
Do developers really worry about refactoring

re-test? An empirical study of open-source systems

 S. Counsell, S. Swift, M. Arzoky G. Destefanis

 Department of Computer Science Department of Computer Science

 Brunel University, London University of Hertfordshire, Herts, UK

 steve.counsell@brunel.ac.uk g.destefanis@herts.ac.uk

Abstract. In the past two decades, refactoring has become a mainstream devel-

oper practice. One condition of doing refactoring is that the relevant code being

refactored has to be re-tested afterwards to ensure that the code’s semantics

have been preserved. In this paper, we explore the extent to which a set of over

12000 refactorings fell into one of four re-test categories defined by van

Deursen and Moonen; the ‘least disruptive’ of the four categories contains

refactorings requiring only minimal re-test. The ‘most disruptive’ category of

refactorings on the other hand requires significant re-test effort. We used multi-

ple versions of three open-source systems to answer one research question: Do

developers prefer to undertake refactorings in the least disruptive categories or

in the most disruptive? The simple answer is, interestingly, that they prefer to

do both. As well as providing insights into these refactoring patterns across the

three systems, we also highlight a fundamental weakness with software metrics

that try to capture the refactoring process.

Keywords: Refactoring, test, taxonomy, metrics, open-source.

1. Introduction
Since Fowler’s seminal text on refactoring [3] and earlier work by Opdyke [7], the

field of refactoring has, even conservatively speaking, spawned hundreds of studies

[2, 4]. One facet of refactoring we know little about empirically, however, is the re-

test implications of refactoring. Re-testing after refactoring is a necessary, yet time-

consuming and potentially error-prone process and is heavily dependent on the type

of refactoring being performed. One question that could inform our understanding of

developer productivity, code quality and developer habits and which motivates this

research is whether developers opt to undertake refactorings with a high re-test bur-

den, vis-à-vis those that have only limited re-test requirements. An earlier paper by

van Deursen and Moonen (vD&M) [9] explored Fowler’s seventy-two refactorings

and attached a test severity category to each. Their work was motivated by the fact

that a refactoring should: “not change its [the code’s] observable behaviour. Ideally,

this is verified by ensuring that all the tests pass before and after a refactoring. In

practice, it turns out that such verification is not always possible: some refactorings

restructure the code in such a way that tests can only pass after the refactoring if they

are modified”. We used refactoring data extracted in a previous study by Bavota et al.,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362651837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:steve.counsell@brunel.ac.uk

2

[1] to carry out our analysis. The data was drawn from multiple versions of three

open-source systems and is made available as a free download from [10]; it comprises

12046 refactorings extracted using Ref-Finder, a tool capable of extracting fifty-four

of Fowler’s seventy-two [8]. The same work by Bavota et al., investigated whether

refactorings had been applied to code for which quality metrics (e.g., for size, cou-

pling and cohesion) indicated the need for refactoring. A key result was that the met-

rics did not show a clear and obvious relationship with refactoring, suggesting that

they cannot be used to identify classes that might need refactoring. Table 1 (taken

from [1]) summarizes the three systems used, the versions analyzed and the ranges in

classes and KLOC for each system. We note that in the original paper [1], a refactor-

ing and code smell analysis was also undertaken; for the purpose of our study we used

just the refactoring data giving rise to the 12046 refactorings.

System Period Releases Classes KLOC

Apache Jan 2000-Dec 2010 18 87-1191 8-255

Xerces Oct 2002-Dec 2011 23 777-1519 362-918

ArgoUml Nov 1999-Nov 2010 11 181-776 56-179

Table 1. System summary (taken from [1])

2. vD&M’s test taxonomy
In their paper, vD&M [9] describe four separate categories into which the seventy-

two refactorings of Fowler can be placed. Initially, five categories (A-E) were de-

scribed in their paper. However, Category A refactorings were dropped from their

analysis on the basis that they were simply an amalgam of smaller refactorings. The

four remaining categories (B-E) are defined in increasing levels of re-test burden as:

1. Compatible (Category B refactorings): do not change the original interface.

2. Backwards Compatible (Category C refactorings): change the original interface

and are inherently backwards compatible, since they extend the interface.

3. Make backwards compatible (Category D refactorings): change the original inter-

face and can be made backwards compatible by adapting the old interface. For

example, the ‘Move method’ refactoring that moves a method from one class to

another can be made backwards compatible through the addition of a ‘wrapper’

method to retain the old interface.

4. Incompatible (Category E refactorings): change the original interface and are not

backwards compatible because they may, for example, change the types of clas-

ses involved making it difficult to wrap the changes (e.g., Move field).

So, in theory Category B refactorings should present less of a re-test burden than

those in Category C and those in Category C less than in Category D etc. Table 2

shows the seventy-two refactorings of Fowler when placed into each of the four cate-

gories (B-E) as detailed by vD&M.

3

Category/Set of refactorings

Category B: Change Bi-directional Association to Unidirectional, Replace Magic Number

with Symbolic Constant, Replace Nested Conditional with Guard Clauses, Consolidate Du-

plicate Conditional Fragments, Replace Conditional with Polymorphism, Replace Delegation

with Inheritance, Replace Inheritance with Delegation, Replace Method with Method Object,

Remove Assignments to Parameters, Replace Data Value with Object, Introduce Explaining

Variable, Replace Exception with Test, Change Reference to Value, Split Temporary Vari-

able, Decompose Conditional, Introduce Null Object, Preserve Whole Object, Remove Con-

trol Flag, Substitute Algorithm, Introduce Assertion, Extract Class, Inline Temp.

Category C: Consolidate Conditional Expression, Replace Delegation with Inheritance,

Replace Inheritance with Delegation, Replace Record with Data Class, Introduce Foreign

Method, Pull Up Constructor Body, Replace Temp with Query, Duplicate Observed Data,

Self Encapsulate Field, Form Template Method, Extract Superclass, Extract Interface, Push

Down Method, Push Down Field, Extract Method, Pull Up Method, Pull up Field.

Category D: Change Unidirectional Association to Bi-directional, Replace Parameter with

Explicit Methods, Replace Parameter with Method, Separate Query from Modifier, Introduce

Parameter Object, Parameterize Method, Remove Middle Man, Remove Parameter, Rename

Method, Add Parameter, Move Method.

Category E: Replace Constructor with Factory Method, Replace Type Code with

State/Strategy, Replace Type Code with Subclasses, Replace Error Code with Exception,

Replace Subclass with Fields, Replace Type Code with Class, Change Value to Reference,

Introduce Local Extension, Replace Array with Object, Encapsulate Collection, Remove

Setting Method, Encapsulate Downcast, Collapse Hierarchy, Encapsulate Field, Extract

Subclass, Hide Delegate, Inline Method, Inline Class, Hide Method, Move Field.

Table 2. The four vD&M categories and refactorings in each [9]

2.1 Category analysis
We begin our analysis by detailing the number of refactorings found in each category

according to the data of Bavota et al. Table 3 shows, for each of the three open-source

systems, 1) the number of refactorings applied across the four categories (B, C, D and

E), 2) the percentages that this represents and, 3) the totals for each category and each

system. For example, in Apache, 673 refactorings were applied from Category B.

This represents 52.21% of the total of 1289 refactorings undertaken in the entire sys-

tem. Equally, 17.41% is the corresponding proportion of 3865 Category B

refactorings that 673 represents.

System Category B Category C Category D Category E Total

Apache 673 105 423 88 1289

52.21 17.41 8.15 13.01 32.82 7.57 6.82 10.90

Xerces 2056 499 3663 1284 7502

27.41 53.20 6.65 61.83 48.83 65.52 17.11 72.01

ArgoUml 1136 203 1505 411 3255

34.90 29.39 6.24 25.15 46.24 26.92 12.63 23.05

Total 3865 (32.09) 807 (6.70) 5591 (46.41) 1783 (14.80) 12046

Table 3. Number of refactorings in each category (all systems)

4

For Apache, Category D was only the second highest in terms of refactorings (ex-

ceeded by the number in Category B). Table 3 also shows that the highest number of

refactorings for Xerces and ArgoUml was found in Category D (3663 and 1505

refactorings, respectively). This category accounted for 46.41% of the total number of

refactorings across the three systems. For Xerces, 48.83% of all refactorings were in

Category D and 65.52% of Category D refactorings were attributable to the same

system (value bolded in the table). The lowest number of refactorings in all systems

was for Category C, which accounted for just 807 (6.70%) of the total 12046. While

Category B accounted for a significant proportion of the total (32.09%), it was Cate-

gory D that seems to dominate the overall set. At the other extreme, Category E ac-

counted for just 1783 (14.80%) of total number of refactorings; finally, Xerces ac-

counted for 72.01% of all Category E refactorings (value bolded in the table).

2.1.1 Result summary

From the data presented, it is evident that developers did undertake many low test

impact refactorings. Category B accounts for nearly a third of all refactorings. How-

ever, nearly 50% of the total number of refactorings across all systems were drawn

from Category D. This propensity for Category D refactorings was a surprising and

revealing result and contrary to our intuition. We might have expected developers to

prefer to undertake Category B and C refactorings because they are simpler in a re-

test sense (in fact Category C actually saw the lowest number of refactorings). This

does not seem to be the case, however from the data.

2.2 Refactoring analysis
One question which can then be asked is which refactorings were applied most fre-

quently across the four categories? That might help us understand why the result of

the previous section was found. For Apache, three refactorings stood out in Category

D, namely: Add parameter, Remove parameter and Rename method. These three

refactorings accounted for 30.72% of all refactorings applied in the system. The most

frequent was Rename method, whose motivation is described by Fowler [3] as: “The

name of a method does not reveal its purpose”. The solution is simply to: “Change

the name of the method”. In Category B, most of the refactorings related to the low-

level manipulation of conditional logic in the code. For example, 314 of the 673

refactorings were attributable to the: Replace magic number with symbolic constant

(RMNwSC) refactoring. The motivation for this refactoring [3] is: “You have a literal

number with a particular meaning”. The solution is to: “Create a constant, name it

after the meaning, and replace the number with it.” The example given in [3] to illus-

trate is as follows:

double potentialEnergy(double mass, double height) {

 return mass * height * 9.81;

}

After the refactoring, this code becomes:

5

double potentialEnergy(double mass, double height) {

 return mass * GRAVITATIONAL_CONSTANT * height;

}

static final double GRAVITATIONAL_CONSTANT = 9.81;

For Xerces, three refactorings stood out in Category D. These were Rename method

(in keeping with Apache), Move method and Add parameter (again, the same as

Apache) with 1061, 1183 and 929 refactorings, respectively. In addition, a significant

number of Move field refactorings (Category E) were also found (1183). In terms of

Category B refactorings, the RMNwSC refactoring again stood out with 597

refactorings. Another noticeable Category B refactoring was Consolidate conditional

duplicate fragments (CDCF) with 474 instances. The motivation for CDCF according

to Fowler [3] is: “The same fragment of code is in all branches of a conditional ex-

pression”. The solution is to: “Move it outside of the expression”. The following ex-

ample illustrates this refactoring [3]:

if (isSpecialDeal()) {

 total = price * 0.95;

 send();

}

else {

 total = price * 0.98;

 send();

}

After being refactored, the code without the duplicated method send() becomes:

if (isSpecialDeal())

 total = price * 0.95;

else

 total = price * 0.98;

send();

In ArgoUml, the same core set of refactorings seemed to arise. In Category D, the

Add parameter, Remove parameter and Rename method refactorings again featured as

those most applied with 491, 427 and 261 refactorings, respectively. Together, these

three accounted for 1179 of the 1505 D category refactorings (i.e., 78.33%). For the B

and C categories, only two refactorings stood out. The Replace method with method

object refactoring (Category B) accounted for 367 refactorings. The purpose of this

refactoring is to turn a method into its own object so that the local variables it uses

become fields on that object. Equally, the Remove control flag (RCF) refactoring

accounted for 224 of the total number of refactorings. The motivation for RCF is

when “You have a variable that is acting as a control flag for a series of boolean

expressions”. The solution is to: “Use a break or return instead”. Finally, the

RMNwSC refactoring again featured with 145.

2.2.1 Result summary

A small subset of refactorings therefore dominates the total set of refactorings across

all three systems. In Category B, refactorings that manipulated low-level program

6

logic accounted for the majority e.g., Replace magic number with symbolic constant’

and, correspondingly, in Category D, where Add Parameter, Remove parameter and

Rename method accounted for the majority. This result confirms Bavota et al’s con-

clusion with respect to metric applicability. Very few current, popular metrics seem to

capture low-level code logic constructs (i.e., that of conditionals, nesting, flag manip-

ulation). Many of these refactorings manipulate low-level code (e.g., RCF, RNCwGC

and RMNwSC etc) and so it goes without saying that such metrics will be unlikely to

provide insights into refactoring behaviour. Metrics that capture coupling, cohesion

and size etc therefore largely miss the point of refactoring. It is no surprise that

Bavota et al., found no relationship between metrics and refactoring.

2.3 Evolutionary analysis
One aspect of the data that might further inform our analysis is whether, over the

course of time, the trend in application of refactorings changes. We therefore looked

at whether developers tended to undertake less of the Category D and E refactorings

and more in the B and C categories on an evolutionary basis. The premise of this

analysis is that, as systems age, they become more difficult to maintain as they erode

and developers will therefore undertake refactorings with less complexity and with

less of a test burden than others. To answer this question, we ordered the set of

refactorings according to the version they were applied in. Figures 1a, 1b and 1c show

the distribution of the four categories across versions for the three systems. The x-axis

is the version number (we have simply numbered these starting from 1) and the y-axis

the number of refactorings in each of the four types.

 Figure 1a. Refactorings in Apache Figure 1b. Refactorings in Xerces

Figure 1a shows the data for Apache. Most pronounced from the figure are the peaks

in Category D refactorings which occur throughout the course of the versions studied,

but are particularly evident in versions 13, 14 and15. The same is true to a lesser ex-

tent for Category B with a number of peaks, particularly in later versions. Version 15

stands out with 80 refactorings in this sense. The other two categories remain relative-

ly static in numbers apart from one peak for Category E in version 13 with 47

refactorings. However, for this system, there does not appear to any less inclination to

undertake Category D refactorings as the system ages (Category E showed very few

refactorings overall anyway). On the other hand, there does seem to be an increase in

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

No.

Ref.

Version of Apache

Cat B

Cat C

Cat D

Cat E

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23

No.

Ref.

Version of Xerces

Cat B

Cat C

Cat D

Cat E

7

the number of Category B refactorings as the Apache system evolves given by the

relatively large peaks in version 13 onwards.

Figure 1b shows the same data for Xerces. Again, the presence of peaks in the first

and middle versions for Category D is notable. Category E also shows extremes in

version 2 and to a lesser extent 11. As for Apache, Category D is relatively erratic in

nature with peaks and troughs throughout the versions studied. The same is true of

Category B. For Category D, peaks in version 2 and 11 can be seen and the same for

Category B in versions 11 and 19. The pattern of erratic refactorings for Xerces is

similar to Apache. Again, however there does not appear to any less inclination to

undertake Category D refactorings as the system ages. Finally, Figure 1c shows the

data for ArgoUml. The peaks, particularly in Categories B, D and E are noticeable

from the graph. For Categories B and D, there are large peaks in version 5 (a lesser

peak for Category D is also evident in version 2). Category E also features some

peaks in versions 2, 5 and 8. While the number of Category D refactorings in later

versions is less pronounced, there is still no clear evidence that developers avoided

relatively test intensive refactorings in later versions of the system.

Figure 1c. Refactorings in ArgoUml

Across all three systems, there does not seem to be a reduction in Category D and E

refactorings or a dramatic rise in Category B and C refactorings.

3. Conclusions and further work
In this paper, we explored the extent to which a set of over 12000 refactorings fell

into one of four re-test categories previously defined by van Deursen and Moonen.

We explored whether developers would prefer to carry out refactorings with a low test

burden rather than those where significant re-test might be involved (Category B and

C refactorings versus D and E). The analysis showed as a primary result that open-

source developers seem to apply refactorings largely irrespective of the test category

and hence the re-test burden. Clearly, developers do not really care about refactoring

re-test or, if they do, this does not affect their choice of refactoring. No trends in that

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11

No .

Ref.

Version of ArgoUml

Cat B

Cat C

Cat D

Cat E

8

direction were found on an evolutionary basis either. Of course, we have no infor-

mation on whether developers used tools to assist in the refactoring process or wheth-

er they were manually performed. We have also only studied three open-source sys-

tems and limited versions of those systems. However, in defence of this threat, vari-

ous other studies of developer habits suggest that developers generally prefer to refac-

tor manually, rather than using tools. In one study by Murphy-Hill et al., [5] approxi-

mately 90% or all refactorings were applied manually. In another study by Negara et

al., [6], experienced developers were found to apply 11% more manual refactorings

than automatic, especially in renaming operations.

A secondary and more wide-ranging result of the research was that current metrics

seem to capture OO class features well, but they are not at the right level for analysing

refactoring; this was a key result of Bavota et al., [1] and on which our research is

based. This effectively means that OO metrics are largely redundant for indicating the

need for refactoring. One avenue of future work is to encourage fresh metric initia-

tives to establish those that do – and these should be targeted at conditional nested

code constructs. In addition, it would be interesting to explore whether, using data

mining techniques, certain refactorings were always applied together.

References

[1] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, F. Palomba, An Experimental

Investigation on the Innate Relationship between Quality and Refactoring,. Jour-

nal of Systems and Software, 107, C (September 2015), 1-14.

[2] S. Demeyer, S. Ducasse and O. Nierstrasz, Finding refactorings via change met-

rics, ACM Conference on Object Oriented Programming Systems Languages and

Applications (OOPSLA), Minneapolis, USA. pages 166-177, 2000.

[3] M. Fowler, Refactoring: improving the design of existing code, 1999.

[4] T. Mens and T. Tourwe, A Survey of Software Refactoring, IEEE Transactions on

Software Engineering 30(2): 126--139 (2004).

[5] E. Murphy-Hill, C. Parnin, A. Black, How We Refactor, and How We Know It.

IEEE Trans. Software Eng. 38(1): 5-18 (2012).

[6] S. Negara, N. Chen, M. Vakilian, R. Johnson, D. Dig, A Comparative Study of

Manual and Automated Refactorings, ECOOP 2013.

[7] W. Opdyke. Refactoring object-oriented frameworks, Ph.D. Thesis, Univ. of Illi-

nois. 1992.

[8] K. Prete, N. Rachatasumrit,N. Sudan, M. Kim, Template-based Reconstruction of

Complex Refactorings, International Conference on Software Maintenance,

Timisoara, Romania, pp. 1-10, 2010.

[9] A. van Deursen and L. Moonen. The Video Store Revisited - Thoughts on Refac-

toring and Testing. International Conf. on eXtreme Programming and Flexible

Processes in Software Engineering XP 2002, Sardinia, Italy.

[10]https://figshare.com/articles/An_Experimental_Investigation_on_the_Innate_Relationship_

between_Quality_and_Refactoring/1207916

