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On the effects of suction and injection on the absolute instability
of the rotating-disk boundary layer

R. J. Lingwood
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ,
United Kingdom

~Received 4 November 1996; accepted 17 January 1997!

In this paper we are concerned with the theoretical behavior of the laminar von Ka´rmán
boundary-layer flow, extending the work presented by Lingwood@J. Fluid Mech.299, 17 ~1995!;
314, 373 ~1996!# to the flow with mass transfer at the surface of the disk. It is known that, within
specific regions of the parameter space, the flow is absolutely unstable in the radial direction, i.e.
disturbances grow in time at every radial location within these regions. Uniform suction through the
disk is shown to delay the onset of absolute instability, while uniform injection promotes the onset.
By comparing suction and injection velocities of the same magnitude, it is shown that suction has
a greater stabilizing effect on the absolute instability than the destabilizing effect of injection.
Suction is also strongly stabilizing to both stationary and travelling inviscidly unstable branch-1
modes; injection is destabilizing. Stationary viscously unstable branch-2 modes are strongly
stabilized and destabilized by suction and injection, respectively, but travelling branch-2 modes are
shown to be much less sensitive to mass transfer through the disk. ©1997 American Institute of
Physics.@S1070-6631~97!03005-5#

I. INTRODUCTION

The von Kármán boundary layer~with and without mass
transfer! has an inflectional mean velocity component and
therefore, like swept-wing boundary layers~which have a
similarly inflectional mean velocity component!, is suscep-
tible to inviscid crossflow instability. Crossflow instability
was first noticed experimentally in the flow over a swept
wing by Gray,1 where it manifested itself as a striped pattern
fixed to the wing surface consisting of a series of stationary
vortices in the boundary layer. Experimental evidence of
crossflow instability of the von Ka´rmán boundary layer is
given by Gregory, Stuart and Walker.2 As well as the invis-
cidly unstable crossflow modes~termed branch 1 here!, the
von Kármán boundary layer has a second convectively un-
stable mode~branch 2! that was discovered by Malik3 and
has been shown by Hall4 to be due to a balance between
viscous and Coriolis forces. Branch-2 travelling waves can
be convectively unstable to very low Reynolds numbers~the
lowest critical Reynolds number is calculated here to be
about 64.45!. Therefore, these modes are usually observed in
experiments as travelling~rather than stationary! distur-
bances at lower Reynolds numbers than the crossflow distur-
bances that dominate at high Reynolds numbers before tran-
sition; see, for example, Fedorov5 and Lingwood.6 The
recent study of the stability of the von Ka´rmán boundary
layer by Lingwood7 showed that, above a critical Reynolds
number, the flow is radially absolutely unstable, i.e. the re-
sponse to a transient disturbance grows with time at fixed
radial positions. This instability is due to a coalescence of the
inviscidly unstable mode and a third mode~branch 3! that is
spatially damped and inwardly propagating. The absolute in-
stability has been confirmed experimentally by Lingwood6

and it is suggested that, in the absence of possibly more
dominant mechanisms such as secondary instability of the
mean flow distorted by primary stationary crossflow vortices

~e.g., Kohama8,9 and Balachandar, Streett and Malik10!, the
absolute instability mechanism is responsible for the onset of
nonlinear behaviour and laminar–turbulent transition.

It was shown by von Ka´rmán11 that there is an exact
similarity solution of the Navier–Stokes equations for the
steady incompressible flow due to an infinite rotating disk.
As noted by Batchelor,12 the resulting ordinary differential
equations are also applicable to the case with a uniform flow
through the surface of the disk; both uniform suction and
injection. The idea of using suction to maintain laminar flow
to higher Reynolds numbers than would be possible without
suction is well established. For example, the use of distrib-
uted suction has been shown experimentally~Pfenninger and
Bacon13! and theoretically~Hall, Malik and Poll14! to stabi-
lize the attachment-line flow at the leading edge of swept
wings. Away from the attachment line, suction of the three-
dimensional boundary layer on a swept wing should extend
the laminar region by reducing the magnitude of the second-
ary ~crossflow! velocity, by decreasing the boundary-layer
thickness and by changing the secondary velocity profile to
one that is inherently more stable. Similar ideas should be
applicable to the rotating-disk boundary layer with suction,
although it was shown by Stuart15 that the shape of the mean
velocity profiles is not significantly affected by uniform suc-
tion. The effects of suction on the stationary convectively
unstable~branch-1 and branch-2! modes in the rotating-disk
boundary layer have been studied using linear stability
theory by Dhanak.16 Suction was shown to increase the criti-
cal Reynolds numbers associated with these stationary
branch-1 and branch-2 modes, and to reduce the convec-
tively unstable region of the wavenumber/Reynolds number
parameter space. Conversely, injection was shown to de-
crease the critical Reynolds numbers and to expand the con-
vectively unstable region of the wavenumber/Reynolds num-
ber parameter space. Further, Bassom and Seddougui17 have
investigated the effects of suction on the nonlinear stability
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of stationary branch-2 modes in the rotating-disk boundary
layer at asymptotically large Reynolds number. They found
that suction lowers the threshold amplitude for disturbance
~disturbances smaller than the threshold decay as they de-
velop away from the neutral position, but those bigger than
the threshold grow explosively!, while injection raises the
threshold amplitude. Thus, from a linear viewpoint suction is
stabilizing to stationary branch-2 waves but, since the thresh-
old amplitude decreases with increasing suction, Bassom and
Seddougui17 suggested that an experiment with suction
would need less forcing than the zero-suction case for sub-
critical stationary instability to occur. Conversely, an experi-
ment with fluid injection would need stronger forcing for
subcritical instability, despite the linear destabilization of
stationary branch-2 waves due to injection. Gregory and
Walker18 performed experiments on a rotating disk with dis-
tributed suction and suction slots. These results will be dis-
cussed further in Sec. IV. Interest in mass injection into
boundary-layer flows has been prompted by the wish to cool
turbine blades and the surfaces of high speed aircraft. To
model these problems properly, however, it would be neces-
sary to take account of heat transfer effects as well as mass
transfer through the porous surfaces. A recent paper by Sed-
dougui and Bassom19 investigates the effects of both heat
and mass transfer~and compressibility! on the rotating-disk
boundary layer. This analysis is restricted to the convective
instability of stationary branch-2 modes at an asymptotically
large Reynolds number.

The main purpose of this paper is to assess the effect of
mass transfer through the disk on the absolute instability
mechanism that exists in the zero-suction case. However, the
effects on the two convectively unstable branches of the dis-
persion relation are also discussed; emphasis is given to new
results concerning travelling~rather than stationary! modes.
As discussed by Huerre and Monkewitz,20 the response of
the flow to impulsive forcing shows whether it is convec-
tively or absolutely unstable. Following the work of Briggs21

and Bers22 in the field of plasma physics, absolute instability
can be identified by singularities in the dispersion relation-
ship that occur when modes associated with waves propagat-
ing in opposite directions coalesce. Such points have become
known as pinch points. Although it is usual in linear stability
analysis to choose either temporal or spatial theories, where
absolute instability is suspected, it is necessary to perform a
spatio-temporal analysis.

The structure of the paper is as follows. A brief state-
ment of the problem is given in Sec. II, which includes dis-
cussion of the mean flow~Sec. II A! and the linear stability
analysis~Sec. II B!. Results of the analysis are presented in
Sec. III, which includes a subsection on the effects of mass
transfer on the convective instability of branches 1 and 2
~both stationary and travelling!, and a subsection on the
mass-transfer effects on the radial absolute instability involv-
ing branches 1 and 3. These results are followed by a discus-
sion in Sec. IV and concluding remarks in Sec. V.

II. STATEMENT OF THE PROBLEM

A. The mean flow

The disk is modelled as an infinite planar disk rotating at
a constant angular frequency,V* , about the vertical axis that
passes through the centre of the disk~asterisks indicate di-
mensional quantities!. Cylindrical-polar coordinates are
used,r * being the radial distance from the axis of rotation,
u the polar angle in the direction of rotation andz* the
normal distance from the disk. The mean flow relative to the
disk is given by von Ka´rmán’s11 exact similarity solution to
the Navier–Stokes equations. The dimensionless similarity
variables of the solution are defined by

U~z!5
U*

r *V*
, V~z!5

V*

r *V*
,

W~z!5
W*

~n*V* !1/2
, P~z!5

P*

r* n*V*
,

whereU, V, W, are the non-dimensional radial, circumfer-
ential and axial base flow velocities in the rotating frame,
respectively,P is the pressure,r* andn* are the density and
kinematic viscosity andz5z* /L* is the non-dimensional
axial coordinate, whereL*5(n* /V* )1/2 is the non-
dimensionalizing lengthscale.

The set of ordinary differential equations forU, V, W
andP are given, for example, by Schlichting.23 As discussed
by Stuart,15 becauseW is independent ofr * , these equations
can be applied to the case of uniform upwards or downwards
flow, denoted byW0* , through the surface of the disk. The
dimensional velocityW0* is the constant value taken by
W* at the surface, and the boundary conditions to the equa-
tions for the mean flow are

U~0!5V~0!50, W~0!5
W0*

~n*V* !1/2
[2a,

P~0!5const50,

U~z→`!50, V~z→`!521,

wherea is a positive constant for suction through the disk
and is a negative constant for injection.

A double precision fourth-order Runge–Kutta integrator
and a Newton–Raphson searching method were used to
solve forU, V, W and P. Figure 1 shows these quantities
plotted againstz for a range of the parametera. ~Figure 1 is
essentially the same as Fig. 1 of Dhanak,16 but here the pro-
files are given for a larger range ofa and the mean pressure
profile is given as well as the velocity profiles.! In the radial
direction, and directions close to the radial, the velocity pro-
files are inflectional. Table I gives some values ofU8(0) and
V8(0) ~where the primes denote differentiation with respect
to z) required to calculate the mean profiles. Values of
W(z→`) andP(z→`) are also tabulated. When suction is
applied the magnitude of the radial velocity is decreased and
therefore the three-dimensionality of the boundary layer is
reduced, while the magnitude of the axial flow at infinity is
increased. Conversely, injection increases the magnitude of
the radial flow and decreases the axial flow at infinity. The
decrease and increase in the maximum radial velocity with
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suction and injection, respectively, are of almost equal mag-
nitude~about 54% fora561 compared witha50). Figure
1~c! indicates that the change inW between z50 and
z→`, which is quantified byW(z→`)1a, tends to zero as
a→`. Further,uW(z→`)1au tends to infinity asa→2`.
The variation in the mean pressure through the boundary
layer increases asa decreases.

Figure 2 shows the variation in the non-dimensional dis-
placement thicknessd5d* /L* , which is defined in terms of
the azimuthal mean flow,

d*5E
0

`

11
V*

V* r *
dz*5L* E

0

`

~11V!dz.

The non-dimensional momentum thicknessū ~not to be con-
fused with the polar angleu) and the shape factorH5d/ ū
are also given in Fig. 2, where

ū5E
0

`

V~11V!dz.

The variation ind with a is shown to be linearly decreasing.
The values ofū andH also decrease with increasinga. Thus,
as suggested by Figs. 1~a! and~b!, the effect of suction is to
thin the boundary layer; the effect of injection is to thicken

the boundary layer. Stuart15 showed that when the mean ra-
dial and azimuthal velocity profiles are plotted againstz/d
for varying degrees of suction, the maxima inU[Umax oc-
cur at almost constantz/d and that for bothU and V the
variation with a is predominantly one of scale rather than
shape. In fact, Stuart notes that for the asymptotic suction
profile (a5`) H52, therefore the divergence of the plot of
the shape factor~in Fig. 2! from 2 is a measure of the dif-
ference in shape of the profile from the asymptotic one. In
Fig. 2, z/d at Umax ~denoted byzmax/d) is plotted against
a for both suction and injection. The constant trend shown
by Stuart for the suction profiles is continued into negative
a. As suggested by Fig. 1, the variation inUmax is almost
linear ina.

B. The linear stability analysis

The stability analysis, applied at a radiusr a* , involves
imposing infinitesimally small disturbances on the mean
flow. The local Reynolds number isR5r a*V* L* /n*
5r a* /L*5r a , and the non-dimensionalizing velocity, pres-
sure and time-scales arer a*V* , r* r a*

2V* 2 and
L* /(V* r a* ), respectively. The instantaneous non-
dimensional velocities and pressure are given by

ū~r ,u,t,z!5
r

R
U~z!1u~r ,u,t,z!,

v̄~r ,u,t,z!5
r

R
V~z!1v~r ,u,t,z!,

w̄~r ,u,t,z!5
1

R
W~z!1w~r ,u,t,z!,

p̄~r ,u,t,z!5
1

R2P~z!1p~r ,u,t,z!,

whereu, v, w andp are small perturbation quantities.

FIG. 1. Mean profiles for the rotating-disk flow for particular degrees of
suction and injection:~a! radial velocity profiles,~b! circumferential velocity
profiles,~c! axial velocity profiles,~d! pressure profiles.

TABLE I. Boundary conditions for the mean flow.

a U8(0) V8(0) W(z→`) P(z→`)

21.0 0.48948 20.30217 20.76071 0.21066
20.5 0.51457 20.43643 20.80721 20.20079
0.0 0.51023 20.61592 20.88447 20.39115
0.5 0.46688 20.85519 21.0213 20.39652
1.0 0.38957 21.1752 21.2606 20.29450
2.0 0.24242 22.0385 22.0577 20.11711
3.0 0.16558 23.0121 23.0182 20.054791
4.0 0.12474 24.0051 24.0078 20.031111
5.0 0.099914 25.0027 25.0040 20.019963

FIG. 2. Variation in the displacement and momentum thicknesses, the shape
factor,Umax andzmax /d with a.
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The dimensionless Navier–Stokes equations are linear-
ized with respect to the perturbation quantities. To make the
linearized perturbation equations separable inr , u andt, it is
necessary to ignore variations in the Reynolds number with
radius. This involves replacing the variabler , which appears
in coefficients of the linearized equations, byR. Despite the
fact thatd* is constant~in r * ) for constanta, this sort of
approximation is called the parallel-flow approximation. The
terminology comes from analyses of growing boundary lay-
ers, such as the Blasius boundary layer, where variations in
Reynolds number in the streamwise direction, due to growth
of the boundary layer, are often ignored. TermsO(R22) are
neglected and the perturbation quantities are assumed to
have normal-mode form, for example

u5û~z;a,b,v;R!e i ~ar1bu2vt !, ~1!

whereû is the spectral representation of the radial perturba-
tion velocity, a and b5b̄R are the radial and azimuthal
wavenumbers, respectively, andv is the frequency of the
disturbance in the rotating frame. Because of the circumfer-
ential periodicity of this problem,b takes integer values.
Similar equations to~1! define v̂, ŵ and p̂. Using certain
transformations of the fundamental perturbation quantities,
the perturbation equations may be written as a set of six
first-order ordinary differential equations that include vis-
cous, streamline-curvature and Coriolis effects; see Malik,
Wilkinson and Orszag24 or Lingwood.7

To distinguish between a convectively and an absolutely
unstable response, the governing equations are solved sub-
ject to an impulsive azimuthal line forcing, with prescribed
integerb, such that the vertical velocity atz50 is given by

w~0;r ,u,t !5d~r2r a!d~ t !e ibu,

whered(r2r a) andd(t) are the Dirac delta functions atr a
and t50, respectively. The response to point forcing can be
obtained by summing over all integer values ofb. The ad-
ditional boundary conditions atz50, given by the no-slip
condition, are

u~0;r ,u,t !5v~0;r ,u,t !50,

and asz→` it is required that all perturbations decay.
The solution of an inhomogeneous system such as this is

described by Lingwood.25 The problem reduces to solving a
Green’s function of the form

w~z;r ,u,t !5
eibu

~2p!2
E
F
E
A

F~z;a,v;b,R!

D0~a,v;b,R!

3ei ~a~r2r a!2vt !dadv, ~2!

whereF is a function ofz formed from a combination of the
independent solution vectors of the governing ordinary dif-
ferential equations,D050 is the dispersion relation, which is
satisfied by the discrete eigenvalues of the homogeneous
problem~the unforced case!, andA andF are inversion con-
tours in thea- andv-planes, respectively. The discrete ei-
genvalues provide a mapping between thea- andv-planes;
the eigenvalues trace out paths in thea-plane (v-plane! as
v (a) is varied. Trajectories in thea-plane (v-plane! given

by a predeterminedv-distribution (a-distribution!, which
could be complex, will be referred to as spatial~temporal!
branches of the dispersion relation.

Briggs’21 method is used to calculate the time-
asymptotic discrete solution, due to the discrete poles of~2!
~i.e., zeros of the dispersion relation!. Details of this method
are given in Lingwood,25 where it is shown that the discrete
response is sufficient to determine the nature of the instabil-
ity. The discrete response to~2! neglects the continuous con-
tributions from branch cuts in thea-plane, which give the
z-structure of the response close to the source of the initial
perturbation and are caused by the complex square-roots
taken to satisfy the boundary conditions asz→`.

For fixedb, the Briggs’ criterion for absolute instability
requires a branch-point singularity between two, or more,
spatial branches of the dispersion relation, of which at least
two must lie in distinct halves of thea-planes whenv i is
sufficiently large and positive. Such singularities have be-
come known as pinch points because inherent in Briggs’
method is the use of analytic continuation to deflect the in-
version contours, and at these singularities theA-contour be-
comes pinched between the coalescing spatial branches. The
pinching frequencyvo is a branch point of the function
a(v;b,R) or, equivalently,a at the pinch point,ao, is a
saddle point of the functionvo(a;b,R) and at this point
]v/]a50, although this condition is not sufficient for such
points. If v i.0 at the pinch point the flow is absolutely
unstable, otherwise the flow is only convectively unstable or
stable. A branch-point singularity between two spatial
branches that originate in the same half of thea-plane for
large positivev i does not constitute a pinch point~even
though ]v/]a50 at such a point! and does not cause an
absolute instability. This sort of branch point results in a
second-order pole, which leads to transient algebraic growth
that can be important if the second-order pole is near neutral
but ultimately behaves exponentially as dictated by the sign
of a i . This case will not be pursued here, but further details
can be found in Koch26 and Henningson and Schmid.27

III. RESULTS OF THE LINEAR STABILITY ANALYSIS

A. Convective instability of branches 1 and 2

Neutral-stability curves for stationary (v50) waves are
presented in Fig. 3 for a range ofa. For the purposes of
plotting Fig. 3~a!, b is treated as being continuous rather
than taking only integer values. Essentially this figure is the
same as Fig. 2 presented by Dhanak,16 although Dhanak con-
siders just one case of mass injection (a520.1), preferring
to concentrate on the effects of suction on stationary modes.
A comparison between Fig. 3 and Dhanak’s results shows
that the two analyses give qualitatively similar variations in
the convective instability of stationary branch-1 and
branch-2 modes with mass transfer. Suction increases the
critical Reynolds numbers for convective instability of both
branch 1~i.e., the upper lobe in a–c and the lower lobe in d!
and branch 2~i.e., the lower lobe in a–c and the upper lobe
in d!; injection decreases the critical Reynolds numbers.
Both here and in Dhanak,16 the wave angle,
«5tan21(b̄/a r), at the critical Reynolds numbers decreases
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with increasinga. However, the solution method used by
Dhanak is different to that used here and, as mentioned by
Dhanak, in comparison with Malik3 his method introduces
some differences in the stability characteristics in the vicinity
of the critical Reynolds numbers. Dhanak’s stability analysis

is based on the vorticity equation and the parallel-flow ap-
proximation is made at a different stage of the formulation.
The formulation adopted in this paper is similar to Malik’s,3

therefore it is unsurprising that, where comparisons can be
made, the eigenvalues calculated here agree with those of
Malik and not Dhanak. Fora50.5, the differences between
the critical Reynolds numbers calculated here and by Dhanak
are about 2% for branch 1 and about 8% for branch 2.

Convective instability oftravellingwaves is also impor-
tant in the rotating-disk boundary layer. Travelling waves are
excited by freestream turbulence and have been observed
experimentally, e.g. by Fedorov5 and Lingwood.6 In very
close agreement with Balakumar and Malik,28 it has been
calculated here that the lowest critical Reynolds number for
convective instability for a50 occurs for a travelling
branch-2 mode atv rR'7.8883128. Disturbances have di-
mensional frequencyv*5vRV* , so the non-dimensional
quantityv rR remains constant as disturbances propagate. In
Fig. 4, neutral-stability curves are given for
v rR57.8883128 anda520.5, 0, 0.5. As for the stationary
waves, suction significantly increases the critical Reynolds
number for convective instability of these travelling branch-1
modes; injection decreases it. However, the critical Reynolds
number for branch 2 is far less sensitive toa than branch 1,
although suction is still slightly stabilizing and injection is
slightly destabilizing. Table II gives the critical parameters

FIG. 3. Neutral-stability curves for stationary (v50) waves and particular
degrees of suction and injection. The convectively unstable regions lie
within the curves.

FIG. 4. Neutral-stability curves for travelling waves withv rR57.8883128, i.e. with the frequency that gives the lowest critical Reynolds number for
a50: — • — • denotesa520.5, —— denotesa50 and – – – denotesa50.5. The convectively unstable regions lie within the curves and~e! is an
expanded view of~d!.
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for branch 2 andv rR57.8883128~denoted by the subscript
2).

Eigenfunctions of the radial, circumferential and axial
velocity perturbations are given in Fig. 5. The parameters for
Figs. 5~a!–~c! were chosen to characterize travelling
branch-1 modes. That is, for each value ofa, the eigenfunc-
tions are given at the critical Reynolds number for convec-
tive instability of branch 1 atv rR57.8883128. The eigen-
functions fora520.5 are given atR5223, for a50 they
are given atR5317, and fora50.5 they are given at
R5569. The parameters for Figs. 5~d!–~f! were chosen to
characterize travelling branch-2 modes. Because of the in-
sensitivity of branch 2 toa, all these eigenfunctions are
given for R5100 andb525. The eigenfunctions in Figs.
5~a!–~c! are normalized by the maximum ofv̂ ~given in b!
for a50; similarly the eigenfunctions in Figs. 5~d!–~f! are
normalized by the maximum ofv̂ ~given in e! for a50. First
considering the branch-1 eigenfunctions, fora50 the
maxima inû andŵ are about 16% and 8%, respectively, of
the maximum inv̂. With injection of a520.5, the maxi-
mum magnitudes ofû and ŵ relative to v̂ are increased to
about 21% and 10%, respectively. Whereas with suction of
a50.5, the maximum magnitudes ofû and ŵ relative to v̂
are decreased to about 10% and 4%, respectively. For the
branch-1 eigenfunctions,v̂ is almost constant forz.6, al-
though suction seems to decrease the vertical extent of the
variation in this eigenfunction slightly. The extent of both
û andŵ is significantly greater. For branch 2@in Figs. 5~d!–
~f!, whereR5100], the relative extents ofû, v̂ and ŵ are
similar to those of the branch-1 eigenfunctions. The higher
maxima of û are perhaps more pronounced. Suction shifts
both maxima ofû to lowerz, while injection has the reverse
effect. The maxima ofû and ŵ relative to v̂ for a50 are
about 37% and 11%, respectively. Fora520.5 these values
are increased to about 45% and 12%, respectively, and de-
creased to about 29% and 9%, respectively, fora50.5.
However, mass transfer does not have a marked effect on the
general form of the branch-1 and branch-2 eigenfunctions.
Note that it is only meaningful to compare the relative mag-
nitudes of the eigenfunctions (û, v̂ or ŵ) for a given eigen-
value; the magnitude of, say,û(a50) relative to
û(a50.5) is arbitrary.

B. Absolute instability involving branches 1 and 3

It has been established by Lingwood7 that a linear sta-
bility analysis predicts that the zero-a case is radially abso-
lutely unstable beyond a critical Reynolds number. Figure 6

compares marginal curves for absolute instability (v i
o50)

for a561 with a50. For suction witha51 the critical
Reynolds number for the onset of absolute instability is in-
creased by a factor of nearly 3.7 compared with the zero-
suction case. Thus, suction has a significant stabilizing effect
on the absolute instability mechanism. Conversely, injection
with a521 reduces the critical Reynolds number to about
40% of its value fora50. The criteria for the marginal
curves for absolute instability are that]v/]a50, i.e. there is
a branch pointvo of a(vo;b,R)[ao, that the branch point
is of the pinch-type and thatv i

o50 (v i
o.0 implies absolute

instability!. In Fig. 6 for a50 anda521, two trajectories
of branch points withv i

o50 are given:A and B. All the
branch points on theA-trajectories, for botha50 and
a521, are of the pinch type. However, the branch points on
theB-trajectories change from being non-pinching to pinch-
ing with increasing Reynolds number. TheB-trajectories end
at low Reynolds numbers where it was no longer possible to
find marginal (v i

o50) branch points. Figure 7 showsao in
the complexa-plane at the critical Reynolds number for the
onset of absolute instability for a range ofa. The solid lines
in this figure indicate the separation of the two spatial
branches involved in each branch point asv i→` away from
v i
o . Since in each case the two spatial branches separate into

the distinct half planes, all these branch points are of the
pinch type and qualify as defining points on the marginal
curves of absolute instability. Figure 8 shows a similar type
of graph but for a selection of branch points on both trajec-
toriesA andB from Fig. 6 fora521. The separation of the
two spatial branches into the distinct halves of the complex
a-plane asv i→` defines the trajectory-A branch points as
pinch points. ForR51000 andR53000 on trajectoryB, the
branch points are also pinching but for lower Reynolds num-
bers both spatial branches separate into the upper-half
a-plane, which means that these branch points are non-
pinching and cannot constitute an absolute instability. These
non-pinching branch points are a coalescence of the two
~outwardly! convectively unstable modes: branches 1 and 2.
The change in character of the branch points on trajectory
B is due to the fact that betweenR5900 andR51000 on
trajectoryB, branches 1, 2 and 3~branch 3 is the spatially-
damped inwardly propagating mode that exists in the lower-
half a-plane forv i→`) all coalesce and at that point the
marginal branch point switches from involving only
branches 1 and 2 to involving branch 3. So, returning to Fig.
6, there are marginal pinch points on theA-trajectories and
above certain Reynolds numbers there are also marginal
pinch points on theB-trajectories. In general, when there are
several pinch points for a particular Reynolds number and
b, the discrete time-asymptotic response is dominated by the
pinch point that lies highest in the complexv-plane. This
implies that for fixedb with marginal pinch points on both
trajectoriesA andB, the most critical pinch point is the one
lying on the trajectory at the lower Reynolds number; the
other pinch point then hasv i

o,0 for that particularR and
b and is subcritical. To define limiting curves of absolute
instability in this way fora521, it is necessary to jump
from marginal pinch points on trajectoryA to those on tra-

TABLE II. Critical values for convective instability of branch 2 and
v rR57.8883128.

a R2 b̄2 a2 «2

20.5 62.9 20.102 0.264 221.19°
0.0 64.4 20.106 0.276 221.07°
0.5 87.9 20.0775 0.265 216.29°

1322 Phys. Fluids, Vol. 9, No. 5, May 1997 R. J. Lingwood



jectoryB, which introduces discontinuities in certain planes
in Fig. 6. BelowR52500, it is not necessary to jump trajec-
tories fora50.

Despite the complications of defining the marginal

curves for absolute instability at high Reynolds numbers, the
critical Reynolds numbers for the onset are defined unam-
biguously. Note also that asa decreases stationary waves
become absolutely unstable at Reynolds numbers increas-

FIG. 5. Magnitude and phasef of the eigenfunctions, normalized by the maximum ofv̂ for a50: ~a!–~c! at the critical parameters for the onset of convective
instability for v rR57.8883128 on branch 1,~d!–~f! atR5100,b525 andv rR57.8883128, i.e. for branch 2.~a! and ~d! radial perturbation velocity.~b!
and ~e! circumferential perturbation velocity.~c! and ~f! axial perturbation velocity. The phase is given from2180° to 180° and —• — • denotes
a520.5, —— denotesa50 and – – – denotesa50.5.

1323Phys. Fluids, Vol. 9, No. 5, May 1997 R. J. Lingwood



ingly close to the critical Reynolds number for the onset of
absolute instability. Figure 9 and Table III summarize the
effect of mass transfer on the onset of absolute instability
~denoted by the subscriptc). These critical values were cal-
culated at intervals of 0.1 ina, over the range21<a<1,
but Table III gives just a small selection of these values.

The eigenfunctions at the critical parameters for the on-
set of absolute instability fora520.5, 0, 0.5 are given in
Fig. 10. Compared with typical~travelling! branch-1 and
branch-2 eigenfunctions, which are shown in Fig. 5, these
eigenfunctions are not strikingly different. The noticeable

differences are that the higher maxima inû are less pro-
nounced here and the eigenfunctions ofv̂ have a small sec-
ond maximum. As for the branch-1 and branch-2 eigenfunc-
tions, injection increases the relative magnitudes ofû and
ŵ compared withv̂; suction decreases them.

IV. DISCUSSION

Comparison between the absolute instability predicted
by linear stability analysis and experimental observations for

FIG. 6. Marginal curves for absolute instability: —• — • denotesa521, —— denotesa50 and – – – denotesa51. A second trajectory of neutral
(v i50) branch points is given fora50 anda521, which includes both non-pinching and pinching branch points. The marginal curves switch from
trajectoryA to trajectoryB ~marked by a zig–zag line! if the trajectory-B branch points are of the pinch type and are more critical than those of trajectory
A. Non-limiting trajectories are denoted by•••• .
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the zero-suction case are given by Lingwood.6,7 The onset of
absolute instability was found to occur atR'510 ~corrected
in Lingwood29 to about 507! and the onset of transition is
consistently found by various experimentalists~see
Lingwood7 for a summary! at an average value of 513 with
only a 3% scatter around this value. It has been suggested
that the onset of absolute instability promotes the onset of
non-linearity and laminar–turbulent transition.

The effect of suction on the stability of the branch-1
crossflow vortices and transition of the rotating-disk bound-
ary layer was studied experimentally by Gregory and

Walker.18 They found, using a microphone probe and a hot-
film anemometer, that suction through both distributed suc-
tion holes and through slots increased the Reynolds number
for instability and for transition above the values for zero
suction. The distributed suction was achieved through a wo-
ven wire-cloth surface, but the critical Reynolds numbers of
observed effects were dependent on the rotational speed of
the disk because of the significant roughness of the disk. For
the flow with suction slots they found that effects were less
dependent on rotational speed and that the Reynolds number
for the onset of transition increased from about 524 for no
suction to about 632 witha50.4. For the slotted disk, it was
found that about 75% more suction was required to achieve a
given level of stabilization than was predicted by stability
theory, i.e., predicted by the increase in the critical Reynolds
number for convective instability of branch-1 crossflow vor-
tices with suction. This discrepancy was attributed to limita-
tions in the experimental apparatus, such as significant non-
uniformity in suction~both radially and circumferentially!,
roughness of the disk surface and surface waviness. Here, it
has been found that the onset of absolute instability occurs at
R'803 for a truly uniform suction ofa50.4. The Reynolds
number for the onset of transition observed by Gregory and
Walker18 for this suction rate is about 79% of this Reynolds
number, but the absolute instability mechanism could still be

TABLE III. Critical values for the onset of absolute instability.

a Rc b̄c vc ac

21.0 201.54 0.1424 20.03622 0.17352 i0.1166
20.5 309.71 0.1398 20.03550 0.19032 i0.1197
0.0 507.30 0.1348 20.03485 0.21732 i0.1216
0.5 911.54 0.1235 20.03261 0.26372 i0.1228
1.0 1860.82 0.1044 20.02796 0.34202 i0.1300

FIG. 7. Separation of the two spatial branches that coalesce at each branch
point asv i→` away from the values at the branch points (s). For each
value of a, the critical pinch point for the onset of absolute instability is
shown.

FIG. 8. Separation of the two spatial branches that coalesce at each branch
point, asv i→` away from the values at the branch points, evaluated at a
selection of points on the branch-point trajectories shown in Fig. 6. Pinch
points are indicated by —— and – – –, and —• — • indicates non-
pinching branch points, Trajectory-A branch points (s) are denoted by
——, while trajectory-B branch points (3) are denoted by – – – and
— • — •.

FIG. 9. ~a! Variation in the critical Reynolds number for the onset of abso-
lute instability with a, where the shaded region indicates the absolutely
unstable region.~b! Variation in the critical azimuthal wavenumber~——!,
wave angle~– – –! and frequency~— • — •) for the onset of absolute
instability with a.
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responsible for the onset of transition if the limitations of the
apparatus also reduced the effectiveness of suction to stabi-
lize the absolute instability.

Gregory and Walker18 found that the maximum stabiliz-
ing effect~with the slotted surface! was produced for a rela-
tively low suction rate, beyond which the onset of transition
dropped back to a minimum~still at higher Reynolds number
than the zero-suction case! and then increased again with
increasing suction. With higher rates of suction it was sug-
gested that the reduction in the mean radial velocity compo-
nent allowed turbulent contamination to spread inwards from
the rim. That is, the radial propagation somewhere within the
wedge of disturbances excited by fixed roughnesses within
the turbulent regime was zero, allowing the spread of distur-
bances both inwards and outwards of the roughness as the
disturbances convected predominantly in the azimuthal di-
rection. Gregory and Walker18 called this effect ‘‘self-
contamination,’’ but is equally well described as radial abso-
lute instability. This self-contamination was observed at
Reynolds numbers below those predicted here for the onset

of absolute instability, but this again may be attributable to
reduced effectiveness of the experimentally-achieved suction
compared with that of uniform suction.

It is worth noting that the methods used by Gregory and
Walker18 to induce suction seemed to introduce significant
roughness to the surface of the disk. Three-dimensional
boundary layers, such as the rotating-disk boundary layer,
are particularly sensitive to surface roughness. Furthermore,
the non-linear study by Bassom and Seddougui17 suggests
that the rotating-disk boundary layer with suction is even
more sensitive than the zero-suction case, because suction
reduces the threshold amplitude for subcritical growth of sta-
tionary disturbances. To properly assess the importance of
the absolute instability as a transition mechanism in the
rotating-disk boundary layer with mass transfer, it would be
necessary to perform specific experiments with this in mind.
For example, to make comparisons between the results from
the linear stability analysis, which uses mean profiles calcu-
lated on the assumption of uniform mass transfer, it would be
necessary to limit the surface roughness introduced by the

FIG. 10. Magnitude and phasef of the eigenfunctions, normalized by the maximum ofv̂ for a50, at the critical parameters for the onset of absolute
instability: ~a! radial perturbation velocity,~b! circumferential perturbation velocity,~c! axial perturbation velocity. The phase is given from2180° to 180°
and —• — • denotesa520.5, —— denotesa50 and – – – denotesa50.5.
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suction holes, to achieve mass transfer as uniformly as pos-
sible and to consider both travelling and stationary distur-
bances within the boundary layer. It is, however, quite pos-
sible, particularly if the disk is rough, that the convective
instability of stationary crossflow vortices~perhaps causing
secondary instability! is the dominant transition mechanism.

V. CONCLUSIONS

The theoretical behaviour of the laminar rotating-disk
boundary-layer flow with mass transfer at the wall has been
investigated using linear stability theory. The effects of mass
transfer on the convective instability ofstationarymodes
have been studied previously~see, for example, Dhanak16!.
This investigation has been focused on the mass-transfer ef-
fects on the radial absolute instability, which has been shown
to exist above a critical Reynolds number for the flow with-
out mass transfer~see Lingwood7!, and also on the effects of
mass transfer on the convective instability oftravelling
modes. It has been shown that suction has a stabilizing effect
on the absolute instability, while injection has a destabilizing
effect. For increasing injection rates, the stationary waves
become absolutely unstable at Reynolds numbers approach-
ing the critical Reynolds number for the onset of absolute
instability. The stationary waves are of particular importance
because they are excited by unavoidable roughnesses on the
surface of the disk, and are therefore often observed in ex-
periments as stationary crossflow vortices.

Given sufficient time, an absolutely unstable flow will
cause a disturbance at fixed points in space~in this case, at
fixed radii! to grow to amplitudes large enough to make the
use of the linear theory invalid. A disturbance in a convec-
tively unstable flow, however, is swept away as it grows, and
so the boundary layer remains basically laminar until the
instability wave has travelled far enough away to have grown
to amplitudes sufficient to cause non-linearities. Thus, abso-
lute instability is quite distinct from, and more ‘‘dangerous’’
than, spatial instability. The absolute instability mechanism
may explain the onset of non-linearity and laminar–turbulent
transition at a well-defined radial position. Furthermore, the
presence of an absolute instability would imply that any
asymptotic stability analysis should be temporal as well as
spatial.

The parallel-flow approximation will have some small
numerical effect on the stability calculations, but it is ex-
pected that the general absolute instability characteristics dis-
cussed in this paper are still relevant to the physical behav-
iour of the flows; as has been shown for the particular case of
zero mass transfer~Lingwood6,7! where the onset of transi-
tion and absolute instability coincide. Furthermore, for the
case with zero mass transfer, the absolute instability mecha-
nism has been shown to persist in the inviscid limit@where
all terms O(R21) are neglected consistently; see
Lingwood7#, which indicates that the absolute instability is
not an artifact of the parallel-flow approximation.

For all the flows, the absolute instability is caused by a
pinch point between a spatially growing and a spatially
damped branch of the dispersion relation. Apart from the
special case where the pinch point lies on the real wavenum-
ber axis, this must always be the case because in order for a

branch point to be of the pinch type the two spatial branches
that coalesce must originate in separate halves of the com-
plex wavenumber plane for large positive imaginary fre-
quency. To pinch, one of these branches must cross the real
wavenumber axis, becoming convectively~spatially! un-
stable before pinching. So, the absolute instability always
involves a branch of the dispersion relation that from a con-
vective viewpoint is damped, and which is generally ignored
for this reason.

In the convectively unstable regime, suction is strongly
stabilizing to both stationary and travelling inviscidly un-
stable branch-1 modes; injection is destabilizing. Stationary
viscously unstable branch-2 modes are strongly stabilized
and destabilized by suction and injection, respectively, but
travelling branch-2 modes are much less sensitive to mass
transfer through the disk.
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