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BRUNEL UNIVERSITY

Abstract
CEDPS

Department Of Computer Science

Doctor of Philosophy

Research Into Illumination Variance In Video Processing

by Seyed Mahdi H S JAVADI

In this thesis we focus on the impact of illumination changes in video and
we discuss how we can minimize the impact of illumination variance in
video processing systems.

Identifying and removing shadows automatically is a very well estab-
lished and an important topic in image and video processing. Having
shadowless image data would benefit many other systems such as video
surveillance, tracking and object recognition algorithms.

A novel approach to automatically detect and remove shadows is pre-
sented in this paper. This new method is based on the observation that,
owing to the relative movement of the sun, the length and position of a
shadow changes linearly over a relatively long period of time in outdoor
environments, we can conveniently distinguish a shadow from other dark
regions in an input video. Then we can identify the Reference Shadow
as the one with the highest confidence of the mentioned linear changes.
Once one shadow is detected, the rest of the shadow can also be identi-
fied and removed. We have provided many experiments and our method
is fully capable of detecting and removing the shadows of stationary and
moving objects.

Additionally we have explained how reference shadows can be used
to detect textures that reflect the light and shiny materials such as metal,
glass and water. . . .

http://faculty.university.com
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Chapter 1

Introduction

1.1 Introduction to image and video processing

Image and Video Processing are important topics in the field of research

and development in computer science. Image processing is any form of

signal processing for which the input is an image, such as photographs or

frames of video; the output of image processing can be either an image

or a set of characteristics or parameters related to the input image. Most

image processing systems. Video processing is a particular case of com-

puter vision, where the input signals are video files or video streams from

a camera.

Video processing has many applications such as surveillance, traffic

monitoring, tracking, autonomous cars, activity recognition and many

more. In this thesis we analyse the impact of illumination variance in

video processing and explain how lighting conditions can be improved.
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1.2 Introduction to illumination variance

This thesis discusses the impact of illumination variance in the video pro-

cessing applications. In particular, it concentrates on outdoor scenarios

where the scene is lit prominently by the sun.

These conditions are some of the most common and popular cases in

video and image processing systems and there are many applications for

both academic and industrial research projects such as video surveillance

and tracking. The topic discussed here can be used in many applications,

such as traffic monitoring, CCTV surveillance systems, crowd monitor-

ing, activity recognition systems and much more. Our point of interest

is to discover how the scenes lighting conditions can be enhanced and in

particular we focus on detecting shadows and removing them automati-

cally without user input. Typically there are two reasons for changes to

illumination where the natural light is dominant:

• Gradual changes to illumination from sunrise to sunset, which is

due to the angle of the sun.

• Rapid changes in illumination due to an object blocking the sun and

creating shadows.

The first type of change is gradual and normally has no impact on

image and video processing applications since the variance is small dur-

ing shorter periods. Conversely the second type of illumination change

can cause issues. This is because shadows create unwanted edges, which

create problems in downstream applications such as object recognition
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and tracking. The reason is that most of the applications in image and

video processing are using edge detection in one form or another, and

they expect to have edges when there is a material change, and this can

be used for detecting and distinguishing objects. However, when there

are shadows in the scene, their edges can give a false indication of mate-

rial change and reduce the performance of tracking and object recognition

algorithms.

We have elaborated on these topics and explained how the outdoor

shadows could be effectively detected and removed. Moreover, we have

provided novel solutions for this established problem in image and video

processing science. Shadow detection is the biggest part of this research

but not all of it. Additionally it has been discussed how to detect the pres-

ence of cloud in the scene and explained how some other materials can

be detected such as glass, water and metal or any other material that does

not fit into the Lambertian reflectance model i.e. any glossy and shiny

materials.

1.3 Types of shadows

There are two types shadows in video and image processing:

• Cast shadow.

• Self shadows.
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Cast shadows are generated when an object blocks the main source

of light and casts a shadow over the background. However self shadow

is produced when one side of the object is not facing towards the light

source; hence, its illumination differs from another part of the object.

FIGURE 1.1: Self and Cast Shadows

Additionally, cast shadows can be categorised into the following forms:

• Umbra.

• Penumbra.

Umbra is the darkest part of the shadow where the source light is com-

pletely blocked. Penumbra is the region where only part of the source

light is blocked. The effect of these two types of shadows depends on the

distance between the source of light, an object blocking light and posi-

tion of the camera. In normal outdoor conditions where is scene illumi-

nated by the sun and the camera is too focused (as seen in normal CCTV

footage), the effect of penumbra can be discarded. This research has fo-

cused on detecting and removing umbra. Penumbra shadow becomes
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important and substantial where the source of light is very close to the

blocking object (such as artificial lab environment) or where the camera

sensor is too close or focused on the shadow region. The following figures

illustrate the difference between these types of shadows.

Umbra cast shadows have the greatest impact on the verity of im-

age and video processing applications due to their strong edges. These

shadow edges may cause segmentation problems for object and shape

recognition methods as well as tracking algorithms. This research project

focuses on these shadows and provides a novel solution to detect and re-

move cast shadows from stationary and moving objects automatically.

FIGURE 1.2: Umbra and Penumbra shadows

1.4 Introduction to reference shadows

Shadow clocks or sundials have been used by humans for thousands of

years to identify the time of the day based on the length of the shadows.

A sundial is a device that tells the time by the position of the sun in the

sky. As the sun appears to move across the sky, the shadow moves and

aligns with different hour lines. The oldest sundial was found in Egypt
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dating from 1500 BC. We have used the same concept to distinguish shad-

ows from dark objects in a method we call the reference shadows. Once

some of the shadows are detected, the reminder will be identified and re-

moved as, explained in other chapters.

This is the first time an ancient and simple method has been utilised to

produce a robust and effective shadow detection method in video pro-

cessing. Many experiments and samples from real life scenarios and com-

plex video footage from busy scenes have been used to test and verify the

performance of the algorithms mentioned in this document.

FIGURE 1.3: The change in length of shadow have been
used for thousands of years to tell the time of day.

1.5 Why this topic was chosen

This PhD research project was a true journey for the author. The project

started as video surveillance and activity recognition research topic but

very quickly the impact of cast shadows in segmentation and shape iden-

tification was identified.
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The decision was made to remove shadows from objects and then use

shadowless output for tracking. However the impact and complexity of

shadow detection became clear; hence, the author decided to concentrate

on this remarkable topic.

1.6 How this research can be used in video pro-

cessing systems

In addition to shadow detection and removal, we have demonstrated how

the illumination invariances can be used to detect some events and fea-

tures in the video. It is explained how shiny objects which reflect the sun

can be identified in video automatically and we have also highlighted the

potential for detecting the presence of cloud in the scene by analysing all

the reference shadows. When clouds block the sun, the shadows are re-

moved, and a natural shadow-less image is produced which can be used

as a reference to produce high quality coloured shadow-less images in

other frames of the video. This process is explained in Chapter 5.

1.7 Real-life Example

Smart home cameras are getting very popular and many users around the

world purchase these products to provide security for their home or work

place. One of the market leaders is a product called Nest and according



24 Chapter 1. Introduction

to industry standards, it has the best activity recognition feature. Hav-

ing said that, this product constantly mistaken shadows with foreground

objects and also incorrectly detects glare and reflectance as an abnormal

activity which is illustrated in Figure 1.4

(a) (b)

FIGURE 1.4: (a) Shadow is detected as a person and in cor-
rect notification is sent. (b) Reflectance on the car is detected

as activity and incorrect notification is sent.

The research in this thesis can be used to address issues like this and

in this research we have provided novel methods to detect and remove

shadows as well as reducing impact of glare and reflectance.

1.8 Experiment data

Most of the data used for experiments has been collected by the author

using normal video recording devices (smart phone and Panasonic cam-

corder V270). Video footage recorded from inside and around Brunel Uni-

versity has been used as test data; additionally, other publicly available
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images and video have been also used. In some sections of the document,

data used by other authors have been utilised to compare the results of

our methods with existing publications. Where is this the case, it has been

clearly explained and referenced.

1.9 Main contributions

In this thesis we focused on the special case of illumination variance in

outdoor scenarios where the camera is static and the sun is the dominant

source of light. The main contributions of this thesis are:

1. A new method to detect shadows automatically is introduced.

2. How shadows can be removed automatically.

3. A novel solution to detect shiny materials in the video.

4. How the presence of clouds can be detected automatically.

In the following chapters these novel contributions are presented and

explained in details.

1.10 Dissertation content

Chapter 2 is the literature review where we analyse the history of shadow

and cloud detection from early publications to state-of-art and summarise

the weakness and strength of each method. Chapter 3 explains our shadow



26 Chapter 1. Introduction

detection method in details, and Chapter 4 elaborates the shadow re-

moval methods analysed in this research. Chapter 5 outlines the pos-

sibility of detecting some features in video such as shiny materials and

also discusses identifying events such as the presence of cloud by eval-

uating the illumination characteristics of the scene. Finally Chapter 6

summarises the topics discussed in this document and explains how re-

searchers can continue this work in future.
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Chapter 2

Literature review

Automatic shadow detection and producing invariant illumination im-

ages is a deep-rooted topic and probably it is as old as computer vision

science if not older. For example, in the late 1960s, scientists such as Bar-

row and Tenenbaum began working on this topic. Since then, it has been

a very popular subject for computer vision research as well as industry,

due to its impact on other systems, such as object tracking, shape recog-

nition and so on.

Overall and in high level, there are a few different approaches to shadow

detection:

• HSV, HSI and YUV based models for shadow detection.

• Methods that produce illumination invariant images.

• Semi-automatic and neural network based methods.

• Texture and characteristic estimation methods.
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Most of the major work in this area uses one or some of the above ap-

proaches to detect shadows, and these are explained in the next few sec-

tions. Mosleh and Sharfraz [19] have also summarised these approaches

in their research

Additionally there are many research studies where shadows are de-

tected in special conditions. An example is the work by Yanfeng [22]

which only detects shadows from moving objects. Wang and Deng [3]

research is focused only shadows in road. Yank and Sui is also a simi-

lar study and their proposed method removes the shadows from vehicles

[24]. Similarity Ji and Zhao [23] also focus only on removing shadows

from moving objects and Russell focuses on human shadow detection

[16]. This is a very popular approach in shadow removal from objects

and there are many other studies similar to this but they fail to detect

shadows from static objects [4] [15] and [13]. All of these methods only

detect shadows from foreground objects but the novel solution presented

in this thesis can detect shadows from both foreground and background

in out door.

In addition to shadow detection we have provided solutions for the

following two problems in this thesis:

1. Detecting source of light reflection in the video.

2. Detecting the presence of cloud in the video.

These two topics are not reviewed and researched as much as shadow

detection which is a very well-established research subject in image and

video processing. However, overall, the existing approaches can be cate-

gorised as [78]:
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• Analysing the position of the sun.

• Outdoor illumination modelling.

2.1 Outdoor illumination modelling and analysing

the position of the sun

Outdoor natural illumination model is vital to understand and it has been

researched and analysed extensively within the image and video process-

ing community. For example Narasimhan et al [92] used a high quality

set of photos taken on an hourly basis from a stationary camera over

one year and used this information to analyse the impact of illumina-

tion and weather on video frames. This method has been used by several

other researchers such as [76], [66] and [109] which produced high quality

shadow-less image. The main limitation of this solution is if the position

or direction of the camera changes, it can no longer detect shadows.

In [78] Lalonde et. al have explained how the camera parameters can

be obtained automatically by analysing the source of illumination from

the sun. The position of the sun has been researched by Cozman and

Krotkov [44] and they used this to calculate the altitude and longitude of

the camera. Furthermore, Terbi et al have designed a system in [114] that

can estimate the orientation of the camera in addition to altitude and lon-

gitude.
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The appearance of the sky has been analysed extensively in physics

and one of the most prominent works was conducted by Perez et al [96]

which is the result of measuring sky luminance. This model has been used

frequently in relighting models such as the work from Yu and Malik [125].

As an alternative approach Stummpfel [108] mapped the sky into an HDR

(High Dynamic Range) format and used that information to relight the

scene. In [78] two independent sources of information are analysed: the

sun’s position and the sun’s appearance and used these information to

calculate the camera focal length. The shadow detection solution which

is presented in this study does not require any details about camera char-

acteristic.

2.2 HSV, HSI, YUV and colour consistency based

methods for shadow detection

An important work in this area is presented by Victor Tsai [115] who anal-

ysed various models such as HSI, HSV. HCV, YIQ and YCb Cr for shadow

detection. He demonstrated that is (He+1)/(Ie+1) ratio can be used to dis-

tinguish shadow pixels from non-shadow regions. He and Ie are Intensity-

equivalent and hue-equivalent and they are the H and I component of HSI

model. The key finding of this research is pixels in shadowed regions will

have higher values the (He+1)/(Ie+1) ratio than those pixels in nonshad-

owed regions. The Otsu’s method [95] was then applied to find the correct

threshold. Although this a very simple method and performs very well
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in many cases, it fails when distinguishing between shadows and dark

objects, which have a similar colour to shadows. This is one of the biggest

problems with many shadow detection system, especially those based on

simple HSI thresholding algorithms. The strength of method presented in

this thesis is it can successfully differentiate between shadows and dark

materials.

Another approach is using YUV model which has more similarities

to human vision than RGB. In [59]a YUV based system is proposed for

object detection from the shadow. The algorithm utilises all components

in YUV colour space to identify shadow pixels from the candidate fore-

ground regions. An adaptive threshold is designed to enhance shadow

detection accuracy and adaptive capacity in various lighting conditions.

This estimator uses edge detection method to obtain global texture, as

well statistical calculations to obtain the required thresholds. An impor-

tant advantage of this method to previously mentioned system is it works

both indoor with artificial lighting and outdoor. On the other hand the

weakness of this system is it only detects the shadow of moving objects.

Suny and Deb [45] proposed a solution based on the YCbCr model.

In this system, an approach based on statistics of intensity in the YCbCr

colour space is proposed for detecting shadows. When the shadow can-

didates are detected, a shadow density model is applied and the image

is then segmented into several regions that have the same density. Fi-

nally, the shadows are removed by relighting each pixel in the YCbCr

colour space and correcting the colour of the shadowed regions in the
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RGB colour space. Similar to other studies in this category,[45] struggles

to differentiate between shadows and black materials.

Methods based on the colour consistency of image regions and pixels

are also very popular in this topic. They work by analysing the changes

in the colour of edges and then try to guess if the boundary is generated

by a change in the material or illumination. in [126] authors have used

surface descriptor and colour-shade, which allows them to include the

physical considerations derived from the image formation model captur-

ing gradual colour surface variations. Their solution is designed to work

in greyscale colour space and they utilised illumination nation pairs to

detect shadows. In this category of research estimating the colour of pre-

vailing scene illumination is a related problem which has received much

attention [46],[56],[42] and [57]. In these works, calculating the colour con-

stancy is a major problem and often they perform well only in restrictive

conditions or assumptions. Detecting and removing chromatic shadows

is also a particularly difficult task because they are extremely difficult to

distinguish from moving objects.

A recent study by Mo and Zhu [17] proposes an object-oriented shadow

detection method without manual intervention and a shadow compensa-

tion method by regional matching. In the proposed method, pixel-based

soft shadow detection, which uses Gaussian mixture model to simulate

the gray distribution and refines soft shadow map with guiled filtering,

is combined with image segmentation result to obtain accurate shadow

regions with complete shape and no hole. Then shadow regions are com-

pensated, with less loss of details and brightness imbalance, referring

to their optimal homogeneous nonshadow region obtained by regional
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matching based on Bag-of-Words. Although this method provide good

results for moving objects, it fails to detect shadows from background ob-

jects. Other works such as [25], [8] and [21]. Unlike any of these methods,

the reference shadow system proposed in this thesis can detect shadows

from both stationary and moving objects.

2.3 Illumination invariant based methods

There has been a significant development in shadow detection and re-

moval. Introduced in one of the early work by Barrow and Tenenbaum

[36], was the concept of “Intrinsic images”. Intrinsic images are a mid

level transform of the observed images. They are viewpoint dependent,

and the physical causes of changes in illumination at different points are

not made explicit. Barrow and Tenenbaum explained that this mid-level

transform could be very useful for supporting a range of visual inferences.

Multiple frames have been used to compute the intrinsic images [119].

They approached the subject of shadow detection is by formulating this

problem as a maximum-likelihood estimation problem based on the as-

sumption that derivative-like filter outputs applied to illumination will

tend to be sparse.They derived the ML estimator under this assumption

and showed that it provides a suitable method for recovering reflectance.

Furthermore, they assumed that filter outputs are independent of space

and time. In this method, Weiss used 35 images from morning until

evening and we have compared our results with this method. The ad-

vantage of our method is we were able to identify shadow in a similar
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noisy environment in approximately 10 minutes.

Another important study on this topic was published by Finlayson et

al [51], who introduced the concept of greyscale invariant image and pre-

sented a computational model to estimate the invariant image. The same

authors published another study and created Invariant Image by Entropy

Minimization [52]. In our research, we are inspired by the work of Fin-

layson et al but we used reference shadows instead of camera calibration

to create invariant image automatically. Finlayson defined greyscale in-

variant image as:

gs = c1R
′(R)− c2R′(B) (2.1)

Where in RGB space, R′(R) = log(R/G) and R′(B) = Log(B/G). c1 and c2

are constants such that the vector [c1 c2] is in the direction is orthogonal

to the lighting direction.

Experiments have confirmed images with a different level of illumina-

tion will map to the same greyscale invariant image. The most important

benefit of this image is shadowless (which occur when there is a change

in luminance) will disappear. Now if we divide (2) by c1, we get the fol-

lowing:

gs′ = R′(R)− CR′(B) (2.2)

where C = c2/c1

Others such as Finlayson [51] have used manual camera calibration to

identify c1 and c2 but we used the reference shadow to automatically cre-

ate grey-scale invariant image by estimating the value of C.
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A generic problem with illumination invariant based methods is many

other important details in the image is also removed together with shad-

ows and this may create some issues in segmentation.

[87] and [88] used multiple frames but it is not clear how these meth-

ods will perform when there are other changes in the scene; for exam-

ple, multiple object movement. Moreover, this method can be useful in

a controlled environment but the performance of this system in natural

outdoor scenarios is unknown. The reference shadow solution which is

presented in this thesis can successfully detect shadows in noisy environ-

ments with many moving objects

There are also other methods that detect shadows based on the pre-

vious detected shadows positions and the use of the sun [64], or about

calibration methods using the sun, and the sky [79] or the position of

shadows [31]. These methods require a significant amount of training

data and also need additional information about the scene such as GPS

location of the camera, date and time of the day. However none of this

information is necessary in the method presented in this dissertation.

Huerta et al. in [64] developed a solution and first they built a chro-

matic invariant colour cone model and an invariant gradient model for

segmentation of potential shadows. Then, regions corresponding to po-

tential shadows were grouped together by studying ”a bluish effect” and

an edge partitioning. Finally (i) temporal similarities between textures
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and (ii) spatial similarities between chrominance angle and brightness are

reviewed for all potential shadow regions in order to finally differentiate

between shadows and non-shadow regions.

2.3.1 Semi-automatic and neural network based methods

Semi-supervised learning based methods have been developed to detect

shadows. These methods require at least one shadow to be labelled by a

user and then the remaining shadows will be identified. A very good ex-

ample is the work by El-Zahhar [47]. They proposed to initially to extract

colour, texture and gradient that are useful for differentiating between

moving objects and their shadows. They then used a semi-supervised

learning approach for shadow detection. In [39] authors designed a Hier-

archical Mixture of MLP expert methods that uses a two-stage system for

shadow detection and their proposed system works in both indoor and

outdoor conditions.

Another approach is presented in [30] whereby chromaticity informa-

tion is first used to create a mask of candidate shadow pixels. This is

followed by employing gradient information to remove foreground pix-

els that were included incorrectly in the mask.

The neural network is another popular method to detect shadows which

usually requires a significant amount of labelled training images [107].

Faghih and Moghaddam [49] used image statistics to model the accuracy
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of Grey-Edge assumption so they could compensate the Grey-Edge algo-

rithm error. They used Weibull distribution to describe image statistics

based on image derivatives.

In [40] authors describe a multilayer neural network that can recover

the illumination chromaticity given only one image of the scene. The net-

work is previously trained with a set of images of scenes and the chro-

maticities of the corresponding scene illuminants. Experiments with other

images demonstrate that the network performs better than many of the

existing constancy methods. In particular, the performance of this solu-

tion is better for images with a relatively small number of colours. The

rg chromaticity space is used as an input into neural networks. In this

model, r = R/(R + G + B) and g = G/(R + G + B).

Agarwal et al. have presented a linear technique called RR (Ridge Re-

gression) in[27] and compared their results with some of the existing Neu-

ral Networks and SVR (Support Vector Regression) systems. To model the

chromaticity, rg model is used similar to [40].

Cavallaro, Salvador and Ebrahimi [41]have attempted to detect shad-

ows from a sequence of images by processing three sources of informa-

tion, namely colour, spatial, and temporal information of the scene. Fore-

ground objects were first segmented from the background, and then shad-

ows from the foreground objects were successfully detected. The perfor-

mance of the above mentioned methods varies when dealing with chang-

ing lighting conditions. Usually these methods require additional manual
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parameter adjustments so it can be adapted to different environments.

To solve this issue mixture Gaussian is used in various studies to model

shadows dynamically but good results are only achieved when the scene

meets a series of assumptions[67].

A new online statistical learning method is presented in [63] to model

the background appearance variations under cast shadows. This is based

on the direct light sources and ambient dichromatic reflection model. The

first stage that authors propose is using one Gaussian Mixture Model

(GMM) to study the colour features. The second stage is building up one

pixelbased GMM for each pixel to learn the local shadow features. This is

going to be a slow process and requires numerous computer resources so

to overcome the slow convergence rate in the conventional GMM learn-

ing, pixel-based GMMs are updated through confidence-rated learning.

The proposed algorithm, can learn model parameters very quickly.

In [97] an algorithm is presented to detect and remove cast shadows in

video sequences by analysing statistical dominance of the shadowed re-

gions and non-shadowed regions. This method has some advantages: It

does not require a colour space transformation and works in RGB space.

It is data-driven and adapts very well to the changing shadow conditions

and in recent studies [9],citeref108 and [1] this method has been improved

by reducing the required training data.

Recently Khan et al [71] have developed a solution which can de-

tect shadows from a single coloured image. Their solution automatically
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learns the most relevant features in a supervised manner using multiple

convolutional deep neural networks. The quality of their shadow-less

image is very good but the limitation is their solution struggles to suc-

cessfully distinguish shadows from dark objects. Double threshold neu-

ral network solution is presented in [68] to reduce the false detection of

shadows in a single image where the hue and brightness of some non-

shadow regions are similar or even lower than those of shadows. To

solve the problem of detection shadows from dark objects, two differ-

ent dynamic thresholds that iteratively updated are designed. The upper

and lower limits of detecting shadows are determined respectively by a

higher threshold that decreases gradually overtime and a lower one that

increases. The detection result is obtained by a combination of two detec-

tion thresholds.

2.3.2 Texture and characteristic estimation methods

In recent years alternative methods have been developed to remove the

effect of illumination from a single image. These methods are based pri-

mary on distinguishing between the texture of the objects and shadows.

Bell and Freeman [38] took a learning base approach and generated a

training set of images containing shading and reflectance variations. In

[120] initially a part labelling which densely covers the object is defined

and then Layout Consistent Random Field "LayoutCR" model is imposed

asymmetric local spatial constraints on labels to ensure the consistent lay-

out of parts.
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Tappen, Freeman and Adelson [113] have used multiple cues to re-

cover shading and reflectance intrinsic images from a single image. They

used both colour and information and a trained classifier to recognise

greyscale patterns in images and each image is then classified as being

caused by shading or a change in the reflectance model.

A texture based method is presented in [106] where authors have de-

composed an image into its shadow and intrinsic reflectance component

by examining the texture information to gather constraints on reflectance

between pixels that may not be close to another another pixel in the im-

age. In this method texture can be represented by any model, such as

filter responses or textons. However for simplicity and reducing the com-

puting requirements hey represented the texture at a pixel as a vector of

concatenated pixel values from its surrounding neighbour pixels.

Another texture based approach is presented in [69] where each pixel

is modelled as a group of adaptive local binary pattern histograms that

are calculated over a circular region around the pixel. This is achieved

in two stages: background modelling and foreground detection. For the

first step, each pixel of the background is modelled identically, which al-

lows for a high-speed parallel implementation which can be very useful

in real-time processing. In this method LBP was selected as the measure

of texture because of its good properties. For foreground detection a very

simple method is used. The histogram h is compared with the existing B

background histograms using the same proximity measure as in the up-

date algorithm. If the proximity is higher than the threshold TP for at least
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one background histogram, the pixel is classified as background. Other-

wise, the pixel is selected as foreground.

Texture analysis is an important topic in image processing. Malik and

Liuin [83] categorized different materials such as concrete, rug, marble,

or leather on the basis of their textural appearance and they devid them

into two surface attributes: (1) reflectance and (2) surface normal. In their

work they provided a unified model to address both these aspects of nat-

ural texture. Get et al. [54] presented gloss as an appearance attribute that

could reveal certain information about object properties and concluded

that observers can apprehend the physical nature of the surface of real

objects from features that are included in the BRDF and available in the

gloss appearance. Obein [75] provided a measurement to calculate the

strength if gloss which they explained it as attribute of visual appearance

that originates from the geometrical distribution of the light reflected by

the polished surface. they used the maximum likelihood difference scal-

ing (MLDS) procedure by Maloney [85] to estimate gloss scales over an

extended range.

Arora [32] presented a new approach to evaluate the illuminant chro-

maticity which does not need exact correspondences and has a better es-

timate of illuminant chromaticity. They used the evaluated chromaticity

to project the input images on to a specular invariant colour space and

showed that standard optical flow algorithms on this colour space sig-

nificantly improves the results. Other works such as [98],[124] and [122]

provide similar approach to remove the impact of glare from glossy tex-

ture.



42 Chapter 2. Literature review

Multi-view solutions have been extensively researched and they pro-

vide an alternative approach to the issue of irregular reflectance from

glossy textures. Li and Liu [81] reconstructed 3D fine-scale surface mod-

els for non-Lambertian objects from multi-view multi-illumination image

sets. Their solution provides good results but requires multiple images

from different angel to produce the 3-D model. This is a very effective

and popular approach and many other works such as [37] , [60] and [101]

have used the same method. Although muti-view methods produce good

results they require users to take pictures from different angels manually.

Unlike these methods, our system detects the non-lambertian texture au-

tomatically and does not need any manual interaction.

Texture analysis is a very important topic in image and video process-

ing and has many application such as road detection [29],[127],[91],[58]

which is very popular in road traffic surveillance systems. Human detec-

tion is another popular use case for texture analysis in image processing.

Kim and park [73] proposed an algorithm to recognize human presence

with USB Web camera. Their method detects human movement using

the circle detection and morphological methods. There are similar stud-

ies for human detection such as [70] and [105] where authors used neural

network based training methods for human detection.

This thesis proposed a new solution to detect glossy and shiny textures

in outdoor scenarios and this solution can be used to detect water, oil

leakage metal and glass in natural environments.
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2.3.3 Reflectance and glare analysis

An important topic discussed in this thesis is analysing the impact of glare

and reflectance in images. The noise generated by excessive reflectance

can cause major issues in tracking and object recognition system. The

amount of light reflected by a surface, and how it is reflected, highly de-

pends to the texture of the surface. The reflectance can be categorised into

two different types:

• Specular reflection

• Deffuse reflectance

Specular reflectance occurs when the light reflects from glossy materi-

als and creates a white patch. Deffuse reflectance happens on other sce-

narios where light reflects from matt and rough surfaces. Most materials

have specular reflectance if they are polished but some materials such as

water, mirror and glass can only have specular reflectance. In image pro-

cessing applications, excessive specular reflectance can reduce the quality

of the images and have negative impact on applications such as object

recognition and tracking. The difference between how various materials

reflect the light is illustrated in Figure 2.1.

Ortiz and Torres [94] proposed a method for the detection and elimi-

nation of specular reflectance in colour images of real scenes. They used a

two-dimensional histogram which is used to relate the signals of intensity

and saturation of colour images and also to identify the specularities in an

area of the histogram. This is known as the Intensity-Saturation (MS) dia-

gram, and it is constructed from the Intensity-Saturation-Hue (MSH) gen-

eralized colour space. The use of a new connected vectorial filter would
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FIGURE 2.1: Defuse and specular reflectance

eliminate the specular reflectance previously detected. The chromatic re-

flection model proposed by Safer [104] is a common system that has been

used in many methods to detect specularities. These models supposes

that the interaction between the light and a dielectric material produces

different spectral distributions in the object.

Based on this model, Lin et al [82] have designed a system for elimi-

nating specularities in image sequences using stereo correspondence in a

controlled environment. Bajcsy et al. [33] used a chromatic space based on

polar coordinates that allows the detection of specular and diffuse reflec-

tions by means of the having some information about the captured scene.

This is a simple and fast method but requires manual input from a user.

Klinker and Tiala [74] used a pixel clustering algorithm which has been

shown to work well in detecting brightness in images of plastic objects.

Gershon [55] and Lee [80] use chromatic information for highlight iden-

tification. A similar solution is presented by Sato and Ikeuchi [100] who

proposed temporal-colour space to extract the specular reflection and the

body reflection.
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Wangs [118] have designed an HMM based algorithm which is used to

detect people in swimming pools. To achieve this a Bayesian approach us-

ing Hidden Markov model scheme is developed to enhance human detec-

tion for video surveillance system operating under aquatic environment.

Pixels in current frame are marked as foreground or background by con-

sidering historical information of its surrounding frames and neighbour-

ing pixels between the current processed frame and the reference image.

Another approach to reducing the noise caused by light specular re-

flection is putting a polarizing filter set in the front of the camera lens.

This solution has been introduced by Fujikake et al in [35]. However, for

this system to work polarisation angle of specular reflection should be cal-

culated to be used as optical axis of the filter. This is not always an easy

process and manual configuration is required. Nayar and Narasimhan

[93] designed a novel method based on physical characteristics of light

in order to remove weather effects from images. Their model is valid for

various weather conditions including fog, haze and also provides the ca-

pabality to recover from a single image the shapes and depths of sources

in the scene. In addition, the weather condition and the visibility of the

atmosphere can be estimated. These quantities can, in turn, be used to re-

move the glows of sources to obtain a clear picture of the scene. Although

this solution tackles the problems of light scattering very well, it can’t be

used to address the issue of extensive reflectance in the image.

To improve image quality and reduce the impact of glare Talabala et

al [48] used multiple captures with a high-frequency occlusion mask to
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estimate and remove glare. Glare is reduced before image formation, pro-

viding high-quality reconstructions. The most significant weakness of

their method is that it requires a significant volume of images to record

a scene and it is only applicable to static scenes. A complete capture with

their setup takes from 30 minutes to an hour. The other major limita-

tion is that the mask must be nearly in focus to limit the mixture pixel

region. This mandates either using a very small aperture, or placing the

mask near the scene rather than on the camera lens like a filter. Veiling

glare is a commonly-acknowledged issue in photography. The standard

method for glare measurement involves photographing a central black

target surrounded by a large uniform bright illuminant Matsuda [86] and

Kuwabara [77] in 1952. ISO standard 9358 defines the ratio of luminance

in the center of the target to the luminance of the illuminant as the veil-

ing glare index (VGI). The standard also defines the glare spread function

(GSF), which defines the amount of glare created by a small bright spot as

a function of the distance from the center of the spot. Directly similar to

[48], McCann and Rizzi [89] have measured glare in multiexposure HDR

imaging.

Additionally there are many other research that can model background

variation to reduce the image of foreground noise. For example Mikito

[102] has analysed the property of neighbouring blocks to reduced the im-

pact of moving trees and flags due to wind. Monnet et al [90] proposed a

linear predictive model to model a dynamic sea shore environment. Any

pixel that deviated significantly from its predicated value is declared as

foreground. The main advantage of the predictive technique is that it re-

duces some uncertainties of a pixel’s value by checking how it changes
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over time.

Recently Tao et al [112] investigated the characteristics of pixel val-

ues from different viewpoints in colour space and they presented a new

and practical approach that uses light-field data to estimate light colour

accurately. Their algorithm will allow users to manually acquire depth

maps using a consume camera which works very well on glossy material.

The experiments illustrated in this research show high quality coloured

images but the weakness is manual intervention is required. Without

multiple viewpoints, most diffuse and specular separation methods as-

sume the light source colour is known and consistent such as the work by

Mallick [84] and Yoon [123] where they compute a data-dependent rota-

tion of RGB colour space and showed that the specular reflection effects

can be separated from the much simple effects for surfaces that can be

modeled with dichromatic reflectance. Lee and Leonardis [34] and other

studies such [110],[111] and [121] have also came up with with single im-

age based methods where a modest impact of reflectance is removed from

glossy materials. Kin et al [72] have also observed that for most natural

images the dark channel can provide an approximate specular-free im-

age. they propose a maximum a posteriori formulation which recovers

the specular reflection and chromaticity despite of the hue-saturation am-

biguity. The limitation of these methods is they are very sensitive to noise

and they only work well in artificial and controlled environment.
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Using advanced camera technologies for specular reflection analysis

The camera technology and its characteristics and capabilities have im-

proved significantly in recent years. There are many methods which re-

quire specific type of camera for glare and specular reflectance analysis.

Iwata has Ogata [65] have used high-speed cameras for this problem. sys-

tem utilizing a high-speed camera and a strong flash for removing specu-

lar reflection. This method utilizes a principle of estimation using images

with luminances varied by the flickering of a strobe. They used optical

flow, a position of specular reflection compensated for the noise generated

by inter-frame difference when the high–speed camera is moved. This

study is based on reflectance model introduced by Tsuji [117] and [116].

In this model the strobe–off image is displayed as by In, and the strobe-on

image is represented by Ie. The strobe-off image is taken specifically un-

der natural light. This image contains a diffuse reflection component and

specular reflection component. Expressing the strobe–off image by using

Shafer[103] model enables the following equation to be derived:

In = Ins + Ind (2.3)

where Ind is the diffuse reflection component and Ins is the specular

reflection component.

In a similar study, Feris and Rashkar [50] used multiple image flash-

ing to reduce the effect of specular reflectance in digital images. Their ap-

proach relies on a simple setup of a multi-flash camera take multiple pic-

tures of the scene, each one with a differently positioned source of light.
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They formulated the problem of specular highlights reduction as solving

a Poisson equation on a gradient field from multiple input images. Their

work belongs to an emerging class of computer graphics techniques that

process multiple images taken with the same viewpoint but under differ-

ent conditions, such as different illumination, exposure and focus such as

[28],[43] and [99]. This solutions can remove specular reflectance as well

as shadows in a controlled environment. But unlike these methods, our

method which is presented in chapter 5, does not require specific type of

camera and also it can remove reflectance and glare in normal real-life

images.

2.4 Cloud Detection

Another important topic that has been discussed in this thesis is a new

method to detect the presence of cloud automatically. Cloud detection is

a very important issue for satellites images. Detecting cloud regions in

remote sensing image (RSI) is a difficult challenge but it is very impor-

tant meteorological forecasting and other RSI-related applications. Tech-

nically, this task is typically implemented as a pixel-level segmentation.

However, traditional methods based on handcrafted or low-level cloud

features often fail to achieve satisfactory performances from images with

bright non-cloud and semitransparent cloud regions.

There are many studies in this area such as work by Yuan in [11]. Deep

learning is another popular approach and [14] studies the potential of

deep learning algorithms for cloud detection to improve state-of-the-art

performance. A comparison between deep learning methods used with
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classical handcrafted features and classical convolutional neural networks

is performed for cloud detection is presented in this study. There many

other studies based on deep learning methods such as [12], [26] and [2]

which authors take similar approach.

Additional studies which investigate cloud detection is special cases

such as [7] which focuses on coastal areas. Surya [20] proposes a new ap-

proach which uses wavelet transform, histogram analysis and clustering

for cloud detection. In his work, remote sensing satellite images can be

considered as a signal. Clouds are low frequency components in satel-

lite image. Therefore wavelet analysis of satellite images is helpful to

extract low frequency components and detection of clouds. The result

analysis shows that the proposed method can detect clouds automati-

cally from satellite images with high accuracy. Experimental analysis is

performed on Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor

images and results are obtained. Tuplan [5] proposes a computer vision

approach to cloud detection consisting of feature extraction and machine

learning. Six image moments on local texture regions were extracted and

fused within a classification algorithm for discrimination of cloud pixels.

Three different popular classifiers were evaluated for efficacy. Tan et. al

[10] proposed a 3 stage method for this problem. Firstly, the visual dic-

tionary is learnt from the training features extracted using Maximum Re-

sponse (MR) Filter. Second, Principle Component Analysis (PCA) is uti-

lized to reduce the dimensions of the visual words for fast word search.

Finally, the MR feature of an image patch is converted into the histogram

of visual word. Other popular methods for cloud detections are: remote

sensing image time series using Mean Shift algorithm [10], morphological
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based approaches [18] and [6].

All of the above studies approach this problem from satellite images

point of view, but on the other hand, the solution highlighted in this thesis

detects clouds from ground level view point. Therefore satellite images

are not needed and by analysing the reference shadows over a period

time, we have successfully detected the presence of cloud and used that

to generate high quality shadowless images. This has been explain fully

in chapter 6.

2.5 Comparing the methods

We have compared our shadow detection method with the work of Weiss

[119], Matsushita [88] and also other state-of-art methods on shadow re-

moval from videos. The reason we selected Wiess and Matsushita’s meth-

ods for comparison is both of these methods were designed for outdoor

shadow removal from video and require multiple samples for model learn-

ing. Overall in outdoor scenarios, our method is very robust in many

complicated cases such as noisy environment with moving objects as well

as presence of moving clouds. But what makes our method stand out is

its simplicity and the time it requires to detect a Reference Shadow suc-

cessfully. The majority of other video based methods, require hours of

training data or manual intervention (such as camera calibration). Never-

theless, we managed to detect shadows in as quick as 10 minutes in really

complex noisy environment with numerous moving objects.



52 Chapter 2. Literature review

Table 2.1 highlights the advantages of our method over some of the

existing shadow detection solutions.
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2.6 Conclusion

In this chapter the existing methods of shadow detection were presented

and the strength and weakness of state of art was discussed. The findings

from literature can be summarised as:

• The neural network based solutions can have good performance in

shadow detection if the correct type of training data is provided to

the model.

• HSV/HUV based systems are very simple and effective but they

struggle to distinguish between shadows and dark objects.

• The methods which reply on camera characteristics have limited

functionality and only work with a specific type of camera.

• The GPS location of the camera, time and date of the video is needed

for some of the shadow detection systems.

• Most of the cloud detection solutions are based on pictures from

satellites.

• Many of the existing system can only detect shadows from moving

objects.

• Some of the existing solutions are sensitive to noise and will not

perform very well where there are multiple shadows.

The shadow detection method which is introduced in this thesis can

successfully detect shadows from moving objects as well as static shad-

ows. It doesn’t require the location or recoding time and no user input is
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needed and performs very well in noisy environments with many moving

foreground objects. Additionally a novel method to detect the presence of

cloud is introduced and unlike the existing literature, it does not require

satellite images.
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Chapter 3

Shadow Detection

This thesis proposes a new method to detect day-time outdoor shadows.

Due to the relative movement between the sun and an object the position

and length of the shadow cast by the object changes during the day. In

this chapter we investigate how this information can be used in real-life

scenarios to assist us in detecting shadows.

3.1 Introduction

In previous section 2, existing methods and state of art was discussed.

The key weakness of existing shadow detection systems are:

• Only foreground shadows are detected.

• Manual or semi-supervised user input is needed for shadow detec-

tion.

• Shadow detection systems are very sensitive to environment noise.

To have a robust shadow detection system, we need to have a new

solution that can address these limitations. The reference shadow

solution which is presented in this thesis can detect both foreground
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and background shadows. It is fully automatic and it doesn’t need

any user input and finally it performs very well in real-life noisy

environments with many moving objects.

3.2 Definition of reference shadows

Shadow is created when an object blocks sunlight and, consequently some

part of the image becomes darker. This is the shadow region. As our

planet orbits the sun, the height of sun changes during the day and as

a result the length of the shadows changes. In this chapter we investi-

gate how this information could be used in real life scenarios for shadow

detection in outdoor scenarios.

FIGURE 3.1: The shadow of a stick moves from A to B and
then C during the day when the sun goes from A to B and

then C.

As illustrated in Figure 3.1, the length of a shadow L can be computed

as:

L = h/tan(α) (3.1)
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Where h is the height of the object, which casts the shadow and α is

the angle between the sun and the horizon. The value of L for α between

0 to 180 degrees is displayed in Figure 3.2. This reveals that when the sun

rises and shifts from east to west, the length of the shadow moves in a

pattern that is very close to a line. The exception occurs in early morning

and just after sunrise and also before the sunset when there is a non-linear

pattern.

FIGURE 3.2: Length of reference Shadow from sunrise until
sunset. The pattern is linear during most of the day; apart

from sunrise and sunset.

We analyse and process the position of the centre of the shadow in-

stead of its length. In a short period, the changes to the position of the

centre of the shadow will have a similar pattern to the changes to the

length. Our experiments confirmed monitoring the centre of the shadow

will be sufficient to distinguish reference shadows from other dark objects
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in the scene.

Additionally, the impact of other factors such as the shape of the object

and camera view will be minimum in short sampling periods and will

not change the trajectory of the centre (or corner or edge) of the shadow.

Based on our experiments, using the corner of shadows will improve the

performance of shadow detection system when the shadows are located

at image boundaries. .

The reference shadow is the key element in detecting the remaining

shadows in the image and it is determined as:

A dark part of the image which can be categorised as shadow with the

highest confidence.

Once we have identified at least one reference shadow, the remain-

ing shadows (from stationary and moving objects) can be detected as de-

scribed in the next section. This is a vital advantage of this algorithm com-

pared with other shadow detection systems, such as HSV based methods

[115], [95] and [59] where they fail to distinguish between shadows and

objects with similar dark colour.

Identifying one shadow provides very important information about

the characteristic of the image and the scene:

• The trajectory of the centroid of reference shadow over time can be

used to estimate the pattern of movement of other shadows.

• The reference shadow edges provide valuable data about the illumi-

nation changes between shadow and non-shadowed regions.

In normal outdoor conditions where the sun light is prominent, all the

objects that block sun will produce shadows. Additionally, the objects
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with the same angle and similar shapes will produce shadows which will

have similar movement overtime. This is due to the long distance be-

tween these object and the source of the light (i.e. the sun) which means

the α is the same for all of these objects.

For example, all the stationary objects such as buildings, lamp-posts,

traffic lights and people will have their shadows cast in the same direc-

tion. In normal video surveillance or traffic monitoring systems plenty of

objects would create reference shadows. Based on our experience at least

one reference shadow can be detected easily.

3.3 Detecting reference shadows

The height of sun varies during the day, therefore, the length and posi-

tion of the shadows changes. This can be used as a very good cue to

detect some of the shadows. To do this we need to monitor some aspects

(such as centre or corner) of dark objects over a period. In most real-time

scenarios, the result will be very noisy because other foreground objects

move over the shadows and there might be some minor camera move-

ment. Nevertheless, the patterns of shadows and dark regions will differ

completely over time. To explain this in more detail, we will use the exam-

ple in Figure 3.3, which is based on 3000 frames from a 20 minutes video

from a surveillance camera which is pointing towards a busy junction in

Morocco.

As highlighted in yellow, the centre of the shadow of a vertical object

(possibly a road sign) has slightly moved to the left. This is because of

the relative movement of the sun which starts from sunrise to sunset and
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moves from east to west. Using this information to detect shadows would

have many advantages. For example, there is no limit in the location,

time of day or position of the camera. If the camera is stable and there

is a single stationary object that blocks the sun, we can detect a reference

shadow. In other sections we demonstrate that this solution can detect

shadows automatically in minutes unlike many other methods such as

[11], [14] and [20] which requires manual intervention by users or hours

of training.

(a) Frame 1

(b) Frame 3000

FIGURE 3.3: Trajectory of the centre of the shadow has
changed in 3000 frames which is marked in yellow.
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3.3.1 Pre-processing

In this example, the following steps have been taken to detect a reference

shadow:

1. The RGB image is converted to a binary image.

2. An averaging filter filters the binary image.

3. The position of the centre of the black regions is recorded across all

frames after going through a Registration Process.

To successfully identify the reference shadows, we have made a couple of

basic assumptions: 1) camera is stationary 2) shadows are darker than the

background. These assumptions are true and applicable in all of the video

surveillance application where the scene is viewed from CCTV cameras.

The filtering process is illustrated in Figure 3.4. In this example, which

is taken from a busy real-life scenario, many back regions are produced

at the end of pre-processing sections as evidenced in 3.4(c) These black

pixels could be moving objects, shadows or dark stationary objects. We

now demonstrate how we can categorise these regions and successfully

identify a reference shadow.

3.3.2 Registration process

Now that Figure 3.4.(c) is produced, we introduced a registration process

to track and analyse the position of the centre of dark regions across all

available frames and ensure the categorisation of dark regions has been

completed with minimum error. To do this, we register only dark regions

in each frame if both of the following two conditions are true:
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(a) The original RGB image

(b) RGB image is converted to binary

(c) The binary image is then filtered by an av-
eraging filter.

FIGURE 3.4: Pre-processing of RGB image.

1. The position of the centre of the dark region in the new frame should

be very close to the position of the dark region in the previous reg-

istered frame.

2. The size (number of pixels) of the dark region in the new frame

should be very close to the size of the dark region in the previous

registered frame.
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The first condition is in place because we know the centroid of shadow

will move very slowly over a short period. This is because the value of

α changes very slowly and hence the length of the shadow will change

slowly as per L = h / tan (α). Since the length of the shadow is increasing

or decreasing slowly, the centroid of the shadow will also move across

x an y axis very slowly. The second condition is designed to filter the

frames where a moving object goes over the cast shadow of the stationary

object that has produced the reference shadow. These conditions make the

shadow detection very robust and can successfully identify shadows in

very busy environments. This has been demonstrated in the experiment

section.

If any of the above conditions are false, we discard the dark region and

do not register the coordination of the centre and select 0 for the value of

x and y of the dark region in that frame. Moreover, we have also used a

counter to determine how confident we are in our readings. When there

is a new reading, the counter will be increased by one, and hence at each

point in time, we know the confidence in each dark region by comparing

the value of the counter of each dark region. In the example provided

in Figure 4, more than 2900 different dark regions were detected across

the 3000 frames but we only need to analyse the regions which have a

high number of counters. In this example and by selecting regions with

counter higher than 200, the number of dark region candidates reduced to

around 50 from the initial 2900. This is illustrated in Figure 3.5. The pro-

cess of registration is displayed in Figure 3.6. The registered dark region

is highlighted in green and the discarded dark region is shown in red. In
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FIGURE 3.5: The value of Counter for each registered dark
region. Around 2900 different dark regions have identified

during the 20 minutes of video footage.

this example, the second condition of the registration process (dark re-

gion size) has been violated because the size of dark region has altered

significantly in one of the frames and therefore the coordination of the

centroid is discarded for that frame. In most cases, this is because a mov-

ing foreground object - possibly a car, has moved over the shadow. To

calculate the size of dark region, the number of the pixels were counted

using Matlab functions.

3.3.3 Selection process

When all the frames have gone through the pre-processing and registra-

tion process, we recorded the positions of the centre of all of the registered

dark regions and stored this data in a matrix. The results are presented

in Figure 3.7 In Figures 3.7-(b) and 3.7-(c), the x values of the centre of

two dark regions are displayed. Region A is one shadow (or part of the

shadow) of a stationary object; possibly a road sign and region B is the
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(a) (b)

(c) (d)

FIGURE 3.6: Four consequence frames. All of the dark re-
gions (dark objects and shadows) are highlighted in white.
The registered dark regions are displayed in green, and the
unregistered dark region is displayed in red. The reason the
dark region in the frame (c) is not registered is because an-
other object (possibly a car) has gone over the dark region
and hence the size of this dark region has changed signifi-

cantly from previously registered frame.

dark car which is parked and not moving during the 20 minutes record-

ing. These two regions are marked in Figure 7-(a). The gaps in the read-

ings are due to the frames discarded during registrations process which

was explained earlier.

As evidenced in Figure 7, the centre of the shadow region changes

gradually over the period of time while the centre of the dark object stays

the same and does not change.

Therefore the key question to answer when detecting shadows is how

we can distinguish between dark objects and shadows and the answer is

given in Figure 3.7(b) and 3.7(c). If we analyse the dark regions for a while

and then check the trajectory of the centre (or corners) of dark objects, the
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shadow and non-shadow regions will show different patterns.

This is identical to our observation in the experiment from the surveil-

lance video in Morocco. As highlighted in Figure 3.7.(a) the centre of

the shadow region changes linearly during the 20 minutes observation

at midday; thereby matching the pattern illustrated in Figure 3.2.

To implement this, we fit a line using the Hough transform model [62]

from registered centroids and then check the angle of the line. If the angle

of the line is horizontal, i.e. the centre has not changed over the time and

the dark region is not a shadow. If the angle of the line is not 0, we have

successfully identified a reference shadow.

It should be noted that that in most real life cases, the measurements

will be very noisy. For example, in Figure 3.7-(b) and after frame 500,

there is a relatively large gap until the next reading. The reason for this is

between frame 500 and 820, there is a traffic jam for few minutes and a car

has stopped over the shadow A. Hence the coordinates are not registered

and the 0 is used as the value as explained previously.

Another question to answer is how many frames should be processed

to identify a reference shadow and the answer depends on the time of

the day, time of the year and the location in which the video is taken. In

our experiments, analysing 5-15 minutes of video footage was sufficient

to detect a reliable reference shadow in noisy environments.

Additionally it is possible to identify more than one reference shadow

and if this is the case, we can always select the one with the highest

counter. For example in our video sample from Morocco, we have found

two other reference shadows with the counter value of 1944 and 1677.
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(a)

(b)

(c)

FIGURE 3.7: (a) Dark region A is a shadow; Dark region B is
not a shadow and it is dark car. (b) x value of the centre of
object A over the 3000 frames and (c) x value of the centre

of object B over the 3000 frames.

It is important to point out that we do not need to identify all shad-

ows and if only one reference shadow (which could be in fact a part of
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a shadow) is identified, the rest of the shadows can be detected as ex-

plained in the next chapter. In real life scenarios where we would like to

track objects using outdoor CCTV cameras and with very high confidence

we can assume that at least one reference shadow exists. For example if

the camera is pointed at a busy junction or a roundabout, there is a very

good chance to have either a tree or traffic light or building in the image.

These objects will obstruct light and will create reference shadows.

As explained above, this method initially identifies many candidates

for reference shadow; for example in the video footage from Morocco,

more than 2900 different dark objects are detected during the 20 minutes.

This is displayed in Figure 3.5 Therefore the probability of identifying at

least one reference shadow among several thousand candidates is very

high.

To qualify as reference shadow, the object which creates the shadow

should be stationary. For example on a windy day, leaves of tree will not

yield reliable reference shadow. However in the same scenario, the tree

trunk can successfully generate reference shadow.

Identifying one shadow is the most important step in shadow detec-

tion and removal. Once this stage is completed the remaining shadows

can be detected easily by using various methods as explained in the fol-

lowing chapter. Reference shadow is a very simple but effective way for

shadow detection in outdoor scenarios and its most important advantage

to other systems is it works very well in complex lighting conditions as

well as busy environments. In the next, we illustrate that this method can

also be used to detect shadows at times close to sunrise and sunset to de-

tect shadows. The sole difference between this scenario and other time
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of the day is the centroid of the dark region shows a non-linear pattern.

However this pattern is still different to other dark regions and it can be

used to detect shadows and dark objects successfully.

3.3.4 Implementation

In this section, the methodology to implement automatic shadow detec-

tion in Matlab is explained. The key component of our algorithm is pro-

ducing a matrix called master. This matrix is a database which contains

the following information about all of the dark regions in all of the avail-

able frames:

Fixed Master matrix columns:

1. Object number

2. The first frame that the object was first observed.

3. The number of the time the object was observed (counter).

4. The frame number that the object was last seen.

5. Is the object still in the scene (1=in,0=out);

6. The number of the pixel in the object.

7. The object initial centroid X.

8. The object initial centroid Y.

9. The object new centroid X.

10. The object new centroid Y.
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11. The object new pixels.

The size of Master matrix is n x m where n is total number of all the sep-

arate dark regions seen in all of frames. These dark regions could shad-

ows or moving objects or noise etc. In a typical 10 minutes video, the

size of the master database could be tens of thousands of rows but there

is a purge function which is developed to remove the unwanted entries

in the database. This function is developed to improve the matching ca-

pability so the system can easily deal with environments with lots of fast

moving objects. m is 11 fixed columns plus 2 columns (Centroid X and Y)

for any frame that the object is seen. An example from master database is

presented in Figure 3.8
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3.4 Conclusion

In this chapter, a novel method to detect shadows automatically is pro-

vided. As explained, the reference shadows can be detected by analysing

how the length of dark regions changes over a period of time. For thou-

sands of years, the length of shadows were used to identify the time using

sundail and here the same concept is used in video processing to automat-

ically distinguish shadows from dark regions. This is a very simple but

effective approach which can be used in all outdoor environments.
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Chapter 4

Shadow Removal

A new and robust method to identify at one shadow was presented in the

previous chapter. In this section, we provide a novel solution for shadow

removal and explain the advantages of this system. The objective of this

solution is to provide shadowless images which can then be used by other

applications such as tracking systems, shape recognition and so on.

In chapter 1, an introduction to this thesis was provided. Chapter 2 was

literature review where the existing shadow detection methods were anal-

ysed and their strength and weaknesses were discussed and reviewed. In

the previous chapter 3 and we presented a novel method which can be

used to automatically detect shadows in outdoor environments which is

called reference shadow. The advantage of reference shadow method is:

1. It detect shadows automatically and doesn’t require user input.

2. Shadows from both foreground and background are detected.

3. It works very well in noisy environment with lots of moving objects.
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4.1 Definition of illumination invariant image

If we imagine a set of coloured surfaces under Planckian light, in a con-

trolled light box, say. If surfaces are Lambertian and not shiny, then for

each colour the log of the chromaticity r,g will be presented as a single dot

in a 2-d plot As displayed in Figure 4.1

(a) (b)

FIGURE 4.1: (a) Macbeth colour chart (b) Plot of each colour
on Log(B/G) and Log(R/G)

Now that we have identified one reference shadow with high confi-

dence, it is possible to detect the remaining shadows in the image[51].

The RGB colour ρ for each of the three channels K where K = (R, G, and

B) is given by:

ρk = Ic1λ
−5
k e−(c2/Tλk)S(λk)qk (4.1)

Assuming that lighting can be approximated by Plank’s law, constants

c1 and c2 are equal to 3.74183 × 10−16 Wm2 and 1.4388 × 10−2 mK. The
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variable I controls the intensity and S(λk) is surface spectral reflectance

function. Now to form band-ratio chromaticity from colour values ρ,

rk =
ρk
ρG

(4.2)

We divide this by green and calculate R
G

and B
G

to remove the intensity in-

formation and by doing this, the intensity information I will be removed.

Moreover, to removing the temperature term, the log of equation 4.2 will

be taken to form:

r′k = log(rk) = log(sk/sN) + (ek − eN)/T (4.3)

In this equation, sk = c1λ
−
k 5S(λk)qk and ek = −c2/λk and when tempera-

ture changes, the two vectors r′ and k will form a straight line. In [51] cam-

era calibration has been used to determine the vector direction (ek − eN)

in the space of logs of ratios. The invariant image is then formed by pro-

jecting 2-d colours into the direction orthogonal to the vector (ek − eN).

The result of this projection is a single scalar which is coded as a greyscale

value. Therefore, the greyscale invariant is defined as:

gs = c1R
′(R)− c2R′(B) (4.4)

Where in RGB space, R′(R) = log(R/G) and R′(B) = Log(B/G). c1 and c2

are constants such that the vector [c1 c2] is in the direction is orthogonal

to the lighting direction.
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Experiments have confirmed images with a different level of illumina-

tion will map to the same greyscale invariant image. The most important

benefit of this image is shadowless (which occur when there is a change

in luminance) will disappear. Now if we divide equation (4.4) by c1, we

get the following:

gs′ = R′(R)− CR′(B) (4.5)

where C = c2/c1

4.2 Producing illumination invariant image us-

ing reference shadows

Others such as Finlayson [51] have used manual camera calibration to

identify c1 and c2 but we use the reference shadow to automatically cre-

ate greyscale invariant image by estimating the value of C. To create the

invariant image without camera calibration, we generate a large number

of gs′ with different values of C in [0,1].

At some point, [c1, c2] becomes orthogonal to lighting direction and

FIGURE 4.2: When [c1, c2] changes with the lighting angle
from 0 to 180, at some point it will become orthogonal with

the lighting direction.
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shadow edges will disappear. To automatically detect the shadow edges,

we take the following steps listed in Algorithm 1.

Algorithm 1 Generating greyscale invariant image

1: Select C ∈ [0 , 1] to generate gs′ samples.
2: For all gs′ do
3: Create Edge Map. (we used Sobel method).
4: Take multiple block samples from inside and outside of reference

shadows boundary.
5: Find the gs’ sample with the least difference between inside and out-

side the edge.
6: End For
7: The gs’ sample identified in step 5 is gray-scale invariant image and

the corresponding parameter C is set.

The following example is from a video taken from a stationary cam-

era. We have used one frame per 2.5 seconds and in total 3000 frames

were used to detect the reference shadow. In this case, we correctly de-

tected the shadow located at the centre of the image as reference shadow

and used that to generate the grayscale invariant image. In Figure 4.3, the

process to generate the invariant image is displayed.

As displayed in Figure 4.3, we create the gs samples for uniformly dis-

tributed C ∈ [0, 1], and for each sample, we compare the average of few

blocks of pixels inside the reference shadow and compared them with

multiple samples outside of it.

At some point the clear edge between the reference shadow and non-

shadow areas starts to disappear and the average pixel value of the shadow

region becomes very close to outside the shadow. This is an important

threshold and at this point, the correct value of C is identified and it can

be used for all other frames of the video to create the shadowless invari-

ant image.
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The reason we took multiple samples from inside and outside shadow

area is that some of the samples may come from different object surfaces.

Hence by having multiple samples, the impact of material change at the

shadow edge will be removed.

Another example is shown in Figure 4.4 where the invariant illumina-

(a) (b)

(c) (d)

FIGURE 4.3: After processing 3000 frames, the shadow at
the centre of the image is identified as a reference shadow.
(a) RGB image (b) Comparing the values of a pixel block
across the edge of reference shadow.(c) One of the gs sam-
ples where the reference shadow is not removed. In this
image C=0.71 (d) One of the gs samples with the least dif-
ference between inside and outside reference shadow. In

this sample C=0.42

tion image is successfully produced but monitoring the edge of reference

shadow. In this case, the reference shadow is at the bottom left corner of

the screen.

Figure 4.3(d) and 4.4(d) show the outcome of the illumination invari-

ance model. Although the shadows are completely removed, other illumi-

nation features in the scene are also removed and the final image seems to
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(a) (b)

(c) (d)

FIGURE 4.4: After processing 1200 frames, the dark region
at the corner of the image is detected as reference shadow.
(a) RGB image (b) Comparing the values of a pixel block
across the edge of reference shadow.(c) One of the gs sam-
ples where the reference shadow is not removed. In this
image C=0.33 (d) One of the gs samples with the least dif-
ference between inside and outside reference shadow. In

this sample C=0.61

be unnatural grayscale compare to the original RGB image. To ensure this

issue is resolved, the illumination invariance image is subtracted from the

original RGB input in [51] to produce the edge of the shadow and then the

RGB image is reconstructed. Although the final results look promising,

this method will struggle to perform in busy environment with multiple

shadows from moving and stationary objects and all of the examples and

experiments presented in studies such as [51] are based on removing one

single prominent shadow from a stationary object.
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So to summarise, the applications where the grayscale image is suf-

ficient, this method has great performance, and shadowless results can

be produced very efficiently. However, for the systems which require all

of the pixel data including colours, this system may not be suitable. In

particular in a busy environment with lots of moving objects, producing

a coloured shadowless image from the invariant image will be very diffi-

cult.

4.2.1 Analysing histogram changes during shadow removal

process

Now that we have one shadow detected, we can analyse the histogram

changes at the reference shadow edge. In previous sections, it was illus-

trated how important the shadow centroid is and here we utilise shadow

edge to analyse the impact of illumination variance. Edges in an image

usually have very important role in various image and video processing

applications such as tracking and shape recognition because it is expected

to have material changes at the edge. However, in the case of shadows,

the edges exists because of illumination change and not material change.

Hence these edges are not very useful for object and shape recognition

systems. Here we explain how these edges can be used to provide im-

portant information about the lighting condition and chromaticity of the

scene.
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The following example is based on 45 minutes recording from a car

park. The first, last and temporal difference of these two frames are shown

in Figure 4.5

(a) (b)

(c)

FIGURE 4.5: (a) First frame of the video (b) last frame of the
video (c) The temporal difference between these two frames.

Frame 4.5(c) contains very important information. The non-black ar-

eas show how the shadows have moved in 45 minutes, and these regions

have been in shadow in the first frame, but they were outside shadow in

the last frame. This means we have chromaticity and colour information

of the same area when they were in shadow as well as outside shadow.

Figure 4.6 displays the histogram of this region when it was in shadow

and outside shadow.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 4.6: (a) and (b) show the same region when it inside
and outside shadow. The histogram of the R, G and B com-
ponents are displayed. When shadow covers the region, the
histogram shifts to the left whilst the overall distribution of
the histogram does not change significantly. Note the shift

in blue channel is more than red and green channels.

Experiments show that shadows do not impact the distribution of the

the histograms, they only shift the N-bins to the left. If we can find out
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how the histogram bins have been shifted and calculate the ratio, we can

apply the ratio to other shadows and find out how their RGB histogram

would look like if shadow did not cover them. In summary, first we anal-

yse the edge of reference shadow over time and calculate how the his-

togram of a block pixels have changed. We then apply the same ratio to

other shadow regions. This assumption is correct for the scenarios where

there is a single source of illumination ; for example normal outdoor con-

dition where the sun light is dominant.

To have a robust comparison model, we can treat each histogram as a

set of observations and then calculate the distance of each set using well-

known methods such as Euclidean, Minkowski or Correlation distance.

Given an mx-by-n data matrix X, which is treated as mx(1-by-n) row vec-

tors x1,x2,...,xmx and my-by-n data matrix Y, which is treated as textitmy

(1-by-n) row vectors y1,y2,...,xmy the distance between the vector xs and yt

are defined as follows:

Minkowski metric:

dst = p

√√√√ n∑
j=1

|xsj − ytj|p (4.6)

for the special case of p = 2, the Minkowski metric gives the Euclidean

distance, and for the special case of p=∞, the Minkowski metric gives the

Chebychev distance. To compare the histogram set in shadow and non-

shadow regions, we have used the Euclidean distance which is defined

as:

d2st = (xs − yt)(xs − yt)′ (4.7)
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Calculating the Euclidean distance of R, G and B histograms of pixel

block from reference shadow, provides a reference ratio ρr, ρg and ρb which

can be used to shift and match the histogram of the reaming shadow of

nearby pixels. Here we assume there is no material change at the shadow

edge. This means we can build a database of pixel blocks and use that to

detect and remove shadows of the moving foreground objects. In other

words, let us assume we have two nearby pixel blocks A and B. Block A

has been in reference shadow edge so we know how it looks like when

it was inside and outside shadow; however, shadow has always covered

block B during the video processing.

Now if we calculate the Euclidean distance of the histogram of block A

for each R,G,B channel when it was inside and outside of shadow and call

these value ρr, ρg and ρb. Then we can shift the histogram of block B by

distance ρ to identify the unknown histogram of block B if it was outside

shadow.

The difference between this method and illumination invariant method

that was previously mentioned is here we actually detect shadows based

on their colour and texture and we must do this for each shadow. Con-

versely, the illumination invariant methods remove all of the illumina-

tion information of the image at the same time. In the histogram based

method, we can automatically build a dataset which contains the colour

information of the blocks when they are inside and outside shadow. This

is illustrated in Figure 4.7
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Another important observation is in sunny days, ρb is slightly bigger

than ρr and ρg. This is because the main source of illumination in shadow

region is blue sky. Hence, shadows are slighter bluer than non-shadow

regions. This is Illustrated in Figure 4.6 (g) and 4.6 (h).

An important point to highlight here is both shadows, and foreground

objects move. However, the shadows move significantly slower than usual

foreground objects such as people or car. This can be a very useful clue to

detect shadows of stationary and static objects. For example comparing

two frames when they are seconds apart, would highlight foreground ob-

jects but shadow edges do not change significantly in the space of a few

seconds. However, the temporal difference of two frames where the gap

is around 5-15 minutes would be sufficient to detect the shadow edges.

This obviously depends on the following points:

• Time of the day where the video is taken.

• The position of the camera and its distance from the shadows.

The time of the day is important because the length of shadows changes

slower at midday compared with morning (after sunrise) or late in the af-

ternoon before sunset. Also the position and location of the camera is a

key factor when it comes to detection of shadow movement. If the camera

is focused and zoomed directly at shadow edge, it can detect the changes

in the shadow length in minutes. Based on our experiments and in nor-

mal CCTV camera configuration where the position of the camera is high,

comparing two frames where they are 10 minutes apart would be enough



88 Chapter 4. Shadow Removal

to see shadow edges move clearly.

4.3 Experiments

The following experiments are based on videos taken from a stationary

camera. They show how the position of the centre of the reference shadow

changes as the time passes. The goal of these experiments is to demon-

strate the potential to detect at least one reference shadow in most real-life

scenarios. Once the reference shadow is detected, the grayscale invariant

image can be computed for the whole video.

It should be noted that changes to the length (and hence the centre)

of the shadow will be less at midday compare to morning and afternoon.

For example, we managed to identify the reference shadow by processing

around 15 minutes of video. This time was reduced to 8 minutes when the

video was taken in the same location at 5 pm. In all the following exam-

ples, at least one reference shadow was identified, and then it was used to

generate the greyscale invariant image automatically. In all scenarios, the

shadowless greyscale image was produced successfully and the final re-

sults were satisfactory. It should be noted that we identified the reference

shadow by monitoring how the centre of the shadow is changing over

time.

Another interesting finding is when the video is recorded after sunrise

or before sunset, the trajectory of the centre of the shadow shows non-

linear patterns. However, during the rest of the day as the length of the
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shadow changes linearly, the position of the centre shows linear pattern

in short samples.

In both scenarios, the trajectory of shadow centre will be different to

other dark areas of the image and hence the shadow can be distinguished

from dark objects. Having said that, the quality of shadowless invariant

image is of a lesser quality than the previous scenario. These experiments

are presented in the following three subsections. The experiment con-

ditions are outlined in Table 2. In the following examples, the reference

shadow is marked by a white circle.

4.3.1 Experiment design

The way the experiments are structured is to test our shadow detection

hypothesis and find out if reference shadows can be used to automati-

cally detect shadows. Here we use reference shadows to detect shadows

in different outdoor scenarios. First we start with simpler examples with-

out any moving objects and then in other examples, it is illustrated that

reference shadows can be used to detect shadows in very complex envi-

ronments with significant number of moving objects.

Additionally, it is illustrated that reference shadows can be used to

successfully detect shadows close to sunrise and sunset. This is a signif-

icant improvement to the state of art and existing methods struggle to

perform in these challenging and noisy circumstances.
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(a)

(b)

(c) (d) (e)

(f) (g)

FIGURE 4.7: (a) Image is divided into 10 x 10 pixel blocks
(b) This block is at reference shadow edge and its distance
ρ in histograms is calculated. (c),(d) and (e) are the result of
shifting their histogram by ρ and the shadows are removed
in each block. (f) Shadow region at the bottom corner of
the image (g) shadow of the whole region is removed by

shifting the R,G and B histogram of each block.
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4.3.2 Simple Videos without Moving Objects

Our method works great in the scenarios when there are no other objects

in the video. In these scenarios, the reference shadow can quickly be iden-

tified, and the quality of the shadow-less image is also very good. The

first two images show the first and the last frame of video. The third im-

age shows the greyscale invariant image and the last image displays the

trajectory of center of the reference shadow overtime. These videos are

recorded during the day where shadow centre changes linearly. In this

scenario, all the frames are registered for reference shadow identification

as illustrated in Figures 4.8,4.9 and 4.10

(a) (b)

(c) (d)

FIGURE 4.8: In this scenario there is a single object with
clean background. All of the frames are registered and the
centre of the shadow of the chair has a linear pattern in the
45 minutes of recording time. There is only one shadow in

the video which is identified as reference shadow.
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(a) (b)

(c) (d)

FIGURE 4.9: In this experiment there are two objects and
the background is not homogenous. There are no moving
objects and all of the frames are registered. In this example

we used the shadow of the stick as the reference shadow.

4.3.3 Videos with moving objects

In this scenario, our method works exceptionally well and shadows from

moving and stationary and static objects are detected. These cases are far

more complex than examples given in other studies such as [119],[87] and

[51]. The registration process is very robust and it successfully detects

the reference shadow in a very noisy environment. In these real-life and

noisy videos, the performance of our method is very impressive and any

typical CCTV footage from the outdoor camera can be processed success-

fully and the shadows will be detected and then removed. In most of the

following examples, multiple reference shadows were detected, but only

was used to produce shadowless images.

In this scenario, when a moving object goes over the shadow, the coordi-

nation of the centre is not registered as displayed in Figures 13-17.
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(a) (b)

(c) (d)

FIGURE 4.10: In this experiment the shadow is dominant
and covers large part of scene. The background is not ho-
mogenous and the shape of the shadow gradually changes
over the time. There are various objects in the scene such as

trees. and the background is noisy.

4.3.4 Videos taken close to sunrise and sunset

In this case the trajectory of the centre of the shadows does not have a

linear pattern. This is the expected result as explained in Figure 2. In this

scenario, the centre of shadow shows a non-linear pattern but still the ref-

erence shadow can be detected. Our experiments demonstrate the quality

of the automatically detected invariant image is not as great as in the pre-

vious scenarios. However, to our knowledge, this is the sole method that

can detect shadows even during poor lighting conditions when the illu-

mination alters dramatically.
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(a) (b)

(c) (d)

FIGURE 4.11: The reference shadow is the shadow of the
traffic cone on the left side of the images. During the 30 min-
utes of recording time, the shadow of the cone has moved
slightly to the left. In this example other moving objects go
over the shadow few times hence some of the frames are not
registered. In this scenario, there are various stationary and
moving objects and the shadow can successfully be distin-

guished from other dark objects (such as dark cars).
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(a) (b)

(c) (d)

FIGURE 4.12: The reference shadow is the shadow of the
traffic cone on the left side of the images. During the 30 min-
utes of recording time, the shadow of the cone has moved
slightly to the left. In this example other moving objects go
over the shadow few times hence some of the frames are not
registered. In this scenario, there are various stationary and
moving objects and the shadow can successfully be distin-

guished from other dark objects (such as dark cars).

4.3.5 Comparison with other methods

To demonstrate how our system performs, we applied our method to

the image set provided by Weiss [119] and Matsushita [88]. Regarding

the quality of the shadowless images, there is no noticeable difference

and both methods produce very similar results as displayed in Figure 21

and Figure 22. However, there is a significant difference between the two

methods regarding the time required to produce the invariant image. For

example, Weiss used 35 frames from sunrise to sunset but in our expe-

rience a video footage for around 10 minutes will be sufficient to detect

shadows. The same results were observed when comparing our method
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(a) (b)

(c) (d)

FIGURE 4.13: In this video the shadow of the cone was iden-
tified as the reference shadow with the highest confidence

measure.

and Matsushita’s [88]. Hence our method which is introduced in this re-

search is a very strong solution for real-time application as shadows can

be detected in few minutes.

4.3.6 Experiments summary

It was illustrated in this section that shadows can be detected automati-

cally in different scenarios using reference shadows. Unlike most of exit-

ing methods such as [3] ,[4] and [6], reference shadows perform exception-

ally well in normal outdoor scenarios with lots of moving objects. Many

of existing solutions can only detect shadows in perfect conditions and

they are very sensitive to noise such [26] [57] and [12] but this limita-

tion does not exist in reference shadow system. Additionally, reference
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(a) (b)

(c) (d)

FIGURE 4.14: The reference shadow is dominant in this ex-
ample and it is on the left side of the scene. When the pedes-
trians walk over the shadow, the size of the shadow changes
and the frames are not registered. This is a typical outdoor
CCTV footage and our method can successfully detect and

remove shadow in such a noisy environment.

shadows have been used to successfully detect shadows near sunrise and

sunset. Therefore to summarise and based on experiments illustrated in

this this chapter, reference shadows can be used to detect shadows in the

following scenarios:

1. Noisy environments with many moving objects.

2. Close to sunrise and sunset.

3. During the day when shadows disappear briefly because of the pres-

ence of cloud.

In the next chapter 5, we explain how reference shadows can be used

to detect some objects and events in the scene.
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(a) (b)

(c) (d)

FIGURE 4.15: This is a CCTV footage from a very busy junc-
tion. There are many dark objects as well as numerous mov-
ing objects. In this video the reference shadow was identi-
fied as the shadow in the middle of the road (possibly from

a road sign or a lamppost).
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(a) (b)

(c) (d)

FIGURE 4.16: This video is recorded just after sunrise. The
shadow on the valley changes rapidly over a short period of
time so the centre of the shadow shows non-linear pattern.
In this example the scene illumination is rapidly increased

in less than one hour.
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(a) (b)

(c) (d)

FIGURE 4.17: This example is just before sunset. In this sce-
nario, the trajectory of the centre of the shadow has non-
linear pattern over short period of time and illumination
is rapidly reduced in one hour. In this experiment, two
shadows are connected during the sampling process. Our
method correctly detects the shadow in poor lighting con-

ditions..
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(a) (b)

(c)

FIGURE 4.18: (a) is an original imput image. (b) is shadow-
less image based on Weiss and (c) is based on reference
shadow. The frame samples used in [119] are from morn-
ing until sunset. However video footage for around 15 min-
utes will be sufficient to detect reference shadow using our
method. The final grayscale results are very similar but
the advantage of our method is it will detect shadows a lot
faster. The shadow highlighted in (a) has enough move-

ment to be detected as per reference shadow method.
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(a) (b)

(c)

FIGURE 4.19: (a) is an original image Matsushita [88]. (b) is
shadow-less image based on Matsushita and (c) is based on
reference shadow. They used mutiple in [88] are from dif-
ferent time of the day. However a short video footage from
similar scenario was used to detect reference shadow using
our method. To generate the invariant image, we used the
shadow of the building in the middle of the image as refer-
ence shadow. Similar to previous example, the advantage
of our method is it detect shadows a lot quicker and can be
used when there are moving objects. Matsushita’s method
produces colour shadow-less image but assumes there are

no moving objects in the scene.
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Chapter 5

Texture and event detection based

on reference shadows

In previous chapters, a novel method to automatically detect shadows

was introduced and the advantages of reference shadows was illustrated

in noisy environments with many moving objects. In this chapter was

explain how reference shadows can be used to obtain more information

about the scene.

By utilising reference shadows, it is possible to detect some of the fea-

tures and objects in the video and discover some events. In this chapter

we explain how it is possible to identify two very important features:

1. How to detect shiny materials the in the video automatically.

2. How to detect the presence of cloud in the video.

This will improve the awareness from the surrounding environment

and can be used for texture detection.
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5.1 Detecting non-Lambertian materials

By adopting a Lambertian model [61] of image formation so that if light

source with a spectral power distribution (SPD) denoted E(λ, x , y) is inci-

dent on a surface which surface reflectance function is denoted S(λ, x , y)

then the response of the camera sensors can be formulated as:

ρk(x, y) = σ(x, y) =
∫
E(λ, x, y)S(λ, x, y)Qk(λ)dλ (5.1)

where Qk(λ) is the spectral sensitivity of the k camera sensor, k = 1, 2,

3, and σ(x, y) is a constant factor which represents the Lambertian shad-

ing term at a given pixel. In section 4.2, it was explained that assum-

ing the surface has Lambertian characteristics, plotting Log (R/G) and

Log (B/G) would form a line which will be orthogonal to lighting source.

We previously showed how it is possible to generate grayscale illumina-

tion invariant model from reference shadows but here we present a novel

idea to discover non-Lambertian materials such as glass, water, metal or

any shiny material in the video under natural lighting condition. The ap-

proach taken here is producing a plot from Log (R/G) and Log (B/G) of

different regions and various pixels in the video to see if they fit in the

Lambertian model and then check if they produce a line. As explained in

chapter 4, the result of this projection should be a single scalar which is

coded as a greyscale value.

Here, we change the approach and claim that those objects that their

chromaticity do not fit into the linear model of gs = c1R
′(R) − c2R

′(B)
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should not be matt. This formula is generated from equation 5.1 There-

fore projecting R′(R) = log(R/G) and R′(B) = Log(B/G) would be able

to display if the surface chromaticity is fitting into Lambertian model or

not. This is explained in the following figures:

(a) (b)

(c)

FIGURE 5.1: (a) First frame of the video (b) last frame of
the video (c) 9 different pixels from three categories are se-
lected for analysis. A, B, C are in shadow, D, E, F from none

shadow, G, H , I are from the shiny parts of the car.

In this experiment nine pixels were analysed and the trajectory of their

Log(R/G) and Log(B/G) were compared. The nine samples are from

these three categories : 1) Shadow area 2) non-shadow 3) sample from
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the black car. These samples are marked from A-I in Figure 5.1 (c). The

duration of this video is one hour and the plot of Log (B/G) and Log

(R/G) of these nine pixels over one hour, as depicted in Figure 5.2

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 5.2: First row figures shows the trajectory of pixels
(a) , (b) and (c) in Figure 5.1 over 1 hour of video which
belongs to shadow region. The second row displays the
pattern of pixels (d), (e) and (f) which are from the non-
shadowed region of the image. 3rd row shows the trajectory
of pixels (g), (h) and (I) which are of shiny metal and glass.

The important observation here is the pixels which belong to Lamber-

tian surface model i.e. matt materials show linear trajectory over record-

ing time. This assumption is true regardless of the sampling position

whether the pixel belongs to shadow or non-shadow region. However,
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the pixel which belongs to non-Lambertian surface model i.e. shiny ma-

terials such as water, glass or metal do not fit into this model and their

chromaticity dose not reveal a linear pattern when the source of illumina-

tion changes.

This behaviour is evident in Figure 5.2. The first two rows show the

chromaticity of matt objects in both shadow and non-shadowed part of

the image and the 3rd shows the same analysis for shiny objects. In this

experiment, the matt regions show linear chromaticity over time while

the shiny materials do not. This important characteristic can be used to

discover and distinguish shiny and matt textures in the video.

(a) (b)

FIGURE 5.3: The 1st and last frame of the video taken out-
side Brunel university library.

Another example is shown in Figure 5.4 where pixels from matt sur-

faces show linear chromaticity over time (both shadow and non-shadowed

regions). However, on the other hand, pixels from glass windows and

doors do not fit into non-Lambertian model do not display any linear

trajectory over time. Hence by plotting R′(R) = log(R/G) and R′(B) =

Log(B/G) we can successfully distinguish matt and shiny textures over

time because matt materials show linear pattern whilst shiny materials
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 5.4: The 1st row figures shows the trajectory of pix-
els taken in shadow region. 2nd row displays the pattern
of pixels from non-shadowed region of the image. The last
row images show the pattern of the trajectory of pixels from

glass doors and windows.

don’t fit into any linear model.

Another interesting observation is seeing the difference between Fig-

ure 4.2 and Figures 5.3 and 5.4. The trajectories illustrated in Figures 5.2

and 5.3 are from real-life conditions where the illumination changes are

not as controlled and regulated as lab lighting conditions, as depicted in

Figure 4.2 (b). In normal outdoor conditions, the illumination changes are

consistence with the exception when there are clouds. For example, af-

ter sunrise, the scene becomes brighter until noon but if there are clouds,

the image may become darker than previous frames. This why in normal
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lighting condition, some patches can be seen in the trajectory of matt pix-

els over time, which are clear in rows 2 and 3 of Figure 5.2 and 5.3. In the

next section, we explained how it possible to detect the presence of cloud

in the image and what information can be obtained from this event.

5.1.1 Distinguishing reflectance from white material

The difficulty in processing image and video in RGB domain is both white

materials and specular reflection show as saturated patches in the scene

so the R, G and B value of both areas are close to 255. This is illustrated in

the following Figure 5.5. What this shows is just simply searching for sat-

urated white regions will not be a good method to identify the reflections

because the other white parts of the image will be incorrectly identified as

reflectance.

As it can be seen in Figure 5.5 both the reflection and the white line

on the road have saturated the R, G and B channels. This means selecting

pixels based on their colour will not be sufficient to identify the glare and

reflectance. Here we propose a new method which can be used to distin-

guish white materiel from reflectance successfully and we also illustrated

how the glare and reflectance from each frame can be removed.

5.1.2 Logarithm of Chromaticity

In the previous section we explained that plotting Log (R/G) and Log (B/G)

of Lambertian material would form a line which will be orthogonal to
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(a) (b)

(c) (d)

FIGURE 5.5: Reflection in image saturates all three RGB
channels so it can be detected incorrectly as a white mate-
rial. The saturated pixels are shown in (e) which includes

both white materials and reflection pixels.

lighting source. We also explained that materials and textures that do not

fit into the linear model of gs = c1R
′(R) − c2R

′(B) are not matt. There-

fore projecting R′(R) = log(R/G) and R′(B) = Log(B/G) would display

whether or not the surface chromaticity is fitting into Lambertian model.

Reflectance and glares are examples that do not fit within the following

model:

ρk(x, y) = σ(x, y) =
∫
E(λ, x, y)S(λ, x, y)Qk(λ)dλ (5.2)

This methodology is illustrated in Figure 5.6. In this example, both

the white paper and the mirror have saturated all three channels and the
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(a)

(b) (c)

FIGURE 5.6: (a) The RGB value of both objects are close to
255 and both surfaces are white (b) logarithm of chromatic-
ity of mirror over a period of time (C)logarithm of chro-
maticity of white paper which forms a line. In this example
the σ of white paper is 89.15 but it is 221.89 for the mirror

value of their RGB is close to 255. However during the 15 minutes record-

ing, their logarithm of chromaticity shows a different trajectory and this

can be used to distinguish the white paper (matt surface) from the mirror

(shiny surface). To deploy this automatically, we attempt to form a line

from log(R/G) and Log(B/G) values using a smoothing filter from the

trajectory of both matt and shiny surfaces.

Therefore, to distinguish white matt objects from reflectance, we draw
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a line from scattered data and calculate the normal distribution of the log-

arithm of chromaticity of both surfaces. The σ of the shiny surface is sig-

nificantly higher than matt material. There are many research materials

and methods in the field of statistic about interpolating scattered data.

For the simplicity, we calculated the average of the of the first few coor-

dination to produce the first point of the line and used the same method

to generate the last coordination of the line. This simple method works

perfectly in the less noisy environment but in environments with moving

objects and less reliable data, more complex methods will be needed to

draw a line. This approach is explained in algorithm 2.

Algorithm 2 How to diffrentiate between white materials and reflectance

1: Plot the gradient of R′(R) = log(R/G) and R′(B) = Log(B/G) from
saturated regions using the available frames.

2: Calculate the average of the first 10 percent available R′(R) =
log(R/G) and R′(B) = Log(B/G) to generate the first coordination
of the line.

3: Calculate the average of the last 10 percent of the available R′(R) =
log(R/G) and R′(B) = Log(B/G) to generate the last coordination of
the line.

4: Produce the normal distribution of all the logarithms of chromaticity.
5: The σ of the distribution of the shiny material will be higher than matt

surface and this indication can be used to distinguish these two types
of material.
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(a)

(b)

FIGURE 5.7: (a) The ratio of change of logarithm of chro-
maticity of a shiny surface (b) at The ratio of change of log-

arithm of chromaticity of a matt material.

5.2 Reflectance and glare analysis

The previous section presented a system to detect the materials with a

shiny surface. This was used to identify water leakage, metal or glass au-

tomatically in the video. This section discusses and analyses the impact of

expressive reflectance, which can have a negative impact on applications,

such as tracking and video surveillance. In many real-time applications,

particular outdoor environments such as roads and highways, highlights

and glares caused by light specular reflections are challenges for object

detection in some monitored areas as targets of interest are hidden and
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covered by these lighting artefacts. Additionally, significant movements

of the reflection region due to the dynamic background cause an increase

in foreground error detections.

In Figure 5.8, some of the examples based on these scenarios are dis-

played. The reflection in these examples is generating additional un-

wanted edges which will have a negative impact on tracking applications

and object detection systems.

(a) (b)

(c) (d)

FIGURE 5.8: (a) The reflection of light on the water is gener-
ating a lot of noise and unwanted edges. (b) The reflection
of the light on the road surface is producing false moving
component which would impact the performance of the car

tracking system.

The problems of foreground noise reduction and hidden target detec-

tion have been researched extensively in the literature and to reduce the
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noise caused by light reflection, polarising filter set in the front of the cam-

era lens has been used. This system however, needed to detect incident

polarisation angle of specular reflection as the optical axis of the filter [53].

One of the use cases of this application is video processing and tracking

in an aquatic environment which is explained in [118]. In their method,

they have used HMM models to identify people in swimming pool.

This is achieved by using a Bayesian approach using Hidden Markov

model scheme is designed to enhance human detection and tracking per-

formance for video surveillance system operating under noisy aquatic en-

vironment. Pixels in the current frame are classified as foreground or

background by considering prior historical information of its surround-

ing frames and the likelihood probability between the current frame and

the reference image.

5.2.1 Reducing glare and reflectance

Now that the regions and pixels which reflect the sun are successfully

detected, we propose an algorithm which can be used to remove the re-

flectance from frames automatically without any user input. The use case

of this system is for any typical video surveillance or tracking application

where extensive reflectance and glare can negatively impact them. This

is Illustrated in Figure 5.5, where the reflectance has produced additional

edges. This will reduce the performance of object detection systems. An-

other application of this method is for image enhancement and image

restoration systems where it is used to remove unwanted reflection from
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video to produce better quality images.

To achieve this goal, the same methodology introduced in Chapter 4

will be implemented to differentiate between white objects and reflectance.

Previously, we used reference shadows to produce illumination invariant

image which resulted in having shadowless images but here we use the

reflectance areas of the image as a reference to generate the same illu-

mination invariance images. As discussed previously, the illumination

invariance images lose all of the chromaticity information which includes

both shadows and reflectance. This is summarised in the algorithm 3:

Algorithm 3 Generating greyscale Invariant Image for reflectance re-
moval.

1: Identify the source of reflectance as described in Algorithm 2.
2: Select C ∈ [0 , 1] to generate gs′ samples.
3: For all gs′ do
4: Analyse the chromaticity of reflectance region.
5: Find the gs’ sample with the least chromaticity for the reflectance pix-

els.
6: End For
7: The gs’ sample identified in step 5 is gray-scale invariant image and

the corresponding parameter C is set.

The 2-D gray-scale invariant image which is produced by algorithm

3 loses of its illumination information. This includes shadows and re-

flectance. The key point to highlight here is we have proposed a system

that can be used to differentiate between white matt materials and shiny

surfaces.

This process is explained in following Figure 5.8. In this example the

reflectance source is detected as described in algorithm 2 and then the

value of chromaticity is compared with a white Lambertian surface. At
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the point where ∆ becomes maximum, the reflectance is reduced together

with all the other illumination information in the image including the

shadow of the car.

(a) (b)

FIGURE 5.9: (a) The white paint and the white reflectance on
the car have similar RGB values.(b) at C=0.21 the delta be-
tween these two regions becomes maximum. At this point
Illumination Invariant image is produced where shadows

and reflectance are removed.

5.2.2 Experiments

In this section, some examples of how this system can be used to remove

glare from images are presented. These are all from real-life video footage

and the excessive reflectance is removed and illumination invariance im-

age is produced which removes the illumination information from the

image.
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(a)

(b)

FIGURE 5.10: (a) The white paint and the white reflectance
on the car have similar RGB values.(b) at C=0.21 the delta
between these two regions becomes maximum. At this
point illumination invariant image is produced where shad-

ows and reflectance are removed.

5.3 Detecting the presence of clouds by analysing

reference shadows

In the previous section it was explained how some of the features in the

video could be detected and now we explain how some of the events can

be discovered by analysing Reference shadows. Here we explain how it

is possible to detect the presence of cloud by using the reference shadows

and also the information that can be obtained from this event.

In the majority of image and video processing applications, such as

tracking and object recognition functions, detecting the presence of cloud

may not be a high priority in activity recognition; moreover,this event is

not significant by itself. nonetheless, the presence of cloud has a major

impact on the illumination condition of the camera viewpoint and more
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(a) (b)

FIGURE 5.11: (a) Typical CCTV footage with modest re-
flectance on some of the cars (b) Producing 2-D illumination
Invariance image would remove the shadows as well as the

reflectance on the cars.

importantly would allow us to produce high quality shadowless images;

especially when clouds completely block the sun and shadows disappear.

As discussed in chapter 2, most of the existing cloud detection meth-

ods are based from satellite images [5],[12],[26] and [2]. In this section, a

new solution is provided which is based on standard CCTV video footage

where the camera is positioned outside and it is stationary.

Furthermore, fast moving clouds alter the illumination conditions of

the scene rapidly; thereby impacting tracking and feature recognition. To

achieve this, first we introduce a ratio that can be used to identify shad-

ows.

5.3.1 Blue channel proportion analysis

Pixels get darker when shadows cover them but in addition to this our

experiments show that the shadow areas are bluer that non-shadowed re-

gions. This is because the only source of illumination in shadow regions

is sky, which is perceived as blue. When a pixel or a region is illuminated

by a blue coloured light source, they tend to reflect blue light more and
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(a) (b)

FIGURE 5.12: (a) An image with extensive glare and re-
flectance (b) The illumination invariance image is generated
as explained by algorithm 3. The impact of illumination in-

variance is significantly reduced.

hence they look bluer. Conversely, the non-shadowed regions are illumi-

nated by both sky and the sun where the illumination from the sun is far

more dominant than the sky. In other words, the non-shadowed regions

will not be as blue as shadows.

Consequently, the rate of change in R, G and B channels is not the

same when shadows cover the the area. Although the intensity of the

RGB channels reduces when a pixel is in the shadow region, the change

is not proportional. So assuming PRGB is the RGB values of a pixel in

the non-shadow region and PR′G′B′ is the similar value for the same pixel

in shadow, we can claim that PB′/PB > PR′/PR and PB′/PB > PG′/PG.

The following examples show this ratio for shadow and non-shadowed

regions are displayed in Table 5.1
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TABLE 5.1: Analysing the blue ratio in an outdoor environ-
ment.

Figure PR′/PR PG′/PG PB′/PB

5.9(a) 0.4844 0.5018 0.5876

5.9(b) 0.3178 0.4171 0.4491

5.9(c) 0.5217 0.5053 0.5829

5.9(d) 0.4019 0.3814 0.4682

5.9(e) 0.3596 0.3716 0.4151

5.9(f) 0.4163 0.4723 0.5876

5.9(g) 0.4844 0.5018 0.5876

5.9(h) 0.4087 0.3832 0.4329

As evidenced in these examples, the blue ratio is a good factor to nar-

row down the possible candidates of shadow regions and also can be used

a reference to validate the presence of cloud which results in removal of

the shadow. To use this, we check the blue channel of the shadow region

when we suspect the clouds have appeared. What we should expect is the

shadow region will become brighter but the PB′/PB will not be increased

as much as PB′/PB and PB′/PB. This is because on the cloudy days, the

sky will be no longer blue and the dominant source of illumination will

be the grey sky.

Here we make an important assumption that when we refer to clouds,

we assume the direct sun light is fully blocked and the shadows are com-

pletely removed. In other cases where there are thin clouds and the direct

sun is partially blocked; this theory is not valid.
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5.3.2 Cloud detection

Here we explain how we can detect the presence of cloud and also elab-

orate how this event can lead us to generate high quality shadowless im-

ages when there are no clouds in the scene. We focus on normal illumi-

nation condition where some part of the day there are no clouds and then

the clouds gradually block the sun. This is implemented by meeting the

following logical conditions to detect clouds:

1. When clouds appear, all the reference shadows start to disappear.

2. When clouds appear, the non-shadowed regions will become darker

while the shadowed regions become brighter.

3. When clouds appear, the shadow regions will become less blue.

If the above three conditions are true, we have a very high chance that

clouds are present. This is because in normal lighting conditional the sun

illumination follows a specific pattern. From sunrise to noon, the illu-

mination increases before decreasing gradually until sunset. Therefore,

changes in this behaviour indicate an external factor has influenced the

illumination source. In normal outdoor condition, the most important

factor will be clouds. Here, we make some very important assumptions:

• The camera sensor is consistent during the day.

• Artificial light sources are negligible compared with illumination

from the sun.



126 Chapter 5. Texture and event detection based on reference shadows

(a)

FIGURE 5.14: Detecting the appearance of the cloud. All
of the detected shadows are removed simultaneously and
the areas which were previously in shadow will become
brighter. The pixels that used to be outside shadow will

become slightly darker.

These two assumptions are very important and in normal outdoor

CCTV conditions, these assumptions are correct. The following Figure

5.15 displays the impact that cloud can have on the illumination condi-

tion over a short period. This process is displayed in Figure 5.15. In

this example, there are 25 frames per second and cloud appear in less

than 30 seconds. The process of cloud detection is Illustrated in Figure

5.16. In this example, the shadow darkens gradually as the time passes.

However after frame 3000, the process is reversed and the shadow region

becomes righter. This is the first indication that clouds have started to ap-

pear which can be seen in Figure 5.15 (a). The second condition for cloud

presence is the fact that the brightness difference between shadow and
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non-shadowed region suddenly start to reduce until it becomes zero. This

is depicted in Figure 5.6 (b) where the edge of shadow and non-shadowed

region has disappeared. In this experiment, the brightness difference of

the lamppost shadow and the background is reduced to zero from around

120.

(a)

(b)

(c)

FIGURE 5.15: In this experiment, the clouds appear in less
than 3 minutes. The impact is shown on reference shadows

where they gradually disappear.
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(a)

(b)

FIGURE 5.16: (a) shows the greyscale value of the reference
shadow (in this example it is shadow of the lamp-post), the
shadow is getting darker but suddenly it becomes brighter.
(b) This figure shows the difference between the brightness
value of reference shadow and the non-shadowed region at

the edge of the reference shadow.

It should be highlighted that to have a robust system to detect cloud,

we would need more than one reference shadow. This reduces the impact

of foreground objects going over the shadows which may result in pro-

ducing the wrong conclusion. In most of real-life outdoor scenarios, there

will be multiple reference shadows because potentially many stationary

objects can produce reference shadows. In these cases, cloud detection

will be more accurate because the impact of the cloud will be the same on

all the reference shadows. Hence if all the reference shadows start to fade
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and disappear at the same time, we can conclude the presence of cloud

with high confidence.

In the example that is displayed in Figure 5.15, there are two reference

shadows from lamp-posts, three reference shadows from the bicycle racks

at the button of the image. When the clouds appear, all of these shadows

are removed simultaneously.

Now that we have successfully detected the presence of cloud, we can

use this to discover and remove the shadows in other times where there

are no clouds. This is explained in the next section.
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5.3.3 Utilising cloud detection for shadow removal

In previous section a novel method for cloud detection was presented.

Here we explain how we can utilise this event to detect and remove all

the shadows in the image and this would be the real benefit of cloud de-

tection. As displayed in Figure 5.15 (c) when the clouds block the sun,

all the shadows will disappear and the scene is illuminated by light from

the sky instead of direct light from sun. This is a very important and use-

ful attribute of clouds and since they block the direct light from the sun,

the shadows are removed. So, when we know there are clouds, we can

conclude there are no shadows; therefore, we can produce a shadowless

reference image which can be used in other frames to detect shadows. To

do this we have subtracted the cloud frame from non-cloud frames and

the results are illustrated in Figure 5.17

In this example, two frames from a video sequence are displayed. One

of the frames is from the time where there are clouds and the other frames

shows the view when there are no clouds present. Figure 5.17 (c) displays

the delta between these two frames and here two very important features

are highlighted and everything else is filtered:

1. Moving objects.

2. Shadows.

Here, we have a procedure to segment shadows and moving objects

from the rest of the image. Both two features are very important subjects
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in many image and video processing applications such a shape and activ-

ity recognition and tracking. The importance of Figure 5.7(c) is the fact

that shadows are shown and by using the shadowless reference image in

Figure 5.17 (b), we can remove the shadows from image 5.17(a).
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(a) (b)

(c)

FIGURE 5.17: (a) a frame illuminated with direct sun light
(b) a frame where clouds block the direct sunlight and there-
fore shadows are removed. (c) Subtracting the two frames
would highlight two important features: 1) moving objects

2) Shadows.
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5.4 Experiments

In this section, we have presented the experiment results and showed

how the source of reflection could be automatically detected by analysing

various regions of the frame over a period. Additionally, we have pro-

vided experiment results that reveal how the clouds can be detected au-

tomatically by analysing the reference shadows.

The following figures display the experiment results of the cloud de-

tection process explained in this chapter. The following experiments are

from a video footages taken from stationary camera in the daytime. In

each experiment, the location and position of the reference shadow are

explained. Additionally, the brightness difference between regions inside

and outside shadow is shown.

As it can be seen, when the could appear in the scene the region which

was previously in shadow will become brighter and at the same time the

area which used to be outside shadow will become darker. The illumi-

nation difference between shadow and non-shadow region reduces and

these two regions will become almost identical when thick clouds com-

pletely block the sun.

5.4.1 Experiment design

The experiments in this section are designed to illustrate that clouds can

be detected by analysing the reference shadows. The hypothesis is clouds

can be detected automatically using reference shadows and then high

quality and natural shadowless images can be produced. The natural
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shadowless image can be subtracted from other frames and then all other

shadows in other frames of the video can be detected. This is shown in

the following examples where all the frames are from standard CCTV

footages. Unlike the existing literature such [11], [14] and [26] where

clouds are detected from satellite images, here we propose a new novel

solution which is based on cloud detection based on analysing the impact

of clouds on shadow regions.

5.4.2 Conclusion

In this section a new method is presented to detect clouds. Also a novel

solution is provided to identify none-Lambertian textures in the video

automatically. Detecting shiny materials has many applications such as

water and ice detection for road users and it can it can also be used to

detect glass and metal in video.

Cloud detection is very important in video processing due to the im-

pact on illumination. When clouds appear, the sun will be blocked and

therefore the shadows will be removed. This high quality shadow-less

image can be used in other frames of the video to detect shadows and

also moving objects.
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(a)

(b)

(c)

FIGURE 5.18: (a) a frame illuminated with direct sun light
(b) a frame where clouds block the direct sunlight and there-
fore shadows are removed. (c) Subtracting the two frames
would highlight two important features: 1) moving objects

2) Shadows.
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(a)

(b)

(c)

FIGURE 5.19: (a) a frame illuminated with direct sun light
(b) a frame where clouds block the direct sunlight and there-
fore shadows are removed. (c) Subtracting the two frames
would highlight two important features: 1) moving objects

2) Shadows.
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(a)

(b)

(c)

FIGURE 5.20: (a) a frame illuminated with direct sun light
(b) a frame where clouds block the direct sunlight and there-
fore shadows are removed. (c) Subtracting the two frames
would highlight two important features: 1) moving objects

2) Shadows.
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(a)

(b)

(c)

FIGURE 5.21: (a) a frame illuminated with direct sun light
(b) a frame where clouds block the direct sunlight and there-
fore shadows are removed. (c) Subtracting the two frames
would highlight two important features: 1) moving objects

2) Shadows.
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Chapter 6

Conclusion and further work

6.1 Summary

In this thesis, we have introduced a new method to automatically detect

and remove shadows in videos taken from stationary cameras in an out-

door environment. Based on the observation that, owing to the relative

movement of the sun, the length and position of a shadow change lin-

early over a relatively long period in an outdoor environment, we can

conveniently distinguish a shadow from other dark regions in an input

video. Then, we can identify the reference shadow as the one with the

highest confidence of the above mentioned linear changes. This reference

shadow is used to produce shadow-free invariant model[51], with which

the shadow-free invariant images can be computed for all the frames in

the input video.

6.2 Contributions

The main contributions of the work can be summarised as follows:
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1. We have developed a novel method to identify the reference shadow.

Without any prior knowledge, a shadow would appear the same as

other dark regions in an image, e.g. an object with dark colours.

However, if we observe the changing patterns of the position and

length of a dark region, those for a shadow changes linearly while

those for a dark object do not change. Thus the shadows can be dis-

tinguished from the dark objects. With simple confidence measured

against this linearity and consistency of changes, we can choose one

or a few reference shadows with the highest confidence measure.

Experimental results have demonstrated this process of reference

shadow identification is fairly accurate and reliable.

2. With the reference shadows, we can effectively produce shadowless

invariant images. Previously this model fitting normally involves

troublesome camera calibration, but with our new method, this pro-

cess becomes straightforward and automatic.

3. Utilising the reference shadows, have detected the presence of cloud

in the scenes and then used that to generate a reference image which

is then used to produce coloured shadowless images for other frames.

4. the reference shadows, have detected the presence of cloud in the

scenes and then used that to generate a reference image which is

then used to produce coloured shadowless images for other frames.

The work-flow to generate shadowless images is illustrated in the fol-

lowing Figure.
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FIGURE 6.1: Video processing mechanism to produce shad-
owless image.

The results of our method have been compared with some of the state

of the art systems in outdoor environments. So to summarise, the follow-

ing subjects have been covered in this thesis:

6.2.1 Reference shadows

Reference shadows are the key component of the shadow detection algo-

rithm mentioned in this document. They can be distinguished from other

dark regions in the video by analysing the trajectory of their centroid or

their over a period. The centroid of Reference shadows move linearly
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over a short period of time and this is because of the change in position of

the sun during the day.

To detect the reference shadow, we analysed and processed the posi-

tion of the centre of the shadow instead of its length. In a short period, the

changes to the position of the centre of the shadow will have similar pat-

tern as the length. Our experiments confirmed monitoring the centre of

the shadow will be sufficient to distinguish reference shadow from other

dark objects.

Additionally, the impact of other factors such as the shape of the object

and camera view will be minimum in short sampling periods and will

not change the trajectory of the centre (or corner or edge) of the shadow.

Based on our experiments, using the corner of shadows will improve the

performance of shadow detection system when the shadows are located

at image boundaries.

6.2.2 Illumination invariant images

Illumination invariant images do not have any illumination information

such as shadows. We have used reference shadows to produce illumi-

nation invariant automatically unlike methods such as [51] where they

used manual camera calibration. Illumination invariant images do not

have any colour information and they are greyscale. To produce Illumi-

nation invariant images, To create the Invariant Image without camera

calibration, we generate a large number of gs′ with different values of C

in [0,1]. At some point [c1, c2] becomes orthogonal to lighting direction

and shadow edges will disappear. To automatically detect the shadow
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edges, we monitored the edge of reference shadows and once the edge is

disappeared, the Reference shadow is removed together with the rest of

the shadows.

Furthermore, we analysed the edge of reference shadow over the time

and processed the impact on the material background when it becomes

engulfed in shadow. We formulated the impact of shadow on the his-

tograms in R, G and B colour spaces and then applied the same model

to the reset of the shadow region and successfully produced good qual-

ity coloured shadowless image. Here we assumed there is no material

change at the shadow edge.

6.2.3 Detecting the presence of clouds

Detecting the presence of cloud may not have huge value in systems such

as tracking or shape recognition however when there are clouds, shadows

disappear. Hence knowing that this event has happened would allow us

to produce high quality shadowless reference images which can be used

to detect and remove shadows in other parts of the video where there

are no clouds. In this thesis we have provided a robust method and the

presence of clouds are successfully detected by analysing the Reference

shadow characteristics.

To do this we used the reference shadows again over the time and anal-

ysed the illumination and chromaticity of Reference shadows when the

clouds appear. It was observed that during such a scenario, the reference

shadow region becomes brighter and the previous non shadow region.

Additionally our experiments show that the shadow areas are bluer that
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non-shadowed regions. This is because the only source of illumination in

shadow regions is the sky which is perceived as blue. When a pixel or a

region is illuminated by a blue coloured light source, they tend to reflect

blue light more and hence they look bluer. Conversely, the non-shadowed

regions are illuminated by both sky and the sun where the illumination

from sun is far more dominant than sky. This means the non-shadowed

regions will not be as blue as shadows.

6.2.4 Identifying shiny materials in video

Another important method which is presented in this thesis is a system

which can automatically detect non-Lambertian surface materials. We

have illustrated matt surfaces and shiny material display different be-

haviours under same illumination models. Lambertian surfaces have lin-

ear pattern but shiny materials such as water, glass and metal do not show

the linear trajectory and we have used this characteristic to distinguish

them from matt materials.

To implement this, we projected the logarithm of chromaticity (R′(R) =

log(R/G) andR′(B) = Log(B/G) ) and calculated the gradient of the sam-

ple regions. It was demonstrated that ratio of the change in shiny material

was significantly higher than matt surface and this test can be used to dis-

tinguish these different objects.

The same concept was also used to distinguish reflection glare from

white matt objects and illumination invariant images where used to re-

move the impact of excessive reflectance from the video. This solution is

used for applications such as water and leakage detection and so on.
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6.3 Research limitations

The research in this thesis is focused on detection of shadows, clouds and

shiny textures but there are some limitations and assumptions that should

be considered:

1. This research is based on outdoor condition with natural light.

2. There should not be any secondary source of light.

3. The camera should be static.

The above assumption are correct for most outdoor standard CCTV

deployments but the methods introduced in this thesis can not be used

where there are multiple sources of artificial light. Additionally to de-

tect reference shadows, the camera should be stationary therefore the pro-

posed methods in this thesis can not be used with moving cameras such

as autonomous cars.

6.4 Further work

In this thesis, a novel method to detect a single shadow (reference shadow)

was presented. Additionally, the impact of illumination variance has been

discussed and analysed. The difference between Lambertian and non-

Lambertian surface (shiny and matt) has been illustrated and a novel

method to distinguish was presented. The reference shadow was then

used to produce Illumination Invariant gray scale image. Some of the

further research topics that can be followed are listed below:
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• Illumination Invariant image loses all the illumination information

of the image including colour information. Additional procedures

will be needed to produce coloured shadowless image.

• When a single shadow is detected, other systems such as Neural

Networks can be used to train the learning model and detect and

remove the reference shadows.

• How different of glossy textures can be detected.

• How can shadows be identified when the camera is not static such

as autonomous cars.

The above topic features are only some aspects of the further research

that can be conducted in this field. Moreover, the integration of our shadow

detection system with tracking and object recognition solutions would be

valuable for video processing applications.
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