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ABSTRACT Micro-expression is a subtle and involuntary facial expression that may reveal the hidden 

emotion of human beings. Spotting micro-expression means to locate the moment when the micro-

expression happens, which is a primary step for micro-expression recognition. Previous work in micro-

expression expression spotting focus on spotting micro-expression from short video, and with hand-crafted 

features. In this paper, we present a methodology for spotting micro-expression from long videos. 

Specifically, a new convolutional neural network named as SMEConvNet (Spotting Micro-Expression 

Convolutional Network) was designed for extracting features from video clips, which is the first time that 

deep learning is used in micro-expression spotting. Then a feature matrix processing method was proposed 

for spotting the apex frame from long video, which uses a sliding window and takes the characteristics of 

micro-expression into account to search the apex frame. Experimental results demonstrate that the proposed 

method can achieve better performance than existing state-of-art methods.  

INDEX TERMS Spotting Micro-Expression, Apex Frame, Convolutional Neural Network, Deep Learning

I.    INTRODUCTION 
 

Facial expression analysis has been a topic of interest for 

many years [1, 2, 3]. As a special form of facial expression, 

micro-expression is getting more and more attention [4, 5, 6]. 

Micro-expression is a subtle and involuntary facial 

expression that is not subject to people’s consciousness [7, 8]. 

There are usually two characteristics of micro-expression. 

One is short duration: it only lasts for 1/25 to 1/2 second [9]. 

Another is low intensity in facial muscle movement: not all 

corresponding facial muscles have movement for a specific 

expression, and the movement is very weak [10].  

As micro-expression only occurs when people are trying to 

conceal their emotions, the recognition of micro-expression 

can uncover people’s real emotion or hidden intent. The 

recognition of micro-expression finds application in many 

fields, such as emotion monitoring [8], lie detection [11], and 

homeland security [12].    

In real applications, micro expression happens between 

neutral expressions because it is the result of failure of 

suppressing the facial muscles’ movement. When a person 

tries to conceal his/her emotion, his/her facial expression is 

forced into a neutral state. In the moment when the 

suppression fails, the micro-expression happens. After that 

moment, the face will be back to neutral expression again. 

Thus, the recognition of micro-expression has two steps. The 

first step is to locate the moment when the micro-expression 

occurs, and the second one is to determine which category 

the micro-expression belongs to. This first step is called 

micro-expression spotting, that is a primary step for micro-

expression recognition research and a focus of this paper.  

The starting frame of the moment when micro-expression 

happens is called onset frame. And the ending frame is 
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named as offset frame. The frame where micro-expression 

reaches climax is called apex frame. To facilitate the research 

of micro-expression spotting, the video part from onset frame 

to offset frame was named as “short video” [13]. And the 

“long video” is the raw video sequence that may include 

irrelevant motion out of the short video (shown in Fig. 1).  

Since the apex frame is the most expressive in a short 

video, instead of spotting the facial micro-movement, some 

researchers chose to spot apex frame [13, 15, 16]. The 

effectiveness of apex frame spotting can be determined by 

using the Mean Absolute Error (MAE) and Apex Spotting 

Rate (ASR), which were also used in [13]. MAE indicates 

the average frame distance between the ground truth and the 

spotted apex frame. ASR calculates the success rate in 

spotting apex frame within short video.  

In CASME-RAW [26] and CASMEII-RAW [14] 

databases, the apex frames were manually labeled by coders 

from psychology department. These indexes serve as the 

ground truth for the micro-expression spotting research. 

However, to perform the labeling, at least two coders have to 

work separately to inspect the video clips frame by frame, 

which is time consuming and tedious. An automatic spotting 

method can save much time and energy of human coders. 

Some automatic spotting works only spot apex frame from 

the short video. However, in real application, the apex frame 

needs to be spotted from long videos, not from well-

segmented short video with clear onset and offset annotation. 

It is very difficult to spot micro-expression from long videos, 

because unwanted facial movements may be present on raw 

videos, which are outside of the short video and can be 

falsely detected as micro-expression. In this paper, we 

present a method that can spot the micro-expression from 

long videos without ground truth indexes of the onset and 

offset frames. 

The automatic micro-expression spotting relies on the 

feature extracted from each frame in the raw video. Currently, 

most features used in micro-expression spotting are hand-

crafted features and the selection of feature depends heavily 

on the experience of researchers. In this paper, we present a 

convolutional neural network (CNN) for automatically 

extracting features from frames. To the best of our 

knowledge, this is the first time deep learning is used for 

micro-expression spotting. 

To find the apex frame, some researchers calculate the 

feature difference between current frame and reference fame, 

and locate apex frame as the frame that has the largest 

difference [13, 15]. In this paper, we use a sliding window 

over a feature matrix to locate the apex frame. An index 

value is calculated. The apex frame is located within sliding 

window that produces the largest index value.  

 

 

FIGURE 1.  An example of a long and short video with annotated 
ground-truth labels indicating the onset, apex, and offset frame [14].  

 

As described above, the main contributions of this paper 

are three-fold. Firstly, we present a method for spotting apex 

frame from long videos without knowing the indexes of the 

onset and offset frames. Secondly, we designed a CNN, 

named as Spotting Micro-Expression Convolutional Network 

(SMEConvNet) for automatically spotting apex frame from 

neutral expression frames and extracting features from the 

apex frame. Thirdly, we use a sliding window over feature 

matrix for locating apex frame.    

The remaining parts of this paper are organized as follows: 

The related work is given in Section 2; the proposed method 

is explained in Section 3; experimental results and 

discussions for micro-expression spotting are presented in 

Section 4; the conclusion is given in Section 5. 

 
II. RELATED WORK  
 

Automatic facial micro-expression analysis has attracted 

increasing attention in recent years. However, only a few 

studies have focused on automatic micro-expressions 

spotting. 

Shreve et al [17, 18] used an optical flow method [19] to 

compute the optical strain magnitude to spot both macro and 

micro-expression. Polikovsky et al [20, 21] employed 3D 

gradient histograms as feature to recognize the onset, apex, 

and offset of micro-expression. These methods could inspire 

the research community for developing new micro-

expression spotting methods. However, they were only tested 

on posed micro-expression data. For the recording of posed 

micro-expression videos, participants will control their 

behavior according to the instructions. Therefore, posed data 

may exclude unwanted head movement and more clear-cut 

onset and offset, which makes the task of spotting posed data 

easier than that of spontaneous data.  

Yan et al [15] used Constraint Local Model (CLM) [22] 

and Local Binary Pattern (LBP) [23] as feature extractors for 

searching the apex frame from spontaneous micro-expression 

video. The apex frame is located at the frame that has the 

largest feature difference in comparison with the first frame. 

Liong et al [16] employed optical flow [17] as feature 

extractor for locating apex frame from short video. 

Moilanen et al [24] used LBP histogram to obtain 

temporal locations and spatial locations for micro-expression 
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spotting. The appearance-based features between average 

frame and current frame were used for the spotting.  

Li et al [25] proposed an approach based on deep multi-

task learning with Histograms of Oriented Optical Flow 

(HOOF) feature for micro-expression detection. However, 

they used CNN to detect the facial landmark localization and 

spilt the facial area into regions of interest, which is only the 

pre-processing stage of the micro-expression data. Liong et al 

[13] introduced an automatic approach to micro-expression 

analysis from long video that combines both spotting and 

recognition methods. The apex frame in a long video 

sequence was identified by applying optical strain feature 

extractor after eye masking and regions of interest selection 

techniques. 

 
III. MATERIALS AND METHOD 

A.    DATABASE 

A long video database is required for this research where 

the index of apex frame should be known in order to train the 

model and evaluate the performance. There are only two 

publicly available databases meeting the requirements, which 

are CASME-RAW [26] and CASMEII-RAW [14]. However, 

the data in CASME-RAW was obtained in the environment 

where illumination light may be flicking. The flicking light 

could produce noisy and dark video clips [14]. Therefore, the 

CASMEII-RAW was the only suitable one as we focus on 

the situation where the intensity of illumination source is 

constant.  

There are spontaneous micro-expression video clips from 

26 subjects in the CASMEII-RAW. The average age of the 

subjects is 22.03 years. The spatial resolution is 640×480 

pixels and the frame rate is 200 fps. There are five categories 

of micro-expression in the database. The ground-truths 

provided include the onset, apex, offset frame indexes. 

The database is randomly divided into two parts to 

simulate cross-database evaluation [27]. The first part 

consists of 150 long video clips, which are used as training 

set. The second part consists of 97 long video clips, which 

are employed as testing set. In order to avoid fortuity 

interference, we used five-fold cross-validation in the 

training set. Therefore, the training set of the database was 

randomly divided into five sub-sections, each of which 

contains 30 video clips. In each fold, the proposed network 

was trained on the four sub-sections (120 long video clips) 

and validated on the rest sub-section (30 long video clips). 

After the network was determined on the training set, it was 

then tested on the testing set (97 long video clips). After five 

fold, each of the five sub-sections was used once as a 

validation set, which produces five spotting results shown in 

Table V in Section IV. The final spotting result are given as 

the average of these five spotting results. 

B.    METHOD OUTLINE 

The proposed spotting method consists of three steps that 

are outlined in Fig. 2. They are: (1) pre-processing the long 

video to obtain aligned and cropped video; (2) extracting 

high level features from the processed long video by using 

SMEConvNet; (3) Processing the feature matrixes further 

using a sliding window. 

 

 

FIGURE 2.  Outline of the proposed micro-expression spotting method 

C.    PRE-PROCESSING 

Before applying spotting algorithms, we carried out pre-

processing [28, 14] on the raw sample clips, which had three 

steps. Let R be the set of micro-expression clips: 

 , 1, 2iR r r R i n=  ∈ =  ⋯   (1), 

 
, , 1,2i i j i ir f f r j l = ∈ = ⋯   (2). 

The sample ir represents the i-th micro-expression video 

clip, where il  is the frame number of ir ,  
,i jf is the j-th 

frame  of the sample ir . 

Firstly, a frontal face with neutral expression M was 

selected as the model face. Two inner eye corners and a spine 

landmark point of M were detected by the robust detector 

Discriminative Response Map Fitting (DRMF) [29], these 

three points are ( )ψ M .  

Secondly, the first frame 
,1if of the micro-expression 

sequence ir was transformed into the model face by using a 

non-reflective similarity transformation (NST) [14] to 

achieve the face alignment. The transform matrix T is 

represented as Equ. 3: 

 ( )( ),1
( ), , 1, 2ψ ψ= = ⋯

i i
T NST M f i n   (3), 

where ( ),1ψ if is the coordinates of inner eye corners and 

nasal spine point of 
,1if . Then all frames of ir were 

transformed by using 
iT . The main reason why we detected 

landmark points only on the first frame but not on all frames 

is that the landmark points detected by DRMF might not be  

accurate enough. The transformed image Tf was computed 

by Equ. 4: 

 
, , , 1, 2T

i j i i j if T f j l= × = ⋯   (4). 

Thirdly, the inner eye corners and nasal spine point 

coordinates 
iU of the first frame of each transformed micro-

expression sequence 
,1

T

if were detected by DRMF, and then 
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the face of T

ir each frame of was cropped out by using a 

rectangle determined by
iU . Each cropped face was then 

resized to 224×224 pixels. Fig. 3 illustrates the process of the 

preprocessing. 

 

 

FIGURE 3.  An illustration of process of pre-processing 

D. UP-SAMPLEING 

In order to train a CNN with the ability to distinguish apex 

frame from neutral expression frames, a large data is needed. 

In a long video including one short video, some neutral 

expression frames can be selected for the training. However, 

there is only one apex frame in the long video, which is far 

too few for the training.  

Due to the frame rate of the database is high, there is little 

difference between the apex frame and its nearby frames. 

Therefore, we replace these frames within the short video 

with the apex frame. So that there are enough apex frames in 

the long video. We treated the apex frame as a positive 

sample and the neutral expression as a negative sample. With 

positive and negative samples, therefore, we can train the 

CNN. The up-sampling of apex frame is illustrated in Fig. 4. 

  

 

FIGURE 4.  The illustration of up-sampling apex frame 

E. SMEConvNet 

In CNN design, convolutional and pooling layer pairs are 

stacked and then followed by fully connected (FC) layer at 

the end [30, 31, 32]. In design of the SMEConvNet, we 

followed this widely used structure. Different from normal 

design (only considering one FC layer), the SMEConvNet 

has three FC layers, which is inspired by the structure of 

AlexNet [33]. According to previous research work [34, 35, 

36, 37], a deep neural network is not suitable for medium 

size dataset. Therefore, we design the SMEConvNet where 

medium size dataset can be used for training.  

The number of convolutional and pooling layer pairs was 

determined experimentally using different numbers of pairs 

(experiment results are given in Section 4.1). The 

performance of the network increased as the number of pairs 

increased, and reached the best when the number was four. 

The reason might be that the four convolutional and pooling 

layer pairs is the most suitable for the size of the database, i.e. 

the less number of pairs cannot extract high enough abstract 

features, the more number of pairs will be redundant for the 

dataset so that the performance becomes worse.    

Therefore, the proposed SMEConvNet has four 

convolutional and pooling layer pairs and three FC layers. 

The first two FC layers have 500 channels each, and the third 

layer (Fc7) performs apex frame and neutral expression 

classification that contains 2 channels (one for each class). 

The structure of the SMEConvNet is shown in Fig. 5 and the 

detailed information on configuration is given in Table Ⅰ. 

 

 

FIGURE 5.  The structure of SMEConvNet 

 

TABLE Ⅰ: CONFIGURATION OF SMECONVNET 

 

 

During the training, the network weight parameters are 

learned using mini-batch stochastic gradient descent with 

momentum of 0.9. Each 64 images batch is sent to the CNN 

with weight decay 0.005. The base learning rate is 10-4 and 

the value is further dropped when the loss stops changing. 

The network iterates 30 epochs in each fold. 

F. FEATURE MATRIX PROCESSING 

The output of the Fc6 layer of SMEConvNet is a feature 

matrix ( F ) with dimension ×X Y , where X is the frame 

number of the input long video and Y is the number of 

features in the Fc6 layer in SMEConvNet. Each row of the 

feature matrix corresponds to a frame in the long video. 

The feature matrix F was further processed into two more 

matrixes. The steps and method used for the processing are 

illustrated in Fig6.   
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The first frame of Matrix F  was chosen as the reference 

frame. Therefore, the elements of each row of Matrix F were 

made difference with the corresponding elements in the first 

row of Matrix F . Then each difference value was squared. 

Finally, all the square values were summed in each row to 

obtain Matrix A with dimension 1×X (shown in Fig. 6). The 

j-th element of Matrix A  was calculated by using  
2

11
( )

Y

j jn nn
A F F

=
= −                                (5), 

where 
jnF  is the element of matrix F . 

 

FIGURE 6.  Illustration of feature matrix processing 

SWj : the j-th sliding window with L length covering part of Matrix A 

Bj : the j-th element in Matrix B  

 

The Matrix A was further processed by using a sliding 

window (SW). The length of the sliding window is L  (an 

odd number), where: 

 2 1L h= +   (6). 

The L  was set as the average duration of micro-

expression. Because CASME2-RAW has a frame rate of 200 

fps. The average duration of micro-expressions is 0.335s 

corresponding to frame length of 67. We made L as 67 

( h =33).  

All the values in the sliding window (SW) were summed to 

produce one value as shown in Fig 6. After the sliding 

window processing, the Matrix B with dimension of 

( )2 1X h− × was obtained (shown in Fig. 6).  The j-th element 

of matrix B was calculated by using: 

( )
j h

j j pp j h
B SW A A

+

= −
= =                          (7), 

where 
jSW is the j-th sliding window for generating 

jB  and 

pA is the p-th element of Matrix A .  

To locate the apex frame, the largest element in matrix B  

was found and the sliding window (SWL) producing this 

largest value was firstly located by using: 

, ( ) ( )j jSWL SW if SW A Max B= =           (8), 

where ( )Max B  is the largest element in matrix B  

 Then the largest value in SWL was found, and the index of 

this largest value in Matrix A was located. Suppose that the 

largest value is the m-th element in Matrix A : 

( )
m

A Max SWL=                                    (9). 

Finally, the apex frame is located as the frame 

corresponding to this largest value, i.e. the apex is the m-th 

frame in the long video. 

Fig. 7 gives two examples to illustrate the sliding window 

method.  The central frame in the sliding window is current 

frame (CF), the frame h-th frame ahead of the CF is tail 

frame (TF), and h-th frame after the CF is head frame (HF).  

In the first example shown in Fig. 7 (a), the CF is the 35th 

frame, and TF is the second frame of the long video. The sum 

produced by this sliding window is small since the window 

contains no or only small part of short video. In the second 

example shown in Fig. 7 (b), the CF is located near to the 

apex frame. The sum produced by this sliding window 

should be much larger than the value in the first example, 

since the window covers much more short videos. Therefore, 

the more the sliding window covers short video, the larger 

the value is in the Matrix B .  

 

(a) 

 

(b) 

FIGURE 7.   (a) CF is far from the apex frame, (b) CF is close to the apex 

frame 

When the sliding window coincides with the short video, it 

produces the maximum value in the Matrix B . Therefore, the 

apex frame should be located in the sliding window that has 

maximum value in Matrix B . More discussion about the 

effectiveness of this feature matrix processing method will be 

given in the next section.  

 
IV. RESULTS AND DISSCUSSION 

A.  COMPARISION OF VARIOUS STRUCTURES AND 
PARAMETERS 

The experimental results under different CNN structures 

are outlined in Table Ⅱ, one per column. The AlexNet is also 

listed for comparison. Different network structure are 

denoted by A, B, C, D, and E. During training, the input to 

CNN is a fixed-size 224×224 RGB image.  Three fully-

connected layers are in the end of every CNN: the first two 

have 500 channels each, the third performs 2-way 

classification and contain 2 channels (one for each class). 

The final layer of every network is a soft-max layer. All 

networks have the same configuration of the fully connected 

layers. All hidden layers are equipped with the Rectified 

Linear Unit (RELU) function. 
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TABLE Ⅱ: VARIOUS CNN STRUCTURES. THE DEPTH OF THE NETWORK 

INCREASES FROM LEFT (A) TO THE RIGHT (D). THE CONVOLUTIONAL 

LAYER IS DENOTED AS ‘CONV’. THE RELU ACTIVATION FUNCTION IS NOT 

SHOWN FOR BREVITY 

 

 

Table Ⅲ shows the configuration of each network. Each 

column of Table Ⅲ specifies the size of kernel (‘K’) and 

stride (‘S’), and the number of kernels (‘N’). The padding 

value was set as zero in each layer and not shown in the table. 

The CNN depth increased from A to D. The network E has 

the same structure as the network C. However, network E has 

more kernels.  

In all networks, we use kernel size of 11 (K=11) at the first 

convolutional layer. This kernel size is much larger than that 

of rest layers and will increase the computational complexity 

of the network. However, many researches [38, 39] 

demonstrated that large kernel size can cover more part of 

certain important facial regions, such as eye and mouth 

region, and thus improve the performance of facial 

expression recognition.    

In fully-connected layers (Fc), 500 is the number of the 

feature length and 2 is the number of class (apex frame or 

non-apex frame). The feature dimensionality is only 500 in 

order to reduce the number of parameters in the model, and 

prevents over-fitting.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE Ⅲ. CNNS CONFIGURATION. 

 

 

Table Ⅳ shows the accuracy of classifying apex frame 

and non-apex frame. From the accuracy achieved by network 

A to D, we can see that the accuracy increases as the network 

depth increase, reaches maximum as the CNN (Network C) 

has 4 convolutional-and-pooling pairs, and then begins to 

decrease from Network D that has 5 convolutional-and-

pooling pairs. Therefore, we chose Network C as the 

SMEConvNet. 

The Network E has the same structure as the Network C 

(see Table Ⅲ), but E has more convolutional kernels, which 

means E extracted more features. Compared with the 

accuracy that C archives (71.97%), E can only achieve 

accuracy of 68.19%. More kernels in E means more features 

extracted. This result indicates that more feature maps may 

led to decrease in accuracy rate and suggesting that the width 

of the network should also be considered when design the 

CNN.   

It is also seen that the proposed networks (A-E) has better 

performance than AlexNet. This results support the point that 

properly sized network is likely to achieve better results [35, 

36].  

 
TABLE Ⅳ. THE ACCURACY OF CLASSIFYING APEX FRAME AND NON-APEX 

FRAME 

 

B.  SPOTTING APEX FRAME 
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1)  COMPARISON OF DIFFERENT FEATURE MATRIX 
PROCESSING METHODS 

The effectiveness of apex frame spotting is evaluated by 

using the Mean Absolute Error (MAE) and Apex Spotting 

Rate (ASR) [13]. MAE is the average frame distance 

between the ground truth and the spotted apex frame, and can 

be computed by using: 

  

1

1 M

j

j

MAE e
M =

=                               (10)  

where M is the total number of video sequence, and e is the 

distance (in frames) between the ground-truth apex and the 

spotted apex. The ASR is the success rate in spotting apex 

frame within the short video. If the spotted apex frame is 

within the short video, the spotting is successful. The ASR 

can be computed by using: 

 

1

1 M

j

ASR
M

α
=

=              (11) 

 ( )*

, ,1 ,

0

j onset j offsetif f f f

otherwise
α

 ∈= 


 (12) 

The algorithm described in section 3.6 was used to spot 

apex frame from long video sequences. In order to show the 

advantage of the proposed method, we compared three 

methods or the spotting, i.e. Maximum Frame (Max), Sliding 

Window Current Frame (SW-CF), and Sliding Window 

Maximum Frame (SW-Max) method. 

The Max method regards the frame that has the maximum 

value in Matrix A  (see Fig. 6) as the apex frame.  

The SW-CF method finds the sliding window that 

produces the largest values in Matrix B  (see Fig. 6) and 

takes the current frame (central frame) of the sliding window 

as the apex frame. 

The SW-Max method finds the sliding window that 

produces the largest values in Matrix B  (see Fig. 6) and 

takes the frame that has maximum value in Matrix A  within 

the sliding window as the apex frame. This method is the 

method used in the paper.  

Table V gives the experimental results. It is observed that 

the sliding window based method (SW-CF and SW-Max) 

can achieve better performance (smaller MAE and larger 

ASR) than what the Max method can achieve in each fold of 

test. The maximum value in matrix A should correspond to 

the apex frame in normal case, because the apex frame is the 

instant when the micro-expression reaches its climax (the 

most intense movement). However, in the case where 

irrelevant movement, such as eye blinking and head 

movement, appears outside of the short video, the maximum 

value in Matrix A may correspond to the irrelevant 

movement. In this situation, the Max method will produce 

wrong result. However, the sliding window based methods 

take full advantage of the characteristics that micro-

expressions last a period of time, to locate the period, in 

which apex frame locates, and then locate the apex frame. 

Thus the sliding window based methods are more robust than 

Max method when irrelevant movements appear outside the 

short video.  

It is also seen from Table Ⅴ that SW-Max can achieve 

better performance than what SW-CF can achieve in each 

fold of test. The average MAE of SW-Max (22.36) is 4 

frames smaller than that of SW-CF (26.55), and ASR of SW-

Max (0.8280) are 0.03 smaller than that of SW-CF (0.7932).  

This indicates that SW-Max is a better method than SW-CF 

for micro-expression spotting.  

The reason why SW-Max is better than SW-CF is that 

the apex frame is not always located in the center of sliding 

window. Shown in Fig. 8 is the potting of the Matrix A of a 

subject with vertical axis as the matrix element value. The 

short video range is from the 71st frame to the 161st frame 

shown as black rectangular. The ground-truth apex is the 91st 

frame shown as magenta triangle dot. When the sliding 

window (shown as yellow rectangle) is at 80th to 146th frame, 

the sum produced by the window is the largest. In this case, 

SW-CF takes the center point of the sliding window, i.e. 

133rd frame (shown as red triangle dot), as the apex frame. 

However, SW-Max did not simply use the central frame of 

the sliding window, it search the maximum frame in the 

sliding window again to locate the apex frame, and thus takes 

the 87th frame (shown as green triangle dot) as the apex 

frame, which is much closer to the ground-truth apex frame.  

One of reasons why SW-Max is better than Max is that 

Max tends to find other irrelevant facial movements, such as 

eye blinking. In the Fig 8, the Max method regards the 152nd 

frame as the apex frame (shown as blue triangle dot), which 

is far from the ground-truth apex. The 152nd frame is the peak 

of a spike in Fig 8.  This spike is a result of eye blinking, 

which has even higher value than the ground-truth apex but 

much narrower width. By using SW-Max method, the sliding 

window with proper width can avoid locating this spike as 

micro-expression.   

 
TABLE Ⅴ. THE EXPERIMENTAL RESULTS OF SPOTTING APEX FRAME.  
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FIGURE 8.  The plotting of matrix A 

Short Video Range: from 71st to 161st frame shown as black rectangular 

Sliding Window: from 80th to 146th frame shown as yellow rectangular, 
which produces the largest sum 

Ground-truth: the ground-truth apex frame, the 91st frame shown as 
magenta triangle dot 

SW-Max Apex: the apex frame predicted by SW-Max method, the 87th 
frame shown as green triangle dot 

SW-CF Apex: the apex frame predicted by SW-Max method, the 113rd 

frame shown as green triangle dot 

Max Apex: the apex frame predicted by Max method, the 152nd frame 
shown as green triangle dot 

  

 

2)  INDEPENDENT OF FEATURE EXTRACTION 
METHOD 

To further illustrate the SW-Max method is feature-

extraction-method-independent. We used LBP to extract 

features of long video sequences, and then used Max, SW-CF, 

and SW-Max to spot apex frame. Table Ⅵ shows the result 

of LBP method. Again, the sliding window based method is 

better than Max method, and SW-Max method is better than 

SW-CF method. These results suggest that the proposed SW-

Max method is independent of feature extraction method.  

 
TABLE Ⅵ. THE RESULT OF SPOTTING APEX FRAME USING LBP 

 

3)  INDEPENDENT OF FEATURE EXTRACTION 
METHOD 

The spotting results by using proposed method 

(CNN+SW-Max) are also compared to a traditional method 

(LBP) and a state-of-art method [13]. The method in [13] is 

the only method that we can find and that has been recently 

developed for spotting apex frame from long video due to the 

few research in this area.  

The experimental results (average MAE and ASR) are 

summarize in Table Ⅶ. It was observed that the method in 

[13] can achieve higher ASR (0.8230) than that (0.7838) of 

LBP-SW-Max, but larger MAE (27.21) than that (25.80) of 

LBP-SW-Max. This indicates that [13] has higher successful 

rate of locating apex frame within the short video range, but 

less successful with respect to locating apex frame close to 

the ground-truth apex frame.  

In all three methods, the proposed method (CNN+SW-

Max) has the highest ASR (0.8280) and smallest MAE 

(22.36). Compared with method [13], the CNN+SW-Max 

has 5 frames smaller MAE that is 18.5% smaller than that of 

method [13]. Compared with LBP+SW-Max, the CNN+SW-

Max has 4% higher ASR and 3 frame smaller MAE that is 

12% smaller than that of LBP+SW-Max). This may suggest 

that the CNN+SW-Max is a good method for locating apex 

frame in terms of both locating apex frame within the short 

video range and locating apex frame close to the ground-truth 

apex frame.  

 
TABLE Ⅶ. COMPARISON OF DIFFERENT METHODS FOR SPOTTING APEX 

FRAME FROM LONG VIDEO 

 

V.    CONCLUSION 

 

Micro-expression spotting is a primary step for micro-

expression recognition. In this paper, we proposed a new 

method for spotting micro-expression from long video. A 

convolutional neural network named as SMEConvNet was 

designed. This is the first time that deep learning technique 

was used in micro-expression spotting. The SMEConvNet 

has four convolutional and pooling layer pairs followed by 

three fully connected layers. The number of feature extracted 

by using the SMEConvNet from each frame is 500. A feature 

matrix can then be built from a long video. Then, a feature 

matrix processing method was proposed. The feature matrix 

was processed by using difference, squared, and sum 

operation firstly, and then was manipulated by a sliding 

window. The sliding window producing the largest value was 

located, and then the maximum value within the sliding 

window was located as the apex frame. By combing the 

proposed feature extraction method (CNN) and feature 

matrix processing method (SW-Max), the proposed method 

can achieve higher ASR (0.8280) and smaller MAE (22.36) 

than LBP+SW-Max and state-of-art method [13].  
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