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1. Introduction 

The Efficient Market Hypothesis (EMH) is one of the central tenets of financial economics 

(Fama, 1965). However, the empirical literature has provided extensive evidence of 

various “anomalies”, such as fat tails, volatility clustering, long memory etc. that are 

inconsistent with the EMH paradigm and suggests that it is possible to make abnormal 

profits using appropriate trading strategies (Plastun, 2017). A well-known anomaly is the 

so-called overreaction hypothesis, namely the idea that agents make investment decisions 

giving disproportionate weight to more recent information (see De Bondt and Thaler, 

1985). Clements et al. (2009) report that the overreaction anomaly has not only persisted 

but in fact increased over the last twenty years. Its existence has been documented in 

several studies for different markets and frequencies such as monthly, weekly or daily data 

(see, e.g., Bremer and Sweeny, 1991; Clare and Thomas, 1995; Larson and Madura, 2006; 

Mynhardt and Plastun, 2013; Caporale et al. 2017). 

There exist a significant number of studies on market overreactions but most of them 

analyse short-term price overreactions based on daily data (Atkins and Dyl, 1990; Bremer 

and Sweeney, 1991; Cox and Peterson, 1994; Choi and Jayaraman, 2009) and focus only 

on a single market/asset. By contrast, this paper analyses long-term overreactions and a 

variety of markets and frequencies by (i) carrying out various statistical tests to establish 

whether overreaction anomalies exist using both weekly and monthly data, and (ii) using a 

trading robot method to examine whether they give rise to exploitable profit opportunities, 

i.e. whether price overreactions are simply a statistical phenomena or can also be seen as 

evidence against the EMH. The analysis is carried out for various financial markets: the 

US stock market (the Dow Jones Index and 10 companies included in this index), FOREX 

(10 currency pairs) and commodity markets (gold and oil). A similar investigation was 

carried out by Caporale et al. (2018); however, their analysis focused on short-term (i.e., 
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daily) overreactions, whilst the present study considers a longer horizon, namely a week or 

a month. 

The remainder of the paper is organised as follows. Section 2 reviews the existing 

literature on the overreaction hypothesis. Section 3 describes the methodology used in this 

study. Section 4 discusses the empirical results. Section 5 provides some concluding 

remarks. 

 

2. Literature Review 

The seminal paper on the overreaction hypothesis is due to De Bondt and Thaler (DT, 

1985), who followed the work of Kahneman and Tversky (1982), and showed that the best 

(worst) performing portfolios in the NYSE over a three-year period tended to under (over)-

perform over the following three-year period. Their explanation was that significant 

deviations of asset prices from their fundamental value occur because of agents’ irrational 

behaviour, with recent news being given an excessive weight. DT also reported an 

asymmetry in the overreaction (it is bigger for undervalued than for overvalued stocks), 

and a "January effect", with a clustering of overreactions in that particular month. 

Other studies  include Brown, Harlow and Tinic (1988), who analysed NYSE data 

for the period 1946-1983 and reached similar conclusions to DT; Ferri and Min (1996), 

who confirmed the presence of overreactions using S&P 500 data for the period 1962-

1991; Larson and Madura (2003), who used NYSE data for the period 1988-1998 and also 

showed the presence of overreactions. Clement et al. (2009) confirmed the original 

findings of DT using CRSP data for the period 1926-1982, and also showed that the 

overreaction anomaly had increased during the following twenty years. 

In addition to papers analysing stock markets (Alonso and Rubio, 1990, Brailsford, 

1992, Bowman and Iverson, 1998, Antoniou et. al., 2005, Mynhardt and Plastun, 2013 

among others), some consider other markets such as the gold (Cutler, Poterba, and 
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Summers (1991)), or the options market (Poteshman, 2001). Finally, Conrad and Kaul 

(1993) showed that the returns used in many studies (supporting the overreaction 

hypothesis) are upwardly biased, and “true” returns have no relation to overreaction; 

therefore this issue is still unresolved.   

The other aspect of the overreaction hypothesis is its practical implementation, i.e. 

the possibility of obtaining extra profits by exploiting this anomaly. Jegadeesh and Titman 

(1993) and Lehmann (1990) found that a strategy based on overreactions can indeed 

generate abnormal profits. Baytas and Cakiki (1999) also tested a trading strategy based on 

the overreaction hypothesis, and showed that contrarian portfolios on the long-term 

horizons can generate significant profits.  

The most recent and thorough investigation is due to Caporale et al. (2018), who 

analyse different financial markets (FOREX, stock and commodity) using the same 

approach as in the present study. That study shows that a strategy based on counter-

movements after overreactions does not generate profits in the FOREX and the commodity 

markets, but it is profitable in the case of the US stock market. Also, it detects a brand new 

anomaly based on the overreaction hypothesis, i.e. an “inertia” anomaly (after an 

overreaction day prices tend to move in the same direction for some time). Here we extend 

the analysis by considering long-term overreactions and the possibility of making extra 

profits over weekly and monthly intervals. The variety of assets and markets (FOREX, 

stock market, commodities) as well as of time frequencies (weekly, monthly) considered in 

this study can help to address issues such as robustness, data snooping, data mining etc. 

Moreover, since according to the Adaptive Markets Hypothesis (Lo, 2004) financial 

markets evolve and anomalies may disappear during this process, it is important to include 

the most recent data as we do. 
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3. Data and Methodology 

We analyse the following weekly and monthly series: for the US stock market, the Dow 

Jones index and stocks of two companies included in this index (Microsoft and Boeing - 

for the trading robot analysis we also add Alcoa, AIG, Walt Disney, General Electric, 

Home Depot, IBM, Intel, Exxon Mobil); for the FOREX, EURUSD, USDCHF and 

AUDUSD (for the trading robot analysis also USDJPY, USDCAD, GBPJPY, GBPUSD, 

EURJPY, GBPCHF, EURGBP); for commodities, gold and oil (only gold for the trading 

robot analysis owing to data unavailability). The choice of assets is based on their liquidity, 

trading volume, data availability, and extent of use. The sample covers the period from 

January 2002 till the end of December 2016, and for the trading robot analysis the period is 

2002-2014 for the FOREX and 2006-2014 for the US stock market and commodity market. 

These dates are selected on the basis of data availability (especially for the purpose of 

trading robot analysis) and to include the most recent data since markets can evolve as 

stressed by the Adaptive Market Hypothesis. 

 

3.1 Student’s t-tests 

First we carry out Student’s t-tests to confirm (reject) the presence of anomalies after 

overreactions. To provide additional evidence we also conduct ANOVA analysis, and 

carry out Mann–Whitney U tests not relying on the normality assumption.  

To identify anomalies we run multiple regressions including a dummy variable: 

Yt = a0 + a1 D1t + εt  (1) 

where Yt – volatility on the period t;  

a0– mean volatility for a normal day (the day when there was no volatility 

explosion); 

a1 – dummy coefficient; 



6 
 

D1t - a dummy variable for a specific data group, equal to 1 when the data belong to 

a day of volatility explosion, and equal to 0 when they do not; 

εt – Random error term for period t. 

The size, sign and statistical significance of the dummy coefficient provide 

information about possible anomalies.  

Then we apply the trading robot approach to establish whether the detected 

anomalies create exploitable profit opportunities. According to the classical overreaction 

hypothesis, an overreaction should be followed by a correction, i.e. price counter-

movements, and this should be bigger than after normal days. If one day is not enough for 

the market to incorporate new information, i.e. to overreact, then after one-day abnormal 

price changes one can expect movements in the direction of the overreaction bigger than 

after normal days. 

The two hypotheses to be tested are therefore: 

H1: Counter-reactions after overreactions differ from those after normal periods. 

H2: Price movements after overreactions in the direction of the overreaction differ 

from such movements after normal periods. 

The null hypothesis is in both cases that the data after normal and overreaction 

periods belong to the same population.   

As already mentioned, we focus on long-term overreactions, so the period of 

analysis is one week or one month. The parameters characterising price behaviour over 

such a time interval are maximum, minimum, open and close prices. In most studies price 

movements are measured as the difference between the open and close price. In our 

opinion the weekly (monthly) return, i.e. the difference between the maximum and 

minimum prices during the week (month), is more appropriate. This is calculated as: 

,%100
Low

)LowHigh(
R

i
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
      (2) 
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where iR is the % weekly (monthly) return, iHigh  is the maximum price, and iLow  is the 

minimum price for week (month) і. 

We consider three definitions of “overreaction”: 

1)  when the current weekly (monthly) return exceeds the average plus one 

standard deviation 

     ,)R(R nni             (3) 

where nR  is the average size of weekly (monthly) returns for period n 
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and n  is the standard deviation of weekly (monthly) returns for period n 
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           (5) 

2) when the current weekly (monthly) return exceeds the average plus two standard 

deviations, i.e.,  

)2R(R nni 
.
           (6) 

3) when the current weekly (monthly) return exceeds the average plus three 

standard deviations, i.e.,  

)3R(R nni 
.  

          (7) 

The next step is to determine the size of the price movement during the following 

week (month). For Hypothesis 1 (the counter-reaction or counter-movement assumption), 

we measure it as the difference between the next period’s open price and the maximum 

deviation from it in the opposite direction to the price movement in the overreaction 

period. 

If the price increased, then the size of the counter-reaction is calculated as: 
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where 1icR   is the counter-reaction size, and liOpen  is the next period’s open price. 

If the price decreased, then the corresponding definition is:  
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.

   (9) 

In the case of Hypothesis 2 (movement in the direction of the overreaction), either 

equation (9) or (8) is used depending on whether the price has increased or decreased.  

Two data sets (with 1icR  values) are then constructed, including the size of price 

movements after normal and abnormal price changes respectively. The first data set 

consists of 1icR  values after period with abnormal price changes. The second contains 

1icR  values after a period with normal price changes. The null hypothesis to be tested is 

that they are both drawn from the same population.  

 

 

3.2 Trading Robot Analysis 

The trading robot approach considers the long-term overreactions from a trader’s 

viewpoint, i.e. whether it is possible to make abnormal profits by exploiting the 

overreaction anomaly, and simulates the actions of a trader using an algorithm representing 

a trading strategy. This is a programme in the MetaTrader terminal that has been developed 

in MetaQuotes Language 4 (MQL4) and used for the automation of analytical and trading 

processes. Trading robots (called experts in MetaTrader) allow to analyse price data and 

manage trading activities on the basis of the signals received.   

MetaQuotes Language 4 is the language for programming trade strategies built in 

the client terminal. The syntax of MQL4 is quite similar to that of the C language. It allows 

to programme trading robots that automate trade processes and is ideally suited to the 
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implementation of trading strategies. The terminal also allows to check the efficiency of 

trading robots using historical data. These are saved in the MetaTrader terminal as bars and 

represent records appearing as TOHLCV (HST format). The trading terminal allows to test 

experts by various methods. By selecting smaller periods it is possible to see price 

fluctuations within bars, i.e., price changes will be reproduced more precisely. For 

example, when an expert is tested on one-hour data, price changes for a bar can be 

modelled using one-minute data. The price history stored in the client terminal includes 

only Bid prices. In order to model Ask prices, the strategy tester uses the current spread at 

the beginning of testing. However, a user can set a custom spread for testing in the 

"Spread", thereby approximating better actual price movements.  

We examine two trading strategies: 

- Strategy 1 (based on H1): This is based on the classical overreaction anomaly, 

i.e. the presence of abnormal counter-reactions after the overreaction period. The 

algorithm is constructed as follows: at the end of the overreaction period financial 

assets are sold or bought depending on whether abnormal price increases or 

decreased respectively have occurred. An open position is closed if a target profit 

value is reached or at the end of the following period (for details of how the target 

profit value is defined see below). 

- Strategy 2 (based on H2): This is based on the non-classical overreaction 

anomaly, i.e. the presence the abnormal price movements in the direction of the 

overreaction in the following period. The algorithm is built as follows: at the end of 

the overreaction period financial assets are bought or sold depending on whether 

abnormal price increases or decreases respectively have occurred. Again, an open 

position is closed if a target profit value is reached or at the end of the following 

period. 
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The results of the trading strategy testing and some key data are presented in the 

"Report" in Appendix A. The most important indicators given in the “Report” are: 

- Total net profit: this is the difference between "Gross profit" and "Gross loss" 

measured in US dollars. We used marginal trading with the leverage 1:100, 

therefore it is necessary to invest $1000 to make the profit mentioned in the 

Trading Report. The annual return is defined as Total net profit/100, so, for 

instance, an annual total net profit of $100 represents a 10% annual return on 

the investment; 

- Profit trades: % of successful trades in total trades; 

- Expected payoff: the mathematical expectation of a win. This parameter 

represents the average profit/loss per trade. It is also the expected 

profitability/unprofitability of the next trade; 

- Total trades: total amount of trade positions; 

- Bars in test: the number of past observations modelled in bars during testing. 

The results are summarised in the “Graph” section of the “Report”: this represents 

the account balance and general account status considering open positions. The “Report” 

also provides full information on all the simulated transactions and their financial results. 

The following parameters affect the profitability of the trading strategies (the next section 

explains how they are set): 

- Criterion for overreaction (symbol: sigma_dz): the number of standard 

deviations added to the mean to form the standard period interval; 

- Period of averaging (period_dz): the size of the data set used to calculate base 

mean and standard deviation; 

- Time in position (time_val): how long the opened position has to be held. 

We carry out t-tests to examine whether the results we obtain are statistically 

different from the random ones. We chose this approach because the sample size is usually 



11 
 

less than 100. A t-test compares the means from two samples to see whether they come 

from the same population. In our case the first is the average profit/loss factor of one trade 

applying the trading strategy, and the second is equal to zero because random trading 

(without transaction costs) should generate zero profit.  

The null hypothesis (H0) is that the mean is the same in both samples, and the 

alternative (H1) that it is not. The computed values of the t-test are compared with the 

critical one at the 5% significance level. Failure to reject H0 implies that there are no 

advantages from exploiting the trading strategy being considered, whilst a rejection 

suggests that the adopted strategy can generate abnormal profits. 

Example of the t-test results are reported in Table 1. As can be seen the results 

obtained are not differing from the random ones. 

Table 1: t-test for the trading simulation results for Strategy 1 (case of 

EURUSD, testing period 2001-2014)* 

 

Parameter Value 

Number of the trades 96 

Total profit -1331.03 

Average profit per trade -13.86 

Standard deviation 192,27 

t-test -0.70 

z critical (0,95) 1.78 

Null hypothesis Accepted 

 

* For data sources see Appendix A 

As can be seen, H0 cannot be rejected, which implies that the trading simulation 

results are not statistically different from the random ones and therefore this trading 

strategy is not effective and there is no exploitable profit opportunity. 

 

4. Empirical Results 

The first step is to set the basic overreaction parameters/criterions by choosing the number 

of standard deviations (sigma_dz) to be added to the average to form the “standard” period 
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interval for price fluctuations and the averaging period to calculate the mean and the 

standard deviation (symbol: period_dz). 

For this purpose we used the Dow Jones Index data for the time period 1991-2014. 

The number of abnormal returns detected in the period 1991-2014 is reported in Table 2 

(for weekly data) and Table 3 (for monthly data).  

 

Table 2: Number of abnormal returns detections in Dow-Jones index during 1991-

2014 (weekly data)  

Period_dz 3 5 10 20 30 

Indicator Number % Number % Number % Number % Number % 

Overall 1241 100 1239 100 1233 100 1223 100 1213 100 

Number of abnormal 

returns (criterion 

=mean+sigma_dz)   251 20 239 19 206 17 198 16 198 16 

Number of abnormal 

returns (criterion= 

mean+2*sigma_dz)   0 0 0 0 56 5 65 5 69 6 

Number of abnormal 

returns (criterion = 

mean+3*sigma_dz)   0 0 0 0 0 0 13 1 19 2 

 

Table 3: Number of abnormal returns detections in Dow-Jones index during 1991-

2014 (monthly data)  

Period_dz 3 5 10 20 30 

Indicator Number % Number % Number % Number % Number % 

Overall 285 100 283 100 278 100 268 100 258 100 

Number of abnormal 

returns (criterion 

=mean+sigma_dz)   56 20 52 18 45 16 42 15 44 15 

Number of abnormal 

returns (criterion= 

mean+2*sigma_dz)   0 0 0 0 16 6 20 7 22 8 

Number of abnormal 

returns (criterion = 

mean+3*sigma_dz)   0 0 0 0 0 0 4 1 6 2 

 

As can be seen from the above tables, both parameters (averaging period and 

number of standard deviations added to the mean) affect the number of detected anomalies. 

Changes in the averaging period have relatively small effect on the number of detected 

anomalies (the difference between the results when the period considered is 5 and 30 

respectively is less than 20%). By contrast, each additional standard deviation significantly 
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decreases the number of observed abnormal returns. Therefore 2-4% of the full sample (the 

number of abnormal returns in the case of 3 sigmas) is not sufficiently representative to 

draw conclusions. To investigate whether sigma_dz equal to 1 is most appropriate we carry 

out t-tests of long-term counter-reactions for the Dow Jones index over the period 1991-

2014 (see Tables 4 and 5 for weekly and monthly data respectively). As can be seen, the 

anomaly is most easily detected in the case of sigma_dz= 1 (the t-stat is the biggest), and 

therefore we set sigma_dz equal to 1.  

 

Table 4: T-test of the counter-reactions after the overreaction for the Dow-Jones 

index during 1991-2014 (weekly data) for the different values of sigma_dz parameter 

case of period_dz=30     
Number of standard 

deviations 
1 2 3 

  abnormal normal abnormal normal abnormal normal 

Number of matches 198 1015 69 1144 19 1194 

Mean 2,36% 1,74% 2,77% 1,78% 3,57% 1,81% 

Standard deviation 2,22% 1,52% 2,43% 1,59% 3,15% 1,62% 

t-criterion 3,91 3,38 2,44 

t-critical (р=0.95) 1,96 1,96 1,96 

Null hypothesis rejected rejected rejected 

 

 

Table 5: T-test of the counter-reactions after the overreaction for the Dow-Jones 

index during 1991-2014 (monthly data) for the different values of sigma_dz 

parameter case of period_dz=30     
Number of standard 

deviations 
1 2 3 

  abnormal normal abnormal normal abnormal normal 

Number of matches 44 214 22 236 6 252 

Mean 4,39% 3,22% 4,25% 3,34% 7,97% 3,31% 

Standard deviation 4,09% 2,83% 4,37% 2,96% 6,78% 2,90% 

t-criterion 1,90 0,98 1,68 

t-critical (р=0.95) 1,96 1,96 1,96 

Null hypothesis accepted accepted accepted 

 

Student’s t –tests of long-term counter-reactions for the Dow Jones index over the 

period 1991-2014 (Tables 6 and 7 for weekly and monthly data respectively) suggest that 
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the optimal averaging period is 30, their corresponding t-statistics being significantly 

higher than for other averaging periods. 

 

Table 6: T-test of the counter-reactions after the overreaction for the Dow-Jones 

index during 1991-2014 (weekly data) for the different averaging periods case of 

sigma_dz=1   

Period_dz 3 5 10 20 30 

  abnormal normal abnormal normal abnormal normal abnormal normal abnormal normal 

Number of 

matches 
251 990 

239 1000 206 1027 198 1025 198 1015 

Mean 2,05% 1,78% 2,05% 1,78% 2,11% 1,78% 2,24% 1,76% 2,36% 1,74% 

Standard 

deviation 
1,78% 1,62% 

1,82% 1,61% 1,89% 1,60% 1,94% 1,59% 2,22% 1,52% 

t-criterion 2,45 2,26 2,50 3,51 3,91 

t-critical 

(р=0.95) 
1,96 1,96 1,96 1,96 1,96 

Null 

hypothesis 
rejected rejected rejected rejected rejected 

 

Table 7: T-test of the counter-reactions after the overreaction for the Dow-Jones 

index during 1991-2014 (monthly data) for the different averaging periods case of 

sigma_dz=1     

Period_dz 3 5 10 20 30 

  abnormal normal abnormal normal abnormal normal abnormal normal abnormal normal 

Number of 

matches 56 229 52 230 45 233 42 226 44 214 

Mean 3,59% 3,40% 3,51% 3,42% 3,73% 3,37% 3,80% 3,32% 4,39% 3,22% 

Standard 

deviation 3,37% 2,94% 3,41% 2,95% 3,66% 2,93% 3,80% 2,90% 4,09% 2,83% 

t-criterion 0,40 0,20 0,66 0,82 1,90 

t-critical 

(р=0.95) 
1,96 1,96 1,96 1,96 1,96 

Null 

hypothesis 
accepted accepted accepted accepted accepted 

 

Therefore the key parameters for the tests of long-term overreaction in different 

financial markets analysis are set as follows: the period_dz (averaging period) is set equal 

to 30 and sigma_dz (the number of standard deviations added to mean used as a criterion 

of overreaction) equal to 1.  

The results for H1 are presented in Appendix B (weekly data) and C (monthly data) 

and are summarised in Tables 8-9. 
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   Table 8: Statistical tests results: case of Hypothesis 1 (weekly data)* 

 

Financial market FOREX Commodities US stock market 

Financial asset EURUSD USDCHF AUDUSD Gold Oil Boeing  Microsoft 

T-test - - - + + - - 

ANOVA - + + + + + - 

Mann–Whitney U test - - - + + + - 

Regression analysis 

with dummy variables 
- + + + + + - 

 
* ”+” – anomaly confirmed, “-” - anomaly not confirmed. 

 

As can be seen in the case of weekly data strong statistical evidence in favour of the 

overreaction anomaly can be found for both Gold and Oil prices, and to some extent for the 

US stock market (in the case of Boeing) and the FOREX (in the case of USDCHF and 

AUDUSD).  

 

   Table 9: Statistical tests results: case of Hypothesis 1 (monthly data)* 

 

Financial market FOREX Commodities US stock market 

Financial asset EURUSD USDCHF AUDUSD Gold Oil Boeing  Microsoft 

T-test - - - - - - - 

ANOVA - + - + - - - 

Mann–Whitney U test + - - - - - - 

Regression analysis 

with dummy variables 
- + - + - - - 

 
* ”+” – anomaly confirmed, “-” - anomaly not confirmed. 

 

The results for the monthly data are significantly different from those for the 

weekly ones. The evidence of anomalies almost completely disappears, except for 

EURUSD and USDCHF (in the case of the FOREX) and Gold (in the case of 

commodities).  

Overall, it appears that in the case of H1 weekly data provides the strongest 

evidence for the classical short-term counter-movement after an overreaction day, which is 

most noticeable in the case of commodities.  
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The results for H2 are presented in Appendix D (weekly data) and E (monthly data) 

and are summarised in Tables 10-11. 

  

   

 

 Table 10: Statistical tests results: case of Hypothesis 2 (weekly data)* 

 

Financial market FOREX Commodities US stock market 

Financial asset EURUSD USDCHF AUDUSD Gold Oil Boeing  Microsoft 

T-test + - + - + - + 

ANOVA + + + + + - + 

Mann–Whitney U test + - + - + - + 

Regression analysis 

with dummy variables 
+ + + + + - + 

 
* ”+” – anomaly confirmed, “-” - anomaly not confirmed. 

 

Hypothesis 2 is not rejected in many cases with weekly data. We find very strong 

evidence in favour of an “inertia anomaly” (prices tend to move in the direction of the 

overreaction in the following period). This applies to EURUSD and AUDUSD, Oil and 

Microsoft data, and represents evidence of market inefficiency caused by overreactions. 

 

   Table 11: Statistical tests results: case of Hypothesis 2 (monthly data)* 

 

Financial market FOREX Commodities US stock market 

Financial asset EURUSD USDCHF AUDUSD Gold Oil Boeing  Microsoft 

T-test - - - + + - - 

ANOVA - + + + + - + 

Mann–Whitney U test - - + + + - - 

Regression analysis with 

dummy variables 
- + + + + - + 

 
* ”+” – anomaly confirmed, “-” - anomaly not confirmed. 

The results for the monthly data again are significantly differing from those for the 

weekly ones. Evidence in favour of the inertia anomaly is present for commodities and 

only for AUSUSD in the FOREX.  

Overall the results from testing Hypothesis 2 suggest that the weekly frequency is 

the most appropriate to detect the inertia anomaly. The commodity market again look like 

the most inefficient among those analysed. 
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The general conclusion from the statistical tests are as follows: anomalies are 

generally detected using weekly but not monthly data; the commodity markets are the most 

affected by the overreaction anomalies; the results for the FOREX and US stock markets 

are mixed. 

Next, we analyse whether these anomalies give rise to exploitable profit 

opportunities. If they do not, we conclude that they do not represent evidence inconsistent 

with the EMH. We expand the list of assets in order to provide more extensive results. The 

complete list of assets includes: FOREX (EURUSD, USDCHF, AUDUSD, USDJPY, 

USDCAD, GBPJPY, GBPUSD, EURJPY, GBPCHF, EURGBP), US stock market (Alcoa, 

AIG, Boeing Company, Walt Disney, General Electric, Home Depot, IBM, Intel, 

Microsoft, Exxon Mobil), commodity (Gold). 

The parameters of the trading strategies 1 and 2 are set as follows:  

- Period_dz = 30 (see above for an explanation); 

- Time_val = week  (see above); 

- Sigma_dz=1 (see above). 

The results of the trading robot analysis are presented in Table 12 (Strategy 1) and 

Table 13 (Strategy 2). The testing periods are as follows FOREX: 2001-2014; US stock 

market: 2006-2014; Commodities: 2006-2014. 

 

   Table 12: Trading results for Strategy 1 

Asset 
Total 

trades 

Succesfull 

trades, % 

Profit, 

USD 
Return 

Annual 

return 

t-test 

FOREX 

EURUSD 108 63% -1584 -158,4% -11,3% Accepted 

USDCHF 112 63% -1815 -181,5% -13,0% Accepted 

AUDUSD 114 66% -1 690 -169,0% -12,1% Accepted 

USDJPY 116 69% 1 662 166,2% 11,9% Rejected 

USDCAD 118 66% -2 121 -212,1% -15,2% Accepted 

GBPJPY 111 71% 3 541 354,1% 25,3% Rejected 

GBPUSD 116 68% -135 -13,5% -1,0% Accepted 

EURJPY 107 64% -1 829 -182,9% -13,1% Accepted 
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GBPCHF 106 74% 3 721 372,1% 26,6% Rejected 

EURGBP 118 71% 169 16,9% 1,2% Accepted 

US stock market 

Alcoa 64 63% -2280 -228,0% -25,3% Accepted 

AIG 64 67% 480 48,0% 5,3% Accepted 

Boeing Company 87 71% 3290 329,0% 36,6% Rejected 

Walt Disney 63 70% -289 -28,9% -3,2% Accepted 

General electric 67 64% -39 -3,9% -0,4% Accepted 

Home Depot 79 64% 290 29,0% 3,2% Accepted 

IBM 65 63% -3090 -309,0% -34,3% Accepted 

Intel 70 54% -1055 -105,5% -11,7% Accepted 

Microsoft 74 66% 430 43,0% 4,8% Accepted 

Exxon Mobil 72 67% 773 77,3% 8,6% Accepted 

Commodities 

Gold 78 64,0% -2091 -209,1% -23,2% Accepted 

 

Strategy 1, based on the classical overreaction hypothesis, trades on counter-

reactions after periods of abnormal price dynamics. In general, it is unprofitable in the case 

of the FOREX (7 pairs out of 10 produce negative or statistically insignificant results) and 

commodity markets (in the case of Gold). For the US stock market the results are mixed 

(50% of profitable assets), but in general this anomaly does not seem to be exploitable. The 

assets to be traded on the basis of the classical overreaction hypothesis with weekly data 

are therefore: GBPCHF (ROI=27% per year), GBPJPY (25%), USDJPY (12%) and 

Boeing (36.6%). Although as previously shown a non-rejection of the null does not 

necessarily mean that there exist profit opportunities, it appears that it does mean a higher 

chance of profitable trading.  

   Table 13: Trading results for Strategy 2 

Asset 
Total 

trades 

Succesfull 

trades, % 

Profit, 

USD 
Return 

Annual 

return 

t-test 

FOREX 

EURUSD 112 58% 848 84,8% 6,1% Rejected 

USDCHF 119 57% 690 69,0% 4,9% Rejected 

AUDUSD 117 56% 416 41,6% 3,0% Accepted 

USDJPY 116 50% -479 -47,9% -3,4% Accepted 

USDCAD 117 58% 1 829 182,9% 13,1% Rejected 

GBPJPY 114 47% -6 766 -676,6% -48,3% Accepted 

GBPUSD 116 53% -566 -56,6% -4,0% Accepted 

EURJPY 107 58% 476 47,6% 3,4% Accepted 
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GBPCHF 106 48% -2 991 -299,1% -21,4% Accepted 

EURGBP 118 49% -2 609 -260,9% -18,6% Accepted 

US stock market 

Alcoa 68 51% 877 87,7% 9,7% Rejected 

AIG 65 60% 2390 239,0% 26,6% Rejected 

Boeing Company 87 44% -2470 -247,0% -27,4% Accepted 

Walt Disney 62 47% -1475 -147,5% -16,4% Accepted 

General electric 69 51% 410 41,0% 4,6% Accepted 

Home Depot 79 47% -1557 -155,7% -17,3% Accepted 

IBM 65 38% -9236 -923,6% -102,6% Accepted 

Intel 70 50% -36,4 -3,6% -0,4% Accepted 

Microsoft 74 40% -1814 -181,4% -20,2% Accepted 

Exxon Mobil 71 50% -1711 -171,1% -19,0% Accepted 

Commodities 

Gold 78 58,0% 1011 101,1% 11,2% Rejected 

 

Strategy 2, based on the so-called “inertia anomaly”, trades on price movements in 

the direction of the overreaction in the following period. In general it is unprofitable for the 

US stock market (7 assets out of the 10 analysed produce negative results), whilst the 

results are mixed for the FOREX (there are 50% of profitable assets, but only 3 of the 5 

profitable assets pass the t-test on randomness). There is evidence of profit opportunities in 

the commodity markets. The assets to be traded on the basis of the inertia anomaly with 

weekly data are therefore: USDCAD (ROI=13% per year), USDCHF (5%), EURUSD 

(6%), AIG (27%), Alcoa (10%) and Gold (11%). 

 

5. Conclusions 

This paper examines long-term price overreactions in various financial markets 

(commodities, US stock market and FOREX). It addresses the issue of whether they should 

be seen simply as a statistical phenomenon or instead as anomalies giving rise to 

exploitable profit opportunities, only the latter being inconsistent with the EMH paradigm. 

The analysis is conducted in two steps. First, a number of statistical tests are carried out for 

overreactions as a statistical phenomenon. Second, a trading robot approach is applied to 

test the profitability of two alternative strategies, one based on the classical overreaction 
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anomaly (H1: counter-reactions after overreactions differ from those after normal periods), 

the other on an “inertia” anomaly (H2: price movements after overreactions in the same 

direction of the overreaction differ from those after normal periods). Both weekly and 

monthly data are used. Evidence of anomalies is found predominantly in the case of 

weekly data.  

More specifically, H1 cannot be rejected for the US stock market and commodity 

markets when the averaging period is 30, whilst it is rejected for the FOREX. The results 

for H2 are more mixed and provide evidence of an “inertia” anomaly in the commodity 

market and for some assets in the US stock market and FOREX. The trading robot analysis 

shows that in general strategies based on the overreaction anomalies are not profitable, and 

therefore the latter cannot be seen as inconsistent with the EMH. However, in some cases 

abnormal profits can be made; in particular this is true of (i) GBPCHF (ROI=27% per 

year), GBPJPY (25%), Boeing (36%), ExxonMobil (8.6%) in the case of the classical 

overreaction hypothesis and weekly data, and (ii) USDCAD (13%), USDCHF (5%), 

EURUSD (6%), AIG (27%), Alcoa (10%) and Gold (11%) in the case of the inertia 

anomaly and also with weekly data.  

A comparison between these results and the daily ones reported in Caporale et al. 

(2017) suggests that the classic overreaction anomaly (H1) occurs at both short- and long-

term intervals in the case of the US stock market and commodity markets. The results for 

the FOREX are mixed at both intervals, but mostly suggest no contrarian movements after 

overreactions. The findings concerning the “inertia” anomaly (H2) are more stable and 

consistent: it is detected for the commodity markets and US stock market at both short- and 

long-term horizons. As for the FOREX, there is a short- but not a long-term anomaly in 

most cases. The trading results imply that there is no single profitable strategy: the findings 

are quite sensitive to the specific asset being considered, and therefore it is necessary to 

investigate case by case whether it is possible to earn abnormal profits by exploiting the 
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classical overreaction and/or inertia anomaly. Future research will extend the analysis 

focusing in particular on unusually low returns. 
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Appendix A 

Example of strategy tester report: case of EURUSD, period 2001-2014, H1 testing 

Table A.1 – Overall statistics 

Symbol EURUSD (Euro vs US Dollar) 

Period 
1 Hour (H1) 2001.01.01 00:00 - 2014.11.24 23:00 (2001.01.01 - 

2015.01.01) 

Model 
Every tick (the most precise method based on all available least 

timeframes) 

Parameters 
profit_koef=10; stop=10; sigma_koef=1; period_dz=30; 

time_val=600000; 

Bars in test 87109 Ticks modelled 92878183 Modelling quality 90.00% 

Initial deposit 10000.00     Spread 
Current 

(15) 

Total net profit -1331.03 Gross profit 6349.26 Gross loss -7680.29 

Profit factor 0.83 Expected payoff -13.86   
 

Absolute drawdown 1972.07 Maximal drawdown 
2457.96 

(23.44%) 
Relative drawdown 

23.44% 

(2457.96) 

Total trades 96 
Short positions 

(won %) 

45 

(42.22%) 

Long positions (won 

%) 

51 

(58.82%) 

  
Profit trades (% of 

total) 

49 

(51.04%) 

Loss trades (% of 

total) 

47 

(48.96%) 

Largest profit trade 200.06 loss trade -999.97 

Average profit trade 129.58 loss trade -163.41 

Maximum 
consecutive wins 

(profit in money) 

5 

(492.76) 

consecutive losses 

(loss in money) 

5 

(-1298.77) 

Maximal 
consecutive profit 

(count of wins) 

598.95 

(3) 

consecutive loss 

(count of losses) 

-1298.77 

(5) 

Average consecutive wins 2 consecutive losses 2 

 

Figure A.1 – Equity dynamics 
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Table A.2 – Statement (fragment) 

# Time Type Order Size Price S / L T / P Profit Balance 

1 16.03.2001 22:00 buy 1 0.10 0.89765 0.79765 0.91765 
 

2 23.03.2001 20:40 close 1 0.10 0.88880 0.79765 0.91765 -89.97 9910.03 

3 25.01.2002 22:00 buy 2 0.10 0.86585 0.76585 0.88585 
 

4 01.02.2002 20:40 close 2 0.10 0.86160 0.76585 0.88585 -43.97 9866.06 

5 17.05.2002 22:00 sell 3 0.10 0.92100 1.02100 0.90100 
 

6 24.05.2002 20:40 close 3 0.10 0.92095 1.02100 0.90100 0.57 9866.63 

7 31.05.2002 22:00 sell 4 0.10 0.93250 1.03250 0.91250 
 

8 07.06.2002 20:40 close 4 0.10 0.94335 1.03250 0.91250 -108.43 9758.20 

9 21.06.2002 22:00 sell 5 0.10 0.97130 1.07130 0.95130 
 

10 28.06.2002 20:40 close 5 0.10 0.99075 1.07130 0.95130 -194.43 9563.77 

11 28.06.2002 22:00 sell 6 0.10 0.99100 1.09100 0.97100 
 

12 05.07.2002 20:40 close 6 0.10 0.97335 1.09100 0.97100 176.57 9740.34 

13 05.07.2002 22:00 buy 7 0.10 0.97335 0.87335 0.99335 
 

14 09.07.2002 13:30 t/p 7 0.10 0.99335 0.87335 0.99335 199.58 9939.92 

15 19.07.2002 22:00 sell 8 0.10 1.01460 1.11460 0.99460 
 

16 23.07.2002 8:59 t/p 8 0.10 0.99460 1.11460 0.99460 200.02 10139.94 

17 26.07.2002 22:00 buy 9 0.10 0.98745 0.88745 1.00745 
 

18 02.08.2002 20:40 close 9 0.10 0.98710 0.88745 1.00745 -4.97 10134.97 

19 20.09.2002 22:00 sell 10 0.10 0.98180 1.08180 0.96180 
 

20 27.09.2002 20:40 close 10 0.10 0.97985 1.08180 0.96180 19.57 10154.54 

21 01.11.2002 22:00 sell 11 0.10 0.99660 1.09660 0.97660 
 

22 08.11.2002 20:41 close 11 0.10 1.01335 1.09660 0.97660 -167.43 9987.11 

23 07.03.2003 22:00 sell 12 0.10 1.10060 1.20060 1.08060 
 

24 13.03.2003 19:55 t/p 12 0.10 1.08060 1.20060 1.08060 200.06 10187.17 

25 14.03.2003 22:00 buy 13 0.10 1.07445 0.97445 1.09445 
 

26 21.03.2003 20:40 close 13 0.10 1.05286 0.97445 1.09445 -217.37 9969.80 

27 21.03.2003 22:00 buy 14 0.10 1.05275 0.95275 1.07275 
 

28 27.03.2003 9:51 t/p 14 0.10 1.07275 0.95275 1.07275 198.74 10168.54 

29 02.05.2003 22:00 sell 15 0.10 1.12310 1.22310 1.10310 
 

30 09.05.2003 20:40 close 15 0.10 1.14921 1.22310 1.10310 -261.03 9907.51 

31 09.05.2003 22:00 sell 16 0.10 1.14930 1.24930 1.12930 
 

32 16.05.2003 20:40 close 16 0.10 1.15625 1.24930 1.12930 -69.43 9838.08 

33 20.06.2003 22:00 buy 17 0.10 1.16065 1.06065 1.18065 
 

34 27.06.2003 20:40 close 17 0.10 1.14195 1.06065 1.18065 -188.47 9649.61 

35 01.08.2003 22:00 buy 18 0.10 1.12625 1.02625 1.14625 
 

36 08.08.2003 20:40 close 18 0.10 1.13053 1.02625 1.14625 41.33 9690.94 

37 22.08.2003 22:00 buy 19 0.10 1.08905 0.98905 1.10905 
 

38 29.08.2003 20:40 close 19 0.10 1.09770 0.98905 1.10905 85.03 9775.97 

39 05.09.2003 22:00 sell 20 0.10 1.11070 1.21070 1.09070 
 

40 12.09.2003 20:40 close 20 0.10 1.12985 1.21070 1.09070 -191.43 9584.54 
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Appendix B 

Statistical tests of Hypothesis 1, case of weekly data 

 
       Table B.1: T-test of Hypothesis 1, case of foreign exchange market (weekly data) 

  

Type of asset EURUSD USDJPY AUDUSD 

Indicator abnormal normal abnormal normal Abnormal normal 

Number of matches 115 634 113 636 116 633 

Mean 1,14% 1,13% 1,60% 1,19% 1,63% 1,27% 

Standard deviation 1,00% 0,87% 3,60% 0,94% 2,07% 1,13% 

t-criterion 0,10 1,20 1,79 

t-critical (р=0.95) 1.96 

Null hypothesis accepted accepted accepted 

  

       Table B.2: T-test of Hypothesis 1, case of US Stock Market and Commodities 

(weekly data) 

  

Type of a market Commodities US Stock Market 

Type of asset Gold Oil Boeing Microsoft 

Indicator abnormal normal abnormal normal Abnormal normal Abnormal normal 

Number of matches 114 638 119 630 76 389 102 649 

Mean 2.46% 1.74% 4.45% 3.31% 3.44% 2.74% 2.96% 2.48% 

Standard deviation 2.88% 1.67% 4.10% 3.21% 2.91% 2.83% 3.04% 2.60% 

t-criterion 2.60 2.88 1.93 1.50 

t-critical (р=0.95) 1.96 

Null hypothesis rejected rejected accepted accepted 

 

      Table B.3: ANOVA test of Hypothesis 1 (weekly data) 

Type of a market FOREX Commodities US Stock Market 

Type of asset EURUSD AUDUSD USDCHF Gold Oil Boeing Microsoft 

F 0,04 7,53 6,20 14,65 6,17 4,28 3,14 

P value 0,85 0.006 0,01 0.00 0.01 0.04 0.07 

F critical 3,85 3,85 3,85 3,85 3,87 3,86 3,85 

Null hypothesis accepted rejected rejected rejected rejected rejected accepted 

 

      Table B.4: Mann–Whitney U test of Hypothesis 1 (weekly data) 

Type of a market FOREX Commodities US Stock Market 

Type of asset EURUSD AUDUSD USDCHF Gold Oil Boeing Microsoft 

Adjusted H 0,07 1,87 0,74 5,32 42.08 7.59 1.58 

d.f. 1 1 1 1 1 1 1 

P value 0,79 0,17 0,39 0,02 0.00 0.01 0.21 

Critical value 3.84 3.84 3.84 3.84 3.84 3.84 3.84 

Null hypothesis accepted accepted accepted rejected rejected rejected accepted 
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Table B.5: Regression analysis with dummy variables of Hypothesis 1 (weekly data) 

Parameter/ Type of asset FOREX Commodities US Stock Market 

Parameter/ Type of asset EURUSD AUDUSD USDCHF Gold Oil Boeing Microsoft 

Mean volatility (a0) 
0,0112 

(0,0000) 

0,0127 

(0,0000) 

0,0119 

(0,0000) 

0,0174 

(0,0000) 

0,0332 

(0,0000) 

0,0275 

(0,0000) 

0,0248 

(0,0000) 

Dummy coefficient (a1) 
0,0001 

(0,1942) 

0,0036 

(0,0062) 

0,0042 

(0,0123) 

0,0074 

(0,0001) 

0,0117 

(0,0005) 

0,0073  

(0,0389) 

0,0050 

(0,0764) 

F-test 

0,03 

(0.0000) 

7,5368 

(0.006) 

6,28 

(0.01) 

14,66 

(0.0001) 

12,16 

(0.0005) 

4,28 

(0.0389) 

3,14 

(0.0764) 

Multiple R 0,007 0,10 0,09 0,14 0,13 0,12 0,06 

Anomaly 

not 

confirmed 

confirmed confirmed confirmed confirmed confirmed not 

confirmed 

* P-values are in parentheses 
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Appendix C 

Statistical tests of Hypothesis 1, case of monthly data 

 
       Table C.1: T-test of Hypothesis 1, case of foreign exchange market (monthly 

data) 

  

Type of asset EURUSD USDCHF AUDUSD 

Indicator abnormal normal abnormal normal Abnormal normal 

Number of matches 22 129 16 135 26 125 

Mean 2.82% 2.15% 3.77% 2.55% 4.12% 2.77% 

Standard deviation 2.13% 2.16% 4.25% 3.19% 3.50% 2.36% 

t-criterion 1.37 1.11 1.88 

t-critical (р=0.95) 1.96 

Null hypothesis accepted accepted accepted 

 

       Table C.2: T-test of Hypothesis 1, case of US Stock Market and Commodities 

(monthly data) 

  

Type of a market Commodities US Stock Market 

Type of asset Gold Oil Boeing Microsoft 

Indicator abnormal normal abnormal normal Abnormal normal Abnormal normal 

Number of matches 25 126 23 128 9 80 21 130 

Mean 6.42% 4.06% 6.88% 6.30% 4.16% 4.96% 5.77% 5.08% 

Standard deviation 6.80% 3.16% 6.77% 6.28% 4.67% 4.66% 5.26% 4.73% 

t-criterion 1.70 0.38 0.48 0.56 

t-critical (р=0.95) 1.96 

Null hypothesis accepted accepted accepted accepted 

 

      Table C.3: ANOVA test of Hypothesis 1 (monthly data) 

Type of a market FOREX Commodities US Stock Market 

Type of asset EURUSD AUDUSD USDCHF Gold Oil Boeing Microsoft 

F 2.50 7.07 2.69 8.76 0.33 0.05 0.67 

P value 0.11 0.01 0.10 0.00 0.56 0.81 0.41 

F critical 3.90 3.84 3.90 3.90 3.90 3.95 3.90 

Null hypothesis accepted rejected accepted rejected accepted accepted accepted 

 

      Table C.4: Mann–Whitney U test of Hypothesis 1 (monthly data) 

Type of a market FOREX Commodities US Stock Market 

Type of asset EURUSD AUDUSD USDCHF Gold Oil Boeing Microsoft 

Adjusted H 4.84 2.82 1.87 1.89 0.38 0.05 0.36 

d.f. 1 1 1 1 1 1 1 

P value 0.03 0.09 0.17 0.17 0.54 0.82 0.55 

Critical value 3.84 3.84 3.84 3.84 3.84 3.84 3.84 

Null hypothesis rejected accepted accepted accepted accepted accepted accepted 
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Table C.5: Regression analysis with dummy variables of Hypothesis 1 (monthly data) 

Parameter/ Type of asset FOREX Commodities US Stock Market 

Parameter/ Type of asset EURUSD AUDUSD USDCHF Gold Oil Boeing Microsoft 

Mean volatility (a0) 
0,0216 

(0,0000) 

0,0279 

(0,0000) 

0,0257 

(0,0000) 

0,0410 

(0,0000) 

0,0635 

(0,0000) 

0,0501 

(0,0000) 

0,0512 

(0,0000) 

Dummy coefficient (a1) 
0,0078 

(0,1158) 

0,0148 

(0,0087) 

0,0143 

(0,1031) 

0,0258 

(0,0036) 

0,0083 

(0,5647) 

-0.0039 

(0,8125) 

0,0092 

(0,4149) 

F-test 

2,50 

(0.1158) 

7.07 

(0.0087) 

2.69  

(0. 1031) 

8.76 

(0,0036) 

0.33 

(0,5647) 

0.05 

(0.8125) 

0.67 

(0.4149) 

Multiple R 0,12 0,21 0,13 0,24 0,05 0,02 0,12 

Anomaly 

not 

confirmed 

confirmed not 

confirmed 

confirmed not 

confirmed 

not 

confirmed 

not 

confirmed 

* P-values are in parentheses 
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Appendix D 

Statistical tests of Hypothesis 2, case of weekly data 

 
       Table D.1: T-test of Hypothesis 2, case of foreign exchange market (weekly data) 

  

Type of asset EURUSD AUDUSD USDCHF 

Indicator abnormal normal abnormal normal Abnormal normal 

Number of matches 115 634 116 633 113 635 

Mean 1,29% 1,01% 1,72% 1,30% 1,33% 1,09% 

Standard deviation 1,22% 0,93% 2,38% 1,17% 1,52% 0,88% 

t-criterion 2,32 2,86 1.59 

t-critical (р=0.95) 1.96 

Null hypothesis rejected rejected accepted 

 

       Table D.2: T-test of Hypothesis 2, case of US Stock Market and Commodities 

(weekly data) 

  

Type of a market Commodities US Stock Market 

Type of asset Gold Oil Boeing Microsoft 

Indicator abnormal normal abnormal normal Abnormal normal Abnormal normal 

Number of matches 114 638 119 630 76 389 102 649 

Mean 2,39% 1,98% 4,64% 3,17% 2,89% 2,77% 2,75% 2,20% 

Standard deviation 2,48% 1,73% 4,82% 2,92% 3,45% 3,14% 2,48% 2,27% 

t-criterion 1.69 3.21 0.27 2.12 

t-critical (р=0.95) 1.96 

Null hypothesis accepted rejected accepted rejected 

 

      Table D.3: ANOVA test of Hypothesis 2 (weekly data) 

Type of a market FOREX Commodities US Stock Market 

Type of asset EURUSD AUDUSD USDCHF Gold Oil Boeing Microsoft 

F 8.46 9.05 5.64 5.05 20.69 0.13 5.55 

P value 0.00 0.00 0.01 0.02 0.00 0.71 0.02 

F critical 3.85 3.85 3.85 3.85 3.85 3.86 3.85 

Null hypothesis rejected rejected rejected rejected rejected accepted rejected 

 

      Table D.4: Mann–Whitney U test of Hypothesis 2 (weekly data) 

Type of a market FOREX Commodities US Stock Market 

Type of asset EURUSD AUDUSD USDCHF Gold Oil Boeing Microsoft 

Adjusted H 9,09 4,51 1,83 2,56 38,09 0,00 6,04 

d.f. 1 1 1 1 1 1 1 

P value 0,00 0,03 0,18 0,11 0,00 0,99 0,01 

Critical value 3.84 3.84 3.84 3.84 3.84 3.84 3.84 

Null hypothesis rejected rejected accepted accepted rejected accepted rejected 

 



31 
 

Table D.5: Regression analysis with dummy variables of Hypothesis 2 (weekly data) 

Parameter/ Type of asset FOREX Commodities US Stock Market 

Parameter/ Type of asset EURUSD AUDUSD USDCHF Gold Oil Boeing Microsoft 

Mean volatility (a0) 
0,0101 

(0,0000) 

0,0130 

(0,0000) 

0,0109 

(0,0000) 

0,0198 

(0,0000) 

0,0317 

(0,0000) 

0,0278 

(0,0000) 

0,0220 

(0,0000) 

Dummy coefficient (a1) 
0,0028 

(0,0037) 

0,0043 

(0,0027) 

0,0024 

(0,0173) 

0,0042 

(0,0247) 

0,0150 

(0,0000) 

0,0014 

(0,7125) 

0,0057 

(0,0186) 

F-test 

8.46 

(0.0037) 

9.05 

(0.0027) 

5.69 

(0.0173) 

5.06 

(0.0247) 

20.69 

(0.0000) 

0.13 

(0.7125) 

5.55 

(0.0186) 

Multiple R 0,11 0,11 0,09 0,12 0,16 0,01 0,08 

Anomaly 

confirmed confirmed confirmed confirmed confirmed not 

confirmed 

confirmed 

* P-values are in parentheses 
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Appendix E 

Statistical tests of Hypothesis 2, case of monthly data 

 
       Table E.1: T-test of Hypothesis 2, case of foreign exchange market (monthly data) 

  

Type of asset EURUSD AUDUSD USDCHF 

Indicator abnormal normal abnormal normal Abnormal normal 

Number of matches 22 129 26 125 16 135 

Mean 2,53% 2,18% 4,35% 2,38% 3,85% 2,12% 

Standard deviation 2,92% 1,80% 6,36% 2,30% 4,02% 1,76% 

t-criterion 0.55 1.56 1.70 

t-critical (р=0.95) 1.96 

Null hypothesis accepted accepted accepted 

 

       Table E.2: T-test of Hypothesis 2, case of US Stock Market and Commodities 

(monthly data) 

  

Type of a market Commodities US Stock Market 

Type of asset Gold Oil Boeing Microsoft 

Indicator abnormal normal abnormal normal Abnormal normal Abnormal normal 

Number of matches 25 126 23 128 9 80 21 130 

Mean 6,23% 3,78% 17,64% 7,22% 6,70% 5,54% 7,59% 4,91% 

Standard deviation 4,20% 3,81% 17,01% 6,09% 6,33% 5,23% 8,52% 4,49% 

t-criterion 2,70 2,90 0.53 1.41 

t-critical (р=0.95) 1.96 

Null hypothesis rejected rejected accepted accepted 

 

      Table E.3: ANOVA test of Hypothesis 2 (monthly data) 

Type of a market FOREX Commodities US Stock Market 

Type of asset EURUSD AUDUSD USDCHF Gold Oil Boeing Microsoft 

F 0.95 8.64 12.38 9.87 32.49 0.96 5.98 

P value 0.33 0.00 0.00 0.00 0.00 0.33 0.01 

F critical 3.90 3.90 3.90 3.90 3.90 3.95 3.90 

Null hypothesis accepted rejected rejected rejected rejected accepted rejected 

 

      Table E.4: Mann–Whitney U test of Hypothesis 2 (monthly data) 

Type of a market FOREX Commodities US Stock Market 

Type of asset EURUSD AUDUSD USDCHF Gold Oil Boeing Microsoft 

Adjusted H 0,19 4,18 3,51 10,82 9,59 0,54 1,50 

d.f. 1 1 1 1 1 1 1 

P value 0,66 0,04 0,06 0,00 0,00 0,46 0,22 

Critical value 3.84 3.84 3.84 3.84 3.84 3.84 3.84 

Null hypothesis accepted rejected accepted rejected rejected accepted accepted 
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Table E.5: Regression analysis with dummy variables of Hypothesis 2 (monthly data) 

Parameter/ Type of asset FOREX Commodities US Stock Market 

Parameter/ Type of asset EURUSD AUDUSD USDCHF Gold Oil Boeing Microsoft 

Mean volatility (a0) 
0,0219 

(0,0000) 

0,0240 

(0,0000) 

0,0213 

(0,0000) 

0,0381 

(0,0000) 

0,0728 

(0,0000) 

0,0561 

(0,0000) 

0,0495 

(0,0000) 

Dummy coefficient (a1) 
0,0045 

(0,3293) 

0,0212 

(0,0038) 

0,0195 

(0,0006) 

0,0267 

(0,0020) 

0,1112 

(0,0000) 

0,0183 

(0,3306) 

0,0300 

(0,0156) 

F-test 

0.95 

(0.3293) 

8.64 

(0.0038) 

12.38 

(0.0006) 

9.87 

(0.0020) 

32.49 

(0.0000) 

0.95 

(0.3306) 

5.98 

(0.0156) 

Multiple R 0,08 0,07 0,28 0,25 0,42 0,10 0,19 

Anomaly 

not 

confirmed 

confirmed confirmed confirmed confirmed not 

confirmed 

confirmed 

* P-values are in parentheses 
 


