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On the effects of suction and injection on the absolute instability
of the rotating-disk boundary layer

R. J. Lingwood
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ,
United Kingdom

(Received 4 November 1996; accepted 17 January)1997

In this paper we are concerned with the theoretical behavior of the laminar vomaKa
boundary-layer flow, extending the work presented by Lingwbd-luid Mech.299, 17 (1995;

314, 373(1996] to the flow with mass transfer at the surface of the disk. It is known that, within
specific regions of the parameter space, the flow is absolutely unstable in the radial direction, i.e.
disturbances grow in time at every radial location within these regions. Uniform suction through the
disk is shown to delay the onset of absolute instability, while uniform injection promotes the onset.
By comparing suction and injection velocities of the same magnitude, it is shown that suction has
a greater stabilizing effect on the absolute instability than the destabilizing effect of injection.
Suction is also strongly stabilizing to both stationary and travelling inviscidly unstable branch-1
modes; injection is destabilizing. Stationary viscously unstable branch-2 modes are strongly
stabilized and destabilized by suction and injection, respectively, but travelling branch-2 modes are
shown to be much less sensitive to mass transfer through the disk99® American Institute of
Physics[S1070-663197)03005-3

I. INTRODUCTION (e.g., Koham®® and Balachandar, Streett and Maflk the
absolute instability mechanism is responsible for the onset of
The von Kaman boundary layetwith and without mass nonlinear behaviour and laminar—turbulent transition.
transfej has an inflectional mean velocity component and It was shown by von Kanan!! that there is an exact
therefore, like swept-wing boundary layefwhich have a similarity solution of the Navier—Stokes equations for the
similarly inflectional mean velocity componegnis suscep- steady incompressible flow due to an infinite rotating disk.
tible to inviscid crossflow instability. Crossflow instability As noted by Batchelof? the resulting ordinary differential
was first noticed experimentally in the flow over a sweptequations are also applicable to the case with a uniform flow
wing by Gray; where it manifested itself as a striped patternthrough the surface of the disk; both uniform suction and
fixed to the wing surface consisting of a series of stationarynjection. The idea of using suction to maintain laminar flow
vortices in the boundary layer. Experimental evidence ofio higher Reynolds numbers than would be possible without
crossflow instability of the von Kanan boundary layer is suction is well established. For example, the use of distrib-
given by Gregory, Stuart and WalkéAs well as the invis-  uted suction has been shown experimentéenninger and
cidly unstable crossflow moddgermed branch 1 heyethe  Bacort®) and theoreticallyHall, Malik and Polt%) to stabi-
von Karman boundary layer has a second convectively undize the attachment-line flow at the leading edge of swept
stable modebranch 2 that was discovered by Mafikand  wings. Away from the attachment line, suction of the three-
has been shown by Halto be due to a balance between dimensional boundary layer on a swept wing should extend
viscous and Coriolis forces. Branch-2 travelling waves carthe laminar region by reducing the magnitude of the second-
be convectively unstable to very low Reynolds numidéne  ary (crossflow velocity, by decreasing the boundary-layer
lowest critical Reynolds number is calculated here to behickness and by changing the secondary velocity profile to
about 64.4% Therefore, these modes are usually observed imne that is inherently more stable. Similar ideas should be
experiments as travellingrather than stationajydistur-  applicable to the rotating-disk boundary layer with suction,
bances at lower Reynolds numbers than the crossflow distusithough it was shown by Stu&tthat the shape of the mean
bances that dominate at high Reynolds numbers before tranelocity profiles is not significantly affected by uniform suc-
sition; see, for example, Fedorowand Lingwood® The  tion. The effects of suction on the stationary convectively
recent study of the stability of the von Kaan boundary unstable(branch-1 and branchy2nodes in the rotating-disk
layer by Lingwood showed that, above a critical Reynolds boundary layer have been studied using linear stability
number, the flow is radially absolutely unstable, i.e. the retheory by Dhanak® Suction was shown to increase the criti-
sponse to a transient disturbance grows with time at fixe¢al Reynolds numbers associated with these stationary
radial positions. This instability is due to a coalescence of thédranch-1 and branch-2 modes, and to reduce the convec-
inviscidly unstable mode and a third mo@lganch 3 thatis tively unstable region of the wavenumber/Reynolds number
spatially damped and inwardly propagating. The absolute inparameter space. Conversely, injection was shown to de-
stability has been confirmed experimentally by Lingwdod crease the critical Reynolds numbers and to expand the con-
and it is suggested that, in the absence of possibly moreectively unstable region of the wavenumber/Reynolds num-
dominant mechanisms such as secondary instability of thber parameter space. Further, Bassom and Sedddumguie
mean flow distorted by primary stationary crossflow vorticesinvestigated the effects of suction on the nonlinear stability
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of stationary branch-2 modes in the rotating-disk boundaryl. STATEMENT OF THE PROBLEM

layer at asymptotically large Reynolds number. They foundy The mean flow

that suction lowers the threshold amplitude for disturbance L . ) )
(disturbances smaller than the threshold decay as they de- The disk is modelled as an infinite planar disk rotating at

* : .
velop away from the neutral position, but those bigger thar® constant angular frequendy;*, about the vertical axis that

th h th tre of th terisks indicate di-
the threshold grow explosivelywhile injection raises the passes throug e centre of the digisterisks indicate di

- ) ) ] .~ . mensional quantitigs Cylindrical-polar coordinates are
threshold amplitude. Thus, from a linear viewpoint suction ISysed,r* being the radial distance from the axis of rotation,

stabilizing to stationary branch-2 waves but, since the threshy {he polar angle in the direction of rotation amd the

old amplitude decreases with increasing suction, Bassom angbrmal distance from the disk. The mean flow relative to the
Seddougdi’ suggested that an experiment with suctiondisk is given by von Kemav'st! exact similarity solution to
would need less forcing than the zero-suction case for sulthe Navier—Stokes equations. The dimensionless similarity
critical stationary instability to occur. Conversely, an experi-variables of the solution are defined by

ment with fluid injection would need stronger forcing for U* V*

subcritical instability, despite the linear destabilization of U(Z):W’ V(Z):W’

stationary branch-2 waves due to injection. Gregory and
Walker*® performed experiments on a rotating disk with dis-
tributed suction and suction slots. These results will be dis-

cussed further in Sec. IV. Interest in mass injection intoyhereyu, v, W, are the non-dimensional radial, circumfer-
boundary-layer flows has been prompted by the wish to coaéntial and axial base flow velocities in the rotating frame,
turbine blades and the surfaces of high speed aircraft. TegespectivelyP is the pressurgs* andv* are the density and
model these problems properly, however, it would be neceskinematic viscosity andz=z*/L* is the non-dimensional
sary to take account of heat transfer effects as well as masial coordinate, whereL* =(v*/Q*)¥? is the non-
transfer through the porous surfaces. A recent paper by Segdlimensionalizing lengthscale.

dougui and Bassol investigates the effects of both heat ~ The set of ordinary differential equations for, vV, W
and mass transfeéand compressibilityon the rotating-disk andP are given, for example, by SchlichtifgAs discussed

5 . . * .
boundary layer. This analysis is restricted to the c:onvectivé’y Stuart, pecause/v IS mdependent of*, these equations
instability of stationary branch-2 modes at an asymptoticallycan be applied to the case of uniform upwards or downwards

flow, denoted byWj , through the surface of the disk. The
large Reynolds number.

h : ¢ thi : he eff dimensional velocityWy is the constant value taken by
The main purpose of this paper IS to assess t ‘? € e(?t. at the surface, and the boundary conditions to the equa-
mass transfer through the disk on the absolute instabilityios for the mean flow are

mechanism that exists in the zero-suction case. However, the W
effects on the two convectively unstable branches of the dis- _ _ _ 0 _
persion relation are also discussed; emphasis is given to new U(0)=V(0)=0. W(0)= ronm= &
results concerning travellinfrather than stationayymodes.
As discussed by Huerre and Monkewifzthe response of
the flow to impulsive forcing shows whether it is convec- U(z—»)=0, V(z—xo)=-1,
tively or %psomel_y unstable. FOHOW'r_]g the work Of Bné@_s_ wherea is a positive constant for suction through the disk
and Beré? in the field of plasma physics, absolute instability and is a negative constant for injection.
can be identified by singularities in the dispersion relation- A double precision fourth-order Runge—Kutta integrator
ship that occur when modes associated with waves propagaind a Newton—Raphson searching method were used to
ing in opposite directions coalesce. Such points have becomslve for U, V, W and P. Figure 1 shows these quantities
known as pinch points. Although it is usual in linear stability plotted against for a range of the parametar (Figure 1 is
analysis to choose either temporal or spatial theories, wheressentially the same as Fig. 1 of Dharlkut here the pro-
absolute instability is suspected, it is necessary to perform files are given for a larger range afand the mean pressure
spatio-temporal analysis. profile is given as well as the velocity profilesn the radial

The structure of the paper is as follows. A brief State_(jirection., and Qirections closg to the radial, the velocity pro-
ment of the problem is given in Sec. Il, which includes dis-f'lfes are mflectlonal.'TabIe | gives some vglu'esudf(.O) and
cussion of the mean floSec. Il A) and the linear stability V'(0) (where the primes denote differentiation with respect

lysis(Sec. Il B. Results of th Vsi ted i to z) required to calculate the mean profiles. Values of
analysisisec. - nesulls 0T the analysis are presente InW(ZHoc) andP(z— ) are also tabulated. When suction is

Sec. lll, which includes a subsection on the effects of masgjieq the magnitude of the radial velocity is decreased and
transfer on the convective instability of branches 1 and Zperefore the three-dimensionality of the boundary layer is
(both stationary and travellingand a subsection on the reduced, while the magnitude of the axial flow at infinity is
mass-transfer effects on the radial absolute instability involvincreased. Conversely, injection increases the magnitude of
ing branches 1 and 3. These results are followed by a discughe radial flow and decreases the axial flow at infinity. The
sion in Sec. IV and concluding remarks in Sec. V. decrease and increase in the maximum radial velocity with

P*
W)= ranm PO~ wage

P(0)=const&0,
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) ) ) ) FIG. 2. Variation in the displacement and momentum thicknesses, the shape
FIG. 1. Mean profiles for the rotating-disk flow for particular degrees of factor, U, andzy,,/ S with a.

suction and injection(a) radial velocity profiles(b) circumferential velocity
profiles, (c) axial velocity profiles(d) pressure profiles.

) o ) the boundary layer. Studrtshowed that when the mean ra-
sgctlon and injection, respectively, are of_ almost equal Madgial and azimuthal velocity profiles are plotted againss
nitude (about 54% fora= =1 compared witla=0). Figure  fq, varying degrees of suction, the maximalr= U 5, 0C-

1(c) indicates that the change iW betweenz=0 and  cyr at almost constars/5 and that for bothU andV the
z—c, which is quantified by¥V(z— =) +a, tends to zero as yariation with a is predominantly one of scale rather than
a—co. Further,|W(z—¢) +a] tends to infinity ass— —.  ghape. In fact, Stuart notes that for the asymptotic suction
The \{ariation in the mean pressure through the bounda%of”e (a=) H=2, therefore the divergence of the plot of
layer increases as decreases. _ _ ~ the shape factofin Fig. 2) from 2 is a measure of the dif-

Figure 2 shows the variation in the non-dimensional distgrence in shape of the profile from the asymptotic one. In
placement thicknes8= 5*/L*, which is defined in terms of Fig. 2,2/ 8 at U ., (denoted byz./3) is plotted against

the azimuthal mean flow, a for both suction and injection. The constant trend shown
o V* % by Stuart for the suction profiles is continued into negative
S5 = Jl) 1+ qepv dz*=L* fo (1+V)dz a. As suggested by Fig. 1, the variation lih, , is almost
linear ina.

The non-dimensional momentum thickn%(snot to be con-
fused with the polar angl®) and the shape factdd = 6/6

are also given in Fig. 2, where B. The linear stability analysis
9= me(l-i‘V)dZ. . The stgb_ili?y analysis, applieq at a radiu$, involves
0 imposing infinitesimally small disturbances on the mean

flow. The local Reynolds number iR=r;Q*L*/v*
=rx/L*=r,, and the non-dimensionalizing velocity, pres-
sure and time-scales arer:Q*, p*r*20*2 and
L*/(Q*r%), respectively. The instantaneous non-
dimensional velocities and pressure are given by

The variation ind with a is shown to be linearly decreasing.
The values of andH also decrease with increasiagThus,

as suggested by Figs(dl and(b), the effect of suction is to
thin the boundary layer; the effect of injection is to thicken

_ r
TABLE I. Boundary conditions for the mean flow. u(r,6,t,z)= ﬁU(Z) +u(r,6,t,2),
a u’(0) V' (0) W(z— ) P(z—) ;
-1.0 0.48948 —-0.30217 —0.76071 0.21066 v(r,0,t,2)= §V(z) +o(r,6,t,2),
-05 0.51457 —0.43643 —0.80721 —0.20079
0.0 0.51023 —0.61592 —0.88447 -0.39115 o 1
0.5 0.46688 —0.85519 —1.0213 —0.39652 w(r,60,t,2)= =W(z)+w(r,6,t,z),
1.0 0.38957 —~1.1752 —1.2606 —0.29450 R
2.0 0.24242 —2.0385 —2.0577 -0.11711 1
3.0 0.16558 -3.0121 —-3.0182 —0.054791 — _+
4.0 0.12474 —4.0051 —4.0078 —0.031111 p(r,0,t,2)= R? P(2)+p(r,6,t,2),
5.0 0.099914 —5.0027 —5.0040 —0.019963

whereu, v, w andp are small perturbation quantities.
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The dimensionless Navier—Stokes equations are lineaby a predeterminedo-distribution (a-distribution), which
ized with respect to the perturbation quantities. To make theould be complex, will be referred to as spatigmpora)
linearized perturbation equations separableg, il andt, it is branches of the dispersion relation.
necessary to ignore variations in the Reynolds number with  Briggs?® method is used to calculate the time-
radius. This involves replacing the variablewhich appears asymptotic discrete solution, due to the discrete pole@)of
in coefficients of the linearized equations, By Despite the (i.e., zeros of the dispersion relatjoDetails of this method
fact that 6 is constant(in r*) for constanta, this sort of  are given in Lingwood? where it is shown that the discrete
approximation is called the parallel-flow approximation. Theresponse is sufficient to determine the nature of the instabil-
terminology comes from analyses of growing boundary lay-ty. The discrete response (8) neglects the continuous con-
ers, such as the Blasius boundary layer, where variations ifributions from branch cuts in the-plane, which give the
Reynolds number in the streamwise direction, due to growtlz-structure of the response close to the source of the initial
of the boundary layer, are often ignored. Ter®R ?) are  perturbation and are caused by the complex square-roots
neglected and the perturbation quantities are assumed taken to satisfy the boundary conditionszas .

have normal-mode form, for example For fixed B, the Briggs’ criterion for absolute instability
. ar + 80— ot requires a branch-point singularity between two, or more,
u=u(z;a,B,w;R)e!(* A7, (1) spatial branches of the dispersion relation, of which at least

whereu is the spectral representation of the radial erturbatWO must lie in distinct halves of the-planes wherw; is
) ) P €p . .p sufficiently large and positive. Such singularities have be-
tion velocity, @« and 8=BR are the radial and azimuthal

) , come known as pinch points because inherent in Briggs’
wavenumbers, respectively, and is the frequency of the | ihod is the use of analytic continuation to deflect the in-

disturbance in the rotating frame. Because of the circumferyg qion contours, and at these singularitiesAheontour be-
ential periodicity of this problemg takes integer values.

DA ~ comes pinched between the coalescing spatial branches. The
Similar equations td1) definev, w and p. Using certain  pinching frequencyw® is a branch point of the function
transformations of the fundamental perturbation quantitiesa(w;lg,R) or, equivalently,a at the pinch pointa®, is a
the perturbation equations may be written as a set of Sixaddle point of the functiom®(a;B,R) and at this point
first-order Ordinary differential equations that include vis- (90)/(3)0[:0, a|th0ugh this condition is not sufficient for such
cous, streamline-curvature and Coriolis effects; see Malikpoints. If w;>0 at the pinch point the flow is absolutely
Wilkinson and Orszag or Lingwood! unstable, otherwise the flow is only convectively unstable or

To distinguish between a convectively and an absolutelgigple. A branch-point singularity between two spatial
unstable response, the governing equations are solved sUranches that originate in the same half of thglane for
ject to an impulsive azimuthal line forcing, with prescribed large positivew; does not constitute a pinch poiféven
integer3, such that the vertical velocity a=0 is given by  though dw/da=0 at such a pointand does not cause an

) — s i86 absolute instability. This sort of branch point results in a

w(0ir,0,t)=(r —ra) a(t)e ™, second-order pole, which leads to transient algebraic growth
where 8(r —r,) and &(t) are the Dirac delta functions af  that can be important if the second-order pole is near neutral
andt=0, respectively. The response to point forcing can bebut ultimately behaves exponentially as dictated by the sign
obtained by summing over all integer values@fThe ad- of «;. This case will not be pursued here, but further details
ditional boundary conditions a=0, given by the no-slip can be found in Koc# and Henningson and Schnifl.
condition, are

u(0:r,0,t)=v(0:r,6,t)=0, Ill. RESULTS OF THE LINEAR STABILITY ANALYSIS

and asz— it is required that all perturbations decay. A. Convective instability of branches 1 and 2

The solution of an inhomogeneous system such as thisis  Neutral-stability curves for stationarys=0) waves are
described by Lingwood The problem reduces to solving a presented in Fig. 3 for a range af For the purposes of

Green’s function of the form plotting Fig. 3a), B is treated as being continuous rather
i than taking only integer values. Essentially this figure is the
iB0 . .
w(z;r,0,t)= © ZJ' j Pz a,0BR) same as Fig. 2 presented by Dhan%élthough Dhanak con-
(2m)°JrJa Ao, @; B,R) siders just one case of mass injecti@=—0.1), preferring

to concentrate on the effects of suction on stationary modes.
A comparison between Fig. 3 and Dhanak’s results shows
where® is a function ofz formed from a combination of the that the two analyses give qualitatively similar variations in
independent solution vectors of the governing ordinary dif-the convective instability of stationary branch-1 and
ferential equationsd =0 is the dispersion relation, which is branch-2 modes with mass transfer. Suction increases the
satisfied by the discrete eigenvalues of the homogeneousitical Reynolds numbers for convective instability of both
problem(the unforced cageandA andF are inversion con- branch 1(i.e., the upper lobe in a—c and the lower lobe jn d
tours in thea- and w-planes, respectively. The discrete ei- and branch Zi.e., the lower lobe in a—c and the upper lobe
genvalues provide a mapping between theand w-planes; in d); injection decreases the critical Reynolds numbers.
the eigenvalues trace out paths in thelane (-pland as Both here and in Dhanak, the wave angle,

o () is varied. Trajectories in the-plane (-plang given  e=tan 1(B/«,), at the critical Reynolds numbers decreases

x g« T~V adw, )
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200

is based on the vorticity equation and the parallel-flow ap-
proximation is made at a different stage of the formulation.
The formulation adopted in this paper is similar to Malik's,
therefore it is unsurprising that, where comparisons can be
made, the eigenvalues calculated here agree with those of
Malik and not Dhanak. Foa=0.5, the differences between
the critical Reynolds numbers calculated here and by Dhanak
are about 2% for branch 1 and about 8% for branch 2.
Convective instability otravelling waves is also impor-
tant in the rotating-disk boundary layer. Travelling waves are
excited by freestream turbulence and have been observed
experimentally, e.g. by Fedordwand Lingwood In very
close agreement with Balakumar and Mafkit has been
calculated here that the lowest critical Reynolds number for
convective instability fora=0 occurs for a travelling
branch-2 mode atv,R~7.8883128. Disturbances have di-
mensional frequencw* =wROQ*, so the non-dimensional
FIG. 3. Neutral-stability curves for stationary 0) waves and particular  quantity w,R remains constant as disturbances propagate. In
d?%reei of suction and injection. The convectively unstable regions ”EFig. 4, neutral-stability —curves are given for
within the curves. »,R=7.8883128 andi= — 0.5, 0, 0.5. As for the stationary
waves, suction significantly increases the critical Reynolds
with increasinga. However, the solution method used by number for convective instability of these travelling branch-1
Dhanak is different to that used here and, as mentioned bjnodes; injection decreases it. However, the critical Reynolds
Dhanak, in comparison with Malfkhis method introduces number for branch 2 is far less sensitiveatdhan branch 1,
some differences in the stability characteristics in the vicinityalthough suction is still slightly stabilizing and injection is
of the critical Reynolds numbers. Dhanak’s stability analysisslightly destabilizing. Table Il gives the critical parameters

150

3 100

50

200

150

100

50

500 1000 ) 500 1000

FIG. 4. Neutral-stability curves for travelling waves withyR=7.8883128, i.e. with the frequency that gives the lowest critical Reynolds number for
a=0: —- — - denotesa=—0.5, —— denotesa=0 and — — — denotea=0.5. The convectively unstable regions lie within the curves @ds an
expanded view ofd).
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TABLE II. Critical values for convective instability of branch 2 and compares marginal curves for absolute instabili&){’(: 0)
©R=7.8883128. for a=+1 with a=0. For suction witha=1 the critical
a R, 5, o e Reynolds number for the onset of absolute instability is in-
2 2 2 .
creased by a factor of nearly 3.7 compared with the zero-
—05 62.9 -0.102 0.264 —2L19° suction case. Thus, suction has a significant stabilizing effect
0.0 64.4 -0.106 0.276 -21.07° ) . . 2
05 87.9 _0.0775 0.265 _16.29° on the absolute instability mechanism. Conversely, injection
with a= —1 reduces the critical Reynolds number to about
40% of its value fora=0. The criteria for the marginal
curves for absolute instability are thab/da=0, i.e. there is
for branch 2 andv,R=7.8883128denoted by the subscript a branch poinw® of a(w®;8,R)=a°, that the branch point
2). is of the pinch-type and thas?=0 (w>0 implies absolute
Eigenfunctions of the radial, circumferential and axial instability). In Fig. 6 fora=0 anda=—1, two trajectories
velocity perturbations are given in Fig. 5. The parameters fopf branch points withw?=0 are given:A and B. All the
Figs. Ha)—(c) were chosen to characterize travelling pranch points on theA-trajectories, for botha=0 and
branch-1 modes. That is, for each valueagthe eigenfunc- 3= —1 are of the pinch type. However, the branch points on
t?on; are giyen at the critical Reynolds number for convecthe B-trajectories change from being non-pinching to pinch-
tive instability of branch 1 at,,R=7.8883128. The eigen- ing with increasing Reynolds number. TBetrajectories end
functions fora=—0.5 are given aR=223, fora=0 they 4t |ow Reynolds numbers where it was no longer possible to

are given atR=317, and fora=0.5 they are given at finq marginal °=0) branch points. Figure 7 show in
R=569. The parameters for Figs(d—(f) were chosen 10 he complexa-plane at the critical Reynolds number for the

charg_ctgrlze travelling branch-2 modes._ Because_ of the Mnset of absolute instability for a range af The solid lines
sensitivity of branch 2 taa, all the§e elgenf_unctllons.are in this figure indicate the separation of the two spatial
given for R=100 ar_1dB= —5. The glgenfugcthns |r? Figs. branches involved in each branch pointgs—o~ away from
5(@)—(c) are normalized by the maximum of (given in b ?. Since in each case the two spatial branches separate into
for a=0; similarly the eigenfunctions in Figs(®—(f) are  he gistinct half planes, all these branch points are of the
normalized by the maximum of (given in @ for a=0. First  pinch type and qualify as defining points on the marginal
considering the branch-1 eigenfunctions, far=0 the  curves of absolute instability. Figure 8 shows a similar type
maxima inu andw are about 16% and 8%, respectively, of of graph but for a selection of branch points on both trajec-
the maximum ino. With injection of a=—0.5, the maxi- toriesA andB from Fig. 6 fora= — 1. The separation of the
mum magnitudes ofi andw relative too are increased to two spatial branches into the distinct halves of the complex
about 21% and 10%, respectively. Whereas with suction ofr-plane asw;—c defines the trajectong branch points as
a=0.5, the maximum magnitudes afandw relative top ~ Pinch points. FoR=1000 andR=3000 on trajector, the

are decreased to about 10% and 4%, respectively. For tHéfanch points are also pinching but for lower Reynolds num-
branch-1 eigenfunctions, is almost constant foe>6, al- ~ °€rs both spatial branches separate into the upper-half
though suction seems to decrease the vertical extent of tH&Plane, which means that these branch points are non-
variation in this eigenfunction slightly. The extent of both pmch|.ng qnd cannot con_stltute an absolute instability. These
0 andw is significantly greater. For branch[B Figs. 5d)— non-pinching branch points are a coalescence of the two

(), whereR=100], the relative extents df, o andw are (outwardly convectively unstable modes: branches 1 and 2.
’ = ’ , U

D ) ) . The ch in character of the branch point traject
similar to those of the branch-1 eigenfunctions. The hlgherB iz guzn%et;]ne iaitré}c(r:laetr boetweeéh;a;go ;):(;I’I;S: ggocr)ajoenc ory

maxima ofu are perhaps more pronounced. Suction Sh'ftﬁrajectoryB, branches 1, 2 and @ranch 3 is the spatially-
bOth maXima ofu to |0V\1€I‘Z, V\{\h”e injeCtionAhaS the reverse damped inward|y propagating mode that exists in the lower-
effect. The maxima oti andw relative tov for a=0 are  half a-plane for w;— o) all coalesce and at that point the
about 37% and 11%, respectively. For —0.5 these values marginal branch point switches from involving only
are increased to about 45% and 12%, respectively, and déranches 1 and 2 to involving branch 3. So, returning to Fig.
creased to about 29% and 9%, respectively, d¥0.5. 6, there are marginal pinch points on tAetrajectories and
However, mass transfer does not have a marked effect on t%ove certain Reyno|ds numbers there are also margina|
general form of the branch-1 and branch-2 eigenfunctionspinch points on thé-trajectories. In general, when there are
Note that it is only meaningful to compare the relative mag-several pinch points for a particular Reynolds number and
nitudes of the eigenfunctionsi(v or w) for a given eigen- g, the discrete time-asymptotic response is dominated by the
value; the magnitude of, sayu(a=0) relative to pinch point that lies highest in the complexplane. This
u(a=0.5) is arbitrary. implies that for fixedB with marginal pinch points on both
trajectoriesA andB, the most critical pinch point is the one
lying on the trajectory at the lower Reynolds number; the
other pinch point then hasP<0 for that particulalR and

It has been established by Lingwdothat a linear sta- 8 and is subcritical. To define limiting curves of absolute
bility analysis predicts that the zem<case is radially abso- instability in this way fora=—1, it is necessary to jump
lutely unstable beyond a critical Reynolds number. Figure §rom marginal pinch points on trajecto to those on tra-

B. Absolute instability involving branches 1 and 3
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FIG. 5. Magnitude and phasg of the eigenfunctions, normalized by the maximunydbr a=0: (a)—(c) at the critical parameters for the onset of convective
instability for o, R=7.8883128 on branch 1¢)—(f) at R=100, 8= -5 andw,R=7.8883128, i.e. for branch 2a) and(d) radial perturbation velocity(h)
and (e) circumferential perturbation velocity(c) and (f) axial perturbation velocity. The phase is given frorl80° to 180° and — — - denotes
a=—0.5, — denotes=0 and — — — denotes=0.5.

jectory B, which introduces discontinuities in certain planescurves for absolute instability at high Reynolds numbers, the

in Fig. 6. BelowR=2500, it is not necessary to jump trajec- critical Reynolds numbers for the onset are defined unam-

tories fora=0. biguously. Note also that as decreases stationary waves
Despite the complications of defining the marginalbecome absolutely unstable at Reynolds numbers increas-
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FIG. 6. Marginal curves for absolute instability: — - denotesa=—1, —— denotesa=0 and — — — denotea=1. A second trajectory of neutral

(wj=0) branch points is given foa=0 anda= —1, which includes both non-pinching and pinching branch points. The marginal curves switch from
trajectoryA to trajectoryB (marked by a zig—zag linef the trajectoryB branch points are of the pinch type and are more critical than those of trajectory
A. Non-limiting trajectories are denoted by - .

ingly close to the critical Reynolds number for the onset ofdifferences are that the higher maxima tnare less pro-

absolute instability. Figure 9 and Table Ill summarize thenqunced here and the eigenfunctionsydfiave a small sec-

effect of mass transfer on the onset of absolute instability,h4 maximum. As for the branch-1 and branch-2 eigenfunc-
(denoted by the subscrig). These critical values were cal- .. L : . ~
) . tions, injection increases the relative magnitudesu aind
culated at intervals of 0.1 ia, over the range-l<a<1, ~ A i
w compared withv; suction decreases them.

but Table Ill gives just a small selection of these values.
The eigenfunctions at the critical parameters for the on-
set of absolute instability foa=—0.5, 0, 0.5 are given in
- . . ] IV. DISCUSSION
Fig. 10. Compared with typicaltravelling branch-1 and
branch-2 eigenfunctions, which are shown in Fig. 5, these Comparison between the absolute instability predicted
eigenfunctions are not strikingly different. The noticeableby linear stability analysis and experimental observations for

1324 Phys. Fluids, Vol. 9, No. 5, May 1997 R. J. Lingwood



—0.25F Wi — X

0.2

L L L L L
0 0.05 0.1 0.15 0.25 0.3 0.35 04 0.45 0.5

Oy

2000

1800,

1600

1400
1200,

R 1000
800
600,
400

2007

«—— injection

absalutely.’
unstable

suction ——

o L P
-1 -0.5 0

0.5 1

200

1501

1001

50F

— injection

=50

B

fw wee R

~
suction — >
. N

-1 -0.5

0 0.5 1

a

FIG. 7. Separation of the two spatial branches that coalesce at each branE#G. 9. () Variation in the critical Reynolds number for the onset of abso-

point asw;— away from the values at the branch points)( For each

lute instability with a, where the shaded region indicates the absolutely

value ofa, the critical pinch point for the onset of absolute instability is unstable region(b) Variation in the critical azimuthal wavenumber—),

shown.

instability with a.

the zero-suction case are given by Lingwdddrhe onset of
absolute instability was found to occurR#=510 (corrected
in Lingwood® to about 507 and the onset of transition is
consistently found by various experimentalistéssee
Lingwood’ for a summary at an average value of 513 with

that the onset of absolute instability promotes the onset g
non-linearity and laminar—turbulent transition.

The effect of suction on the stability of the branch-1
crossflow vortices and transition of the rotating-disk bound-
ary layer was studied experimentally by Gregory and

. fqr
only a 3% scatter around this value. It has been suggest%a‘

wave angle(— — - and frequency(— - — -) for the onset of absolute

Walker!® They found, using a microphone probe and a hot-
film anemometer, that suction through both distributed suc-
tion holes and through slots increased the Reynolds number
instability and for transition above the values for zero
ction. The distributed suction was achieved through a wo-
ven wire-cloth surface, but the critical Reynolds numbers of
observed effects were dependent on the rotational speed of
the disk because of the significant roughness of the disk. For
the flow with suction slots they found that effects were less
dependent on rotational speed and that the Reynolds number

for the onset of transition increased from about 524 for no
suction to about 632 wita=0.4. For the slotted disk, it was

0.15

0.1

0.05

@

-0.05

L
0.35 0.4

found that about 75% more suction was required to achieve a
given level of stabilization than was predicted by stability
; theory, i.e., predicted by the increase in the critical Reynolds
number for convective instability of branch-1 crossflow vor-
tices with suction. This discrepancy was attributed to limita-
tions in the experimental apparatus, such as significant non-
uniformity in suction(both radially and circumferentially
roughness of the disk surface and surface waviness. Here, it
| has been found that the onset of absolute instability occurs at
R~803 for a truly uniform suction cd=0.4. The Reynolds
number for the onset of transition observed by Gregory and
. Walker'® for this suction rate is about 79% of this Reynolds
number, but the absolute instability mechanism could still be

TABLE Ill. Critical values for the onset of absolute instability.

. . a Re Be ¢ ac
FIG. 8. Separation of the two spatial branches that coalesce at each branch
point, asw;— away from the values at the branch points, evaluated at a —1.0 201.54 0.1424 —0.03622 0.1735i0.1166
selection of points on the branch-point trajectories shown in Fig. 6. Pinch —0.5 309.71 0.1398 —0.03550 0.1903i0.1197
points are indicated by —— and — — -, and — - indicates non- 0.0 507.30 0.1348 —0.03485 0.217310.1216
pinching branch points, Trajecto#-branch points ©) are denoted by 0.5 911.54 0.1235 —0.03261 0.263%10.1228
1.0 1860.82 0.1044 —0.02796 0.3426i0.1300

——, while trajectoryB branch points X) are denoted by — - — and
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FIG. 10. Magnitude and phasg of the eigenfunctions, normalized by the maximumgpofor a=0, at the critical parameters for the onset of absolute
instability: (a) radial perturbation velocity(b) circumferential perturbation velocity¢) axial perturbation velocity. The phase is given freri80° to 180°
and —- — - denotesa=—0.5, —— denotes.=0 and — — — denotes=0.5.

responsible for the onset of transition if the limitations of theof absolute instability, but this again may be attributable to
apparatus also reduced the effectiveness of suction to stabieduced effectiveness of the experimentally-achieved suction
lize the absolute instability. compared with that of uniform suction.

Gregory and Walkéf found that the maximum stabiliz- It is worth noting that the methods used by Gregory and
ing effect(with the slotted surfadewas produced for a rela- Walker'® to induce suction seemed to introduce significant
tively low suction rate, beyond which the onset of transitionroughness to the surface of the disk. Three-dimensional
dropped back to a minimugstill at higher Reynolds number boundary layers, such as the rotating-disk boundary layer,
than the zero-suction cgsand then increased again with are particularly sensitive to surface roughness. Furthermore,
increasing suction. With higher rates of suction it was sugthe non-linear study by Bassom and Seddotfgsiiggests
gested that the reduction in the mean radial velocity compothat the rotating-disk boundary layer with suction is even
nent allowed turbulent contamination to spread inwards frommore sensitive than the zero-suction case, because suction
the rim. That is, the radial propagation somewhere within theeduces the threshold amplitude for subcritical growth of sta-
wedge of disturbances excited by fixed roughnesses withitionary disturbances. To properly assess the importance of
the turbulent regime was zero, allowing the spread of disturthe absolute instability as a transition mechanism in the
bances both inwards and outwards of the roughness as thetating-disk boundary layer with mass transfer, it would be
disturbances convected predominantly in the azimuthal dinecessary to perform specific experiments with this in mind.
rection. Gregory and Walk¥t called this effect “self- For example, to make comparisons between the results from
contamination,” but is equally well described as radial abso-+the linear stability analysis, which uses mean profiles calcu-
lute instability. This self-contamination was observed atlated on the assumption of uniform mass transfer, it would be
Reynolds numbers below those predicted here for the onseecessary to limit the surface roughness introduced by the
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suction holes, to achieve mass transfer as uniformly as pod&ranch point to be of the pinch type the two spatial branches
sible and to consider both travelling and stationary disturthat coalesce must originate in separate halves of the com-
bances within the boundary layer. It is, however, quite posplex wavenumber plane for large positive imaginary fre-
sible, particularly if the disk is rough, that the convective quency. To pinch, one of these branches must cross the real
instability of stationary crossflow vorticeperhaps causing wavenumber axis, becoming convectivelgpatially) un-
secondary instabilityis the dominant transition mechanism. stable before pinching. So, the absolute instability always
involves a branch of the dispersion relation that from a con-
V. CONCLUSIONS vective viewpoint is damped, and which is generally ignored

The theoretical behaviour of the laminar rotating—diskfor this reason.

boundary-layer flow with mass transfer at the wall has been In the convectively unstable regime, suction is strongly

investigated using linear stability theory. The effects of massStabIIIZIngl to hoth stat|.o_nqry _and_ travellmg_ |_nV|SC|dIy_ un-
transfer on the convective instability aftationary modes stable branch-1 modes; injection is destabilizing. Stationary

have been studied previousiyee, for example, DhanHi. viscously unstable branch-2 modes are strongly stabilized

This investigation has been focused on the mass-transfer e?—nd dgstabilized by suction and injection, respec tively, but
fects on the radial absolute instability, which has been showH avelfllngihbrancr:]ht—ﬁ ngjqdkes are much less sensitive to mass
to exist above a critical Reynolds number for the flow with- ' ans'ef through the disk.
out mass transfeisee Lingwood), and also on the effects of
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