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a b s t r a c t

We study point separation for the logistic regression model for Hilbert space-valued
variables. We prove that the separating hyperplane can be found from a finite set of
candidates and give an upper bound for the probability of point separation.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The problem of point separation in logistic regression has been studied since as early as in Albert and Anderson (1984),
and more than 700 papers have appeared in this research area since then. In Albert and Anderson (1984), the authors
established the conditions on the maximum-likelihood estimate of the parameter vector in logistic regression model
to exist in the case, where data come from the Rk space. Three scenarios of the arrangement of the data points were
introduced: complete separation, quasi-complete separation and overlap. The authors proved that in the first two scenarios,
the maximum-likelihood estimate of parameter vector does not exist or exists but is not unique, while in the third (overlap)
scenario the maximum-likelihood estimate exists and is unique. The authors also suggested an iterative algorithm to be
used when checking, whether or not the data points are in quasi-complete separation. Other methods on detecting overlap
have been established as well (see, e.g. Christmann and Rousseeuw, 2001).

The majority of papers in this research area are devoted to proposing new parameter estimates that would exist and
would have good theoretical properties in the case, where the data is already known to be in complete or quasi-complete
separation. For example, the penalized maximum-likelihood estimator was introduced by Firth (1993) and asymptotically
investigated by Gao and Shen (2007), while (Rousseeuw and Christmann, 2001) proposed a hidden logistic regressionmodel
to overcome the problem of point separation. Based on the recent activity in the field (see, e.g. Fu et al., 2015 or Sauter
and Held, 2016, where they investigated which methods work well in quasi-complete separation, or Held and Sauter, 2016,
where they proposed adaptive priorweighting to avoid complete separation), we believe that various results on the problem
of point separation in logistic regression in the Rk setting are still of a great interest.

Moreover, with the recent expansion of Functional Data Analysis (FDA) (see Ramsay and Silverman, 2002, 2005 for
an overview of the topic), the functional logistic regression models have been widely studied. The logistic estimate in
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abstract Hilbert spaces can be called a Naïve approach because the dimensionality reduction is achieved by simply ‘cutting’
the infinite-dimensional observation after some kn < n time point, where n is the number of sample points. In such
a way, the first kn parameter values are estimated via maximum-likelihood and the rest are set to zero. This approach
is avoided in the literature for various reasons. For example, Escabias et al. (2007) argued that the Naïve approach in
the context of functional data introduces multicollinearity (strong dependence among predictors) which in turn causes
inaccurate parameter estimates and increases their variance. Therefore, the standard approaches include dimensionality
reduction based on Principal Component Analysis (PCA) or Partial Least Squares (PLS) (see, e.g. Escabias et al., 2004; Aguilera
et al., 2008; Denhere and Billor, 2016; James, 2002) or by basis expansion with some added penalty (see e.g. Aguilera-
Morillo et al., 2013 or Müller, 2005). In none of these cases, consistency of functional logistic regression model parameter
was established, mainly because the optimal rule for selecting the number of principal components or basis functions
has not been established. The closest attempt to provide the theoretical justification of such a rule was done in Müller
and Stadtmüller (2005). However, in the latter work, the authors approximated infinite-dimensional model by a finite-
dimensional one without proving that the error of such an approximation tends to 0.

There are two theoretical contributions of this work. First is that we provide a theorem which transforms the problem
of finding the separating hyperplane from the set of infinitely many elements into the feasible problem of finding it from
the finite set of candidate hyperplanes and we describe how to construct such a set. We believe this theorem could speed
up various established algorithms used by practitioners for determining, whether or not a maximum-likelihood estimate
exists for the given datasets. Second contribution is that we provide an upper bound of the probability of the event that a
sample is in quasi-complete separation by giving its upper bound. As a corollary of the latter result, we derive the minimal
requirements on the selection of the dimension kn for projection the data so that the consistency of the resulting functional
logistic estimate could be expected. Such result could advance the study of the consistency of logistic classifier in abstract
Hilbert spaces, for example, where weaker assumptions than those in Müller and Stadtmüller (2005) could be achieved.

2. Logistic estimate in abstract Hilbert spaces

Let E be a separable Hilbert space with the inner product ⟨·, ·⟩. Let X ∈ E be a Hilbert space-valued random variable and
Y a random variable, gaining values −1 and 1, with conditional probabilities (w.r.t. X), 1 − pθ0(X) and pθ0(X), respectively.
Here, θ0 ∈ E is an unknown parameter and

pθ (x) =
1

1 + e−⟨θ,x⟩
, θ, x ∈ E.

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from the distribution of (X, Y ). For θ, x ∈ E and y ∈ {−1, 1} define

mθ (x, y) = log(1 + e−y⟨θ,x⟩)

and denote

Mn(θ) = mθ (X, Y ) =
mθ (X1, Y1) + · · · + mθ (Xn, Yn)

n
, M(θ) = Emθ (X, Y ).

Obviously,

mθ (x, 1) = − log pθ (x), and mθ (x, −1) = − log(1 − pθ (x)).

Therefore, Mn(θ) might be interpreted as the logarithm of the quasi-likelihood function, multiplied by −1/n. Naturally, for
various practical tasks, it is of great interest to provide an estimate of pθ .

Let (Ek) be some fixed sequence of the linear subspaces of the space E such that the following conditions are satisfied:
(1) dim Ek = k for all k, (2) Ek ⊂ Ek+1 for all k, and (3)


k Ek = E. For any k and n define

θ̂kn = argmin
θ∈Ek

Mn(θ). (1)

Then, fix some sequence (kn) and set

θ̂ = θ̂knn and p̂ = pθ̂ . (2)

Wewill call p̂ the logistic estimate of the conditional probability pθ0 . For example, let E = L2(T ) with the usual inner product

⟨θ, x⟩ =


T
θ(t)x(t)dt,

where T ⊂ R is an interval. The standard method for obtaining logistic estimate from a given sample (X1, Y1), . . . , (Xn, Yn)
is expanding X and θ via selected basis functions {ej}

Xi(t) =

∞
j=1

Xijej(t), θ(t) =

∞
j=1

θjej(t),
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choosing k = kn and then using (1), where Ek =

k
j=1 cjej | c1, . . . , ck ∈ R


. The number kn of basis functions to be used

is usually selected less than n so that the parameter vector could be estimable. However, there are two open problems. First
is that (as discussed before) the estimate (1) does not exist, if sample points are separable. This results in convergence to a
false estimate which causes biased results. Second problem is that it is not clear how to select kn with respect to n so that
the resulting estimate would be consistent, for example. In Section 4, we solve the first problem, where we describe how
separation of points can be checked against in practice. In Section 5, we partially solve the second problem, where we give
the minimal requirements for kn so that consistency of the resulting estimate (1) could be expected.

Remark 1. If θ ∈ Ek, then ⟨θ, X⟩ = ⟨θ, X (k)
⟩, where X (k) is the orthogonal projection of X on the space Ek. Therefore, θ̂kn

is obtained only from X (k)
i , i = 1, . . . , n. One could get a wrong idea that then the data are from Rk and we do not need to

consider the general case when calculating the probability of point separation. However, the situation is more difficult than
this. While the conditional probability of Y = 1, w.r.t. X , is denoted by pθ (X) and has a nice expression, the same conditional
probability w.r.t. X (k) is not pθ (X (k)) but EX(k)

pθ (X), where EX(k)
is the conditional expectation w.r.t. X (k).

3. Separability of sample points

Let (x1, y1), . . . , (xn, yn) be n vectors from Ek × {−1, 1}. We will call them sample points. Let a ≠ 0 be another vector
from Ek. We will say that a vector a separates sample points if, for all i,

yi⟨a, xi⟩ ≥ 0.

Wesay that sample points are separable, if there exists some a ≠ 0 that separates them.Note that this definition is equivalent
to the definition of quasi-complete separation in the Rk case, established by Albert and Anderson (1984).

Obviously, if some vector a separates sample points, then vector ca with any c > 0 also separates them. However, −ca
with any c > 0 does not separate them. The separability of sample points has also a geometric interpretation. Any nonzero
vector a corresponds to a hyperplane Ha which is defined by the equation ⟨a, x⟩ = 0 (note that 0 is used in this equation
due to the fact that in this work we consider the logistic model without an intercept term). The vector a is then a normal of
a hyperplane Ha. The subsets of E, defined by inequalities ⟨a, x⟩ ≥ 0 and ⟨a, x⟩ ≤ 0, are then called half-spaces of E. If we
change a to ca with c > 0, the associated hyperplane as well as the associated half-spaces will not change. If we change a
to −ca with c > 0, the associated hyperplane will not change but the associated half-spaces will have the reversed order.
If a′ is not proportional to a, the associated hyperplanes differ. Therefore, a hyperplane defines a normal to a precision up
to a constant c . Moreover, a hyperplane uniquely defines the pair of half-spaces, rather than individual half-spaces. If we
want a hyperplane to define a normal to a precision up to a positive constant c , we have to introduce an oriented hyperplane.
Formally speaking, an oriented hyperplane is a hyperplanewith a fixed unit length normal. An oriented hyperplane uniquely
defines individual half-spaces, and we can call one of the two half-spaces an upper half-space, and another one a lower half-
space. For example, the upper half-space is defined by the equation ⟨a, x⟩ ≥ 0, where a is that fixed normal. If a separates
sample points and H is the corresponding hyperplane, we can say that points from different groups fall into different half-
spaces. Of course, one has to keep in mind that those half-spaces overlap, that is, points on the hyperplane belong to both
half-spaces. If H is an oriented hyperplane and a/∥a∥ is its fixed normal, then points from the group y = 1 belong to the
upper half-space, while the rest belong to the lower half-space.

Denote by X (k)
i the projection of the point Xi on the space Ek. We will say that the sample (X1, Y1), . . . , (Xn, Yn) is

k-separable, if the random sample points (X (k)
1 , Y1), . . . , (X

(k)
n , Yn) are separable. The latter definition defines some subset of

the event space Ω that consists of ω ∈ Ω for which the sample points

(X (k)
1 (ω), Y1(ω)), . . . , (X (k)

n (ω), Yn(ω)) (3)

are separable. It is well-known that if the sample is k-separable, then the maximum quasi-likelihood estimate of θ does not
exist or is not unique (Albert and Anderson, 1984).

When searching for a separating hyperplane, there are infinitelymany candidate hyperplanes to consider. This factmakes
the theoretical investigation of the probability that the sample is separable harder since the sums of infinitelymany possible
separating hyperplanes are involved in the calculations. In practice, the search area of an algorithm for finding the possible
separating hyperplane is restricted to some set of finite number of candidate hyperplanes that is guaranteed to contain the
true separating hyperplane. However, this fact has not been proved yet. In the following section, we give a proof for this.

4. Criteria for separability

Let (e1, . . . , ek) be the orthonormal basis in Ek and let xi denote the coordinates of a vector x ∈ Ek in that basis system,
that is,

x = x1e1 + · · · + xkek.
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For any x1, . . . , xk ∈ Ek, we will denote

det[x1, . . . , xk] =


x11 · · · x1k
...

. . .
...

xk1 · · · xkk

 .
Obviously, det is a k-linear antisymmetric form.

Since det[x1, . . . , xk−1, x] is a linear function w.r.t. x, it is of the form ⟨a, x⟩ with some a. In other words, there exists a
unique a such that, for all x, det[x1, . . . , xk−1, x] = ⟨a, x⟩. Obviously, a is a function of x1, . . . , xk−1.

If x1, . . . , xk−1 are linearly dependent, the determinant is equal to 0 for all x, that is, a = 0. Conversely, if a = 0, then
x1, . . . , xk−1 are linearly dependent (otherwise we could find xk for which x1, . . . , xk are linearly independent which would
imply that the determinant is nonzero, that is, a ≠ 0).

There is an intrinsic relationship between a determinant and a hyperplane. If x1, . . . , xk−1 are linearly independent, then
a ≠ 0 defines some hyperplane Ha. This hyperplane has the special property that points x1, . . . , xk−1 belong to it (because
determinant is equal to 0 when any two columns in it are equal). In fact, it is the unique hyperplane that contains these
points because all a that are perpendicular to all x1, . . . , xk−1 are proportional.

Suppose n ≥ k. We will prove that when checking the separability of sample points it is enough to sort out the finite
number of potential vectors a that possibly separate the sample. Note that the set of such possible vectors is random. For
any family of distinct indices (i1, . . . , ik−1) ⊂ {1, . . . , n} denote by Zi1...ik−1 a random vector from Ek such that, for all x ∈ Ek,

det[X (k)
i1

, . . . , X (k)
ik−1

, x] = ⟨Zi1...ik−1 , x⟩.

Let

S = {±Zi1...ik−1 | (i1, . . . , ik−1) ⊂ {1, . . . , n}}.

Note that the set S is finite and the number of elements in it is

|S| = 2


n
k − 1


.

Theorem 1. If n ≥ k, then the sample is k-separable if and only if the points X (k)
1 , . . . , X (k)

n can be separated by some vector
from the set S.

Remark 2. If n ≤ k, the points are always k-separable. If n = k, any properly oriented hyperplane passing through k − 1
point separates the sample points. If n = k − 1, there is only one hyperplane passing through all the sample points, and it
separates the sample points, regardless of its orientation. If n < k − 1, then there are infinitely many hyperplanes passing
through the sample points, and all of them separates the sample points, regardless of their orientation.

5. Probability that sample is separable

Theorem 1 implies that the sample is k-separable if and only if, for some distinct i1, . . . , ik−1,

∀i Yi det[X
(k)
i1

, . . . , X (k)
ik−1

, X (k)
i ] ≥ 0 (4)

or

∀i Yi det[X
(k)
i1

, . . . , X (k)
ik−1

, X (k)
i ] ≤ 0. (5)

Let qkn be the probability of such event. We will need the following assumption on the distribution of X:
(FR) We will say that the distribution of X is of full rank, if P(⟨θ, X⟩ = 0) = 0, for all θ ≠ 0.

Theorem 2. If (FR) holds and n ≥ k, then with some q < 1 that does not depend neither on n nor on k,

qkn ≤ 2


n
k − 1


qn−k+1.

Theorem 2 gives an upper bound of the probability that sample points are k-separable. It may not be the lowest upper
bound but it gives a good understanding aboutwhat sequence (kn) should be chosen for projecting X so thatwe could expect
estimate (1) to be consistent. The following Corollary summarizes this.

Corollary 2.1. If kn/n → 0, then qknn → 0.

For example, if we take kn = ⌊
√
n⌋, the probability that the logistic estimate exists is close to 1, for n large enough.
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6. Discussion

The results presented in this work can be directly used for the theoretical investigations of the properties of logistic
classifier in abstract Hilbert spaces, such as consistency, for example. When working with functional data, an infinitely-
dimensional parameter vector cannot be uniquely estimated only from the finite number of observations. Therefore, a
common practice is to ‘cut’ the parameter vector θ after, say, the kth coordinate, and set the remaining coordinates to zero.
However, this approach is avoided in literature, mainly due to the fact that the quantitative rule of selecting such k in a way
that the resulting estimate would have desirable theoretical properties has not been established yet. Theorem 2 contributes
to the understanding of what a good rule for selecting k could possibly be. Corollary 2.1 tells us that at least kn/n → 0 should
be required so that we could expect a maximum quasi-likelihood estimate in logistic regression models in abstract Hilbert
spaces to have desirable theoretical properties.
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