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Abstract— This paper proposes a new three-stage method for 
rotating machines health condition monitoring. In the first stage 
of the proposed method, Multiple Measurement Vectors 
Compressive Sampling (MMV-CS) is used to obtain 
compressively-sampled signals from the acquired raw vibration 
signals. In the second stage, a process combining Geodesic 
Minimal Spanning Tree (GMST), Stochastic Proximity 
Embedding (SPE), and Neighbourhood Component Analysis 
(NCA) is used to estimate and further reduce the dimensionality 
of the compressively-sampled signals. In the third stage, with these 
reduced features, multi-class Support Vector Machine (SVM) 
classifier is used to classify machine health conditions. 
Experiments on a roller element bearing fault detection and 
classification task based on vibration signals are used to verify the 
efficiency of the proposed method. Results show that the proposed 
method with fewer features achieved high classification accuracy 
of bearings health conditions and outperformed recently 
published results.  

Index Terms—Machine Condition Monitoring, Compressive 
Sampling, Dimensionality Reduction, Multi-class Support Vector 
Machine. 

 

I. INTRODUCTION  

Rotating machines are essential for most engineering process 
in industry and their breakdowns can directly affect production 
timetables, production quality, and production costs. Therefore, 
it is very important to monitor machine health condition to avoid 
machine breakdowns. In fact, the need for an effective condition 
monitoring and machinery maintenance program exists 
wherever complex and expensive machinery are used to deliver 
critical function of businesses. Machine Condition Monitoring 
(MCM) has been applied in various sensitive applications of 
rotating machines, such as power generation, oil and gas, 
helicopter, etc. [1 – 3].   

Based on types of sensor data acquired from rotating 
machines, MCM can be categorised into the following: vibration 
monitoring, acoustic emission monitoring, electric current 
monitoring, temperature monitoring, and chemical monitoring 
[4]. Of these methods, vibration-based condition monitoring has 
been extensively studied and has become a well-accepted 
technique of many planned maintenance managements [5, 6]. 
Vibration signals can be collected from rotating machine 
through vibration sensors, e.g., displacement sensors, and 

accelerometers. In practice, the acquired vibration signal is 
usually sampled satisfying Nyquist rate, in which the sampling 
rate must be at least double the maximum frequency present in 
the signal. Thus, the collected vibration data represents a large 
amount of time series data that need to be transmitted, stored, 
and processed. It is clear acquiring a large amount of data 
requires a large storage and time for signal processing. In 
addition, this might limit the number of machines to be 
monitored remotely through Wireless Sensor Networks (WSNs) 
due to bandwidth and power restrictions.  

The aim of vibration-based MCM is to early detect and 
identify machine faults by analysing the physical features of the 
collected vibration signals from which one is able to classify the 
vibration signal into the corresponding machine health condition 
using a classifier. Then, the decision of maintenance is made 
based on the current machine health condition. However, the 
large amount of collected vibration signals make it difficult to 
achieve accurate and early detection before machine 
breakdowns. To address the challenges of analysing a large 
amount of vibration data, the common used approach is to 
extract features from the time series vibration data that can be 
accomplished using various techniques. For instance, extracting 
certain features from the time series raw vibration data, which 
can be done directly in the time-domain using some statistical 
parameters, e.g., root mean square, peak-to-peak value, crest 
Factor, kurtosis, skewness, etc. [7]; or by transforming the time 
series raw vibration data to other domains, such as frequency 
domain by using Fast Fourier Transform (FFT) and time-
frequency domain using various techniques, e.g., Short Time 
Fourier Transform (STFT), Wavelet Transform (WT), Hilbert-
Huang Transform (HHT), Empirical Mode Decomposition 
(EMD), etc. [8].    

As far as the high dimensionality of the extracted features is 
concerned, various dimensionality reduction techniques are used 
to improve the computational efficiency and the classification 
accuracy. In fact, dimensionality reduction can be performed by 
transforming the original features into a new reduced space of 
features or by selecting a subspace of the original features. For 
example, Harmouche et al. [9] proposed a method that combines 
the envelop analysis, the sliding FFT, and Principal Component 
Analysis (PCA) for the classification of bearing faults. Here 
PCA is employed to get a lower dimensional principal space. In 
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[10] comparison of several linear and non-linear dimensionality 
reduction techniques, e.g., PCA, Kernel PCA, Maximum 
Variance Unfolding (MVU), Local Tangent Space Analysis 
(LTSA), Diffusion Maps (DM), Laplacian Eigenmaps (LE),    
are used to reduce various statistical features extracted from the 
raw vibration signal. With this reduced features, a decision tree 
is used to classify faults of mono block centrifugal pump. A new 
method combining the time-frequency distribution and the 
nonlinear manifold to extract effective quantitative 
representations of machinery health pattern is proposed in [11]. 
Li et al. [12] proposed a method based on WT-Autogressive 
(AR) model and PCA for gear multi-fault diagnosis. Ciabattoni 
et al. [13] presented a novel Linear Discriminant Analysis 
(LDA) based algorithm to reduce the fault data dimension for 
motor bearing fault detection.  

Various studies have assessed the efficacy of selecting a 
subspace of the original features. For instance, Jack et al. [14] 
examined the use of a genetic algorithm (GA) to select the most 
important features from different form of features extracted from 
the raw vibration sampled data for MCM. Van et al. [15] 
employed a feature selection technique combining Distance 
Evaluation Optimization (DET) and Particle Swarm 
Optimization (PSO) to select the superior feature subset of a set 
of features extracted using non-local-means denoising and EMD 
for bearing fault diagnosis.   

New advances in transform coding techniques have 
facilitated investigation of Compressive Sampling (CS) 
framework that relies on linear dimensionality reduction. 
Recently, several studies in vibration-based MCM have based 
their criteria for reducing the amount of the collected data on CS. 
For example, Wong et al. [16] studied the effects of CS on the 
classification of bearing faults and found slight performance 
degradation after reconstructing the original signal from the 
compressed measurements. Ahmed et al. [17] proposed a 
compressive sampling strategy for classification of bearing 
faults based on learning directly from the compressed 
measurements. Similarly, an intelligent condition monitoring for 
bearing faults based on learning from highly compressed 
measurements is proposed in [18]. In an effort to select fewer 
features from the CS-based compressed measurements, a 
method combining CS, Laplacian Score (LS), and SVM to 
classify rolling bearing faults is proposed in [19].   

In this paper, an automatic three-stage method for rotating 
machine health condition monitoring using vibration signals is 
presented. In this method CS is used to obtain compressively 
sampled data from the acquired vibration data. Then, to further 
reduce the dimensionality of these compressively sampled data, 
first, GMST is used to find the minimal number of features 
necessary to represent the original data, second, with these 
minimal number of features a combination of SPE and NCA is 
used to automatically select far fewer features of the 
compressively-sampled data. With these features SVM is used 
to classify machine health condition.  

II. COMPRESSIVE SAMPLING 

Compressive sampling (CS) [20] is an extension of sparse 
representations and special case of it. The basic idea of CS is 
that many real-world signals have sparse representations in 
some domain, e.g., frequency domain, can be recovered from 

fewer measurements satisfying certain conditions. CS 
framework relies on two principles: (1) sparsity of the signal of 
interest, and (2) the measurements matrix that fulfills the data 
minimal information loss, i.e., satisfies Restricted Isometry 
Property (RIP). Briefly, we define the single measurement 
vector compressive sampling (SMV-CS) as follows:  

Let x∈ 𝑅    be an original time indexed signal. Given a 
sparsifying transform matrix 𝜓 𝜖 𝑅    whose columns are the 
basis elements 𝜓 . Thus, x can be represented as follows: 

 

𝑥  𝜓 𝑠  

   
  (1) 

or  
      

                        𝑥  𝜓𝑠  
  (2) 

Here s, is n*1 column vector of coefficients. Provided that the 
basis ψ generates q-sparse representations of x, then equation (1) 
can be rewritten as follows: 

 

𝑥  𝜓 𝑠  

  
  (3) 

Here ni is the index of the basis elements and the coefficients 
corresponding to the q non-zero elements. Thus, 𝑠 𝜖 𝑅    is a 
vector column with only q non-zero elements and represents the 
sparse representation vector of x. 

CS framework can produce m << n projections of the vector 
x with a group of measurement vectors ∅  and the sparse 
representations s of x such that  

 
𝑦 ∅𝜓𝑠  𝜃𝑠 

  (4) 

Here y is m*1 column vector of the compressed measurements 
and 𝜃  ∅𝜓 is the measurement matrix. To generate good 
compressed measurements that can be used to reconstruct the 
original signals, the measurement matrix 𝜃 has to fulfill the data 
minimal information loss, i.e., satisfy the RIP.  
Definition 1.1: The measurement matrix 𝜃 𝜖 𝑅    satisfies the 
Restricted Isometry Property (RIP) if there exists a parameter 
𝛿 ∈ 0,1  such that  
 

 
1  𝛿 ‖𝑠‖   ‖𝜃s‖  1  𝛿 ‖𝑠‖  

  (5) 

The size of 𝜃 (m*n) relies on the compressive sampling rate 
(α) (i.e., m = α*n). Fig. 1 shows an illustration of the CS 
framework. According to CS theory, given the compressed 
measurements y we can recover 𝑠 by solving the following 
optimization problem  

 
ŝ=min

s∈RN

1
2

‖Өs ‐ y‖ +  γ‖𝑠‖ , 
   
             (6) 

Here ‖Өs - y‖   𝜀 for a selected 𝜀 0, and a specific 
regularization parameter γ > 0 that controls the relative 
importance applied to the sparseness ℓ1 and the ℓ2 norms. Thus, 
with ŝ and the inverse ψ we can recover the original vector x 
such that 
 

 

 
𝑥  ψ ŝ 

          (7) 



Multiple measurement vectors CS (MMV-CS) is considered 
for signals that are represented as a matrix such that  

 
𝑌  ӨS 

 

         (8) 

where 𝑌 ∈ 𝑅   , L is number of observations and 𝑆 ∈ 𝑅    
is a sparse representation matrix. 

 In this paper, MMV-CS has been utilised since the dataset 
consists of a matrix of multiple measurements. Furthermore, 
since it is possible to recover the original signal (x) from the 
compressed data (y) this indicates that y possesses the quality 
of the original signal x. Consequently, in this study, we use the 
compressed measurements directly. 

III. THE PROPOSED METHOD 

This section describes the proposed method for machine 
health condition monitoring. As shown in Fig. 2, the process to 
monitor the health condition of a rotating machine using the 
proposed method consist of three stages, data acquisition and 
compression, feature learning and selection, and machine health 
condition classification.  

A. The first stage: Data acquisition and compression 

In this stage, the proposed method collects vibration data 
from a rotating machine of interest and then compress it using 
MMV-CS framework in equation (8). Here FFT is chosen to 
obtain the sparse representations (𝑆 ∈ 𝑅 ) from the collected  
raw vibration data (𝑋 ∈ 𝑅 ) and the measurement matrix (Ө ∈
𝑅 ) is selected to be a random Gaussian matrix, which 
satisfies the RIP [21] and the number of the compressed 
measurements m is controlled using a compressed sampling rate 
(α) where m = α*n . The process of data compression is 
summarised in the following Algorithm. 1.  

B. The second stage: Feature learning and selection 

Despite the fact that the compressively-sampled signals 
obtained in the first stage are ideal for recovering the original 
signals, they might not be the best for signal classification. In 
addition, they may contain an over-representations of the data. 
Thus, in this stage, we motivate that further dimensionality 
reduction is useful in early fault detection and may improve 
classification results. So, the proposed method employ a 
procedure combining GMST, SPE, and NCA to reduce the 

dimensionality of the compressively-sampled signal. First, the 
global dimension estimator GMST is used to define the intrinsic 
dimensionality, i.e., define the minimal number of features 
required to represent the compressively-sampled data [22, 23]. 
GMST compute the geodesic graph G from which the intrinsic 
dimension (p) is estimated by computing multiple Minimum 
Spanning Tree (MST) in which each data sample 𝑥  is linked to 
its k nearest neighbors such that  

 
𝑝 Y 𝑚𝑖𝑛 𝐷𝐸𝑢𝑐𝑙

𝑒∈𝑇

 
   
   (9) 

Here T represent the set of all the sub-trees of G, e is an edge in 
T, and 𝐷  is the Euclidean distance of e.  

   Second, having defined the minimal number of features p 
(p < m), the compressively-sampled data can be transformed 
into a reduced dimensionality space of significant 
representation. Various linear and nonlinear techniques have 
been proposed and used to reduce data dimensionality. In this 
stage of our proposed method, we used a combination of SPE 
[24] and NCA [25] to automatically select far fewer features of 
the compressively-sampled data. SPE is a nonlinear technique 
that has several attractive features: (1) simple to implement, (2) 
it is very fast, (3) it scales linearly with the size of the data in 
both time and memory, and (4) it is relatively insensitive to 
missing data [26]. So, it was decided that SPE is a suitable 
technique to adopt for our investigation.  

SPE uses a self-organizing iterative scheme to embed an m 
dimensional data into p dimensions, such that the geodesic 
distances in the original m dimension are preserved in the 
embedded d dimension. To compute a reduced dimension from 

Algorithm 1: Compressive sampling process 
Input: 𝑋 ∈ 𝑅   , Ө ∈ 𝑅 , α 
Output: 𝑌 ∈ 𝑅    
  1: FFT(X)             𝑆 ∈ 𝑅    
  2: Project S into Ө with compressed sampling rate α to obtain 
compressively-sampled signal 𝑌 ∈ 𝑅    

Fig. 1. Compressive sampling framework 

Fig. 2. The proposed method 



the compressively-sampled signals using SPE, the following 
steps are performed. 

 Initialize the coordinates 𝑦 . Select an initial learning 
rate 𝛽.  

 Select a pair of points, 𝑖 and 𝑗, at random and compute 
their distance 𝑑  𝑦  𝑦 . If  𝑑  𝑟  (𝑟  is the 
distance of the corresponding proximity), update the 
coordinates 𝑦  and 𝑦  by: 
  𝑦𝑖 ←  𝑦𝑖  𝛽 1

2
 
𝑟𝑖𝑗   𝑑𝑖𝑗

 𝑑𝑖𝑗 𝜐
 𝑦𝑖 𝑦𝑗      (10) 

and  
  𝑦𝑗 ←  𝑦𝑗  𝛽 1

2
 
𝑟𝑖𝑗   𝑑𝑖𝑗

 𝑑𝑖𝑗 𝜐
 𝑦𝑗 𝑦𝑖      (11) 

Here 𝜐 is a small number to avoid division by zero. For a given 
number of iterations, this step will be repeated for a prescribed 
number of steps and 𝛽 will be decreased by a suggested 
decrement 𝛿𝛽. 
     Finally, after mapping the compressively-sampled data to 
the reduced dimension space using SPE, each feature vector 
will be further reduced by selecting k features using NCA to 
improve the performance of the proposed method. In our case, 
we applied “fscna” function [27] to perform the feature 
selection. It achieves feature selection by regularising the 
feature weights and select features with feature weights that is 
greater than a relative threshold (𝜏).  

C. The third stage: Machine health condition classification 

To classify machine health condition, we employed Multi-
class Support Vector Machine (SVM) classifier. The basic idea 
of SVM is that it can find the best hyperplane(s) to separate two 
classes. Based on the features of the data, SVM can make linear 
or non-linear classifications by different kernel functions, e.g., 
Radial Basis Function (RBF), Polynomial Function (PF), and 
Sigmoid Function (SF) [28]. Multi-class SVM includes multiple 
two-class sub-problems, i.e., SVM classifiers that can be easily 
combined together using one-versus-one and one-versus-all 
coding design.  

In our case, we applied “fitcecoc” function [29] on the 
learned features from the second stage. It uses c(c-1)/2 binary 
SVM models using one-versus-one coding design, where c is the 
number of unique class labels. This will return a fully trained 
error-correcting output codes (ECOC) multiclass model that 
cross-validated using 10-fold cross-validation. 

IV. EMPIRICAL VALIDATION 

In order to validate the proposed method, we now perform 
several computer experiments on a collected vibration dataset of 
roller bearing using our proposed method. 

A. Data description 

The vibration data used in this study were collected from 
experiments on a small test rig that mimics operating roller 
bearings’ environment. Six conditions of roller bearings health 
conditions have been recorded, two normal conditions, that is, a 
brand new condition (NO) and a worn but undamaged condition 
(NW), as well as four fault conditions, including inner race (IR) 
fault, an outer race (OR) fault, rolling element (RE) fault, and 

cage (CA) fault. Fig. 3 displays some typical time series plots 
for the six conditions described above. 

As shown in Fig. 4, the test rig used to collect the vibration 
data involves a DC motor driving the shaft through a flexible 
coupling, with the shaft supported by two Plummer bearing 
blocks. A series of damaged bearing was inserted in one of the 
Plummer blocks, and the resultant vibrations in the horizontal 
and vertical planes were measured using two accelerometers. 
The output from the accelerometers was fed back through a 
charge amplifier to a Loughborough Sound Images DSP32 ADC 
card (using a low-pass filter with a cut-off 18 kHz), and sampled 
at 48 kHz. The machine was run at a series of 16 different speeds 
ranging between 25 and 75 rev/s, and ten-time series were taken 
at each speed. This gave a total of 160 examples of each 
condition, and a total of 960 raw data files to work with. The 
description of the dataset is presented in Table. 1. 

Fig. 3. Typical time – domain vibration signals for the six different 
conditions 
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Fig. 4. The test rig used to collect the vibration data of roller bearings. 

 



TABLE I.  DESCRIPTION OF BEARING DATASET, L REFERS TO NUMBER OF 
OBSERVATIONS AND N REFERS TO NUMBER OF SAMPLES. 

Bearing conditions L N 

Normal 
 

NO 160 6000 
NW 160 6000 

 
Fault 

IR 160 6000 
OR 160 6000 
RE 160 6000 
CA 160 6000 

B. Experimental results 

     To apply our proposed method to this bearing dataset, fifty 
percent of the total observations were randomly selected for 
training and the other fifty percent for testing. We started by 
obtaining the compressively-sampled vibration data by means of 
the MMV-CS model with FFT basis as sparse representation of 
the raw vibration data, a random Gaussian matrix as a 
measurement matrix, and different values of α (0.1, 0.2, 0.3, and 
0.4).  
     To guarantee that our CS model produces enough samples for 
the purpose of bearing fault classification, we used the produced 
compressively-sampled signals in the first stage to reconstruct 
the original signal X by applying the Compressive Sampling 
Matching Pursuit (CoSaMP) algorithm [30]. For example, with 
α = 0.1 the average percentage reconstruction errors for the six 
conditions of bearings are 1.8% (NO), 0.9% (NW), 3.3% (IR), 
1.6% (OR), 0.7 % (RE), and 2.6% (CA), which indicate good 
signal reconstruction. 
     To learn features from the compressively-sampled signals, 
we used the second stage of our proposed method described in 
Fig. 2. First, we used GMST to define the intrinsic 
dimensionality, i.e., define the minimal number of features 
required to represent the compressively-sampled data for each 
value of α. Second, with this intrinsic dimension, we used SPE 
to find a reduced dimensional embedding of a compressively-
sampled data that preserve the distances between neighboring 
points, i.e., keep the distance between two data points in the 
reduced dimensional data of Y in equation (8) to be identical 
with their corresponding points distance in Y. The parameters of 
SPE algorithm were set as follows: number of iterations were set 
to 100, number of steps was set to 100, 𝛽 was set to 1, and 𝛿𝛽 
was set to 0.01. 
     In the final step of the second stage of our proposed method 
we performed feature selection using “fscna” [27]. This 
function returns a model that contains information about the 
training data, model, and optimization. NCA was fitted with 
stochastic gradient descent (SGD) and regularisation parameter 
(𝜆). To find the best value of 𝜆 that produces the minimum 
classification loss, we tuned 𝜆 by training the NCA model using 
different values of 𝜆 on the features that produced from Y with 
α = 0.1 in the second step of the second stage of our proposed 
method. Fig. 5 shows the loss values versus the 𝜆 values. The 
parameters of NCA were set as follows: τ was set to be 0.02 and 
the best value of 𝜆 with minimum loss (𝜆 = 0.004) was selected.  
        Figure 6 shows an example of the selected features using 
our proposed method with α = 0.1 (i.e., m = 600) and intrinsic 
dimension p = 130. As can be seen in Fig. 5 only 19 features will 
be selected from the features produced using the intrinsic 

dimension p = 130 of the 600 data points of the compressively 

sampled signal.  
 
The selected features in the second stage were used to train the 
multi-class SVM. For better evaluation of the trained multi-class 
SVM model, we applied 10-fold cross-validation where the 
training dataset is randomly subdivided into ten subsets. Several 
experiments were conducted to evaluate the classification 
performance of features selected using our proposed method. 
Table II provides a summary of the classification results 
achieved from various compressively-sampled datasets based on 
different values of α as can be seen in the left column of Table 
II.  

TABLE II.  CLASSIFICATION ACCURACIES (%) AND RELATED ROOT 

MEAN SQUARE (RMS) FOR SELECTED FEATURES (P REFERS TO THE INTRINSIC 

ESTIMATED DIMENSION, AND K IS THE NUMBER OF THE AUTOMATICALLY 

SELECTED FEATURES). 

α p k Testing 
Classification 
Accuracy (%) 

0.1  
(600 compressed samples) 

39 14 98.8 ± 2.4 

0.2  
(1200 compressed samples) 

46 15 99.4 ± 0.5 

0.3  
(1800 compressed samples) 

64 26 99.9 ± 0.2 

0.4  
(2400 compressed samples) 

59 28 99.9 ± 0.1 

 

τ = 0.02 

Fig. 6. Example of selected feature using our proposed method.  

Fig. 5. The loss values versus the regularization parameter (λ) values. 



     The classification accuracy rates are obtained by averaging 
the results of ten trials for each experiments. It is apparent from 
Table II that high level of classification accuracy were achieved 
using less than 40% of the original data samples. Particularly, 
classification accuracy from the proposed method are 99.9%, for 
40% and 30% of the original data with 28 and 26 selected 
features respectively. Table III presents some sample confusion 
matrix for α = 0.1, 0.2, and 0.3.   

TABLE III.  SAMPLE CONFUSION MATRIX  

Bearing 
classes 

True classes Class 
Prediction 

(%) 
NO NW IR OR RE CA 

NO 79 1 0 0 0 0 98.75 
NW 0 80 0 0 0 0 100 
IR 0 0 78 2 0 0 97.5 
OR 0 0 3 77 0 0 96.25 
RE 0 0 0 0 80 0 100 
CA 0 0 0 0 0 80 100 

(a) Sampling rate α = 0.1 
 

Bearing 
classes 

True classes Class 
Prediction 

(%) 
NO NW IR OR RE CA 

NO 80 0 0 0 0 0 100 
NW 0 80 0 0 0 0 100 
IR 0 0 80 0 0 0 100 
OR 0 0 0 76 4 0 95 
RE 0 0 0 0 80 0 100 
CA 0 0 0 0 0 80 100 

(b) Sampling rate α = 0.2 
 

Bearing 
classes 

True classes Class 
Prediction 

(%) 
NO NW IR OR RE CA 

NO 80 0 0 0 0 0 100 
NW 0 80 0 0 0 0 100 
IR 0 0 80 0 0 0 100 
OR 0 0 0 80 0 0 100 
RE 0 0 0 0 80 0 100 
CA 0 0 0 0 0 80 100 

(c) Sampling rate α = 0.3 

 
For further evaluation of the efficiency of our proposed method, 
Table IV presents the comparisons with some recently 
published results using the same bearing dataset as in [16]. 
Three methods were used to report the classification results in 
[16]: (1) first method uses the whole original signal, (2) second 
uses compressed measurements for α = 0.5 then recover the 
original signals, and (3) third method uses compressed 
measurements for α = 0.25 then recover the original signals. In 
[17] a method uses a combination of CS with α = 0.4 and PCA, 
and in [19] uses a combination of CS with α = 0.3 and Laplacian 
score (LS) feature selection. Finally, results reported in [31] by 
means of a hybrid method involves Fuzzy Min-Max (FMM) 
neural network and Random Forest (RF) using all the original 
data.      
      It is clear that results from our proposed method with α = 0.3 
and 0.4 are better than those results obtained using the methods 

listed in Table IV. Also, the classification results from the 
proposed method with α = 0.2 are better than those reported in 
[16, 17, and 19] and remain competitive with results reported 
in [31] although we are using only 20% of the original data 
which is not matched by the method in [31] using 100% of the 
data .  

TABLE IV.  A COMPARISON WITH THE CLASSIFICATION RESULTS FROM 

LITERATURE ON BEARING DATASET 

 Testing 
Classification 
Accuracy (%) 

Raw Vibration [16] 98.9 ± 1.2 
Compressed Sensed (α = 0.5)  
followed by reconstruction [16] 

92.4 ± 0.5 

Compressed Sensed (α = 0.25) 
followed by reconstruction [16] 

84.6 ± 3.4 

CS-PCA (α = 0.4) [17] 98.8 ± 0.7 
CS-LS (α = 0.3)  with 300 selected features    [19]  99.8 ± 0.3 
FMM-RF (SampEn +PS)      [31]  99.81 ± 0.41 
The proposed method   
                         (α = 0.2) with 15 selected features. 
                         (α = 0.3) with 26 selected features. 
                         (α = 0.4) with 28 selected features. 

 
99.4 ± 0.5 
99.9 ± 0.2 
99.9 ± 0.1 

 
 

V. CONCLUSION 

       The main goal of the current study was to propose a 
vibration-based three-stage method for rotating machine health 
condition monitoring combining CS, a process of GMST, SPE, 
and NCA, and SVM, and to examine its efficacy using 
experimental vibration data of roller bearings. As of the 
experimental results, the proposed method has achieved high 
classification accuracies with significantly reduced feature sets 
and its classification accuracy outperformed existing methods. 
The findings of this study suggest that the proposed method can 
be efficiently used for various high-dimension pattern 
recognition applications by means of MMV-CS based sample 
compression, the process of GMST, SPE, and NCA based 
feature selection and SVM classifier based accurate condition 
classification. 
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