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ABSTRACT

We use nonequilibrium molecular dynamics (NEMD) to explore the effect of shear flow on heat flux. By
simulating a simple fluid in a channel bounded by tethered atoms, the heat flux is computed for two systems:
a temperature driven one with no flow and a wall driven, Couette flow system. The results for the temperature
driven system give the Fourier’s law thermal conductivity, which is shown to agree well with experiments.
Through comparison of the two systems, we quantify the additional components of the heat flux parallel
and normal to the walls due to shear flow. To compute the heat flux in the flow direction, the Irving-
Kirkwood equations are integrated over a volume, giving the so-called volume average form, and they are also
manipulated to get expressions for the surface averaged and method of planes forms. The method of planes
and volume average forms are shown to give equivalent results for the heat flux when using small volumes.
The heat flux in the flow direction is obtained consistently over a range of simulations, and it is shown to
vary linearly with strain rate, as predicted by theory. The additional strain rate dependent component of the
heat flux normal to the wall is obtained by fitting the strain rate dependence of the heat flux to the expected
form. As a result, the additional terms in the thermal conductivity tensor quantified in this work should be
experimentally testable.

I. INTRODUCTION

In his 1878 work, Joseph Fourier proposed the exis-
tence of a single coefficient of thermal conductivity to
describe heat conduction in an infinite solid1. The sim-
ple linear relationship between heat flux and temperature
gradient is known as Fourier’s law, an empirical observa-
tion of great importance in many areas of science and
engineering. However, there are cases when a single coef-
ficient of thermal conductivity is not sufficient to model
the full range of physics. Examples include systems un-
der extremely high shear rates as observed in tribological
applications, nanoscopic systems where interfacial effects
dominate and highly inhomogeneous systems where local
constitutive equations break down. In these cases, a de-
tailed understanding of heat flux at the small scale is es-
sential. Deviations from Fourier’s law are potentially sig-
nificant in nanochannels, MEMS and NEMS, nanoscale
cpu components and complex materials such as aerogels
with nano-scale pores, but they are exceptionally difficult
to measure. It is in this context that molecular dynamics
(MD) simulations are uniquely placed to provide insight.
Reliable methods for obtaining the Fourier’s law ther-

mal conductivity are well known, including the Green-
Kubo2,3, Evans heat flow algorithm4 and sinusoidal trans-
verse field (STF) methods5. The thermal conductivity
can also be obtained by comparing temperature profiles
obtained in inhomogeneous nonequilibrium molecular dy-
namics (NEMD) simulations with predictions of consti-
tutive laws6.

When the thermodynamic forces are large, the fluxes
may depend on them nonlinearly. Under these conditions,
Curie’s principle no longer applies and the heat flux may
depend on nonlinearly coupled combinations of the tem-
perature gradient and the velocity gradient7. If the veloc-
ity gradient varies rapidly with position, nonlocal effects
also become important and the second spatial derivative
of the velocity field may also be required as a thermody-
namic force8,9. Both of these effects lead to a component
of the heat flux vector parallel to the streaming velocity
in addition to a modification of the usual perpendicular
heat flow due to Fourier’s Law. These results can be sum-
marised in a constitutive equation of the form given by
Daivis and Coelho9. For a system in steady planar shear
with a velocity gradient of the form ∇v = γ̇ (y) ji, a trun-
cated Taylor expansion of the heat flux vector in powers
of the thermodynamic forces ∇v, ∇∇v and ∇T gives

Jq
approx = −λeff · ∇T + ζ

∂γ̇

∂y
i+ 2ξγ̇

∂γ̇

∂y
j. (1)

In a flow with a uniform velocity gradient field, such as
homogeneous planar shear flow, ∂γ̇/∂y is zero and only
the first term is relevant.

The thermal conductivity tensor for a homogeneously
shearing fluid with the fluid velocity in the x direction and
the gradient in the y direction, i.e. with ∇v = γ̇ (y) ji, is
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given by

λeff =





λ+ 3λ2γ̇
2 −λ1γ̇ 0

−λ1γ̇ λ+ 3λ2γ̇
2 0

0 0 λ+ λ2γ̇
2



 . (2)

The three thermal conductivity coefficients are: λ, the
linear Fourier’s law thermal conductivity, λ2 the coeffi-
cient of a nonlinear shear rate dependent heat flux in the
direction of the temperature gradient (y) and λ1 the coef-
ficient for the shear induced heat flux in the flow direction,
parallel to the walls (x).

Note that the off diagonal terms are chosen to be neg-
ative to give positive values of λ1, a different convention
than used previously7. The linear dependence on shear
rate for the off-diagonal and quadratic dependence for the
diagonal components of the thermal conductivity tensor
has been confirmed for a model of liquid butane by Daivis
and Evans 10 .

The tensor character of the generalised thermal con-
ductivity reflects the anisotropy of the fluid induced by
the shearing velocity gradient field. While shear rate de-
pendent contributions to the heat flux should in principle
exist, it has been suggested that it would be very challeng-
ing to measure them experimentally11. In fact very few
measurements of anisotropic thermal conductivity due to
shear flow exist12.

Kinetic theory, using Bhatnagar-Gross-Krook and
Grad 13-moment style schemes has also confirmed the
tensor character of the thermal conductivity for a fluid
in planar shear flow13, as well as the existence of a sec-
ondary heat flux parallel to the streamlines, driven purely
by the gradient of the shear rate, in dilute gases under pla-
nar Poiseuille flow14. Using the STF method, the shear-
rate gradient induced heat flux was shown by Baranyai
et al. 8 to result in as much as a 25% departure from the
purely linear solution for the temperature profile. Heat
flux in Poiseuille flow of a dense fluid was also obtained
from NEMD methods by Todd and Evans 15 . The mag-
nitude of the second coefficient was shown in shear roller
flow as a function of wavenumber16 for 2D flow. Han
and Lee 17 also proposed a local form of the method of
planes formalism18–20 and captured the parallel compo-
nent of the heat flux in an NEMD simulation. The strain
rate coupling was also explored by Menzel et al. 21 us-
ing NEMD for a polymer solution which indicates a very
small value of the strain rate coupling coefficient ξ with
a magnitude of approximately one in reduced units, in
agreement with literature values.

In this work, we explore the heat flux in planar shear
flow using inhomogeneous NEMD simulations. In order
to accurately compute the contribution of the parallel
component, we use a large molecular system with ap-
proximately a quarter of a million atoms over a million
timesteps. To isolate the shear rate dependent contribu-
tion to the heat flux from other contributions, we compare
two systems; one which applies only a temperature gra-
dient by maintaining different temperatures at the two

channel walls with no strain rate and a second system
with planar shear flow which generates its own tempera-
ture gradient and equal temperatures at the thermostat-
ted walls. By running a parameter study over a range
of densities in both systems, we isolate the shear rate
dependent components of the thermal conductivity as a
function of shear rate at each density.

We consider wall driven planar shear flow and obtain
the mass density, streaming velocity, pressure tensor and
heat flux vector using the formulation of Irving and Kirk-
wood 22 , integrated over either a cuboidal volume in space
or a small rectangular surface. Spatial integration or aver-
aging is important as it allows terms involving the Dirac
delta functions in the Irving-Kirkwood equations to be
numerically computed23. The fluxes can then be written
in one of two forms; i) the volume average (VA) form24–26

and ii) a surface averaged form, which is a generalisation
of the method of planes (MOP)18–20,27 providing all com-
ponents of the pressure tensor and heat flux vector on the
localised surfaces of a volume17.

This paper is organised as follows: in Section II, the
formulae for obtaining the heat flux are derived in both
volume averaged and surface averaged forms. Next, the
extended constitutive equations relevant to the current
systems are outlined. In Section III the details of the two
NEMD simulations, conducted on systems 1 and 2, are
outlined. The results and discussion are presented next
in Section IV. Finally, this work finishes with a summary
and conclusions in Section V.

II. THEORY

Expressions for the pressure tensor and heat flux vector
can be derived by following the Irving and Kirkwood 22

procedure. They typically begin28 with definitions of the
local instantaneous mass density ρ, momentum density
ρv and total energy density ρe,

ρ (r, t) =

N
∑

i=1

miδ (r− ri) (3)

ρv (r, t) =

N
∑

i=1

miviδ (r− ri) (4)

ρe (r, t) =
N
∑

i=1

eiδ (r− ri) (5)

where mi, vi and ei are the mass, velocity and total en-
ergy of atom i. The delta function (strictly speaking a
generalised function) represents the atomic localisation
of each property. The densities are substituted into the
momentum and energy balance equations,

∂ (ρv)

∂t
= −∇ · (P+ ρvv) (6)

∂ (ρe)

∂t
= −∇ · (Jq + ρev +P · v) , (7)



3

leading to explicit expressions6,28 for the local instan-
taneous pressure tensor P (r, t) and heat flux vector
Jq (r, t),

P (r, t) =

N
∑

i

miciciδ (r− ri)

−
1

2

N
∑

i

N
∑

j 6=i

rijFij

∫ 1

0

δ (r− ri − srij) ds

(8)

Jq (r, t) =
N
∑

i

uiciδ (r− ri)

−
1

2

N
∑

i

N
∑

j 6=i

rijFij · [vi − v (r, t)]

∫ 1

0

δ (r− ri − srij) ds

(9)

where ui is the internal energy of particle i, ci =
vi − v (ri, t) is its thermal or peculiar velocity and rij =
rj − ri. The Irving-Kirkwood expressions for the local
pressure tensor and heat flux vector are well established,
but they are purely formal. They contain delta functions
which must be integrated in order to generate numerical
values for the fluxes. In this section, volume averaged
and surface averaged expressions for the heat flux vector
are derived by integrating the Irving and Kirkwood 22

fluxes over either the volume or the surfaces of a three-
dimensional cuboid in Cartesian coordinates. When this
cuboid is sufficiently small we obtain good approxima-
tions to the local values of the pressure tensor and heat
flux vector. This presentation is kept brief as the majority
has been given previously23,29.

A. Volume average fluxes

To obtain the volume averaged form of the pressure
tensor and heat flux vector, we integrate both sides of
the flux expressions in space. The integration volume ∆V
can be regarded as a control volume in the fluid dynamics
sense30,31. Integrating the densities and dividing by the
volume gives the average densities

ρV =
1

∆V

∫

∆V

ρ dr =
1

∆V

N
∑

i=1

miϑi (10)

(ρv)V =
1

∆V

∫

∆V

ρv dr =
1

∆V

N
∑

i=1

mi vi ϑi (11)

(ρe)V =
1

∆V

∫

∆V

ρe dr =
1

∆V

N
∑

i=1

ei ϑi (12)

within volume ∆V . Integrating the delta function gives a
value of 1 for each particle within ∆V and zero for each
particle outside that volume23. This is represented by the

spatial selector function ϑi which can be written as

ϑi =

∫

∆V

δ (r− ri (t)) dr

=

∫ ∞

−∞

ϑ

(

r− rm

∆r

)

δ (r− ri (t)) dr = ϑ

(

ri − rm

∆r

)

(13)

The ϑ function is a three dimensional generalisation of
the rectangle function defined by Bracewell 32 ,

ϑ

(

r− rm

∆r

)

= Π

(

x− xm
∆x

)

Π

(

y − ym
∆y

)

Π

(

z − zm
∆z

)

where the one dimensional rectangle function is defined
by

Π

(

x− xm
∆x

)

= [H (x− x−)−H (x− x+)] (14)

andH (x) is the Heaviside step function. Similar relations
hold for the rectangle functions in the y and z directions.
In the definition of the rectangle function, xm is the mid-
point of the rectangle xm = (x− − x+)/2, and ∆x is its
width, and it is assumed that x+ > x−.

Although we are mainly concerned with the heat flux
vector in this paper, it is worth considering the simpler
case of the pressure tensor first. Because the kinetic part
of the pressure tensor is essentially a density, its volume
average is easily evaluated in this form,

∫

∆V

PK(r, t) dr =

N
∑

i=1

mi ci ci ϑi (15)

where ci is the peculiar velocity ci≡vi−v(ri, t), and the
average velocity v can be evaluated from the locally av-
eraged momentum and mass densities

v̄ (rm, t)≡

∫

∆V
ρv dr

∫

∆V
ρ dr

=

∑N

i=1mi vi ϑi
∑N
i=1miϑi

(16)

and vi is the total velocity of particle i, i.e. the sum of
the thermal and streaming velocities, with the streaming
velocity at the location of the particle ri while the velocity
obtained from Eq. (16) is the average for a volume with
centre at rm.

Next, let us consider the configurational part of the
pressure tensor,

∫

∆V

P φ(r, t) dr = −
1

2

N
∑

i,j

rij Fij

∫

∆V

∫ 1

0

δ(r− rs)ds dr,

(17)

where rλ = ri + srij is a point on the line between
molecules i and j and we use the subscript i, j on the
summation to denote sum over all i and all j with i 6= j.
Swapping the order of integration, inserting the three di-
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mensional rectangle function to limit the range of integra-
tion and using the sifting property of the delta function,
we obtain

∫

∆V

∫ 1

0

δ (r− rs) dsdr

=

∫ 1

0

∫ ∞

−∞

ϑ

(

r− rm

∆r

)

δ (r− rs) drds

=

∫ 1

0

ϑ

(

rs − rm

∆r

)

ds. (18)

The integrand on the right hand side is denoted by ϑs,
a function which is one if the point rs is inside ∆V and
zero otherwise, with the whole right hand side typically
expressed as,

ℓij ≡

∫ 1

0

ϑsds, (19)

where the integral is equal to the fraction of the line be-
tween particles i and j that is enclosed by the volume
∆V . The average of the local pressure over a small vol-
ume ∆V is PV = (1/∆V )

∫

∆V
P(r, t) dr. Inserting the

microscopic expressions, the volume averaged pressure
tensor is then,

P V (r, t) =
1

∆V





N
∑

i=1

mi ci ci ϑi −
1

2

N
∑

i,j

rij Fij ℓij



 .

(20)

To obtain the volume averaged form of the heat flux vec-
tor, we follow a similar procedure. Similarly to the pres-
sure tensor, the average of the kinetic part of the local
heat flux vector Eq. (9) over a small volume ∆V is,

Jq
K =

1

∆V

N
∑

i=1

ui ci ϑi. (21)

To compute the volume average of the configurational
part of Eq. (9), we change the order of integration, in-
troduce the three dimensional rectangle function and use
the properties of the delta function to find

∫

∆V

v(r, t)

∫ 1

0

δ(r− rs)ds dr

=

∫ 1

0

v(rs, t)ϑsds ≈ v̄ (rm, t) . (22)

where v̄ (rm, t) is the volume averaged velocity at rm,
discussed in the appendix section A. This assigns the ve-
locity contributions based on interaction length inside a
volume, as discussed further in the appendix. Instead of
evaluating the velocity integrated along the line, the ve-
locity is approximated as the average value in the same
volume in which we have evaluated the pressure. For sim-
plicity, as we are using volume averages for other quanti-

ties, we assume the fluid velocity is also constant inside
∆V , so we can write

Jq V =
1

∆V





N
∑

i=1

ui ci ϑi −
1

2

N
∑

i,j

rij Fij · (vi−v̄ (rm, t)) ℓij



 .

(23)

Error will be introduced into the computation of the heat
flux vector if this relation is used when v is not constant,
but the error can be minimised by reducing the dimen-
sions of ∆V .

For practical computation it is convenient to split
the heat flux into kinetic and configurational parts,
so the total volume average heat flux is

∫

∆V
Jq dr =

∫

∆V

(

Jq
K +Jq

φ
)

dr, that is, using the sum of the volume

averaged kinetic and configurational components. Then
the volume averaged form of the kinetic part of the heat
flux vector suitable for computation is

JKqV (rm, t) =
1

∆V

[

N
∑

i=1

eiviϑi − v̄ (rm, t)

N
∑

i=1

eiϑi

]

.

(24)

If the streaming velocity is approximately constant
within ∆V , the configurational component of the heat
flux vector should be well approximated by

J
φ
qV (rm, t) =

−
1

∆V

1

2





N
∑

i,j

rijFij · viℓij −





N
∑

i,j

rijFijℓij



 · v̄ (rm)



 .

(25)

In this form, the average velocities, average pressure
and other quantities can be accumulated during the sim-
ulation until satisfactory statistics are achieved and then
both components of the heat flux vector can be calculated
at the end of the run.

B. Surface averaged fluxes

When the fluxes are averaged over a finite surface, we
obtain generalisations of the method of planes results of
Todd et al. 18,19 as given in Han and Lee 17 and Heinz
et al. 27 . A mathematical expression for fluxes over a
volume surface in terms of functionals was derived previ-
ously for the pressure tensor23 and is extended here for
the heat flux vector.

The integral of a tensor over a closed surface is related
to the volume integral of its divergence through the diver-
gence theorem. For the pressure tensor, which is a second
rank tensor, this is

∮

A

PT · dA =

∫

∆V

∇ ·Pdr. (26)
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This relationship gives us a convenient way to obtain
the surface averaged fluxes from the local expressions for
the pressure tensor, Eq. (8), and heat flux vector, Eq.
(9). Applying the divergence theorem to the kinetic part
of the pressure tensor, we find

∫

∆V

∇ ·PKdr =

N
∑

i=1

micici ·

∫

∆V

∇δ (r− ri (t)) dr

= −
N
∑

i=1

micici ·
∂

∂ri
ϑi, (27)

where the delta function identity ∂
∂x
δ (x− y) =

− ∂
∂y
δ (x− y) has been used.

The derivative of the control volume function ϑi defined
in Eq. (14) and Eq. (14) is obtained by well known
manipulations of the Heaviside functions,

∂

∂ri
ϑi =

∂

∂ri
ϑ

(

ri − rm

∆r

)

=

[δ (xi − x−)− δ (xi − x+)] Π

(

yi − ym
∆y

)

Π

(

zi − zm
∆z

)

i

+ [δ (yi − y−)− δ (yi − y+)] Π

(

xi − xm
∆x

)

Π

(

zi − zm
∆z

)

j

+ [δ (zi − z−)− δ (zi − z+)] Π

(

xi − xm
∆x

)

Π

(

yi − ym
∆y

)

k,

(28)

where i, j and k are unit vectors in the x, y and z direc-
tions. The physical interpretation of this function is that
it selects atoms that cross the surface. The i component
is the x surfaces of the control volume, a square in space
located at the top x+ or bottom x− surface bounded by
[y−, y+] and [z−, z+]. A similar interpretation can be ap-
plied for the y and z direction with the j and k compo-
nents. Using the divergence theorem, we therefore have

∮

A

(

PK
)T

· dA = −

N
∑

i=1

micici ·
∂

∂ri
ϑi. (29)

The left hand side, a nine-component tensor dotted with
each of the six surface vectors, gives us three Cartesian
components for each of the six faces of the rectangular
box, making 18 terms in total. Each term of this expres-
sion can be matched to a corresponding term on the right
hand side. For example, the term on the top x surface of
the rectangular box, Pxx∆Ax+ is matched to the x+ face
of the i component, i.e.

PKA,xx∆Ax+ =

N
∑

i=1

micixcixδ (xi − x+)Π

(

yi − ym
∆y

)

Π

(

zi − zm
∆z

)

.

(30)

In general, for the αβ component of the surface averaged

pressure tensor, with α± denoting either top α+ or bot-
tom α− faces of the rectangular box, we have

PKA,αβ∆Aα± =

N
∑

i=1

miciβciαδ (αi − α±)Π

(

βi − βm
∆β

)

Π

(

γi − γm
∆γ

)

.

(31)

To evaluate the time averages of these components of the
pressure tensor, we only need to apply the delta function
identity,

δ (αi (t)− α+) =
∑

n

1

|α̇i (t)|
δ (t− tn), (32)

which expresses the Dirac delta function as the sum of
a Dirac delta for each of the function’s roots, where the
index n denotes the time tn at which crossings occur.
In the time averaging process, we integrate this function
over time as the system evolves, and this will isolate and
count molecular crossings of the α+ surface,

∫

∑

n

δ (t− tn)

|α̇i (t)|
Π

(

βi(t)− βm
∆β

)

Π

(

γi(t)− γm
∆γ

)

dt

=
∑

n

1

|α̇i (tn)|
Π

(

βi(tn)− βm
∆β

)

Π

(

γi(tn)− γm
∆γ

)

.

(33)

with the sifting property moving the crossing time, tn,
into the rectangle functions which checks if the crossing
is within the area ∆β∆γ. Similar expressions to Eq. (32)
and Eq. (33) can be applied for the α− surface.

To evaluate the expression for the surface average of
the configurational part of the local pressure tensor, we
substitute it into the volume integral of the divergence
theorem, to obtain

∫

∆V

∇ ·Pφdr =

−
1

2

N
∑

i,j

∫

∆V

∇ ·

(

rijFij

∫ 1

0

δ (r− rs) ds

)

dr, (34)

which simplifies to

∫

∆V

∇ ·Pφdr =

−
1

2

N
∑

i,j

∫ ∞

−∞

ϑ

(

r− rm

∆r

)

∇ ·

(

rijFij

∫ 1

0

δ (r− rs) ds

)

dr

=
1

2

N
∑

i,j

Fijrij ·

∫ 1

0

∂

∂rs
ϑsds.

(35)

This must be equal to the surface integral of the diver-
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gence theorem and can be written as

∮

A

(

Pφ
)T

· dA = −
1

2

N
∑

i,j

Fij [Sij (x+)− Sij (x−)

+Sij (y+)− Sij (y−)

+Sij (z+)− Sij (z−)] , (36)

where

Sij (α+) ≡
1

2
[sgn (α+ − αi)− sgn (α+ − αj)]

×Π

(

βα+ − βm
∆β

)

Π

(

γα+ − γm
∆γ

)

. (37)

The final equation for practical computation of the αβ
component of the pressure tensor at the α+ surface of
the rectangular box is

PφA,αβ∆Aα+ =

−
1

4

N
∑

i,j

Fβij [sgn (α+ − αi)− sgn (α+ − αj)]

×Π

(

βα+ − βm
∆β

)

Π

(

γα+ − γm
∆γ

)

,

where βα+ ≡ β+ − βi −
βij

αij
(α+ − αi). The two rectangle

functions select only those ij interactions whose rij vector
intersects the α+ surface within the area ∆β∆γ and the
sgn function selects only those interactions having one
particle on each side of the α+ surface. In the limit of
infinite planar surfaces, the last two rectangle functions
are always equal to 1, since ∆β and ∆γ both become
infinitely large, and the expression reduces to the method
of planes result. A similar treatment can be applied to
the α− surface.

The corresponding version of the divergence theorem
for the heat flux vector is

∮

A

Jq · dA =

∫

∆V

∇ · Jqdr. (38)

The expression for the surface averaged kinetic part of the
heat flux vector is analogous to the corresponding part of
the pressure tensor,

JKqA,α∆Aα =

N
∑

i=1

uiciαδ (αi − α+)Π

(

βi − βm
∆β

)

Π

(

γi − γm
∆γ

)

. (39)

The configurational part of the heat flux vector is more
complicated. Separating the particle velocity and fluid
streaming velocity terms of the configurational part of

Eq. (9) we have

∫

∆V

∇ · Jφdr =

−
1

2

N
∑

i,j

rijFij : vi

∫ 1

0

∫

∆V

∇δ (r− rs) drds

+
1

2

N
∑

i,j

Fijrij :

∫ 1

0

∫

∆V

∇ [v (r) δ (r− rs)] drds.

(40)

The first term is analogous to the configurational part of
the pressure tensor and results in

−
1

2

N
∑

i,j

rijFij : vi

∫ 1

0

∫

∆V

∇δ (r− rs) drds

= −
1

2

N
∑

i,j

Fij · vi [Sij (x+)− Sij (x−)

+Sij (y+)− Sij (y−)

+Sij (z+)− Sij (z−)] (41)

with Sij again defined by Eq. (37). The second term in
Eq. (40), containing the fluid streaming velocity, is

1

2

N
∑

i,j

Fijrij :

∫ 1

0

∫

∆V

∇ [v (r) δ (r− rs)] drds

= −
1

2

N
∑

i,j

Fijrij :

∫ ∞

−∞

Π

(

s−
1

2

)

∂

∂rs
ϑ

(

rs − rm

∆r

)

v (rs) ds

(42)

which can be integrated to give

−
1

2

N
∑

i,j

Fij · [(Sij (x−)v (rx−)− Sij (x+)v (rx+))

+ (Sij (y−)v (ry−)− Sij (y+)v (ry+))

+ (Sij (z−)v (rz−)− Sij (z+)v (rz+))] ,
(43)

where v (rx+) = v
(

ri +
x+−xi

xij
ri

)

is the fluid velocity at

the point where the rij vector intersects the x+ plane and
similarly for v (rx−), etc.

Inserting Eq. (41) and Eq. (43) into Eq. (40) and
using the divergence theorem for the left hand side, we
find that the final result for practical computation of the
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surface heat flux vector is

JφqA,α∆Aα+ = −
1

2

N
∑

i,j

FβijvβiSij (α+)

+
1

2

N
∑

i,j

Fβijvβ (rα+)Sij (α+)

= −
1

2

N
∑

i,j

Fβij (vβi − vβ (rα+))Sij (α+). (44)

This result shows that the relative velocity that appears
in the expression for the surface averaged configurational
part of the heat flux vector is the particle velocity minus
the streaming velocity at the point where the rij vector
intersects the α+ plane. This is again the plane pecu-
liar velocity discussed by Todd et al. 19 Again, a similar
expression exists for the α− plane.

As with the volume average form, to calculate the sur-
face averaged heat flux in a simulation, we decompose
∮

A
Jq ·dA =

∮

A

(

Jq
K +Jq

φ
)

· dA into kinetic and configu-

rational parts, obtaining the kinetic component from

JKqA,x =
1

∆Ax

N
∑

i=1

ei (vix − v̄x (rm)) δ (xi − x+)

×Π

(

yi − ym
∆y

)

Π

(

zi − zm
∆z

)

(45)

and the configurational component from

JφqA,x = −
1

∆Ax+

1

2

N
∑

i,j

Fij · (vi − v̄ (rx+))Sij (x+),

(46)

where velocity v̄ is again from definition Eq. (16) ex-
trapolated to the surface of the cell. This can again be
computed in two parts that are combined at the end of
the run. We have shown only the x component, with sim-
ilar forms for the y and z component heat fluxes on the
other surfaces of the volume.

III. SIMULATIONS

In this work, we use two different types of molecular
simulation in order to isolate the three coefficients of ther-
mal conductivity given in Eq. (2). Both cases simulate a
wall bounded channel. In system 1, we apply a tempera-
ture gradient to obtain the Fourier’s law thermal conduc-
tivity coefficient λ in the absence of a shear rate, recording
heat flux over a range of densities. These heat flux re-
sults are compared to experimental results over a similar
range of densities. In system 2, we simulate wall driven
Couette flow over the same range of densities where we
observed good experimental agreement for system 1. We

obtain the coefficients of strain rate dependent thermal
conductivity both parallel to the flow, λ1, and normal to
the flow, λ2. In this section, details of the molecular sim-
ulation methodology common to both systems are first
outlined before the key features of systems 1 and 2 are
discussed.

A. Setup

In this work, we use a simple truncated and shifted
Lennard-Jones potential (the so-called Weeks-Chandler-
Anderson (WCA) potential33) in order to test the theo-
retical predictions:

φWCA
ij =







4ǫ

[

(

σ
rij

)12

−
(

σ
rij

)6
]

+ ǫ rij < 21/6σ

0 rij ≥ 21/6σ.

(47)

More realistic potentials and fluids have been avoided
here because they could introduce further complexity due
to rotational, non-Newtonian and coupled transport ef-
fects which might obscure the phenomena that are the
focus of this work. The Lennard-Jones potential also
has the advantage that it gives good agreement with ex-
periments using liquid Argon. The equations of motion
for the fluid are solved using the Leapfrog-Verlet scheme.
The WCA cut off distance, rc = 2

1
6 , was used, an assump-

tion justified by previous observations that many trans-
port properties are dominated by repulsive interactions6.
Both systems have a timestep of ∆t = 0.005. Each sim-
ulation ran for a total of 1, 000, 000 steps with samples
taken every 25 timesteps and results were written to disk
every 25 samples (i.e. an output every 625 timesteps).
The system was initialised to an integer number of FCC
units with the liquid region created by randomly remov-
ing atoms until the desired liquid density, ρl, was ob-
tained. The walls remained as an FCC crystal lattice
with density of ρw = 1.0 and a thickness of 4 atomic units
(Lwall = 4) from the top and bottom boundaries in the y
direction. The walls were tethered using the anharmonic
potential from Petravic and Harrowell 34 with spring con-
stants for second, fourth and sixth power of displacement
terms k2 = 0.0, k4 = 5×103 and k6 = 5×106 respectively.
This potential was chosen by Petravic and Harrowell 34

to allow sufficient motion for momentum and energy in-
terchange while preventing wall atoms from moving far
enough to compromise heat flux or shear stress defini-
tions. The system temperature was set to T = 1.2 ini-
tially with the temperature of both walls controlled us-
ing a Nosé-Hoover thermostat applied only to the outer
Ltherm = 2 reduced units of atoms in y, i.e. half the wall
is thermostatted in y with the 2 units closest to the liquid
unthermostatted. The anharmonic tethering is purported
to have better thermostatting characteristics, with a har-
monic potential shown to impact the canonical distribu-
tion achieved by the Nosé-Hoover thermostat35.
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FIG. 1: Channel schematic with tethered wall atoms in red
and liquid atoms in blue, with extents of system denoted by
Lx, Ly , wall size by Lwall and thermostatted region by
Ltherm which is offset from the liquid region and applied on
both top and bottom walls.

The wall atoms have the following equations of motion:

vi = ci+vwn̂x, (48a)

mi r̈i = Fi + Ftethi − ψmi ci, (48b)

Ftethi = ri0
(

4k4r
2
i0
+ 6k6r

4
i0

)

, (48c)

ψ̇ =
1

Qψ





N
therm
∑

i=1

mi ci · ci−3T0



 . (48d)

Here Qψ is a coefficient which determines the Nosé-
Hoover thermostat’s heat bath inertia, namely how
strongly the wall temperature will tend to set point T0.
ri0 = ri−r0, is atom i’s position relative to lattice site r0
(the atom’s tethering location) where it slides at the wall
speed vw in the streamwise x direction with unit vector
n̂x = [1, 0, 0]. The two walls are thermostatted indepen-
dently, i.e. they are attached to separate heat baths
where the strength of thermostatting is chosen to be pro-
portional to Ntherm, the number of atoms thermostatted
in each wall, with Qψ≡ 5× 10−4Ntherm.
Before averages are taken, the simulation is run for an

initial period of time to reach steady state, which for sys-
tem 1 is indicated by a time-independent approximately
linear temperature profile, while in system 2 it is indi-
cated by time-independent, approximately linear velocity
and parabolic temperature profiles.

1. System 1

In system 1, we used separately thermostatted walls
and densities varying from ρl = 0.4 to 0.9 with Tbot = 0.8
at the bottom and Ttop = 1.2 at the top, giving a liquid
temperature of Tl = 1.0 on average. A range of average
temperatures were also studied at fixed densities ρl =
{0.65, 0.75, 0.85}, varying from Tbot = 0.5 and Ttop = 0.9
to Tbot = 1.0 and Ttop = 1.4 so that the temperature
gradient remained constant. The system size is Lx =
31.75, Ly = 47.62 and Lz = 31.75 which results in a
liquid height of 39.62, which for the case with ρl = 0.8
has N = 37, 902 atoms, but varying for other densities.

−18 −9 0

y

−0.04

−0.03

−0.02

−0.01

0.00

J
q
,y

FIG. 2: Terms which contribute to the heat flux at
ρl = 0.6, with MOP kinetic term JK

qA,y as red circles,

configurational term Jφ
qA,y shown by blue circles and the sum

of both JqA,y displayed as gold circles. The VA kinetic term
is shown as a red line, JK

qV,y , configurational term as a blue

line Jφ
qV,y and the sum of both is shown as a gold line JqV,y .

The domain is split into 22 by 66 by 22 averaging bins in
x, y and z respectively.

2. System 2

In system 2, as depicted in Fig. 1, both walls are ther-
mostatted to the same temperature Twall = 0.7 with the
walls atoms counter sliding at velocities set to vw = ±1.
The wall temperature was chosen to give a liquid temper-
ature of Tl = 1 on average. In order to give higher shear
rates, a smaller channel height, Ly, was used than in the
temperature study of system 1. As a result, the shear
dependent terms in equations Eq. (51) and Eq. (52) are
enhanced but with height chosen to give a liquid region
of 15.81, which is the smallest size where bulk behaviour
has been shown to broadly match hydrodynamics36. The
domain size is expanded in other directions to improve
statistics, with Lx = 139.69, Ly = 23.81 and Lz = 93.66
so the number of atoms modelled is N = 259, 359 for the
case with a density of ρl = 0.8, again varying for other
densities. The domain is split into 12 by 256 by 8 aver-
aging bins in x, y and z respectively.

IV. RESULTS AND DISCUSSION

In this Section, the results from the molecular simula-
tions are presented and discussed, starting with system 1
in section IVA and then system 2 in section IVB. Results
from system 1 are presented first in order to obtain the
thermal conductivity coefficient in the absence of shear.
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A. System 1 – Temperature Gradient

As outlined in Section III A 1, a temperature gradi-
ent was induced by thermostatting each of the atomistic
walls separately to different temperatures. The com-
puted heat fluxes as a function of channel position are
presented in Fig. 2, where we have shown the configu-
rational component, Jφq,y, kinetic component, JKq,y, and
the resulting total heat flux calculated from the sum of
both, Jq,y = JKq,y + Jφq,y. The resulting heat flux is cal-
culated for the channel using using Eq. (24)/ Eq. (45)
for VA/MOP kinetic contributions and Eq. (25)/ Eq.
(46) for VA/MOP configurational components. Fig. 2
shows results from both the VA and MOP approaches to
calculating the heat flux, split into kinetic and configura-
tional parts, with good agreement between all computa-
tions. The near-wall discrepancy between VA and MOP
is attributed to density oscillations which are measured
differently by the two methods, either as atoms inside a
volume or crossings over a plane.
We obtain the temperature gradient ∂T/∂y from the

derivative of a linear fit to temperature in the inner liq-
uid region of the channel, starting 2.5 reduced units away
from the wall to avoid density oscillations and the Kapitza
resistance at the surface. The heat flux, Jq,y , measured
for the same inner liquid region, is then divided by tem-
perature gradient to obtain the liquid’s thermal conduc-
tivity directly, λ = −Jq,y/(∂T/∂y). Only the thermal
conductivity of Fourier’s law λ, is relevant as the strain
rate of system 1 is zero, so Eq. (1) and Eq. (2) simplify
to

Japproxq,y = −λ
∂T

∂y
. (49)

This process is applied over the range of different liquid
densities from ρl = 0.4 to ρl = 0.95. The resulting ther-
mal conductivity as a function of density is presented in
Fig. 3 and compared to experimental results for liquid
Argon from Roder et al. 37 with both axes expressed in
reduced units.
Good agreement is observed over the experimental

range with discrepancies only apparent for ρl below 0.6
and above 0.85. This is attributed to the limitations of
the WCA model to reproduce experimental results for
liquid Argon at more extreme densities. As a result, we
limited the study to densities, ρl, in the range [0.6, 0.85]
in the study of planar shear flow in system 2.
The study over a range of density was performed at

a constant mean temperature of Tl = 1.0, however the
Fourier’s law thermal conductivity is also weakly depen-
dent on temperature. In system 2, the mean liquid tem-
perature was only controlled indirectly through the wall
thermostats and can vary as shear rate changes. To quan-
tify this, we performed a study between T = 0.7 and
T = 1.2 at three of the densities which agree with ex-
perimental results ρ = {0.65, 0.75, 0.85}, shown in Fig 4.
The experimental data from Roder et al. 37 at compara-
ble temperature and density is limited but all relevant

0.3 0.4 0.5 0.6 0.7 0.8 0.9
ρ

0

2

4

6

8

10

λ

FIG. 3: Summary of MD density study. VA square and
MOP circles with lines showing experimental results, blue
110K, gold 124K, red 138K and light blue 140K.

values are included on Fig 4 and agree fairly well. The
simulation results in Fig 4 are fitted using a linear func-
tion for each density. This temperature correction to the
Fourier’s law thermal conductivity can then be included
into a general fit, λf ,

λf (ρl, Tl) = λ′f (ρl) +mT (ρl) (Tl − 1) (50)

where Tl is the mean measured liquid temperature and
mT = mT (ρl) is a gradient fitted to data at each of
the three density values shown in Fig 4. Using sec-
ond order polynomial fits to the data in Fig. 3 gives
λ′f (ρl) = 21.3ρ2l − 14.2ρl+3.92 and fitting a second order
curve to the varying gradients obtained from Fig 4 yields
mT (ρl) = 13.0ρ2l − 17.0ρl + 6.63 which allows λf (ρl, Tl)
to be approximated for a given temperature and density.

B. System 2 – Velocity Gradient

Having obtained the thermal conductivity in the ab-
sence of shear, we move on to system 2 as outlined in
Section IIIA 2, i.e. planar shear flow. We ran simula-
tions over a range of strain rates by changing system size,
Ly = {23.8, 47.5, 71.3, 95.2}, as well as varying over the
range of densities that matched to experimental results
in system 1, ρl = {0.6, 0.65, 0.7, 0.75, 0.8, 0.85}. The chal-
lenge in varying density and channel heights is that the
system temperature and pressure also change in an un-
controlled manner, outlined in Fig 5, which summarises
all the cases run in this section. The lines of constant
density and constant applied strain rate are shown on
Fig 5, highlighting that despite only varying either den-
sity or strain rate, there results a corresponding change
in temperature and pressure. The Fourier’s law thermal
conductivity coefficient, λ, at each temperature and den-
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FIG. 4: Summary of MD temperature study. VA squares,
MOP circles and triangles showing the relevant experimental
results, with three densities in reduced units, blue ρl = 0.65,
gold ρl = 0.75, red ρl = 0.85 with numerical results fitted
using straight lines with gradients mT of 1.07, 1.19 and 1.57
respectively.

0.8 1.0 1.2
Tl

0.0

2.5

5.0

7.5

10.0

P
z
z

γ̇
=
0.
08
4

γ̇
=
0
.0
4
2

γ̇
=
0
.0
2
8

ρ = 0.65

ρ = 0.75

ρ = 0.85

3

4

5

6

7

8

FIG. 5: Overview of the average liquid temperature, Tl

against spanwise pressure Pzz for all cases run in this
section, with dotted lines showing studies with varying strain
rate and constant density (isochores) while solid lines show
studies with constant applied strain rate and varying density.
Points are coloured using the fit given in Eq. (50) to
estimate the Fourier’s law coefficient λ for each temperature
and density values.

sity is estimated from Eq. (50) and shown in Fig 5 by the
colouring of the points. This variation is observed despite
thermostatting both walls to a temperature Twall = 0.7
in all cases.

The method for obtaining the components of heat flux
is identical to the one used in system 1, based on Eq.

(24)/ Eq. (45) for kinetic contributions and Eq. (25)/
Eq. (46) for configurational. However, in the presence of
shear flow, we have additional components of heat flux.
The x component of heat flux, Jq,x, as a function of chan-
nel position is shown in Fig. 6 (a) and y component of
heat flux Jq,y is shown in Fig. 6 (b). These are decom-
posed into the various contributions as before: kinetic
heat flux, Jq

K , and configurational flux, Jq
φ as well as

their sum Jq . All simulations were run until the thermal
and hydrodynamic steady state has been reached before
properties were accumulated.

Both the VA and MOP approaches are used to calculate
the heat flux and good agreement is observed between the
two measurement techniques, as shown in Fig. 6. Previ-
ous studies have shown that the VA and MOP stresses are
equivalent38 in the small bin limit and this observation
is extended here to the energy equation and heat flux.
The MOP form of stress is known to have worse statis-
tics than VA39,40, a problem which is even more acute in
the calculation of heat flux. Short averaging periods (25
records collected over 625 timesteps) were found to result
in a systematic error in the Jq,x component of the MOP
heat flux (when compared to the VA value). This may
be due to very long correlations between P and v. This
error was found to disappear when averages from the en-
tire one million timesteps simulation are used. In order
to ensure agreement between MOP and VA approaches,
averages of velocity, v, and the pressure tensor, P, are
then taken over the entire simulation run length to calcu-
late the correct stress heating term, P ·v. Interpolation of
density and velocity measurements to the appropriate cell
surface are also used to improve agreement between VA
and MOP (the so-called ‘plane peculiar’ velocity problem
as noted before and first pointed out by Todd et al.19).
These are required as density and velocity measurements
are obtained for atoms in a volume, so they represent the
volume average about the centre of that cell, inducing a
systematic error of order ∆y/2 when calculating quanti-
ties at the cell surfaces. Having obtained the profiles for
Jq,x and Jq,y in the sheared channel of system 2, we turn
our attention to the calculation of the thermal conduc-
tivity coefficients λ1 and λ2.

For the case of planar shear flow with constant strain
rate, Eq. (1) and Eq. (2) can be simplified to,

Japproxq,x = Λ1
∂T

∂y
(51)

Japproxq,y = −λ
∂T

∂y
− Λ2

∂T

∂y
, (52)

where we have collected the strain rate dependent terms
into single coefficients Λ1≡λ1γ̇ and Λ2 ≡ 3λ2γ̇

2. In the
following section, we aim to use the values for Jq,x and
Jq,y measured in the molecular simulation to obtain the
two unknown thermal conductivity coefficients.

In order to obtain the coefficients Λ1 and Λ2, the ex-
pressions for ∂T/∂y and γ̇ = ∂v/∂y must be obtained.
The near-wall density oscillations in the channel of sys-
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FIG. 6: Terms which contribute to the heat flux at a liquid
density of ρl = 0.75. The α = x components are shown in (a)
and α = y components in (b) with the MOP kinetic term

JK
qA,α as red circles and configurational flux Jφ

qA,α as blue
circles with sum of both JqA,α shown as gold circles. The VA
kinetic contribution is shown as a red line, JK

qV,α,

configurational contribution as a blue line, Jφ
qV,α, and the

sum of both displayed as a gold line, JqV,α.

tem 2 affect the velocity and temperature results and
prove especially problematic in calculating the numerical
derivatives required for γ̇ = ∂v/∂y and ∂T/∂y. In addi-
tion to density oscillations, numerical derivatives are also
susceptible to noise in the data, which persist even for the
large numbers of samples collected in these studies. To
avoid these problems, least squares fits to the parabolic
temperature profile and linear velocity functions are used
and the resulting functional forms are differentiated in-
stead. The profiles of velocity and temperature are shown
in Fig. 7 (a) with fits to linear vLS = a1y and quadratic,
TLS = b1y

2+b2, functions respectively, where {a1, b1, b2}
are fitting parameters. The expressions, dTLS/dy and
∂vLS/∂y = γ̇LS, shown in Fig. 7 (b) as lines are obtained
from the analytical derivative of the least squares fits. In
doing this, we have decomposed the temperature profile,
T = TLS+T ′, into a purely quadratic part TLS, as well as
a separate density and noise dependent part T ′. Although
the parabolic fit is good in Fig 7 (a), departures due to
both noise and density stacking are evident in the deriva-
tive of Fig 7 (b). The derivative of the component of tem-
perature due to density oscillations and noise can be ex-
pressed mathematically as ∂T ′/∂y = ∂T/∂y− ∂TLS/∂y.
We replace ∂T ′/∂y with the less noisy gradient of den-
sity, ∂T ′/∂y → ∂ρ/∂y, to improve the quality of the fit
discussed in Appendix B.

The equations used in the fitting shown in Fig 7 c) and

ρl Tl System 2 Eq. (50) Eq. (50)

intercept λ(ρl, Tl) λ(ρl, Twall)

0.65 0.9 3.50 4.00 3.37

0.75 0.95 5.04 5.60 4.89

0.85 1.0 7.03 7.65 6.77

TABLE I: Comparison of λ predicted using
parameterization obtained from results in system 1 at
measured Tl and Twall, to the λ value in system 2 using the
zero strain rate intercept.

d) are therefore,

Japproxq,x = Λ1
∂TLS

∂y
+ dx

∂T ′

∂y
(53)

Japproxq,y = − [λ+ Λ2]
∂TLS

∂y
+ dy

∂T ′

∂y
, (54)

where we have introduced two new coefficients dx and dy
to be fitted. The importance of using ∂ρ/∂y as a proxy
for ∂T ′/∂y is highlighted in Appendix B, Fig. 10, where
different starting locations for the fitting profile can be
seen to give very different measurement for heat flux. We
have ignored nonlocal effects in the interface, which in
principle should be included. However, the inclusion of
nonlocal density coupling in shear flow is known to be a
complex undertaking41,42 which is not warranted in this
instance, and the approach used here provides a practical
and convenient way to improve fitting in the presence of
near-wall density stacking.

The approximate expressions for fluxes, Eq. (53) and
Eq. (54), are fitted to the results for Jq,x, as shown in Fig.
7 (c) and Jq,y in Fig. 7 (d), with these fits giving values for
Λ1 and λ+Λ2 respectively. It seems reasonable to expect
that we should be able get the coefficient of wall normal
heat flux, Λ2, by subtracting the coefficient of heat flux
λ obtained from Eq. (50) at the measured densities and
temperatures. However, due to the highly coupled na-
ture of the temperature and density highlighted in Fig 5,
as well as variation in the channel itself, this was found
to provide poor results. The values for Λ1 and Λ2 are
found to be of similar magnitude to each other, ∼ 0.5,
but an order of magnitude smaller than the Fourier’s law
coefficient λ, which is of order ∼ 5. It is for this reason
that these coefficients are difficult to obtain and temper-
ature dependence becomes important. Further discussion
of errors is provided in Appendix B. However, as the two
heat flux contributions Λ1 and Λ2 are known functions of
strain rate, we can use this dependence as another route
to the strain rate dependent thermal conductivity coeffi-
cients.

To explore a range of strain rates, we compared co-
efficients from Ly = 23.81 to three extra domain sizes,
Ly = 47.5, Ly = 71.3, Ly = 95.2, run with the same
wall sliding velocity vw = ±1, each at three densities
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FIG. 7: Summary of the method used to get coefficients for Jq
approx at ρl = 0.85. (a) Temperature T is shown in blue and

streamwise (x) velocity vx (y) shown in red. Circles are MD results (displayed every 5 cells) and lines are least squares fits to
the data. (b) Lines show derivatives of the least squares fits and circles show the numerical derivatives of the MD results. (c)
VA Jq,x displayed by blue circles and MOP values shown in red circles, with lines depicting the least square fit to Japprox

q,x

from Eq. (53). (d) Jq,y again with blue circles for VA, red circles for MOP, fits to Japprox
q,y from Eq. (54) and a black line

showing Fourier’s law, −λdT/dy, with coefficient obtained from the temperature gradient study.
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FIG. 8: Volume average heat flux terms plotted as a
function of strain rate at densities: (blue) ρl = 0.65, (gold)
ρl = 0.75 and (red) ρl = 0.85, shown by circles for parallel
(x-component) heat flux Λ1 with a linear best fit going
through zero, and normal (y-component) heat flux Λ2 is
shown using squares, obtained by shifting to ensure heat flux
is zero at a strain rate of zero for each density and fitted
with a quadratic best fit.

ρl = 0.65, ρl = 0.75 and ρl = 0.85. In addition to vary-
ing system size, varying wall sliding velocities was also
explored at Ly = 23.81 for vw = {1.0, 2.0} at densities
ρl = {0.65, 0.75, 0.85}. However, for vw = 2.0 we observe
large pressure heating with temperature as high as T ≈ 4
and, as a result, only varying system size was used in the
strain rate analysis.
A plot of Λ1 and Λ2 against strain rate is presented in

Fig. 8. The parallel heat flux term Λ1 = λ1γ̇ is linearly
proportional to strain rate with a zero intercept, allowing
us to use the fits of Fig. 8 to get a direct estimate of
λ1. The Λ2 term is obtained by plotting the results for
Λ2 + λ from the fits in Fig. 7 d), against the strain rate
and fitting to λ+ 3γ̇2λ2. The results are consistent with
the expected quadratic strain rate dependence when λ
and λ2 are allowed to vary freely in the fit. Subtracting
the fitted intercept ensures a value of zero at the origin
as required and gives us the results shown in Figure 8.
The zero strain rate intercepts provide estimates of λ for
each density and the fit to the strain rate dependence
provides a direct estimate of λ2. The fits to results for all
the densities studied appear to be similar, suggesting that
the λ2 coefficient is not very sensitive to density within
the range of densities studied here.
The values of λ measured in system 2 are compared

to the predictions using Eq. (50) based on the liquid’s
density and temperature in Table I. As the wall is ther-
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FIG. 9: Summary of coefficients from shear study with
MOP shown by circles, VA by squares and crosses denoting
the fits from Fig 8. Blue is λ1, gold λ with λ2 in red. Lines
are included to guide the eye using a least squares quadratic
polynomial fit to the data.

mostatted to Twall = 0.7, in the absence of shear the
liquid would be expected to equilibrate to the same tem-
perature as the walls. The zero-strain intercept should
therefore be the predicted λ for this equilibrium case at
Twall, which is also shown in Table I. The system 2 pre-
diction of λ is seen to be close to the one expected at the
wall temperature, within 5%, but with a slightly greater
value in all cases. The use of an average temperature over
the liquid region or wall temperature is crude as both
temperature and λ would be expected to vary inside the
channel. A more detailed analysis could take into account
the varying thermal conductivity coefficient as a function
of y, using the approach of Todd and Evans 15 .
A summary of results for the three coefficients of ther-

mal conductivity λ, λ1 and λ2 is presented in Fig. 9. We
use the strain rate γ̇LS = ∂vLS/∂y to work out parallel
heat thermal conductivity coefficients by simply dividing
the VA and MOP values by the strain rate, λ1 = Λ1/γ̇

LS

at each density. As a cross check, we also use the fits
obtained in Fig 8 over the range of strain rate studies,
shown as crosses on Fig 9 with excellent agreement. The
Fourier’s law thermal conductivity coefficients λ are also
presented in Fig. 9 for all studied density. In each case,
the value is corrected based on the average liquid tem-
perature using Eq. (50). The average liquid temperature
measured in each system is as summarised in overview
Fig. 5. Only λ values for the highest strain rate case,
γ̇ = 0.084, are shown, other results are similar after cor-
rection.
Finally, the three λ2 values obtained from the fits to

strain rate of Fig 8 are also presented in Fig. 9. A full
discussion of possible sources of error is included in Ap-
pendix B. Although the parallel heat flux has been pre-
viously observed in NEMD simulations of a dense fluid

undergoing Poiseuille flow17, this is the first time that
the values of both λ1 and λ2 have been evaluated directly
from the heat fluxes. We further note that Han and Lee 17

observed a stronger heat flux in the parallel direction, in
contrast to our much weaker heat flux observed for pla-
nar Couette flow. In future studies it will be interesting
to repeat these measurements for Poiseuille flow to see
whether we obtain similarly strong parallel heat fluxes,
and measure the resulting values of λ1 and λ2.
The measured values of λ1 in Fig 9 are found to be of

similar magnitude to that found by Daivis and Evans 7

using a Green-Kubo like method, where a value of λ1 ≈
2.2 was obtained for a LJ atomic system with a density
of ρl = 0.8 and a temperature of 2.0. Daivis and Evans 7

also found that λ2 was approximately zero, in contrast
to the results presented here. The reason for this is not
presently understood, but the different state point, LJ
potential cutoff and range of shear rates studied may all
be partially responsible.
Given the good agreement for λ compared to liquid Ar-

gon experimental data, the presented measurements of λ1
and λ2 should be testable against laboratory experiments.
The high shear rates required and small magnitudes of
this secondary heat flux would make such measurements
extremely challenging for this system. It is for this reason
that molecular simulation remains an invaluable tool for
studies of this kind.

V. CONCLUSIONS

In this work we have used the Irving and Kirkwood 22

equations in integrated form to obtain expressions for
heat flux, both as an average quantity in a volume (Vol-
ume Average, VA) and defined on surfaces (Method of
Planes, MOP). By obtaining the heat flux on the various
surfaces, the MOP approach is extended to provide heat
flux parallel to the flow. The MOP and VA definitions
are shown to give equivalent results for measured heat
flux when properly averaged. From a non-equilibrium
molecular dynamics (NEMD) simulation using a channel
with a temperature gradient, the coefficient of heat flux
from Fourier’s law is obtained and shown to have good
agreement to experimental results. The Fourier’s law co-
efficient is parameterised over a range of densities and
temperatur es. Boundary driven planar Couette flow is
then used to explore the additional terms due to strain
rate in the direction parallel and normal to the wall, as
predicted by non-equilibrium thermodynamics.
An estimate of the second coefficient of thermal con-

ductivity in the wall normal direction is obtained by fit-
ting a quadratic in strain rate. This estimate of second
coefficient is obtained at three different densities and ap-
pears to be broadly independent of density, within the
range of densities studied in this work. The zero strain
intercept provides a separate estimate of the Fourier ther-
mal conductivity coefficient, which is found to be slightly
lower than the parameterised form obtained from system
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1. In addition, the results for the parallel component of
heat flux appear to be very convincing. As a function of
strain rate, it is shown to vary linearly as predicted by
theory, allowing us to fit over a wide range of strain rates
providing this coefficient as a function of density. The
consistency of this coefficient from all simulations sug-
gests this value could be used as a numerical prediction
testable through experiments.
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Appendix A: Additional Derivations

In the Appendix, Section A has a discussion of the al-
ternative form of the Irving and Kirkwood 22 operator as
an integral along a line, with the result that the velocity
expressions can be defined along this line, as an average
in a volume or as an average over a surface. In Section
B, the various sources of error in this work are set out
and the attempts to mitigate them discussed, including
the use of density gradients in the fitting.

The pressure from Irving and Kirkwood 22 is expressed
as the difference between two Dirac delta functions. To
derive an expression for the configurational part of the
local, instantaneous pressure tensor, we will need to ex-
press the difference between two delta functions as a di-
vergence. This can be done as follows. Using the funda-
mental theorem of calculus, we can write

δ(r− ri)− δ(r− rj) =

∫ 1

0

∂

∂s
δ (r− [ri − srij ]) ds.

(A1)

However,

∂

∂s
=
∂ [ri − srij ]

∂s

∂

∂ [ri − srij ]
, (A2)

so we can write

δ(r− ri)− δ(r − rj) =
∫ 1

0

∂

∂s
δ (r− [ri − srij ]) ds

= rij ·

∫ 1

0

∂

∂ [ri − srij ]
δ (r− [ri − srij ]) ds

=
∂

∂r
· rij

∫ 1

0

δ (r− [ri − srij ]) ds, (A3)

which is the required form as an integral along the line
between the atoms. The volume integral of this expres-
sion is as given in Eq. (19), which occurs in quantities
which depend on inter-particle interactions such as config-
urational pressure and heat flux. The heat flux includes
velocity and it is necessary to write the averaged fluid

velocity integrated along the line,

v̄s (rij , rm) =
∫ 1

0

v (rs)ϑsds

/∫ 1

0

ϑsds =

∫ 1

0

v (rs)ϑsds

/

ℓij . (A4)

Then the full expression for the volume averaged heat
flux vector is

Jq V =
1

∆V

∫

∆V

Jq (r, t) dr

=
1

∆V





N
∑

i=1

ui ci ϑi −
1

2

N
∑

i,j

rij Fij · (vi−v̄s (rij , rm)) ℓij



 .

(A5)

Note this includes a contribution from the difference be-
tween the velocity vi of particle i and the fluid velocity
averaged over all points on the inter-molecular interaction
line rij that are inside ∆V , v̄ (rij). If v is constant inside
∆V , then the ℓij on the top and bottom cancel and we
are left with v at rm as assumed in equations (23) and
(25).

In order to get the expressions for the heat flux, we can
convert the kinetic part of the heat flux vector in Eq. (23)
into a form where the instantaneous streaming velocity is
not required. We can write

JKq (r, t) =

N
∑

i

uiciδ (r− ri)

=
N
∑

i

(

ei −
1

2
miv

2 (r)

)

(vi − v (r)) δ (r− ri)

=

N
∑

i

eiviδ (r− ri)− v (r)

N
∑

i

eiδ (r− ri)

(A6)

where the last line follows from

N
∑

i

mi (vi − v (r)) δ (r− ri)

=

N
∑

i

miviδ (r− ri)− v (r)

N
∑

i

miδ (r− ri) = 0. (A7)

In the main text, we use the velocity averaged along
a line and in a volume when we consider heat flux in a
volume; while for the surface or plane based measures,
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velocity is defined on the surface as follows,

∫

S
+
x

v(r, t) · dS+
x ≡

1
∑N

i=1miϑi

N
∑

i=1

vi δ (xi − x+)Π

(

yi − ym
∆y

)

Π

(

zi − zm
∆z

)

,

(A8)

where this is the velocity on the a plane located at x+

obtained from the average flux of atoms18 and the density,
obtained as an average over a cell centred on r, as

∑

miϑi
should be extrapolated to the location of the cell surface.
An alternative approach would be to collect density at
the location of the surface,

∫

S

v(r, t) · dS+
x ≡

∑N

i=1mi vi δ (xi − x+) Π
(

yi−ym
∆y

)

Π
(

zi−zm
∆z

)

∑N
i=1miδ (xi − x+)Π

(

yi−ym
∆y

)

Π
(

zi−zm
∆z

)

, (A9)

where the density at a plane can be computed using the
method of Daivis et al. 20 . In practice, both approaches
are used and compared, giving similar results in this work
as the statistics collected are in steady-state temperature
and shear driven flows. However, in more general cases
such as turbulent flow43 this distinction may become im-
portant.

Appendix B: Uncertainty Analysis

We discuss the sources of possible error in this study,
which include: (i) temperature variation, (ii) finite sys-
tem size effects, (iii) departure from classical Navier-
Stokes hydrodynamics and (iv) statistical errors.
First, consider (i) temperature due to shear heating

and the thermostatting of only the wall atoms. Differ-
ent density fluids have different average temperatures,
with denser fluids generally hotter. In the worst case
of ρl = 0.85 and a channel of height Ly = 23.81 in sys-
tem 2, the mean fluid temperature increases to T = 1.25,
which is compared to the value of T = 1.0 at the same
density when obtaining λ in system 1. The difference in
heat flux due to the difference in temperature, estimated
using NIST isochoric data at ρl = 0.85 for liquid Argon44,
would give a difference of ∼ 2.5% in the value of λ, which
could imply an almost 60% error in the calculation of λ2.
This is a direct consequence of the relative magnitudes
of the λ and λ2 coefficients, making isolation of these
higher order heat flux terms difficult. It is also unclear
if λ2 would be expected to have the same functional de-
pendence on temperature as λ. It should be noted that
strain rate dependence is very difficult to decouple from
temperature dependence without thermostatting the en-
tire system; an approach which should be avoided as pre-
vious work has demonstrated that wall-only thermostat-

ting is essential in order is preserve the correct system
dynamics45,46. The use of temperature correction based
on system 1 has been employed in this work in an attempt
to solve this dependence.

Another possible source of error, (ii), is finite size ef-
fects. In the work of Hyżorek and Tretiakov 47 , the effect
of channel height on measured heat flux shows that con-
finement effects cause a departure from the experimen-
tal Fourier’s law. This is observed for channels smaller
than about 20 in reduced units, especially at higher den-
sities. Although Hyżorek and Tretiakov 47 use a longer
cutoff radius rc = 5 and an infinite wall-fluid interaction
length (factors which potentially increase the impact of
nano-confinement) these trends suggest that the value of
λ could be reduced by the smaller channel used in system
2 as compared to system 1. This would, in turn, suggest
that the obtained λ2 in this work may increase in error
for high densities. The departures observed by Hyżorek
and Tretiakov 47 are of the order 1% when applied to get
λ2 for low density systems (ρl = 0.4), increasing to 10%
for the highest densities they considered (ρl = 0.7). Ex-
trapolation using a fit to digitised data from Hyżorek and
Tretiakov 47 suggest this may rise as high as 25% in the
highest density, ρl = 0.85, presented in this work. Again,
it is not clear if the λ1 and λ2 coefficients will be sim-
ilarly impacted by nano-confinement. The use of larger
systems, as large as Ly = 95.2 reduced units in the strain
rate study, help reduce this effect. However, large chan-
nels necessarily have low strain rates and so poor signal
to noise ratio. Fitting over a range of strain rates is used
to get values of λ1 and λ2.

The uncertainty induced due to (iii) departures from
classical hydrodynamics include density oscillations, non-
zero slip lengths, non-Newtonian effects and departure
from expected velocity and temperature profiles. Indeed,
a departure from a linear velocity profile is observed in the
high density large channel cases (greater than 40 reduced
units), an effect especially apparent near the wall. As
a result, the measured strain rate is taken not simply as
vw/Ly but obtained as the average profile of velocity over
the domain. This is the reason that the strain rates in
Fig. 8 are different for the three different densities. No
wetting parameter is used in this work but the higher
density walls will potentially cause slip and Kapitza-like
jumps48. The impact of slip-length, both in temperature
and velocity profiles, has been reduced by fitting only to
the liquid region, i.e. applying fitting to averaging bins
located a distance from the wall. Slip is linked to density
stacking effects discussed previously and so the inclusion
of density in our fits also help to reduce this effect, as
discussed in point (iv).

These measurements are also subject to (iv) large lev-
els of noise with very weak signals, shown for example in
Fig. 6 (a). These errors have been reduced as far as pos-
sible by collecting statistics for large atomistic systems
over long runs. In addition, the use of least square fits to
obtain derivatives of temperature and velocity improve
statistics. However, the density stacking near the wall
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FIG. 10: The starting bin for fit (relative to the wall) on
the measured VA heat flux coefficients λx (solid lines) and
λ2 (dotted lines) with two densities ρl = 0.6 in blue and
ρl = 0.8 in red. a) shows before including the ∂ρ/∂y
correction while b) includes this term. A bin value of 11 is
chosen as the starting point for fits in all results presented in
this work, shown by the black line on the figure.

poses a problem for fitting least squares solutions to ob-
tain coefficients of heat flux. To highlight the problem,
consider Fig 10 a) which shows the fitting parameter (i.e.
gradient of the line) returned when we start the fit at
different bins in the channel.
In this case, a value of zero on the x-axis means a fit to

all 170 liquid bins, while 10 for example excludes the 10
bins either side of the channel closest to the wall. This
means we would fit a line to only 150 innermost ones. By

including the part of the channel with density peaks, it
is clear that we obtain completely different coefficients,
by almost an order of magnitude in Fig 10 a). This is a
particular problem in this work given the very small mag-
nitudes of the λ1 and λ2 coefficients compared to varia-
tions in density in this highly confined channel. As a
result, it is almost impossible to work out a meaningful
location to start fitting and using only the inner-most
part of the channel gives very poor statistics. Instead, we
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FIG. 11: Comparison of the shape of density component of
temperature gradient ∂T ′/∂y (gold points) and the density
gradient (blue line) which is used to replace them, including
the density stacking but reducing the measured noise in the
gradient.

improve the fit by replacing the term for the oscillating
component of the temperature field ∂T ′/∂y with a term
proportional to the gradient of density itself ∂ρ/∂y, as
the gradient of density correlates very well with the gra-
dient of temperature but has much less noise as shown in
Fig 11. Todd and Evans 15 have shown that this is a good
approximation near the centre of the channel when the
pressure is constant, which is what we can expect when
local thermodynamic equilibrium holds. In the interfa-
cial region, the thermodynamics is more complex but the
density and temperature gradients remain highly corre-
lated. By including the density derivative term in Eq.
(53) and Eq. (54), the results as a function of fitting lo-
cation become much less susceptible to density peaks, as
shown in Fig 10 b). The starting point for the fitting is
chosen to be bin 11, shown by the black line on Fig 10 b)
as this appears to be consistent with the average gradient
in the channel and includes the majority of bins in the
fit.


