indicated by ando for the top and bottom sur- sures are compared with the continuum analytical solutieengin
faces, respectively. The solid gray line displays the tesypres-  Eq. [73) (solid black line). The jump in the profile on the rigtf
sure field using Eq[{50) with linear shape functions. the figure is due to the presence of the tethered wall.

CV. Inside the CV, the pressure was assumed to vary linearlyrise from interactions with the wall atoms only. The mo-
and the value at the midpoint is shown to be comparablenentum equation, EdGH), is written as,

to the VA-determined value. Figuf®d shows that there

is good agreement between the VA and CV approaches. @ @

Note that the CV pressure is effectively the MOP formula o X N W N
applied to the faces of the cube, and hence this case study a1 Z Py = — Z # -dS; +Zfiext?9i-
demonstrates a consistency between MOP and VA. We have i=1 i=1 " i=1

shown previously that this is true for the special case of an N

infinitely thin bin or the limit of the pressure at a plahel[22] -5 Z [fijdSpij + fij dSyi; +fijdSzij ],
Practically, the extent of agreement in this exercise igdich i T >~ —
by the inherent assumptions and spatial resolution of tioe tw @ @ @

methods; a single average over a volume is required for VA, hich be simplified foll For t in th
but a linear pressure relationshipisassumedforCVtonbtaiW ich can be simplified as follows. For tern) in the

the pressure tensor value corresponding to the center of t@éjove equation, the fluxes across the CV boundaries in ‘h¢
cV. streamwise and spanwise directions cancel due to the peri-

odic boundary conditions. Fluxes across theboundary
surface are zero as the tethered wall atoms prevent sua cros

The continuum analyticaty pressure tensor component ; The f ¢ | ishes b th
can be derived analytically using the same Fourier series abngs. e force term2), also vanishes because across the

proach fordu, /dy [55] periodic boundaryﬁijds;.j = *fz‘de;ij, (similarly for z).
pETE The external force term3), is zero because all the forces
o0 oy il in the system result from interatomic interactions. The sum
uUg _Anpt nmy .
May(y,t) = N 1+ 22(—1)"6 P cos (—) , of the f,;; force components across the horizontal bound-
aries will be equal and opposite, and by symmetry the two
(73)  f.i; terms in@ will be zero on average. The above equation
therefore reduces to,

n=1

which is valid for the entire domaih < y < L.

A statistically meaningful comparison between the CV, o 1 X
VA and continuum anal_yt|c shear pressure profiles requires o Z p;Y; = —5 Z {f$ijdsgjij — f$ijdsyij . (74
more averaging of the simulation data than for the streaming i=1
velocity, [57], and eight independent simulation trajeiets
over 5 reduced time units were used. Figtd shows As the simulation approaches steady state, the rate of ehang
that the three methods exhibit good agreement within thef momentum in the control volume tends to zero because
simulation statistical uncertainty. the difference between the shear stresses acting across the

top and bottom walls vanishes. The forces on theplane

As a final demonstration of the use of the CV equationspoundary and momentum inside the CV are plotted in Fig.
the control volume is now chosen to encompass the entif@2d to confirm Eq.[{4) numerically. The time evolution of
liquid domain (see Fid8), and therefore the external forces these molecular momenta and surface stresses are compared

Y]
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boundaries. The average response nevertheless agrees well

4 ‘ with the analytic solution, bearing in mind the element of
1 v - AM ] uncertainty in the matching state parameter values. This ex
' = Mol Force Top ample demonstrates the potential of the CV approach applied
' © Mol Force Bottom on the molecular scale, as it can be seen that computation of
051 | the forces across the CV boundaries determines completely
. the average molecular microhydrodynamic response of the
o - . system contained in the CV. In fact, the force on only one of
3 I h f is all that ired the f t f
3 S S SRR the surfaces is all that was required, as the force terms for
s O mg@”mowm% — =2 the opposite surface could have been obtained from[&). (
©
=
—0.5y — Residual
——Analy AM V. CONCLUSIONS
‘‘‘‘‘ Analy Force Top In analogy to continuum fluid mechanics, the evolution
-1 = = = Analy Force Bottom - . e
‘ ‘ ‘ equations for a molecular systems has been expressed within
0 20 ~ 40 60 a Control Volume (CV) in terms of fluxes and stresses across
Time the surfaces. A key ingredient is the definition and manipula

tion of a Lagrangian to Control Volume conversion function,
FIG. 12. The evolution of surface forces and momentum changel, which identifies molecules within the CV. The final ap-
for a molecular CV from Eql{74), (points) and analyticalug@in pearance of the equations has the same form as Reynolds’
for the continuum (Egs[{T7)(V8) arld{76)), presentedraslon  Transport Theorem applied to a discrete system. The equa-
the figure. TheResidual, defined in Eq.[(66), is also given. Each tjons presented follow directly from Newton’s equation of
point represents t.he average over an ensemble of eighténdept  \otion for a system of discrete particles, requiring no ad-
systems and 40 timesteps. ditional assumptions and therefore sharing the same rdnge o
validity.
to the analytical continuum solution for the CV, Using the£CV function, the relationship between Volume
Averaea/f) [16)177] and Method Of Planes (MOP) pres-
) n _ sure ] has been established, without Fourier transfo
En /v pugdV = — /S+ ydS —/S_ MeydSy | mation. The two definitions of pressure are shown numer-
f ! ically to give equivalent results away from equilibrium and
(75)  for homogeneous systems, shown to equal the virial pressure

A Navier—Stokes-like equation was derived for the evo-

The normal components of the pressure tensor are Non-zefgion of momentum within the control volume, expressed
in the continuum, but exactly balance across opposite CY, tarms of surface fluxes and stresses This pro-

Ca T — 11— ’ - _ : o St

faces, i.e.lly, = IL,,. By appropriate choice of the gauge jes an exact mathematical relationship between molecula
pressurell,,; does notappear in the governing EG3( The  ;yes/pressures and the evolution of momentum and energy
left hand side of the above equation is evaluated from the any, 5 cv. Numerical evaluations of the terms in the conserva-

alytic expression foti, tion of mass, momentum and energy equations demonstrated

5 U &2 it consistency with thgorgtical predictions. .

— | pugdv = IAzALHL0 Z [1—(-1)"e 7 . The CV formulation is general, and can be applied to de-

ot Jy L 1 rive conservation equations for any fluid dynamical propert

(76) localised to a region in space. It can also facilitate théveer
tion of conservative numerical schemes for MD, and the eval-

The right hand side is obtained from the analytic continuumuation of the accuracy of numerical schemes. Finally, it al-
expression for the shear stress, for the bottom surfage=at lows for accurate evaluation of macroscopic flow properties

0, in a manner consistent with the continuum conservation.laws
U O Anput
/ | MaydSF = 72A:17Az% S r @)
S —
! n=l Appendix A: Discrete form of Reynolds Transport Theorem
and for the top; = L, and the Divergence Theorem

o - In this appendix, both Reynolds’ Transport Theorem and
/ I,,dS; = _QAxAZ“_[]O Z(_l)ne—T_ (78)  the Divergence Theorem for a discrete system are derived.
SJT ot The relationship between an advecting and fixed control vol-

ume is shown using the concept of peculiar momentum.
In Fig[I2 the momentum evolution on the left hand side of The microscopic form of the continuous Reynolds’ Trans-
Eq. (79) is compared to EqZB). EquationsT?) and 78 are  port Theorem([1] is derived for a properfy = x(ri,P;,t)
also given for the shear stresses acting across the top &nd bahich could be mass, momentum or the pressure tensor. The
tom of the molecular control volume (right hand side of Eq.L£CV function,?;, is dependenton the molecule’s coordinate;
(74)). The scatter seen in the MD data reflects the thermathe location of the cube center,and side lengthAr, which
fluctuations in the forces and molecular crossings of the C\are all a function of time. The time evolution of the CV is

056705-15



E.R. SMITH, D. M. HEYES, D. DINI, AND T. A. ZAKI PHYSICAL REVIBWN E 85, 056705 (2012)

therefore, The vector derivative of the Diratfollowed by the integral
N over volume results in,
i X010 20(1) 0
& [ 258 = 00000 = )0z~ )av
v or
_ i L (e — ) H (i~ 1) H ()
L Xt or, = | [H(z; —2)0(y; —y)H(z; — 2)]y
- [H (z; — 2)H(y; — y)(z — 2)]y

dr 0V; dAr  0v;
+XE.8_I'Z+XW.8AZI’ . 5($i7$+)75($i7:177) Sri
= | [0@i—y") =6y —y )] Sy | =dSi,
The velocity of the moving volume is defined as= dr /dt, §(z; —2T) = 6(z; —27)] S
which can be different to the macroscopic veloaity Sur-
face translation or deformation of the cub®, /0Ar, canbe ~ Where the Iimits of the cuboidal volume aré, = r+ 4" and
included in the expression for velocity The above analysis r— =r — T The mesoscopic equivalent of the contmuum

is for a microscopic system, although a similar process for alivergence theorem (Edg)) is therefore,
mesoscopic system can be applied and includes terms for CV

movement in Eq.[D). g XN N
Hence Reynolds treatment of a continuous medidm [1] is /V ar Z X0(r; —r)dv = Z X - dS;.
extended here to a discrete molecular system, i=1 i=1

Appendix B: Relation between Control Volume and
i Z x( T (t), Ar (1)) Description at a Point

This Appendix proves that the Irving and Kirkwodd [8]
Z { Xﬁ +x < P > -dsl} _ (A1) expression for t_he flux ata point i_s the zero volume limit of
m; the CV formulation. As in the continuum, the control volume
) ) _ equations at a point are obtained using the gradient operato
The conservation equation for the mags= m;, inamoving  in Eq. [§). the flux at a point can be shown by taking the zero

reference frame is, volume limit of the gradient operator of E@)( Assuming
N the three side lengths of the control volume;, Ay andAz,
= Z mit; = Z [ (u _ E) dSL] (A2) tend to zero and hence the volum€l/, tends to zero,
=1
. . V-pu= lim lim lim ——
In a Lagrangian reference frame, the translational velait Az—0 Ay—0 Az—0 AxAyAz
Ccv surfaceimust be equal to the molecular streaming veloc- N 99 99 99
ity, i.e, a(r=) = u(r;), so that, X Z <pi$8—$l erl-y(,)—yZ +pi28—;;f>. (B1)
N N =1
Z {mi (u - &> ~dSZ} = - Zm -dS;. from Eq. ZI). For illustration, consider the component
i=1 m j above, where
The evolution of the peculiar momentuma,= p;, in a mov- T face
ing reference frame is, Y, n —
e [0z — @) = 0(z™ — ;)] S (B2)
_ p;
o Z pivi = Z [Fﬂ% + i (U - j) ' dsi] Using the definition of the Diraé function as the limit of two
i=1 ! slightly displaced Heaviside functions,
N S
Z[Fiﬂiplél~d8i]. H(g+%)—ﬂ(g—%)
i=1 i §(€) = lim ,
AE—0 AE

Here an inertial reference frame has been assumed so that

dp;/dt = dp;/dt = F;. For a simple case (e.g. one dimen- {he timit of theS,; term s,
I[s)|onal ro_w) |E is p055|ble to utilize a Lagrangian descopti lim  lim Sy = 6(y; — y)6(zi — 2)

y ensuringgi(r*) = u(r;), throughout the time evolution. Ay—0Az—0

In more complicated cases, this is not always possible and
the Eulerian description is generally adopted.

Next, a microscopic analogue to the macroscopic diver:
gence theorem is derived for the generalized functign,

[gor M- (e %) -2 )

so that,

' 0
= ri,P;,t) - =—4o(r; —r)dv. .
/szlx( Z)pw) 8r (Z ) hm :ijace:

Az—0

The Az — 0 limit for 2. (defined in Eq.[B2) can be
evaluated using L'Hdpital’s rule, combined with the prage
of thed function,

0
%5(177%).
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Therefore, the limit ofdy;/0x as the volume approaches wherer™ — r andr~ — r. The @k, function is the

Zerois,
;9
ox Oz

lim lim lim
Az—0 Ay—0 Az—0

5(r’i7r)a

Taking the limits for ther, y andz terms in Eq.[B1) yields

the expected Irving and Kirkwool [8] definition of the diver-

gence at a point,

N

V-puzz

i=1

<§'pz5(ri —T);f>-

This zero volume limit of the CV surface fluxes shows that

integral between two molecules introduced in E3¥)(
1

' 1 1
/ O(r —r;+sry;)ds = sgn <—) —
Teij ) |Tzijl

0
X [H(ry —rgj) — H(re —rg))

o
Yy
X0 (ry — Ty — = (re — rm))
Txij
P
X6 <7"z — Tz — = (re — Txi)) :
Txij

where the sifting property of the Diracfunction in ther,

the divergence of a Dirag function represents the flow of irection has been used to express the integral between two

molecules over a point in space. The advection and kinetig, jiacules in terms of ther

pressure at a point is, from E@&H),

Jony
i=1 v

The same limit of zero volume for the surface tractions de

fines the Cauchy stress. Using HE) &nd taking the limit of
Eq. @), written in terms of tractions,

6
1
V.o=1li — -dSy = 1i li li
o dim gy Y [, o dsy =l i
faces " " f
T Ty Ty TE-TS
AT{L- ATy ArZ

For ther; surface, and taking the limits akr, and Ar,
using L'Hopital’s rule,

T+ N
lim L — — lim oot ).
AV—0 Ary Argp—0 2Ary ; <foﬂ] Yz >

wherew is

(B3)

The indicess, x and~ can bex, y or z and{ denotes the top
surface ¢ superscript), bottom surface (superscript) or CV
center (no superscript). The selecting function includes
only the contribution to the stress when the line of intdoact
betweeni and;j passes through the point in space. The
difference betweef ;- and T, tends to zero on taking the
limit Ar, — 0, so that L'HOpital’s rule can be applied. Using
the property,

ey’ (¢~ 3) (¢34

10 1 1
70 (6~ 32¢) 7 (6~ 35¢),
then,
TH-T, 1 0w
lim % % — = oYz g,
e ()

xy- function. Hence,

1
/6(r —r; + Srij)ds = wxyz-
0

Txij

As the choice of shifting direction is arbitrary, usesgfor

r» in the above treatment would resultdn, ., andcw4y, re-
spectively. Therefore, EJ38), without the volume integral,
can be expressed as,

1 o |
§Z<faijrﬁij?/5(r ri+srij)ds;f>
1
3

Ow
<fija|: a:yz + ;f>.
.. X
i,

As Eq. B9 is equivalent to the Irving and Kirkwood![8]
stress of Eq[39), the Irving Kirkwood stress is recovered in
the limit that the CV tends to zero volume.

This Appendix has proved therefore that in the limit of zero
control volume, the molecular CV EqR2) and B9) recover

the description at a point in the same limit that the contin-
uum CV Egs.[) and P) tend to the differential continuum
equations. This demonstrates that the molecular CV equa-
tions presented here are the molecular scale equivalenéof t
continuum CV equations.

N
Owyz»

Ory

0Ty
+ or, }

Appendix C: Relationship between Volume Average and
Method Of Planes Stress

This Appendix gives further details of the derivation of the
Method Of Planes form of stress from the Volume Average
form. Starting from Eq38) written in terms of the CV func-
tion for an integrated volume,

1

6 . N
1 oY
— Z /S o-dSy = 52 <fijrij '/8—:ds;f>
faces " f 1,7 0
1 Ay v v
= 5 ; <f2]/ [xzja—; + yija—ys + lea—zs:| ds;f>.
: 0
(C1)
Taking only ther derivative above,
+
mfatce

0V

Tis — s
v] ox v]

—0(z™ — m; + sxi5)| G(s)

[5(:17Jr — xj + s245)
(C2)
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whereG(s) is,

[H(y" -
x [H(z"

G(s)

H(y~
H(z~

—yi + syij)]
—z; + szij)} .

Yi + sYij) —
— 2 + 8z5) —

Asd(ax) = |71L\5($> the;;z,,,G(s) termin Eq.[CD) can
be expressed as,
o

The integral can be evaluated using the sifting properthef t
Dirac § function [58] as follows,

:L'Zj Jr 73

|$Zj|

xl-jx}'aceG(s) + s) G(s). (C3)

xij

1 1
. + _
/xijx}'aceG(s)ds = x” 5<:r Hzl + S) G(s)ds
|xz]| Tij
0 0
ot — o T
= O|H—2 ) - H St
sgn(xu) |: ( i) ) ( i ) zij”
where the signum functiongn (z;;) = z;; /|2;;|. TheSj”
term is the value of on the cube surface,
Sh. =G ~ ) whichi
i 7 which is,
Y
[H (w o wz)
-2
dk <z* %)
acl-j
_ Zij
—H(z —z——( —xl )] (C4)

The definitionS‘;j (analogous t®,,; in Eq. [I5) has been
introduced as it filters out thosg terms where the point
of intersection of liner;; and planezt hasy and z com-

PHYSICAL REVIBWN E 85, 056705 (2012)

1
<Z]xzj/x weeG(5)ds; f>
0

+ .
Smj,f>

Repeating the same process for the other faces allows Eq.
(CD) to be expressed as,

—/+0' dS
S Zh]

1 N
=7 Z <f2~j [sgn(:rJr —xj) — sgn(zt — ;)]
i.J

6 N 1
1 0V
Z g o-dS; = 752 <fijrz_] / or ds;f>
faces " " f i,J 0
1 N 3
_ . + - 1.
__Z <f”2na |:dSaZ] dSazy} ,f>,
1,J a=1
where dSoin] =1 [sgn(rE —roj) — sgn(rE —r4;)] Soin]
andig = sgn(rqi;)sgn | —— | = [1 1 1]. This is the force
aij

over the CV surfaces, E®), in sectiorll[Cl]

To verify the interpretation ofS‘;rij used in this work,
consider the vector equation for the point of intersectibn o
a line and a plane in space. The equation for a veator

_ _ e
betweenr; andr; is defined asa = r; — s|r’_?‘. The
7

J
plane containing the positive face of a cube is defined by
(rt —p) - nwherep is any point on the plane anwis nor-

mal to that plane By setting = p and upon rearrangement

of (rt —r;+s ‘r > -n, the value ofs at the point of inter-

section with the plane is,
(rt—r;)-n

S=——F—
r&.n ’

Iy

The point on linea located on the plane is,

ponents between the limits of the cube surfaces. The cor-

responding termsS”a,
ing H(0)
H(az) =

are defined forx = {y,z}. Tak-
L (sgn(a)sgn(z) — 1), and,
I <x+ xj> _H (er xl)
L5 Tij
1 ( 1
= —sgn (—
.

gian (o) lsante =) = sana® = 2]

so the expression:,ijx]faceG(s) in Eq. [C2 becomes,

1
1 1
xij/ac;{aceG(s)ds = 2sgn(1:”)sgn (‘TZ_])
0

x [sgn(z™

+ )]S+

—xj) —sgn(x AP

The signum functionggn ( ) cancels the one obtained
Tij

from integration along;, sgn(z;;). The expression for the
xT face is therefore,

5, the Heaviside function can be rewritten as

a;rzrl-nLrij

(rt —ri)-n] |

rij-n

Takingn as the normal to the surface, i.e.
n — ng = [1,0,0], then,

+
T it
al, = | 7p Vit ot (a7 — @)
L %
Zzp Z; + x_z‘]l (;L'Jr — :L'Z)

written using index notation withk = {z, y, z}. The vector
X is the point of intersection of lina with thez ™ plane. A

function to check if the poir)t;,r on the plane is located on the

region between/= and 2%, would use Heaviside functions
and is similar to the form of EqIH),

Saiy = [H (y" —xpp) — H (v~ —x5)]
x [H (Z+ - ij) —H (2 - ij)} )

which is the form obtained in the text by direct integratidn o
the expression for stresse. Eq. [C2).
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