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Uniform Recovery Bounds for Structured Random

Matrices in Corrupted Compressed Sensing
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Abstract—We study the problem of recovering an s-sparse
signal x⋆ ∈ C

n from corrupted measurements y = Ax⋆+z⋆+w,
where z⋆ ∈ C

m is a k-sparse corruption vector whose nonzero
entries may be arbitrarily large and w ∈ C

m is a dense noise
with bounded energy. The aim is to exactly and stably recover
the sparse signal with tractable optimization programs. In this
paper, we prove the uniform recovery guarantee of this problem
for two classes of structured sensing matrices. The first class
can be expressed as the product of a unit-norm tight frame
(UTF), a random diagonal matrix and a bounded column-
wise orthonormal matrix (e.g., partial random circulant matrix).
When the UTF is bounded (i.e. µ(U) ∼ 1/

√
m), we prove that

with high probability, one can recover an s-sparse signal exactly
and stably by l1 minimization programs even if the measurements
are corrupted by a sparse vector, provided m = O(s log2 s log2 n)
and the sparsity level k of the corruption is a constant fraction
of the total number of measurements. The second class considers
randomly sub-sampled orthonormal matrix (e.g., random Fourier
matrix). We prove the uniform recovery guarantee provided that
the corruption is sparse on certain sparsifying domain. Numerous
simulation results are also presented to verify and complement
the theoretical results.

Index Terms—Compressed sensing, corruption, dense noise,
unit-norm tight frames.

I. INTRODUCTION

The theory of compressed sensing has been widely stud-

ied and applied in various promising applications over the

recent years [1]–[5]. It provides an efficient way to recover a

sparse signal from a relatively small number of measurements.

Specifically, an s-sparse signal x⋆ is measured through

y = Ax⋆ +w, (1)

where A ∈ Cm×n is referred to as the sensing matrix,

y ∈ Cm is the measurement vector and w ∈ Cm represents

the noise vector with the noise level ‖w‖2 ≤ ε. It has been

shown that if A satisfies the restricted isometry property (RIP)

and ε is small, the recovered signal x̂ obtained by l1 norm

minimization is close to the true x⋆, i.e. ‖x̂−x⋆‖ ≤ Cε with

C being a small numerical constant. Many types of sensing

matrices have been proven to satisfy the RIP condition. For
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example, random Gaussian/Bernoulli matrices satisfy the RIP

with high probability if m ≥ O(s log(n/s)) [1], [3], whereas

structured sensing matrices consisting of either randomly

subsampled orthonormal matrix [6] or modulated unit-norm

tight frames [7] have the RIP with high probability when m
is about O(s log4 n)1.

This standard compressed sensing problem has been gener-

alized to cope with the recovery of sparse signals when some

unknown entries of the measurement vector y are severely

corrupted. Mathematically, we have

y = Ax⋆ + z⋆ +w, (2)

where z⋆ ∈ C
m is an unknown sparse vector. To reconstruct

x⋆ from the measurement vector y, the following penalized

l1 norm minimization has been proposed:

min
x,z

‖x‖1 + λ‖z‖1 s.t. ‖y − (Ax+ z)‖2 ≤ ε. (3)

In [10], it was shown that random Gaussian matrices can

provide uniform recovery guarantees to this problem (3). In

other words, a single random draw of a Gaussian matrix A is

able to stably recover all s-sparse signals x⋆ and all k-sparse

corruptions z⋆ simultaneously with high probability. On the

other hand, for structured sensing matrices, the nonuniform

recovery guarantees2 can be proved for randomly subsampled

orthonormal matrix [11] and its generalized model - bounded

orthonormal systems3 [10]. Very recently, the uniform recov-

ery guarantee for bounded orthonormal systems is shown in

[13].

In this paper, we prove the uniform recovery guarantee for

two different corrupted sensing models. In the first model, the

measurement matrix is based on randomly modulated unit-

norm frames [7] and the corruption is sparse on the identity

basis. It is noted that the measurement matrix in the first model

does not consist of a random subsampling operator, e.g., the

partial random circulant matrix [14]. For the second model,

we consider

y = Ax⋆ +Hz⋆ +w, (4)

where A represents a randomly subsampled orthonormal ma-

trix, and the corruption Hz⋆ is assumed to be sparse on

1Recent works [8] [9] for subsampled Fourier matrices show that the factor
log4 n can be reduced to log3 n.

2A nonuniform recovery result only states that a fixed pair of sparse signal
and sparse corruption can be recovered with high probability using a random
draw of the matrix. Sometimes, the signs of the non-zero coefficients of the
sparse vector (and corruption) can be chosen at random to further simplify
arguments. Uniform recovery is stronger than nonuniform recovery. (see [5,
Chapter 9.2] [6, Section 3.1] for more details.)

3See [12] for the construction of the generalized model.
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certain bounded domain (e.g., a discrete Fourier transform

(DFT) matrix). Our results imply that many structured sensing

matrices can be employed in the corrupted sensing model

to ensure the exact and stable recovery of both x⋆ and z⋆,

even when the sparsity of the corruption is up to a constant

fraction of the total number of measurements. Thanks to

the uniform recovery guarantee, our results can address the

adversarial setting, which means that exact and stable recovery

is still guaranteed even when x⋆, z⋆ and w are selected

given knowledge of the sensing matrix A. In addition, our

analysis results are also applicable to demonstrate the recovery

guarantee when the corrupted sensing problem is solved via

nonconvex optimization.

A. Potential Applications

The problem of recovering sparse signal x⋆ and sparse

corruption z⋆ from the measurement vector y arise from many

applications, where the compressed measurements may be

corrupted by impulse noise.

For example, in a sensor network, each sensor node mea-

sures the same signal x⋆ independently before sending the

outcome to the center hub for analysis. In this setting, each

sensor makes the measurement 〈ai,x⋆〉, and the resultant

measurement vector is Ax⋆ by arranging each ai as the rows

of A [11], [15]. However, in practice, some sensor readings

can be anomalous from the rest. These outliers could be caused

by individually malfunctioned sensors, or due to some unusual

phenomena or event happening in certain areas of the network

[16] [17]. This anomaly effect can be modeled by a sparse

vector z⋆. Mathematically, we have y = Ax⋆ + z⋆ + w,

where z⋆ represents the outlier regions and w stands for

possible small noise in the data transmission. Our results make

it possible to recover both the underlying signal and detect the

outlier regions simultaneously, which could be very useful for

network monitoring.

Another application of sparse signal recovery from sparsely

corrupted measurements is error correction in joint source-

channel coding. In [11], [18], [19], compressed sensing has

been exploited as a joint source-channel coding strategy for

its efficient encoding and robust error correcting performance.

For a signal f that is sparse in the domain Ψ, i.e., f = Ψx⋆,

it can be encoded by a linear projection y = Φf = Ax⋆

with A = ΦΨ. Existing works have investigated the situations

where the encoded signal y is sent through either an erasure

channel [18] or a gross error channel [11], [19]. Our results

can not only be applied in these scenarios, but also provide

a new design on the encoding matrix with uniform recovery

guarantee.

In some scenarios, the measurement noise may be sparse or

compressible in some sparsifying basis. One example is the

recovery of video or audio signal that are corrupted by narrow-

band interference (NBI) due to improper designed equipment

[20], [21]. Electric hum as a typical impairment is sparse

in the Fourier basis. Another example is the application of

compressed sensing to reduce the number of samples in convo-

lution systems with deterministic sequences (e.g., m-sequence,

Golay sequence). Such convolution systems are widely used in

communications, ultrasound and radar [22], [23]. In practice,

the measurements may be affected by frequency domain

interference or multi-tone jamming [24]. For instance, in CS-

based OFDM channel estimation [25]–[28], suppose x is the

channel response and that the pilot sequence g is constructed

from Golay sequences, the time-domain received signal can be

represented as [28], y =
√

n
mRΩ′F∗diag(g)Fx + w, where

RΩ′ is a random subsampling operator and F denotes the

DFT matrix. The recovery performance can be guaranteed

by noticing that the sensing model is a subsampled version

of the orthonormal matrix F∗diag(g)F. However, in OFDM-

based powerline communications, the NBI due to intended

or unintended narrow-band signals can severely contaminate

the transmitted OFDM signal. The time-domain NBI vector is

sparse in the Fourier basis [29], [30]. Our results cover these

settings, and therefore, provide a CS-based method to jointly

estimate the signal of interest and the NBI.

B. Notations and Organization of the paper

For an n-element vector a, we denote by ai, (i ∈ [n] =
{0, ..., n− 1}), the i-th element of this vector. We represent a

sequence of vectors by a0, ..., an−1 and a column vector with

q ones by 1q . The sparsity of a vector can be measured by its

best s-term approximation error,

σs(a)p = inf
‖ã‖0≤s

‖a− ã‖p,

where ‖ · ‖p is the standard lp norm on vectors. For a

matrix A, Ajk denotes the element on its j-th row and k-

th column. The vector obtained by taking the j-th row (k-th

column) of A is represented by A(j,:) (A(:,k)). We denote by

A0, ...,An−1 a sequence of matrices. A−1 and A∗ represent

the inverse and the conjugate transpose of A. The Frobenius

norm and the operator norm of matrix A are denoted by

‖A‖F =
√

tr(A∗A) and ‖A‖2→2 = sup‖x‖2=1 ‖Ax‖2
respectively. We write A . B if there is an absolute constant

c such that A ≤ cB. We denote A ∼ B if c1A ≤ B ≤ c2A
for absolute constants c1 and c2.

The coherence µ(A) of an ñ × n matrix A describes the

maximum magnitude of the elements of A, i.e., µ(A) =
max1≤j≤ñ

1≤k≤n
|Ajk|. For a unitary matrix Ψ ∈ Cn×n, we have

1√
n
≤ µ(Ψ) ≤ 1.

The rest of the paper is organized as follows. We start by

reviewing some key notions and results in compressed sensing

in Section II. In Section III, we prove the uniform recovery

guarantee for two classes of structured random matrices. In

Section IV, we conduct a series of simulations to reinforce

our theoretical results. Conclusion is given in Section V. We

defer most of the proofs to the Appendices.

II. PRELIMINARIES

A. RIP and structured sensing matrices

The restricted isometry property (RIP) is a sufficient condi-

tion that guarantees uniform and stable recovery of all s-sparse

vectors via nonlinear optimization (e.g. l1-minimization). For a
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matrix A ∈ Cm×n and s < n, the restricted isometry constant

δs is defined as the smallest number such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22,

holds for all s-sparse vectors x. Alternatively, the restricted

isometry constant of A can be written as

δs = sup
x∈Ds,n

∣∣‖Ax‖22 − ‖x‖22
∣∣ , (5)

where Ds,n = {x ∈ Cn : ‖x‖2 ≤ 1, ‖x‖0 ≤ s}.

Among the many structured sensing matrices that satisfy the

RIP, two classes have been found to be applicable in various

scenarios. One is the randomly subsampled orthonormal sys-

tems [6], which encompass structured sensing matrices like

partial random Fourier [2], convolutional CS [28], [31] and

spread spectrum [32]. The other is the UDB framework which

consists of a unit-norm tight frame (UTF), a random diagonal

matrix and a bounded column-wise orthonormal matrix [7].

Popular sensing matrices under this framework include partial

random circulant matrices [14], random demodulation [33],

random probing [34] and compressive multiplexing [35].

B. Recovery Condition

We review the definition of generalized RIP, which is

useful to establish robustness and stability of the optimization

algorithm.

Definition II.1. [10, Definition 2.1] For any matrix Θ ∈
Cr×(n+m), it has the (s, k)-RIP with constant δs,k if δs,k is

the smallest value of δ such that

(1− δ)(‖x‖22 + ‖z‖22) ≤
∥∥∥∥Θ

[
x

z

]∥∥∥∥
2

2

≤ (1 + δ)(‖x‖22 + ‖z‖22)
(6)

holds for any x ∈ Cn with ‖x‖0 ≤ s and any z ∈ Cm with

‖z‖0 ≤ k.

Here, the generalized RIP is termed as the (s, k)-RIP for

convenience. We note that the (s, k)-RIP is more stringent

than the conventional RIP. In other words, the fact that a

sensing matrix A satisfies the RIP does not mean that the

associated matrix Θ = [A, I] would satisfy the (s, k)-RIP.

The recovery performance of the penalized optimization (3)

can be guaranteed by the following result.

Theorem II.2. [13, Theorem 3.7] Suppose y = Ax⋆+z⋆+w

and Θ = [A, I] ∈ Cm×(n+m) has the (2s, 2k)-RIP constant

δ2s,2k satisfying

δ2s,2k <
1√

1 +
(

1
2
√
2
+
√
η
)2

with η = s+λ2k
min{s,λ2k} . Then for x⋆ ∈ Cn, z⋆ ∈ Cm, and

w ∈ Cm with ‖w‖2 ≤ ε, the solution (x̂, ẑ) to the penalized

optimization problem (3) satisfies

‖x̂− x⋆‖1 + ‖ẑ− z⋆‖1 ≤ c1(σs(x)1 + λσk(z))

+ c2
√
s+ λ2kε

‖x̂− x⋆‖2 + ‖ẑ− z⋆‖2 ≤ c3

(
1 + η1/4

)(
σs(x)1√

s
+

σk(z)1√
k

)

+ c4

(
1 + η1/4

)
ε,

where the constants c1, c2, c3, c4 depend on δ2s,2k only.

We note that similar theorem has been proven in [10] when

both the signal and corruption are vectors with exact sparsity.

The above result not only relaxes the requirement on the

(2s, 2k)-RIP constant, but also guarantees stable recovery of

inexactly sparse signals and corruptions. Therefore, for either

sparse or compressible signals and corruptions, the key to

establish the recovery guarantee for a sensing matrix is to

prove the (s, k)-RIP.

III. MAIN RESULTS

In this section, we prove the (s, k)-RIP for two classes of

structured sensing matrices. This result can then be combined

with Theorem II.2 to prove the recovery guarantee. In addition,

the extension to the recovery via nonconvex optimization is

presented. Last but not least, we compare the main theorems

to existing literature where relevant.

A. Randomly modulated unit-norm tight frames

We prove the uniform recovery guarantees for the class

of structured sensing matrices that can be written as A =
UDB̃, where U ∈ Cm×ñ is a UTF with µ(U) ∼ 1/

√
m,

D = diag(ξ) is a diagonal matrix with ξ being a length-

ñ random vector with independent, zero-mean, unit-variance,

and L-subgaussian entries, and B̃ ∈ C
ñ×n, ñ ≥ n, represents

a column-wise orthonormal matrix, i.e. B̃∗B̃ = I.

The following result presents a bound on the required num-

ber of measurements m such that the corresponding matrix

Θ has the (s, k)-RIP constant satisfying δs,k ≤ δ for any

δ ∈ (0, 1).

Theorem III.1. Suppose y = Ax⋆ + z⋆ + w with Θ =
[A, I] ∈ Cm×(n+m), A = UDB̃ and µ(U) ∼ 1/

√
m. If,

for δ ∈ (0, 1),

m ≥ c5δ
−2sñµ2(B̃) log2 s log2 ñ,

m ≥ c6δ
−2k log2 k log2 ñ,

where c5 and c6 are some absolute constants, then with

probability at least 1− 2ñ− log2 s log ñ, the (s, k)-RIP constant

of Θ satisfies δs,k ≤ δ.

Proof. The (s, k)-RIP constant δs,k can be equivalently ex-

pressed as

δs,k = sup
(x,z)∈T

∣∣∣∣∣

∥∥∥∥Θ
[
x

z

]∥∥∥∥
2

2

− ‖x‖22 − ‖z‖22

∣∣∣∣∣ , (7)
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where T := {(x, z) : ‖x‖22 + ‖z‖22 = 1, ‖x‖0 ≤ s, ‖z‖0 ≤
k,x ∈ C

n, z ∈ C
m}. With Θ = [A, I], the RIP-constant can

be further reduced to

δs,k = sup
(x,z)∈T

∣∣‖Ax‖22 + ‖z‖22 + 2〈Ax, z〉 − ‖x‖22 − ‖z‖22
∣∣

≤ sup
(x,z)∈T

∣∣‖Ax‖22 − ‖x‖22
∣∣

︸ ︷︷ ︸
δ1

+2 sup
(x,z)∈T

|〈Ax, z〉|
︸ ︷︷ ︸

δ2

(8)

Our aim is to derive bounds on the number of measurements

m such that for any δ ∈ (0, 1) the RIP-constant δs,k is upper

bounded by δ. We have

δ1 ≤ sup
x∈Ds,n

∣∣‖Ax‖22 − ‖x‖22
∣∣ (9)

with supx∈Ds,n

∣∣‖Ax‖22 − ‖x‖22
∣∣ being the restricted isometry

constant in the standard RIP definition (5). Then, by [7,

Theorem III.2], we reach the following result.

Suppose, for any δ ∈ (0, 1),

m ≥ 4c1δ
−2sñµ2(B̃)(log2 s log2 ñ),

then δ1 ≤ δ/2 holds with probability at least 1 −
ñ−(log ñ)(log s)2 .

Therefore, proof of the (s, k)-RIP is reduced to bounding

the inner product term δ2.

δ2 = 2 sup
(x,z)∈T

|〈UDB̃x, z〉| = 2 sup
(x,z)∈T

|z∗UDB̃x|

= 2 sup
(x,z)∈T

|z∗Udiag(B̃x)ξ| = 2 sup
v∈Av

|〈v, ξ〉|, (10)

where v = (z∗Udiag(B̃x))∗, and

Av := {v : ‖x‖22 + ‖z‖22 = 1, ‖x‖0 ≤ s, ‖z‖0 ≤ k}. (11)

The following lemma is proved in Appendix A.

Lemma III.2. Suppose ξ is a length-ñ random vector with

independent, zero-mean, unit-variance, and L-subgaussian

entries. For any δ ∈ (0, 1), if

m ≥ c5δ
−2sñµ2(B̃) log2 s log2 ñ

m ≥ c6δ
−2k log2 k log2 ñ,

then supv∈Av

|〈v, ξ〉| ≤ δ/2 holds with probability exceeding

1− exp(− log2 s log2 ñ), where c5 and c6 are some constants

depending only on L.

Combining (10) with Lemma III.2, we have, for any

τ > 0, δ2 ≤ cδ holds with probability exceeding 1 −
exp(− log2 s log2 ñ) for some constant c.

Finally, Theorem III.1 can be obtained by combining

the above results. Suppose, for any δ ∈ (0, 1), m ≥
c5δ

−2sñµ2(B̃)(log2 s log2 ñ), m ≥ c6δ
−2k log2 m log2 ñ and

µ(U) ∼ 1/
√
m, then we have δs,k ≤ δ1 + δ2 ≤ δ with

probability exceeding

1− ñ−(log ñ log2 s) − exp(−c log2 s log2 ñ)

= 1− ñ−(log ñ log2 s) − ñ−c log2 s log ñ

= 1− 2ñ− log2 s log ñ

The uniform recovery guarantee can be obtained by com-

bining Theorem II.2 and III.1.

A few remarks are in order. First, when B̃ is a bounded

column-wise orthonormal matrix, i.e., µ(B̃) ∼ 1/
√
ñ, the

bound on the sparsity of x⋆ can be relaxed to ‖x⋆‖0 ≤
Cm/(log2 ñ log2 m). The sparsity ‖z⋆‖0 is always a constant

fraction of the total number of measurements m regardless

the magnitude of the coherence µ(B̃). When ‖w‖2 = 0,

Theorem III.1 implies that a sparse signal can be exactly

recovered by tractable l1 minimization even if some parts of

the measurements are arbitrarily corrupted.

Second, the proposed class of structured sensing matrices

is equivalent to the UDB framework [7] but with an addi-

tional requirement of µ(U) ∼ 1/
√
m. The UDB framework

has been proved to support uniform recovery guarantees for

conventional CS problem, while with the extra condition it

is now shown to provide uniform recovery guarantees for the

CS with sparse corruptions problem. Theorem III.1 holds for

many existing and new structured sensing matrices as long as

they can be decomposed into A = UDB̃.

One application of the UDB framework is to simplify

the mask design in double random phase encoding (DRPE)

for optical image encryption. Consider an image f that is

sparse in the domain Ψ, i.e., f = Ψx⋆, DRPE is based

on random masks placed in the input and Fourier planes

of the optical system [36], [37] . Mathematically, the mea-

surements can be written as y =
√

n
mRΩF

∗Λ1FΛ2f + w,

where RΩ : Cn → Cm represents an arbitrary/deterministic

subsampling operator with Ω being the set of selected row

indices, Λ1 and Λ2 are random diagonal matrices. By the

UDB framework, the random diagonal matrix Λ2 can be

replaced by a deterministic diagonal matrix constructed from a

Golay sequence g. The reason is that the measurement model√
n
mRΩF

∗Λ1Fdiag(g)Ψx⋆ can be decomposed into a UTF√
n
mRΩF

∗, a random diagonal matrix Λ1, and a orthonormal

matrix Fdiag(g)Ψ whose coherence is proven to be bounded

for many orthonormal transforms Ψ, e.g., DCT, Haar wavelet

[7, Lemma IV.2]. When the measurements are corrupted by

impulse noise due to detector plane impairment, our theorem

above provides a recovery guarantee on the image.

Furthermore, the UDB framework emcompasses some pop-

ular structured sensing matrices, e.g., partial random circulant

matrices [14] and random probing [34]. To elaborate, consider

the partial random circulant matrices

A =
1√
m
RΩCǫ

where Cǫ denotes the circulant matrix generated from ǫ.

Suppose ǫ = F∗ξ, where F is a normalized DFT matrix and ξ

is a length-n random vector with independent, zero-mean, unit-

variance, and sub-Gaussian entries. Let D = diag(ξ), we have

A =
√

n
mRΩF

∗DF. It can be observed that U =
√

n
mRΩF

∗

is a UTF and B = F is a unitary matrix. Hence, Theorem

III.1 implies that any sparse signal x and sparse corruption

z can be faithfully recovered from the measurement model

y = 1√
m
RΩCǫx

⋆ + z⋆ + w by the penalized recovery
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algorithm. The sparse recovery from partial random circulant

measurements can be applied in many common deconvolution

tasks, such as radar [38] and coded aperture imaging [39]. In

practice, where the measurements can be corrupted by impul-

sive noise due to bit errors in transmission, faulty memory

locations, and buffer overflow [40], our theorem guarantees

the recovery of both the signal of interest and the corruption.

In some situations, the proposed framework can still provide

reliable recovery guarantee even if the corruption is sparse in

some basis. Suppose the corruption is sparse under some fixed

and known orthonormal transformation H, i.e. H∗H = I. We

consider the measurement model

y = Ax⋆ +Hz⋆ +w. (12)

It is clear that this setting can be reduced to

H∗y = H∗Ax⋆ + z⋆ +H∗w. (13)

Notice that H∗A = H∗UDB̃ := ÛDB̃, where Û = H∗U
is still a UTF due to the orthogonality of H. Therefore, if

µ(Û) ∼ 1/
√
m, Theorem III.1 still holds in this measurement

model.

B. Randomly sub-sampled orthonormal system

Next, we consider the corrupted sensing measurement

model for randomly sub-sampled orthonormal system. We

prove the uniform recovery guarantee for such matrices pro-

vided that the corruption is sparse on certain sparsifying

domain. Suppose λ ∈ Rn is a random Bernoulli vector

with i.i.d. entries such that P(λi = 1) = m
n ∀i ∈ [n] and

Ω′ = {i : λi = 1} with |Ω′| = M , the random sampling

operator RΩ′ ∈ RM×n is a collection of the i-th row of an n-

dimensional identity matrix for all i ∈ Ω′. Here, M is random

with mean value m. The observation model is

y = Ax⋆ +Hz⋆ +w, (14)

where A =
√

n
MRΩ′G, G ∈ Cn×n is an orthonormal basis

and H ∈ CM×M is a unitary matrix with µ(H) ∼ 1/
√
M .

From our analysis in previous subsection, the uniform

recovery performance can be guaranteed as long as the as-

sociated matrix Θ satisfies the (s, k)-RIP. Since the matrix A

satisfies the standard RIP, the problem of proving the (s, k)-
RIP is again reduced to bounding the inner product term

sup(x,z)∈T |〈Ax,Hz〉|. Detail proof of the following result

is given in Appendix B.

Theorem III.3. Suppose y = Ax⋆ + Hz⋆ + w with Θ =
[A, H] ∈ CM×(n+M), A =

√
n
MRΩ′G and µ(H) ∼ 1/

√
M .

If, for δ ∈ (0, 1),

m ≥ max(c7δ
−2snµ2(G) log2 s log2 n, c8δ

2s log4 n, 2c9 logn),

m ≥ c10δ
−2knµ2(G) log2 k log2 n,

m ≤ c11δ
2n,

where {ci}i=7,...,11 are constants, then with probability at least

1−2ñ− log2 s logn−n−c9 , the (s, k)-RIP constant of Θ satisfies

δs,k ≤ δ.

When G is a bounded orthonormal basis, i.e., µ(G) ∼
1/

√
n, the bound on the sparsity of x⋆ can be relaxed to

m ≥ O(δ−2s log2 s log2 n, δ−2k log2 k log2 n), which implies

that a sparse signal can be exactly recovered by tractable l1
minimization even if the measurements are affected by corrup-

tion sparse on some bounded domain. A bounded orthonormal

basis can include the Fourier transform or the Hadamard

transform. In addition, in CS-based OFDM where the pilot is

generated from a Golay sequence and a random subsampler is

employed at the receiver (Section I-A), the effective orthonor-

mal basis is also bounded, i.e., µ(F∗diag(g)F) ∼ 1/
√
n [28].

C. Nonconvex optimization

We have shown the (s, k)-RIP for two popular classes

of structured sensing matrices, and proven the performance

guarantee for the recovery of the sparse signal and corruption

via the l1-norm minimization algorithm (3). However, our

(s, k)-RIP analysis on the structured sensing matrices is also

applicable to proving the recovery guarantee for nonconvex

optimization. Consider the following formulation of the prob-

lem

y = Ax⋆ +Hz⋆, (15)

It was demonstrated in [41] that the unique minimizer of the

lp minimization problem (0 < p < 1)

min
x,z

‖x‖pp + ν‖z‖pp s.t. Ax+Hz = y, (16)

is exactly the pair (x⋆, z⋆) if the combined matrix [A,H]
satisfies the (s, k)-RIP, where ν is the regularization parameter.

In addition, the lp minimization approach still provides stable

recovery even when there is additional dense noise as long as

the (s, k)-RIP holds [41], [42]. The lp minimization problem

can be numerically solved via an iteratively reweighted least

squares (IRLS) method [43]. However, [41] only considers

the sensing model with A being random Gaussian matrices

and H being an identity matrix. With our (s, k)-RIP analysis,

many structured sensing matrices can be employed to provide

exact/stable recovery performance for this corrupted sensing

problem via lp minimization.

D. Comparison with related literature

In this part, we compare our main results with related

literature.

1) Sparse signal, sparse corruption: [10] proved that

sensing matrices with independent Gaussian entries provide

uniform recovery guarantee for corrupted CS by solving (3) for

all vectors x⋆ and z⋆ satisfying ‖x‖0 ≤ αm/(log(n/m) + 1)
and ‖z⋆‖0 ≤ αm. The difference is that our theorems come

with a tighter requirement on the sparsity of x⋆ and the

sparsity of z⋆, which is a compensation on the employment

of structured measurements.

[10] also proved the recovery guarantee for structured

sensing matrices that belong to the framework proposed

in [12]. Here, faithful recovery is guaranteed provided that

‖x‖0 ≤ αm/(µ2 log2 n) and ‖z⋆‖0 ≤ βm/µ2, where µ is the

coherence of the sensing matrix. [11] considered the corrupted
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CS with sensing matrices that are randomly subsampled or-

thonormal matrix, and proved similar results. It is noted that

the requirements on the sparsity of x⋆ in these works seem less

strict than that in our results. However, in both [10] and [11],

performance guarantees of their structured sensing matrices

rely on the assumption that the support set of x⋆ or z⋆ is

fixed and the signs of the signal are independently and equally

likely to be 1 or −1 [10, Section 1.3.2] [11, Section II.B]

(i.e. a nonuniform recovery guarantee). While in our theorem,

two classes of structured sensing matrices (including randomly

subsampled orthgonal matrix) are shown to provide uniform

recovery guarantee for corrupted CS.

We note that recently the uniform recovery guarantee for

bounded orthonormal systems is proven in [13]. The bounded

orthonormal systems is more general than the random sub-

sampled orthonormal matrix considered in our second class.

However, the corruption models are different: the corruption

vector in [13] is sparse in time domain, whereas our theorem

considers corruption in sparsifying domain with µ(H) ∼
1/

√
M . Due to this difference in the corruption model, the

techniques used to prove the (s, k)-RIP (specifically, bound the

inner product sup(x,z)∈T |〈Ax,Hz〉|) are essentially different.

2) Structured signal, structured corruption: In a recent

work [44], sensing with random Gaussian measurements for

general structured signals and corruptions (including sparse

vectors, low rank matrix, sign vectors and etc) has been

proven. However, our study departs from it in the follow-

ing aspects: [44] proved a nonuniform recovery guarantee

for the recovering of sparse signals from sparse corruptions

and dense noise. In our paper, we established a uniform

recovery guarantee for the corresponding problem. Moreover,

[44] considered random Gaussian matrices, while we propose

structured sensing matrices.

We have shown that a large class of structured sensing

matrices can provide faithful recovery for the sparse sensing

with sparse corruption. Whether such structured measurements

can be applied in a general corrupted sensing problem (e.g.

structured signal with structured corruption) is still open.

Extension of our measurement framework to the general

corrupted sensing problem is interesting for further study.

Other works related to the recovery of signals from cor-

rupted measurements include [20], [45]–[51]. However, their

models are different from the one in our paper.

Remark III.4. We note that the value of the regularization

parameter can be chosen as λ =
√
s/k. In practice, when

no a priori knowledge on the sparsity levels of the signal and

the corruption is available, λ can usually be taken by cross

validation. On the other hand, if it is known a priori that

the corruption (the signal) is very sparse, one can increase

(decrease) the value of λ to improve the overall recovery per-

formance. Similar discussion on the theoretical and practical

settings of the regularization parameter has also been noted in

[10, Section 1.3.3], [11, Section II.E, Section VII], [44, Section

III.B]. In addition, an iteratively reweighted l1 minimization

method can be used to adaptively improve the setting of λ in

practice [13].

IV. NUMERICAL SIMULATIONS

In this section, we verify and reinforce the theoretical

results of Section III with a series of simulations. We present

experiments to test the recovery performance of the penalized

recovery algorithm for the proposed structured sensing matri-

ces. In each experiment, we used the CVX Matlab package

[52], [53] to specify and solve the convex recovery programs.

Two different ways of generating sparse vectors are consid-

ered:

• Gaussian setting: the nonzero entries are drawn from

a Gaussian distribution and their locations are chosen

uniformly at random,

• Flat setting: the magnitudes of nonzero entries are 1 and

their locations are chosen uniformly at random.

A. Penalized Recovery

This experiment is to investigate the empirical recovery

performance of the penalized recovery algorithm (3) when

the dense noise is zero. Here, the sensing matrix (Mtx-I)

A = UDB of size m × n with m = 256 and n = 512
is constructed as below.

1) Arbitrarily select m = 256 rows from a 512 × 512
Hadamard matrix to form a new matrix, which is then

normalized by 1/
√
m to form the UTF U.

2) The diagonal entries of the diagonal matrix D are i.i.d.

Bernoulli random variables.

3) B is a normalized Hadamard matrix.

We vary the signal sparsity and the corruption sparsity with

s ∈ [1, 100] and k ∈ {10, 20, 30}. For each pair of (s, k),
we draw a sensing matrix as described above and perform the

following experiment 100 times:

1) Generate x⋆ with sparsity s by the Gaussian setting

2) Generate z⋆ with sparsity k by the Gaussian setting

3) Solve (3) by setting λ = 1
4) Declare success if4

‖x̂− x⋆‖2/‖x⋆‖2 + ‖ẑ− z⋆‖2/‖z⋆‖2 < 10−3

The fraction of successful recovery averaged over the 100 iter-

ations is presented in Fig. 1a. To demonstrate the performance

for signals and corruptions that do not have i.i.d. signs, the

experiment is repeated by generating the sparse vectors x⋆

and z⋆ based on the Flat setting as shown in Fig. 1b. It can be

seen that in both scenarios the performance improves as the

sparsity of the corruption decreases.

Next, we demonstrate the performance of the penalized re-

covery algorithm when the sensing matrix is from a randomly

subsampled orthonormal matrix. The sensing matrix (Mtx-II)

A is a collection of randomly selected M = 256 rows from

a 512 × 512 Hadamard matrix, and normalized by
√
n/M .

The corruption is Hz, where H is an M × M normalized

Hadamard matrix. For each pair of (s, k), we repeat the above

steps 100 times to obtain the probability of success (see Fig.

2). It is noted that the recovery performance of Mtx-I is better

than that of Mtx-II. This seems consistent with our theoretical

analysis as the random subsampled orthonormal matrix shows

4This criterion indicates that both x
⋆ and z

⋆ have been faithfully recovered.
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Fig. 1. Probability of success as a function of the signal sparsity s using penalized recovery with signal dimension n = 512, number of measurements
m = 256, and the corruption sparsity k = {10, 20, 30} for Mtx-I.
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(b) Flat Setting

Fig. 2. Probability of success as a function of the signal sparsity s using penalized recovery with signal dimension n = 512, number of measurements
m = 256, and the corruption sparsity k = {10, 20, 30} for Mtx-II.

more stringent recovery condition than the UDB framework

(see Theorem III.1 and III.3). However, since the (s, k)-RIP

is a sufficient condition for the recovery guarantee, it may not

fully reflect the performance gap between the two classes of

structured sensing matrices. Further investigation based on a

necessary and sufficient condition for the recovery guarantee

of the corrupted CS problem is a difficult, but interesting open

question.

B. Stable recovery

We study the stability of the penalized recovery algorithms

when the dense noise is nonzero, i.e., ε 6= 0, and compare

the performance of structured sensing matrix (Mtx-I) with

random Gaussian sensing matrix. In this experiment, the 256-

by-512 sensing matrix (Mtx-I) is constructed as in previous

subsection. We fix the signal and corruption sparsity levels at

s = 10 and k = 10 respectively. The dense noise w consists

of i.i.d. Bernoulli entries with amplitude ε. We vary the noise

level with ε ∈ [0, 0.1], and perform the following experiment

100 times for each ε:
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Fig. 3. Empirical recovery error versus the noise level ε.

1) Generate x⋆ with s = 10 by the Gaussian setting

2) Generate z⋆ with k = 10 by the Gaussian setting

3) Solve penalized recovery (p-rec) algorithm (3) by setting

λ = 1
4) Record the empirical recovery error ‖x̂− x⋆‖2 + ‖ẑ −

z⋆‖2
An average recovery error is then obtained for each ε. Fig. 3

depicts the average error with varying noise levels. The results

in Theorems II.2 and III.1 imply that the recovery errors are

bounded by the noise level ε up to some constants. Fig. 3

clearly shows this linear relationship. In addition, we repeat the

above experiments with an iteratively reweighted least squares

approach [43] using p = 0.5. As shown in Fig. 3, the structured

sensing matrix is still able to exhibit stable performance by the

nonconvex optimization algorithm.

V. CONCLUSION

We have studied a generalized CS problem where the

measurement vector is corrupted by both sparse noise and

dense noise. We have proven that structured random matrices

encompassed in the UDB framework or the randomly subsam-

pled orthonormal system can satisfy the sufficient condition,

i.e., the (s, k)-RIP. These structured matrices can therefore be

applied to provide faithful recovery of both the sparse signal

and the corruption by the penalized optimization algorithm as

well as the nonconvex optimization algorithm. Our simulations

have clearly illustrated and reinforced our theoretical results.

APPENDIX A

PROOF OF LEMMA III.2

Throughout the proof in this and the following sections, C
and c denote an absolute constant whose values may change

from occurrence to occurrence.

A metric space is denoted by (T, d), where T is a set

and d is the notion of distance (metric) between elements

of the set. For a metric space (T, d), the covering number

N(T, d, u) is the minimal number of open balls of radius u
needed to cover (T, d). A subset T of T is called a u-net of

T if every point x ∈ T can be approximated to within u by

some point x̄ ∈ T , i.e., d(x, x̄) ≤ u. The minimal cardinality

of T is equivalent to the covering number N(T, d, u). The p-

th moment (or the Lp-norm) of a random variable is denoted

by ‖X‖Lp
= (E|X |p)1/p.

We aim to upper bound the variable ∆ := supv∈Av

|〈v, ξ〉|
which is the supremum of a stochastic process with the index

set Av. To complete the proof, we require the following

important result due to Krahmer et al.:

Theorem A.1. [14, Theorem 3.5 (a)] Let A be a set of

matrices, and let ξ be a random vector whose entries ξj are

independent, mean 0, variance 1, and L-subgaussian random

variables. Set

dF (A) = sup
S∈A

‖S‖F , d2→2(A) = sup
S∈A

‖S‖2→2,

NA(ξ) := sup
S∈A

‖Sξ‖2, E = γ2(A, ‖ · ‖2→2) + dF (A).

Then, for every p ≥ 1,

‖NA(ξ)‖Lp
≤ C(E +

√
pd2→2(A)), (17)

where C is a constant depends only on L.

Here, NA(ξ) represents the supremum of certain stochastic

processes indexed by a set of matrices A. The above Proposi-

tion implies that NA(ξ) can be bounded by three parameters:

the suprema of Frobenius norms dF (A), the suprema of

operator norms d2→2(A) and a γ2-functional γ2(A, ‖ · ‖2→2),
which can be bounded in terms of the covering numbers

N(A, ‖ · ‖2→2, u) as below.

γ2(A, ‖ · ‖2→2) ≤ c

∫ d2→2(A)

0

√
logN(A, ‖ · ‖2→2, u) du,

where the integral is known as Dudley integral or entropy

integral [54].

We can transfer the estimates on the moment (17) to a tail

bound by the standard estimate due to Markov’s inequality

(see [5, Proposition 7.15]).

Proposition A.2. Following the definitions in Theorem A.1,

for t ≥ 1,

P(NA(ξ) ≥ CE + Cd2→2(A)t) ≤ exp(−t2). (18)

It can be observed that ∆ can be expressed in the form

of NA(ξ), where S and A are replaced with v and Av,

respectively. Now, we only need to estimate the parameters

dF (Av), d2→2(Av) and γ2(Av, ‖ · ‖2→2) before bounding ∆
by using Theorem A.2. Since Av is a set of vectors, we have

dF (Av) = d2→2(Av) and γ2(Av, ‖ · ‖2→2) = γ2(Av, ‖ · ‖2).
For any vector x ∈ Ds,n, we denote by xs the length-

s vector that retains only the non-zero elements in x. And

correspondingly for any vector b ∈ Cn, we denote by bs

the length-s vector that retains only the elements that have
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the same indexes as those of the non-zero elements in x. We

have, for any v ∈ Av ,

‖v‖2 = ‖z∗Udiag(B̃x)‖2 ≤ ‖z∗U‖2‖B̃x‖∞

=

√
ñ

m
‖z‖2max

j∈[ñ]
{|〈B̃(j,:),x〉|}

=

√
ñ

m
‖z‖2max

j∈[ñ]
{|〈B̃s

(j,:),x
s〉|}

≤
√

ñ

m
µ(B̃)

√
s‖x‖2‖z‖2 ≤ 1

2

√
ñ

m
µ(B̃)

√
s,

where the last inequality is due to ‖x‖22+‖z‖22 = 1. Therefore,

dF (Av) = d2→2(Av) ≤
1

2

√
ñ

m
µ(B̃)

√
s. (19)

Following the same steps, we can alternatively obtain, for

any v ∈ Av,

‖v‖2 = ‖z∗Udiag(B̃x)‖2 ≤ ‖z∗U‖∞‖B̃x‖2
≤ 1

2
µ(U)

√
k.

This provides another upper bound

dF (Av) = d2→2(Av) ≤
1

2
µ(U)

√
k. (20)

We note that both (19) and (20) are valid bounds, and

they are not comparable to each other since the relationship

between s and k is unknown. It will be clear later that both

bounds are useful for computing the entropy integrals. In

particular, (19) and (20) are used for computing I1 and I2
respectively (as in (23)).

Next, we bound γ2-functional γ2(Av, ‖ · ‖2) by estimating

the covering numbers N(Av, ‖ · ‖2, u). The derivation is

divided into two steps.

Step 1. Decompose N(Av, ‖ · ‖2, u). Let D1 = {x ∈ Cn :
‖x‖22 ≤ 1, ‖x‖0 ≤ s} and define the semi-norm ‖ · ‖K1

as

‖x‖K1
= ‖Udiag(B̃x)‖2→2 ∀x ∈ C

n. (21)

For the metric space (D1, ‖ · ‖K1
), we take D1 to be a u

2 -net

of D1 with |D1| = N(D1, ‖ · ‖K1
, u
2 ). Let D2 = {z ∈ Cm :

‖z‖22 ≤ 1, ‖z‖0 ≤ k} and define the semi-norm ‖ · ‖K2
as

‖z‖K2
= ‖B̃∗diag(U∗z)‖2→2 ∀z ∈ C

m. (22)

For the metric space (D2, ‖ · ‖K2
), we take D2 to be a u

2 -net

of D2 with |D2| = N(D2, ‖ · ‖K2
, u
2 ).

Now, let Av = {(z̄∗Udiag(B̃x̄))∗ : x̄ ∈ D1, z̄ ∈ D2} and

remark that |Av| ≤ |D1||D2|. It remains to show that for all

v ∈ Av, there exists v̄ ∈ Āv with ‖v − v̄‖2 ≤ u.

For any v = (z∗Udiag(B̃x))∗ ∈ Av, there exist v̄ =
(z̄∗Udiag(B̃x̄))∗ ∈ Āv with x̄ ∈ D1 and z̄ ∈ D2 obeying

‖x− x̄‖K1
≤ u

2 and ‖z− z̄‖K2
≤ u

2 . This gives

‖v− v̄‖2 = ‖z∗Udiag(B̃x) − z̄∗Udiag(B̃x̄)‖2
= ‖z∗Udiag(B̃x) − z∗Udiag(B̃x̄)

+ z∗Udiag(B̃x̄)− z̄∗Udiag(B̃x̄)‖2
≤ ‖z∗Udiag(B̃(x − x̄))‖2 + ‖(z− z̄)∗Udiag(B̃x̄)‖2
= ‖z∗Udiag(B̃(x − x̄))‖2 + ‖x̄∗B̃∗diag(U∗(z− z̄))‖2
≤ ‖z‖2‖Udiag(B̃(x− x̄))‖2→2

+ ‖x̄‖2‖B̃∗diag(U∗(z− z̄))‖2→2

(a)

≤ ‖x− x̄‖K1
+ ‖z− z̄‖K2

≤ u,

where (a) is due to the fact that ‖z‖2 ≤ 1 and ‖x̄‖2 ≤ 1.

Hence,

N(Av, ‖ · ‖2, u) ≤ |Av|
≤ N(D1, ‖ · ‖K1

, u/2)N(D2, ‖ · ‖K2
, u/2).

The γ2-functional γ2(Av, ‖ · ‖2) can now be estimated by

γ2(Av, ‖ · ‖2) ≤ c

∫ d2→2(A)

0

√
logN(Av, ‖ · ‖2, u)du

.

∫ d2→2(A)

0

√
logN(D1, ‖ · ‖K1

, u/2) du

︸ ︷︷ ︸
I1

+

∫ d2→2(A)

0

√
logN(D2, ‖ · ‖K2

, u/2) du

︸ ︷︷ ︸
I2

.

(23)

Step 2. Estimate the covering numbers N(D1, ‖ · ‖K1
, u/2)

and N(D2, ‖·‖K2
, u/2) and the entropy integrals. We estimate

each covering number in two different ways. For small value of

u, we use a volumetric argument. For large value of u, we use

the Maurey method ( [14, Lemma 4.2], or [5, Problem 12.9]).

Then, the resultant covering number estimates can be used to

compute the entropy integrals I1 and I2. Similar techniques

on the covering number estimation and the entropy integral

computation have been used in the CS literature, i.e., [6], [7],

[14], [55].

From [7, Equation (28)] and (19), we have

I1 .

√
sñ

m
µ(B̃)(log s)(log ñ). (24)

It remains to estimate N(D2, ‖ · ‖K2
, u/2) and compute I2.

1) small u. We observe that D2 is a subset of the union of(
m
k

)
unit Euclidean balls Bk

2 ,

Bk
2 := {z ∈ C

m : ‖z‖2 ≤ 1, |supp(z)| ≤ k}. (25)

For any z ∈ D2,

‖z‖K2
= ‖B̃∗diag(U∗z)‖2→2 ≤ ‖U∗z‖∞ ≤ max

i∈[n]
|〈U(:,i), z〉|

≤ µ(U)‖z‖1 ≤ µ(U)
√
k‖z‖2 ≤

√
k

m
‖z‖2, (26)
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where the last step is due to the assumption that µ(U) ∼ 1√
m

.

Therefore,

N(D2, ‖ · ‖K2
, u/2) ≤

(
m

k

)
N(Bk

2 , ‖ · ‖K2
, u/2)

≤
(
m

k

)
N(Bk

2 ,

√
k

m
‖ · ‖2, u/2)

≤ (
em

k
)k(1 + 4

√
k

m

1

u
)k, (27)

where the last inequality is an application of [6, Proposition

10.1] and [5, Lemma C.5].

2) large u. For any z ∈ D2, we have ‖z‖1 ≤
√
k‖z‖2 ≤√

k, which gives

D2 ⊂
√
kBm

1 := {z ∈ C
m : ‖z‖ ≤

√
k}.

Then,

N(D2, ‖ · ‖K2
, u/2) ≤ N(

√
kBm

1 , ‖ · ‖K2
, u/2)

= N(Bm
1 , ‖ · ‖K2

, u/(2
√
k)).

Based on the Maurey method, for 0 < u < 1
2µ(U)

√
k, the

covering number can be estimated by [6, Lemma 8.3]
√
logN(D2, ‖ · ‖K2

, u/2) .
√
kµ(U)

√
log ñ logmu−1

≤
√

k

m

√
log ñ logmu−1. (28)

We note that the estimation based on Maurey method

depends on the range of the parameter u (see [6, Lemma 8.3]),

which is the reason why we employ different bounds ((19) and

(20)) when computing the entropy integrals I1 and I2.

We now combine the results (27) and (28) to estimate the en-

tropy integral I2: we apply the first bound for 0 < u ≤ 1
10

√
1
m ,

and the second bound for 1
10

√
1
m < u ≤ d2→2(Av) =

1
2

√
k
m .

It reveals that

I2 .

√
k

m
log ñ log k. (29)

Combine (23), (24) and (29)

γ2(Av, ‖ · ‖2) .
√

sñ

m
µ(B̃)(log s)(log ñ)

+

√
k

m
log ñ log k. (30)

Finally, we are ready to complete the proof by applying

Proposition A.2. For the assumption on m and p, δ ∈ (0, 1),

m ≥ c1δ
−2sñµ2(B̃) log2 s log2 ñ

m ≥ c2δ
−2k log2 k log2 ñ,

we have, by (19),

dF (Av) = d2→2(Av) .
δ

log s log ñ
, γ2(Av, ‖ · ‖2) . δ.

By substituting the above results into Proposition A.2 (let t =
log s log ñ), one obtains

P( sup
v∈Av

|〈v, ξ〉| ≤ cδ) ≥ 1− exp(− log2 s log2 ñ). (31)

The proof is completed by incorporating the constant c into

c1, c2.

APPENDIX B

PROOF OF THEOREM III.3

Recall that in the measurement model y = Ax⋆+Hz⋆+w,

A =
√

n
MRΩ′G is a randomly sub-sampled unitary matrix

and H ∈ CM×M is a unitary matrix with µ(H) ∼ 1/
√
M .

The following Lemma from [56] is needed.

Lemma B.1 (Theorem 3.3 [56]). For the matrix A =√
n
mRΩ′G, if for δ ∈ (0, 1),

m ≥ cδ−2s log4 n, (32)

then with probability at least 1 − n− log3 n the restricted

isometry constant δs of A satisfies δs ≤ δ.

The (s, k)-RIP associated with Θ = [A, H] can be bounded

by

δs,k ≤ sup
(x,z)∈T

∣∣‖Ax‖22 − ‖x‖22
∣∣

︸ ︷︷ ︸
δ1

+2 sup
(x,z)∈T

|〈Ax,Hz〉|
︸ ︷︷ ︸

δ2

,

(33)

where T := {(x, z) : ‖x‖22 + ‖z‖22 = 1, ‖x‖0 ≤ s, ‖z‖0 ≤
k,x ∈ Cn, z ∈ Cm}.

By Lemma B.1, we have δ1 ≤ δ/2 holds with probability

1− n− log3 n for any δ ∈ (0, 1) if m ≥ cδ−2s log4 n.

Define a random vector d ∈ Cn with i.i.d. entries satisfying

λi =
√

m(n−m)
n2 di+

m
n . Assume Λ = diag(λ) and H∗RΩ′ =

U′. We have,

δ2 = 2 sup
(x,z)∈T

|〈
√

n

M
RΩ′Gx,Hz〉|

= 2 sup
(x,z)∈T

∣∣∣∣
√

n

M
z∗U′ΛGx

∣∣∣∣

= 2 sup
(x,z)∈T

∣∣∣∣
√

n

M
z∗U′diag(Gx)λ

∣∣∣∣

≤ 2 sup
(x,z)∈T

∣∣∣∣
1

2

√
n

M
z∗U′diag(Gx)d

∣∣∣∣
︸ ︷︷ ︸

t1

+ 2 sup
(x,z)∈T

∣∣∣∣∣

√
m2

Mn
z∗U′Gx

∣∣∣∣∣
︸ ︷︷ ︸

t2

,

where the last inequality is due to the fact that

√
m(n−m)

n2 ≤ 1
2

for any m ≤ n.

Since λ is a random Bernoulli vector with i.i.d. entries,

by construction d is a length-n random vector with in-

dependent, zero-mean, unit-variance, and L-subgaussian en-

tries. Hence, the bound for t1 can be formulated as the

supremum of a stochastic process with the index Ar, where
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r =
√

n
M z∗U′diag(Gx) and Ar := {r : ‖x‖22 + ‖z‖22 =

1, ‖x‖0 ≤ s, ‖z‖0 ≤ k}. For any r ∈ Ar,

‖r‖2 =

√
n

M
‖z∗U′diag(Gx)‖2

≤
√

n

M
‖z∗H∗RΩ′‖2‖Gx‖∞

=

√
n

M
‖z‖2 max

j∈[n]
{|〈G(j,:),x〉|}

≤ 1

2

√
n

M
µ(G)

√
s,

‖r‖2 =

√
n

M
‖z∗U′diag(Gx)‖2

≤
√

n

M
‖z∗H∗‖∞‖RΩ′Gx‖2

≤
√

n

M
µ(H)

√
k‖G(Ω′,:)x‖2

≤ 1

2

√
nµ(G)µ(H)

√
k.

Therefore,

dF (Ar) ≤
1

2

√
n

M
µ(G)

√
s,

dF (Ar) ≤
1

2

√
nµ(G)µ(H)

√
k.

By following the same proof steps as in Appendix A, we

have

P( sup
r∈Ar

|〈r,d〉| ≤ cδ) ≥ 1− exp(− log2 s log2 n) (34)

provided that

M ≥ cδ−2snµ2(G) log2 s log2 n

M ≥ cδ−2knµ2(G) log2 k log2 n.

Bernstein’s inequality [57, Theorem A.1.13] gives, for any

ν > 0,

P(M > (1− ν)m) ≥ 1− exp

(
−mν2

2

)
. (35)

Hence, if

m ≥ 1

1− ν
cδ−2snµ2(G) log2 s log2 n

m ≥ 1

1− ν
cδ−2knµ2(G) log2 k log2 n,

then

P( sup
r∈Ar

|〈r,d〉| ≤ cδ) ≥ 1− exp(− log2 s log2 n)

− exp

(
−mν2

2

)
.

By assuming m ≥ 2c′ log n and ν =
√

2c′ logn
m , the above

probability of success can be written as

P( sup
r∈Ar

|〈r,d〉| ≤ cδ) ≥ 1− n− log2 s log n − n−c′ . (36)

For the second term, we have

t2 = sup
(x,z)∈T

∣∣∣∣
m2

Mn
z∗U′Gx

∣∣∣∣

≤ m2

Mn
‖z‖2‖x‖2

≤ 1

2

m2

Mn
,

where the last inequality is due to ‖x‖22+‖z‖22 = 1. Therefore,

t2 ≤ δ/2 for any δ ∈ (0, 1) if M ∼ m and m ≤ δn.

By Bernstein’s inequality, this condition can be satisfied with

probability exceeding 1−n−c′ as long as m ≤ cδ2n. Theorem

III.3 is proved by combining the above results.
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[41] M. Filipović, “Reconstruction of sparse signals from highly corrupted
measurements by nonconvex minimization,” in IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), 2014.

[42] R. Saab, R. Chartrand, and O. Yilmaz, “Stable sparse approximations via
nonconvex optimization,” in Acoustics, Speech and Signal Processing,

2008. ICASSP 2008. IEEE International Conference on. IEEE, 2008,
pp. 3885–3888.

[43] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for com-
pressive sensing,” in IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2008, pp. 3869–3872.

[44] R. Foygel and L. Mackey, “Corrupted sensing: Novel guarantees for
separating structured signals,” IEEE Trans. Inf. Theory, vol. 60, no. 2,
pp. 1223–1247, Feb 2014.

[45] Y. Chen, C. Caramanis, and S. Mannor, “Robust sparse regression
under adversarial corruption,” in Proceedings of the 30th International

Conference on Machine Learning (ICML-13), 2013, pp. 774–782.
[46] C. Studer and R. G. Baraniuk, “Stable restoration and separation of

approximately sparse signals,” Applied and Computational Harmonic

Analysis, vol. 37, no. 1, pp. 12–35, 2014.
[47] G. Pope, A. Bracher, and C. Studer, “Probabilistic recovery guarantees

for sparsely corrupted signals,” IEEE Trans. Inf. Theory, vol. 59, no. 5,
pp. 3104–3116, May 2013.

[48] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 31, no. 2, pp. 210–227, 2009.
[49] J. N. Laska, P. T. Boufounos, M. A. Davenport, and R. G. Baraniuk,

“Democracy in action: Quantization, saturation, and compressive sens-
ing,” Applied and Computational Harmonic Analysis, vol. 31, no. 3, pp.
429–443, 2011.

[50] Y. Chi, “Convex relaxations of spectral sparsity for robust super-
resolution and line spectrum estimation,” in Wavelets and Sparsity XVII,
vol. 10394. International Society for Optics and Photonics, 2017, p.
103941G.

[51] C. Fernandez-Granda, G. Tang, X. Wang, and L. Zheng, “Demixing
sines and spikes: Robust spectral super-resolution in the presence of
outliers,” arXiv preprint arXiv:1609.02247, 2016.

[52] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[53] ——, “Graph implementations for nonsmooth convex programs,”
in Recent Advances in Learning and Control, ser. Lecture Notes
in Control and Information Sciences, V. Blondel, S. Boyd, and
H. Kimura, Eds. Springer-Verlag Limited, 2008, pp. 95–110,
http://stanford.edu/∼boyd/graph dcp.html.

[54] M. Talagrand, The generic chaining. Springer, 2005, vol. 154.
[55] A. Eftekhari, H. L. Yap, C. J. Rozell, and M. B. Wakin, “The restricted

isometry property for random block diagonal matrices,” arXiv preprint

arXiv:1210.3395, 2012.
[56] M. Rudelson and R. Vershynin, “On sparse reconstruction from Fourier

and Gaussian measurements,” Communications on Pure and Applied

Mathematics, vol. 61, no. 8, pp. 1025–1045, 2008.
[57] N. Alon and J. H. Spencer, The probabilistic method. John Wiley &

Sons, 2004.

http://cvxr.com/cvx
http://stanford.edu/~boyd/graph_dcp.html

	I Introduction
	I-A Potential Applications
	I-B Notations and Organization of the paper

	II Preliminaries
	II-A RIP and structured sensing matrices
	II-B Recovery Condition

	III Main Results
	III-A Randomly modulated unit-norm tight frames
	III-B Randomly sub-sampled orthonormal system
	III-C Nonconvex optimization
	III-D Comparison with related literature
	III-D1 Sparse signal, sparse corruption
	III-D2 Structured signal, structured corruption


	IV Numerical Simulations
	IV-A Penalized Recovery
	IV-B Stable recovery

	V Conclusion
	Appendix A: Proof of Lemma ??
	Appendix B: Proof of Theorem ??
	References

