

Experimentation on Dynamic Congestion

Control in Software Defined Networking (SDN) and

Network Function Virtualisation (NFV)

A thesis submitted in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy (PhD)

by

AMALINA FARHAN KAMARUDDIN

Department of Electronic and Computer Engineering

College of Engineering, Design and Physical Sciences

Brunel University London

December 2017

 ii

Abstract

In this thesis, a novel framework for dynamic congestion control has been

proposed. The study is about the congestion control in broadband communication

networks. Congestion results when demand temporarily exceeds capacity and leads to

severe degradation of Quality of Service (QoS) and possibly loss of traffic. Since traffic

is stochastic in nature, high demand may arise anywhere in a network and possibly

causing congestion. There are different ways to mitigate the effects of congestion, by

rerouting, by aggregation to take advantage of statistical multiplexing, and by discarding

too demanding traffic, which is known as admission control. This thesis will try to

accommodate as much traffic as possible, and study the effect of routing and aggregation

on a rather general mix of traffic types.

Software Defined Networking (SDN) and Network Function Virtualization

(NFV) are concepts that allow for dynamic configuration of network resources by

decoupling control from payload data and allocation of network functions to the most

suitable physical node. This allows implementation of a centralised control that takes the

state of the entire network into account and configures nodes dynamically to avoid

congestion. Assumes that node controls can be expressed in commands supported by

OpenFlow v1.3. Due to state dependencies in space and time, the network dynamics are

very complex, and resort to a simulation approach. The load in the network depends on

many factors, such as traffic characteristics and the traffic matrix, topology and node

capacities. To be able to study the impact of control functions, some parts of the

environment is fixed, such as the topology and the node capacities, and statistically

average the traffic distribution in the network by randomly generated traffic matrices. The

traffic consists of approximately equal intensity of smooth, bursty and long memory

traffic.

By designing an algorithm that route traffic and configure queue resources so that

delay is minimised, this thesis chooses the delay to be the optimisation parameter because

it is additive and real-time applications are delay sensitive. The optimisation being studied

both with respect to total end-to-end delay and maximum end-to-end delay. The delay is

 iii

used as link weights and paths are determined by Dijkstra’s algorithm. Furthermore,

nodes are configured to serve the traffic optimally which in turn depends on the routing.

The proposed algorithm is a fixed-point system of equations that iteratively evaluates

routing – aggregation – delay until an equilibrium point is found.

Three strategies are compared: static node configuration where each queue is

allocated 1/3 of the node resources and no aggregation, aggregation of real-time (taken

as smooth and bursty) traffic onto the same queue, and dynamic aggregation based on the

entropy of the traffic streams and their aggregates. The results of the simulation study

show good results, with gains of 10-40% in the QoS parameters. By simulation, the

positive effects of the proposed routing and aggregation strategy and the usefulness of the

algorithm. The proposed algorithm constitutes the central control logic, and the resulting

control actions are realisable through the SDN/NFV architecture.

 iv

Dedication

To all my beloved family,

This thesis is dedicated for you.

 v

Declaration of Authorship

I certify that the effort in this thesis has not previously been submitted for a degree nor

has it been submitted as part of requirements for a degree. I also certify that the work in

this thesis has been written by me. Any help that I have received in my research work and

the preparation of the thesis itself has been duly acknowledged and referenced.

Signature of the Student,

Amalina Farhan Kamaruddin
December 2017, London.

 vi

Acknowledgements

Praise be to Allah SWT, His uncountable blessings; and best prayers and peace

be upon His best Messenger, Prophet SAW, his pure descendants, his family and his noble

companions.

First, I would like to express my deep and sincere gratitude to my Supervisors,

Prof Hamed Al-Raweshidy and Prof Maozhen Li for their help and guidance during my

studies. The continuous advice and support, also guidance during this research are very

much appreciated. I appreciate the patience and encouragement of these professors who

were always taking care of my research to keep progressing and finishing on time. This

research would not have been done without their help and resourceful input.

Next, I would like to thank my treasured family, especially to my Dad, Mr

Kamaruddin b Sa’ari, (who already returned to his Creator during my first year of study),

Mom, Mrs Rasidah bt Hussain and my siblings for endless support and inspirations.

Last but not least, deeply love expression to my beloved husband, Mr Dilshod

Muhammadiyev, who patiently accepted my busy works yet still understands me and give

his fully supports and encouragement towards this PhD research.

Thank you all from the bottom of my heart.

 vii

Table of Contents

Abstract……………………………………………………………………………….… ii

Dedication……………………………………………………………………………… iv

Declaration of Authorship…………………………………………………………....…..v

Acknowledgements……………………………………………………………..……… vi

Table of Contents……………………………………………………………...………..vii

List of Figures…………………………………………………………….……………...x

List of Tables………………………………………………………………………..... xiii

List of Abbreviation………………………………………………………….………. xiv

Chapter 1 ... 1	

INTRODUCTION ... 1	

1.1	 Background and Context ... 1	

1.2	 Motivation ... 4	

1.3	 Aim and Objectives ... 4	

1.4	 Research Contributions ... 5	

1.5	 Thesis Structure .. 6	

Chapter 2 ... 8	

LITERATURE REVIEW .. 8	

2.1	 Introduction ... 8	

2.2	 Distributed and Centralised Control ... 8	

2.3	 Software Defined Networking .. 9	

2.3.1	 OpenFlow-enable Switches .. 11	

2.4	 Network Function Virtualisation .. 12	

2.5	 Congestion Control ... 15	

2.6	 Traffic Aggregation .. 16	

2.7	 Chapter Summary ... 18

 viii

Chapter 3 ... 19	

TRAFFIC AGGREGATION FOR CONGESTION CONTROL .. 19	

3.1	 Introduction ... 19	

3.2	 Entropy .. 21	

3.3	 Traffic Aggregation .. 22	

3.3.1	 Smooth Traffic .. 23	

3.3.2	 Bursty Traffic .. 25	

3.3.3	 Long-Range Dependent Traffic .. 28	

3.4	 Congestion Control by Traffic Aggregation ... 31	

3.5	 Wavelet Analysis .. 32	

3.6	 Chapter Summary ... 39	

Chapter 4 ... 40	

OPTIMAL ROUTING FOR CONGESTION CONTROL.. 40	

4.1	 Introduction ... 40	

4.2	 The Workload Management Process .. 40	

4.3	 Theory of Large Deviations .. 43	

4.3	 The Chernoff Formula .. 44	

4.4	 Congestion Control ... 47	

4.4.1	 Congestion Control by Optimal Routing .. 49	

4.5	 Chapter Summary ... 50	

Chapter 5 ... 51	

Simulation and Results .. 51	

5.1	 Introduction ... 51	

5.2	 Simulation of Congestion Control .. 51	

5.3	 Components of Network Simulation .. 54	

5.3.1	 Network Topology .. 54	

5.3.2	 Node Capabilities .. 55	

5.3.3	 Traffic Distribution ... 56	

5.4	 Traffic Simulation ... 56	

5.4.1	 Simulation of Poisson Processes ... 57	

5.4.2	 Simulation of Markovian Additive Processes (MAP) 57	

5.4.3	 Simulation of Fractional Brownian Motion (FBM) 58	

5.5	 Traffic Aggregation .. 59	

 ix

5.6	 Routing Strategy ... 59	

5.7	 Quality of Service Evaluation ... 61	

5.8	 The Effect of Traffic Aggregation .. 62	

5.8.1	 Node Level Traffic Aggregation ... 62	

5.8.2	 Real-Time/Non Real-Time Traffic Aggregation 64	

5.8.3	 Dynamic Traffic Aggregation ... 66	

5.9	 The Effect of Optimal Routing ... 70	

5.9.1	 Traffic Aggregation Under Minimum Total Delay Routing 73	

5.9.2	 Dynamic Traffic Aggregation Under Shortest Path Routing 74	

5.9.3	 Traffic Aggregation Under Minimum Maximum (Min-Max) Delay

Routing 76	

5.10	 Chapter Summary ... 78	

Chapter 6 ... 79	

ALLOCATION OF NETWORK FUNCTION USING ANT COLONY OPTIMISATION 79	

6.1	 Introduction ... 79	

6.2	 Cloud Resources and Descriptors ... 81	

6.3	 Optimisation Criteria .. 82	

6.3.1	 Attractiveness .. 83	

6.3.2	 Cost ... 84	

6.4	 Algorithm for Resource Optimisation .. 85	

6.5	 Experiments .. 88	

6.5.1	 CloudSim Implementations .. 91	

6.6	 Chapter Summary ... 94	

Chapter 7 ... 95	

CONCLUSIONS AND FUTURE WORK .. 95	

7.1	 Conclusions ... 95	

7.2	 Future Work .. 96	

REFERENCES ...………………………………………………………….......……..... 98

Appendix 1……………………………………………………………………...…..…102

 x

List of Figures

Figure 1.1 Schematic Architecture of Proposed Framework Model based on

SDN/NFV Environment

Figure 2.1 Traditional Network vs SDN Architecture

Figure 2.2 Software-Defined Network Architecture

Figure 2.3 OpenFlow-enabled Switch

Figure 2.4 Differences between Traditional Network with NFV and without

NFV

Figure 2.5 SDN vs NFV in OSI Layer

Figure 2.6 Differences between SDN and NFV

Figure 3.1 A Poisson call arrival process

Figure 3.2 Aggregation of Poisson traffic

Figure 3.3 Aggregation of MAP traffic

Figure 3.4 Aggregation of FBM traffic

Figure 3.5 Multiresolution analysis of Poisson traffic

Figure 3.6 Multiresolution analysis of MAP traffic

Figure 3.7 Multiresolution analysis of FBM traffic

Figure 3.8 Multiresolution analysis of total simulated traffic

Figure 3.9 Multiresolution analysis of Bellcore traffic

Figure 4.1 The workload process for a GI/G/1 queue

Figure 4.2 Chernoff’s formula (with θ = 0.5 and x = 10)

Figure 4.3

Comparison between an M/D/1 and an M/M/1 queue with the same

traffic intensity ρ = 0.7 where the M/D/1 queue has the steeper

decay

Figure 5.1 Dijkstra’s algorithm using delays along a path as cost, mapped

onto the links (red).

Figure 5.2(a)

Delay Average Performance between RT/NRT Aggregation over

Static Aggregation

 xi

Figure 5.2(b)

Packet Loss Average Performance between RT/NRT Aggregation

over Static Aggregation

Figure 5.2(c)

Throughput Average Performance between RT/NRT Aggregation

over Static Aggregation

Figure 5.3(a)

Delay Average Performance between Dynamic Traffic

Aggregation and Static Aggregation

Figure 5.3(b)

Packet Loss Average Performances between Dynamic Traffic

Aggregation and Static Aggregation

Figure 5.3(c)

Throughput Average Performances between Dynamic Traffic

Aggregation and Static Aggregation

Figure 5.4(a)

Delay Average Performances between Dynamic Traffic

Aggregation and RT/NRT Aggregation

Figure 5.4(b)

Packet Loss Average Performances between Dynamic Traffic

Aggregation and RT/NRT Aggregation

Figure 5.4(c) Throughput Average Performances between Dynamic Traffic

Aggregation and RT/NRT Aggregation

Figure 5.5 Performance Gain with Dynamic Traffic Aggregation and

Optimal Routing

Figure 5.6 Performance Gain with RT/NRT Aggregation and Optimal

Routing

Figure 5.7(a) Delay Average Performances of Dynamic Traffic Aggregation

Under Optimal Routing and Shortest Path Routing

Figure 5.7(b) Packet Loss Average Performances of Dynamic Traffic

Aggregation Under Optimal Routing and Shortest Path Routing

Figure 5.7(c) Throughput Average Performances of Dynamic Traffic

Aggregation Under Optimal Routing and Shortest Path Routing

Figure 5.8(a) Delay Average Performances of Dynamic Traffic Aggregation

Under Min-Max Delay Routing over Optimal Routing

Figure 5.8(b) Packet Loss Average Performances of Dynamic Traffic

Aggregation Under Min-Max Delay Routing over Optimal

Routing

 xii

Figure 5.8(c) Throughput Average Performances of Dynamic Traffic

Aggregation Under Min-Max Delay Routing over Optimal

Routing

Figure 6.1 The convergence of the algorithm in the example

Figure 6.2 Comparison of the efficiency the algorithms; Greedy, Round-

Robin, and Ant Colony Optimisation (ACO)

 xiii

List of Tables

Table 6.1 Cluster specification MIPS and RAM capacities

Table 6.2 Virtual machine specification requirements on MIPS and RAM

Table 6.3 Efficiency of Round-Robin Assignment

Table 6.4 Efficiency of greedy Assignment

Table 6.5 Efficiency of Ant Colony Optimisation (ACO) Assignment

 xiv

List of Abbreviations

ABR Available Bit Rate

ACO Ant Colony Optimisation

ATM Asynchronous Transfer Mode

CAPEX Capital Expenditure

CBR Constant Bit rate

CGF Cumulant Generating Function

CPU Central Processing Unit

DSCP Differentiated Services Code Point

DWDM Dense Wavelength Division Multiplexing

DWT Discrete Wavelet Transform

ECN Explicit Congestion Notification

FBM Fractional Brownian Motion

FCFS First-Come First-Served

GI General Independent

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

LRD Long-Range Dependent

MAP Markovian Additive Process

MGF Moment Generation Function

MIPS Millions of Instructions Per Second

MODWT Maximum Overlap Discrete Wavelet Transform

MPLS Multiprotocol Label Switching

NFV Network Function Virtualisation

NP Non-Deterministic Polynomial-Time

NRT-VBR Non-Real-Time Variable Bit rate

OPEX Operating Expenditure

Po Poisson Process

QoS Quality of Services

 xv

RAM Random Access Memory

RED Random Early Detection

RT-VBR Real-Time Variable Bit Rate

SDH Synchronous Digital Hierarchy

SDN Software-Defined Networking

SLA Service Level Agreement

TCP Transmission Control Protocol

ToS Type of Service

TSP Traveling Salesman Problem

UDP User Datagram Protocol

VM Virtual Machine

VNF Virtual Network Function

VR Virtual Reality

WDM Wavelength Division Multiplexing

 1

Chapter 1

INTRODUCTION

1.1 Background and Context

5G networks are often characterised by a set of strict performance criteria. The

reference to 5G networks is an example where architectures built on SDN/NFV and

optical fibre transmission are expected. To cater for vastly diverse traffic and quality of

service to various Use Cases, a network is required to have;

• Massive system capacity

• Very high data rates

• Low latency

• Extremely high reliability and availability

• Energy efficient and secure operation

A fairly new paradigm in communication networking is network elasticity, which

can be interpreted as an optimal utilisation of resources and – as far as possible – a

demand-driven allocation of capacity. The justifications for a flexible resource allocation

are at least twofold. From a capacity point of view, resource pooling is always more

efficient than distributed resources in term of utilisation. Secondly, dynamic functional

allocations through Network Function Virtualisation (NFV) improves the resilience

approaching that of a distributed logic. To achieve these goals cost effectively,

mechanism to achieve high resource utilisation and resilience are imperative. Of

fundamental important is a novel approach to congestion control, which must be able to

cater for a wide range of traffic sources from applications such as massive sensor

networks, telemedicine and virtual reality (VR). Furthermore, it is widely known that

aggregation of many types of traffic [13][32][38][54] leads to self-similar behaviour,

often leading to starvation of some traffic types by others. Another incentive is that user

 2

mobility has been tackled by system over-provisioning in traditional networks, which

becomes inviable as traffic demands and mobility tends to increase further.

 The present study addresses congestion control in communication networks,

where the improvements in network performance and functional resilience of a virtual

hierarchical congestion controller has been exploited. In this work, the meaning of

congestion control is a set of functions having the purpose of ensuring service quality for

diverse traffic types and demands with high robustness and flexibility. In principle,

congestion control can be viewed from two different angles – distributed or centralised

control. A distributed control, on the other hand, is very resilient allows fast decisions for

packet processing and routing, but the logic is for the same reason based on simple

policies and limited network status information. In the centralised view, assuming that

the Software-Defined Networking (SDN) Controller possesses full network information

and can therefore determine network optimal policies. A centralised function also ensures

consistency and minimises control message overhead. The disadvantages of a single

controlling function are its vulnerability to failure and communication latency caused by

processing load or transmission delay.

 On a node level, congestion control amounts to traffic aggregation and fast routing.

Such controls have no or limited possibility to adapt to changing network conditions. It

can be viewed as a heuristic, node centric approach that may result in network states far

from the global optimum. On the network level, on the other hand, traffic routes can be

assigned so that the network-wide end-to-end performance is optimised. A novel

framework for congestion control is being proposed, taking advantage of both the

centralised and the distributed views through functionality separation by means of SDN

and NFV. The functionality is separated into computationally intensive determination of

optimal traffic aggregation strategies and routing policies, traffic measurement, and

reporting, and local resource scaling, traffic aggregation and routing. By adopting SDN

and NFV, a hierarchical implementation on three levels to ensure both high resilience and

resource utilisation is assumed.

The network optimal congestion control is implemented in three hierarchies

(Figure 1.1) consisting of;

 3

(1) SDN Controller, responsible for network monitoring, assignment of orchestrator

virtual machines, and acts as direct interface to network managements systems;

(2) SDN Orchestration, responsible for global optimisation and policy creation,

traffic collection, statistical analysis and network state reporting to the controller,

as well as updating policies and coordinating routing tables on the router level;

(3) Aggregation and routing, responsible for real-time traffic aggregation and route

selection in accordance with policies.

Figure 1.1: Schematic Architecture of Proposed Framework Model based on

SDN/NFV Environment

This function separation allows reduction of control plane communication

overhead, resilience on concentrator level and efficient use of resources. In effect, this

framework aims at improving all five main requirements on 5G networks. Congestion

control implemented using available resources more flexibly leads to a substantially

improved quality of service. By showing in the simulation, dynamic traffic aggregation

improves resource utilisation on individual router level, whereas optimal routing takes

advantage of the router load levels to distribute the traffic throughput in the network,

improving quality of service. The experimental set-up includes a simulator generating

 4

three and resource scaling on node level, and a network route optimiser. An optimal

strategy of control function allocation is also presented.

1.2 Motivation

Motivated by the empirical success of the previous studies, literately discussed in

Chapter 2, this thesis provides few motivations that have driven this research.

(1) Regarding the most common debate nowadays, centralised and separation

network, SDN which promising the ability to handle real network programmable

and more agile, to provide fast changing to the virtualisation of the resources in

data centre and as a balancing as well to the cloud computing [51].

(2) There are some motivations concerning in developing or increasing the Quality

of Service (QoS) issues in congestion control traffic aggregation.

(3) Another concern regarding the traffic aggregation issues in centralised control is

static aggregation (in preliminary results) proves to have no better results than

dynamic aggregation.

(4) Lastly, to proves of having higher energy consumption when assigning the Virtual

Machine (VM) to another host with larger free capacity by keeping the allocation

of network function in virtualisation.

1.3 Aim and Objectives

The aim of this thesis is to improve the resource utilisation which is throughput

and QoS that represent delay and packet loss by the mean of network programmable SDN

in congestion control. The research aim is adopted through the following objectives.

(1) The state of the arts of the previous research studies related to the problem of

congestion control of heterogeneous traffic in a network has been studied. Traffic

of equal intensities of Poisson process (Po), Markovian Additive Process (MAP)

and fractional Brownian motion (fBm) are generated means processes with the

same expected arrival rate. The variances and scaling properties under

aggregation, however, are very different. Both the processing power and the

buffer size can be scaled independently by the central control logic.

 5

(2) SDN and NFV related works are being investigated so that it can be applied to the

current research studies. The studied logic needs SDN/NFV to work, which means

having the ability to configure nodes (switches) dynamically and in real time. This

has been assumed as a condition.

(3) Designing and building a novel framework for congestion control, both in node

level and network level through functionality separation by means SDN/NFV.

The function separation allows reduction of control plane communication

overhead, elasticity on concentrator level and effective use of resources.

(4) Simulating the SDN controlled traffic aggregation and optimal routing, both in

terms of resource utilisation (throughput) and QoS represented by delay and

packet loss so that the traffic can be controlled to take routes through the network

to minimised the end-to-end delay.

(5) Implementing the allocation of network function based on Ant Colony

Optimisation (ACO) using CloudSim simulation is to measure a cloud operator’s

cost by reducing the energy function.

1.4 Research Contributions

There are three research contributions that have been assumed as a hierarchical

performance on three levels in this thesis which are summarised in the following:

(1) Proposing a novel framework for congestion control regarding the traffic

aggregation in the node level. The development of the proposed framework is

based on the logic that can be implemented on SDN where the intelligence and

logic are embedded into the control function. Conceptually, this research is using

entropy as a single traffic aggregation decision parameter as it is convenient due

to some parsimonious characterisation of the traffic which is also suitable in a Big

Data context, since it can be estimated from streaming data, which then would

allow for truly real-time congestion control.

(2) Implementing an optimal routing for congestion control taking advantage of SDN

technology in the network level and comparing the difference aggregation and

routing strategies and showed (by simulation) that aggregation in combination

 6

with min-max optimal routing gives substantial gain in all performance metrics,

and was better than any other combination of studied actions.

(3) Discovering a strategy for on-line assignment policy of VM on hosts that

minimises the energy (to reduce the cost effectively) in allocation of network

functions using ACO. For the purpose of congestion control, the most important

is to have a mechanism that ensures the resilience of the allocation of the

controller, which is enabled through NFV.

1.5 Thesis Structure

This thesis contains 7 chapters which is related to SDN and NFV which briefly

explained below:

⇒ Chapter 1: Introduction

This chapter introduces the research study briefly, the aim and objectives of the

studies, motivations under this studies, some additional knowledge and the thesis

outlines.

⇒ Chapter 2: Literature Review

In this chapter, the current state of arts being discussed including the technology

of SDN and NFV, the previous research which related to traffic aggregation,

traffic types like Po, MAP, and also fBm. This chapter also elaborates about ACO

and the CloudSim simulation that had been used in this research. As for the current

state of the literature, it is clear that there is scope for the development of an

allocation of network function system on CloudSim that limits the amount of

energy consumed while endeavouring to sphere the performance of applications.

⇒ Chapter 3: Traffic Aggregation for Congestion Control

Chapter 3 describes work on traffic aggregation which including three traffic

types; Po, MAP, and fBm. In this chapter also explains the mathematical tools;

wavelet analysis that analysing time series or images by decomposing them with

respect to different scales.

 7

⇒ Chapter 4: Optimal Routing for Congestion Control

This chapter elaborates the workload management process, where traffic routes

can be assigned so that the network-wide end-to-end performance is optimised.

⇒ Chapter 5: Simulations and Results

This chapter is explaining the simulation for traffic aggregation and optimal

routing and showing the results for both simulations.

⇒ Chapter 6: Allocation of Network Function using Ant Colony Optimisation

This chapter evaluates the allocation of network function by comparing three

policies for assigning VMs to hosts: round-robin, a customer greedy heuristic, and

an optimised allocation policy derived from an ACO algorithm to measure a cost

for cloud operator by using an energy function. The main objective for this chapter

is to find an assignment policy that minimises this energy.

⇒ Chapter 7: Conclusion and Future Work

The final chapter is discussing about the conclusion of this research and the future

works that could expand for the next research to improve the current research.

 8

Chapter 2

LITERATURE REVIEW

2.1 Introduction

Congestion in the network generally is described when the load on the network is

greater than the capacity of the network can handle. Congestion control meanwhile, refers

to mechanisms and techniques used to control congestion and keep the traffic below the

capacity of the network. The investigation focuses on the effects of congestion control in

a network subject to self-similar traffic implemented using SDN and NFV frameworks.

2.2 Distributed and Centralised Control

 In principle, network control functions can be either distributed or centralised. At

present time, network control is typically decentralised and residing in the routers due to

its fast reaction time and resilience against failure. The control actions, however, are only

based on network state information in a small neighbourhood of the node itself.

Distributed control functions are also based on rather simple logic, which may not lead

to flow control which is optimal for the entire network. Meanwhile, the advantage of a

centralised control is the ability to apply a control policy taking the state of the entire

network into account. The disadvantage is delay in receiving information updates and

applying control actions, and the risk of overload or failure of a single centralised control

function. With the introduction of SDN, control functions can be separated into fast flow

control and routing functions, which are decentralised and implemented locally in routers

and switches, and longer term control strategies residing in a network entity referred to

as a SDN Orchestrator. Figure 2.1 illustrates the difference between distributed and

centralised network.

 9

Figure 2.1: Traditional Network vs SDN Architecture [52]

2.3 Software Defined Networking

The concept of SDN, which originated in the mid 1990s, is a framework to

manage network behaviour dynamically via programmable applications using open

interfaces to the network. This allows for a flexible utilisation of network resources in

contrast to a static allocation of resources in traditional networks. In such networks, the

control of a packet flow is realised by a node forwarding packets to the best destination

according to the packet header information and a set of more or less static rules. In effect,

routers try to accommodate the quality of service on a per flow basis, mostly agnostic of

the states in other parts of the network. In this case, the control of the packet flow and the

flow itself are fundamentally linked together. As a result, some parts of the network may

be overloaded whereas others may be under-utilised.

 SDN allows decoupling of the control from the flow, referred to as the control

plane and the data plane, respectively. Figure 2.2 shows the SDN architecture. A

consequence of this decoupling is the possibility to create resource and flow control logic

that is based on more information that is contained in individual flows. The logic may

thus depend on the state of different parts of the networks, the characteristics of various

flows, or external factors (for example, dynamic reservation of resources). As a matter of

fact, the separation between the control plane and the data plane was implemented for

 10

Synchronous Digital Hierarchy (SDH) (connection-oriented) networks already in the mid

1990s. The implementation was facilitated by the fact that the routes in such networks

already were semi-static, and the relative few nodes constituting the networks [15].

Figure 2.2: Software-Defined Network Architecture [49]

The architectural and structural properties of SDN are described in, for example,

[3][27]. D’souza et al.[11] note that QoS is a relatively new feature in SDN. Using three

QoS parameters: delay, packet loss and throughput, the delay is given by the average

queue length in the system, while the packet loss is the proportion of lost packets when a

queue is full to the total number of arriving packets and the throughput is the number of

delivered packets to the number transmitted packets. The main difference between the

delay and the throughput QoS is that delay is determined per queue, and the values are

added to give a total end-to-end delay, whereas throughput is given by the de facto

delivered packets and therefore is defined for an origin-destination pair or generalised for

the whole network. There are several incentives for SDN. Firstly, traffic characteristics

change much more rapidly today than the past through the fast development of new

services. Secondly, traffic flows depend on an increasingly cloud-based service

distribution. Thirdly, with rapidly increasingly traffic volumes and big data, resources

 11

need to be managed cost efficiently. The investigation is based on the capabilities of

OpenFlow as part of the SDN/NFV framework, which ensures necessary resilience and

scalability. Mills et al. [34] evaluate different heuristic strategies of allocation of virtual

machines in clouds. Considered as a strategy based on initial placement – known as

consolidation – where new requests are allocated subject to available resources and a new

request may modify existing allocation to achieve lower cost, or a trade-off between

Service Level Agreements (SLA) and cost. Several papers also consider optimisation

with respect to geographically distributed clusters [22][34], and include network

bandwidth as a system parameter. Another view is to divide requests into tasks, and

schedule the tasks optimally [46]. Both consolidation and scheduling requires the

possibility of migration or resizing of tasks. Lee et al. [30] propose using a vector of

different resources to describe the state of the system state economically. The system

variables can be stored in a central database for easy retrieval of cloud state data by the

resource allocation function.

2.3.1 OpenFlow-enable Switches

In this research, network consists of OpenFlow-enabled switches and routers. The

congestion control logic triggers queue settings and forwarding tables using OpenFlow.

It should also be possible to collect traffic traces and destination addresses from the nodes.

The queues should have configurable rates, which could be specified as a

minimum/maximum rate pair [39]. Version 1.3 of OpenFlow supports slicing, that is,

multiple configurable queues per port, which could be used in the implementation of this

research congestion control. A physical switch or router typically has several queues

which are served by a common processing unit with one or more processors. There is also

a memory bank that can be used by the queues. The resources, processors and memory,

can either be shared or partitioned between the queues. For memoryless traffic, sharing

is the most efficient since it is fair. For traffic mixtures with long memory, however,

resource sharing is not optimal, and one traffic type can exacerbate the performance of

other traffic types. When resources are partitioned, the queues are isolated from each

other and each queue protects its workload from the influence from the load in other

queues. In this investigation, partitioning which is dynamically controlled, and the

resources allocated depend on the actual load per traffic type is used. Similarly, the buffer

 12

sizes assigned to the queues should be configurable. In principle, it is sufficient to be able

to specify a maximum buffer size per queue. This is particularly important to limit the

impact of self-similar traffic on the rest of the network [38]. Figure 2.3 illustrates the

OpenFlow-enabled switch architecture [50].

Figure 2.3: OpenFlow-enabled Switch

 The update of packet forwarding tables in switches and routers is a standard

operation, where the routes are determined by the central logic by assuming that traffic

traces are available, either via OpenFlow or some other means. Full traces rather than

statistics are required, since the entropy is determined based on traces and then used to

control the aggregation. OpenFlow also implements the Orchestrator-Forwarder interface

for manipulating flow tables, and requesting traffic statistics and network state

information from the nodes to model the network topology and for load monitoring. For

large networks, multiple orchestrators, and the OpenFlow is used to share information

between these entities by classifying traffic efficiently, and ideally use lower-order

protocol header fields to extract this information. Examples are traffic class header field

in Multiprotocol Label Switching (MPLS), the type of service field in Internet Protocol

version 4 (IPv4), traffic class in IPv6, and possibly the source IP address, source and/or

destination ports.

2.4 Network Function Virtualisation

NFV is essentially decoupling of software from hardware. It provides a layer

between the hardware with its operating system and software applications, which are

known as hypervisors. Thus, NFV represents the physical implementation of functions as

 13

virtual machines or virtual servers on given hardware platforms. In the past, when

traditional network functions (Network Address Translation, Load Balancer, Firewall) is

mentioned, referred to functions by the physical devices. As this functions need to be

programmed by hand to those devices, this procedure will create some issues when any

novelty or updates in the system deployment is needed. Whereas, Virtualised Network

Function (VNF) is a software-based and decouple from hardware. In VM cases, the

software image of network function can be deployed. By being highly flexible and

dynamic, these networks can decrease Capital Expenditure (CAPEX) and Operating

Expenditure (OPEX) significantly [52]. The differences are shows in Figure 2.4 [53].

Figure 2.4: Differences between Traditional Network with NFV and without NFV

To distinguish between SDN and NFV, (see Figure 2.5 and Figure 2.6), note that

SDN refers to the decoupling of network logic from data transport, whereas NFV is the

rapid provisioning and control through virtualisation [27]. The resilience concerns of a

centralised logic is addressed by NFV, that can be seen as resource sharing on platform

level (Platform-as-a-Service). This approach allows for efficient scaling and utilisation of

network resources, and a robust and resilient implementation of a centralised control logic.

Furthermore, the SDN/NFV concept supports open interfaces, such as OpenFlow,

reducing the implementational complexity of a centralised intelligence in complex

networks.

 14

Figure 2.5: SDN vs NFV in OSI Layer

Figure 2.6: Differences between SDN and NFV

 In this research set-up, NFV is mainly used to ensure resilience of the control

logic. Assumed that there are a number of nodes that can host the SDN orchestrator,

without specifying exactly where or how, since the architecture is not the focus of this

study. The VM allocation algorithm described in this paper is adapted to the initial

 15

placement problem for the reservation type of cost and allocation in a single cluster.

Consolidation and scheduling are not considered. The algorithm as such, however, is

sufficiently general to be extended to more general resource allocation problems. The

optimisation uses the ACO, described in [10][17], where it is used on the travelling

salesman problem (TSP) and bin packing problems. This research proposed strategy is to

reformulated as a dynamic program for on-line optimisation.

2.5 Congestion Control

A number of congestion control mechanisms are investigated by Gerla and

Kleinrock [19] and Jacobson and Karels [26]. The definition of congestion used as an

over-demand of resources, leading to a performance decrease when compared to states

with lower demand [23]. It is therefore imperative to assume that network resources are

sufficient to cater for the offered traffic most of the time. Resource planning aspects are

discussed in [48] for MPLS and [18] in access networks. In the latter, macroscopic traffic

characteristics are generated by superposition of a number of simple Markovian on-off

sources. The drawback with this method of traffic generation is that it is an asymptotic

result, and the number of simple sources therefore need to be very large. Congestion

control under self-similar traffic is also studied by Tuan and Park [45], Abbasi et al. [2]

and others [37].

Most congestion control algorithms in the literature are flow-based in general and

the Transmission Control Protocol (TCP) in particular. TCP is a feedback congestion

control on flow-level where the transmission rate is based on a sliding window. Packets

are acknowledged by the receiving side, and when congestion is detected by the sender

not receiving an acknowledgement before a set time elapse, or receiving duplicate

acknowledgement, it retransmits the unacknowledged packets [28]. In [45], the authors

investigate the predictability of self-similar and how this can be used in congestion

control to improve the throughput of TCP by proposing a feedback congestion control,

using the throughput as a control variable, and adjusting the bandwidth from the client to

maximise the throughput. In [11], the authors propose using Type of Service (ToS) and

Differentiated Service Code Point (DSCP) to distinguish between traffic types, and can

therefore be characterised as a priority-based control. Some authors highlight the need for

 16

more efficient detection of network congestion. Huang et al. [25] note that TCP is

suboptimal for high-speed networks and suggest using free router capacity, ingress

aggregate traffic and queue length as decision variables to make TCP converge faster and

achieve fairness, and Haas and Winters [23] suggest probing for congestion with test

packets. An alternative algorithm to Random Early Detection (RED) using Explicit

Congestion Notification (ECN) is presented in [16], where packet loss and link utilisation

are used, rather than queue length, to detect congestion. The result is a faster detection of

congestion and more adequate rate adjustment to mitigate the congestion.

 Using the method classification in [19], this research proposes a congestion

control scheme which works on hop level and measures flow quality of service,

disregarding admission control and transport protocol functions. The effect of end-to-end

performance is studied – delay, packet loss and throughput – by dynamic traffic

aggregation at the nodes and optimal routing with respect to delay. A theoretical

investigation of feedback congestion control strategies can be found in [44]. It discusses

the differences between feedback from aggregate traffic and individual flows. It is also

shown, that the transmission rate resulting from a feedback congestion control can be

expressed as a fixed-point equation, a technique used in this approach to determine

optimal routes. Fixed-point equations have also been studied in simulation contexts for

TCP controlled networks [21]. It should be noted, however, that there may be more than

one stable solution, and care must be taken to avoid oscillatory network behaviour. This

type of network instability effects has been studied in loss networks as well [20].

2.6 Traffic Aggregation

The potential advantages of centralised routing as compared to distributed routing

in terms of QoS is studied in [27][35]. The presence of long-range dependence and self-

similarity in data networks has been thoroughly established and studied [31][7][8]. Self-

similarity and long-range dependence may be caused by heavy-tailed file size

distributions, aggregation of a large number of short-memory traffic sources [38], certain

protocols TCP or human interaction [7][8]. Modelling of bursty and self-similarity traffic

types have also been studied extensively [38][4][29][2][1]. Smooth traffic is modelled by

a Po, which is the traditional model for plain telephony. Many models have been

 17

suggested for video traffic [40][42][36]. We have chosen a short-memory process -

typically modelled by a Markov modulated process - as proposed in [5][12]. The chosen

model is referred to as a MAP and self-similar traffic is modelled by a fBm [32][31][4][2].

This process is modified to reflect packet generation by assuming positively correlated

arrivals and selecting sample paths (reflected at 𝑋 𝑡 = 0) so that 𝑋(𝑡) ≥ 0 for all 𝑡,

since traffic load must be positive. Wavelets have shown to be very useful in analysis of

self-similar traffic [42][41]. We use wavelet multi-resolution analysis to visualise

composite traffic.

 In [9], Dolzer et al. investigate various traffic aggregation strategies, and conclude

that aggregation of audio and video sources reduce the need for resources, indicating that

aggregation into two traffic classes – denoted real-time and non real-time traffic – gives

the best result. In a SDN context, Nguyen et al. [35] optimise the assignment of

forwarding rules to nodes with limited memory in the network, with the objective to

maximise delivered traffic. This approach, however, does not cater for dynamic traffic

aggregation at the nodes or optimised routes with respect to a network wide QoS measure.

Wallner and Cannistra [47] use the ToS or DSCP fields in the IP header to map traffic to

a queue port with properly set queueing parameters, and in [43], it is shown that a dynamic

allocation of buffer size lead to an increase in throughput.

 Egilmez et al. [14] analyse dynamic routing of multimedia flows. By avoiding

using resource reservation or prioritisation due to the adverse effects such QoS

provisioning methods may have on flows not subjected to QoS, such as packet lost and

latency. The authors propose traffic classification based on the traffic header field in

MPLS, the ToS field in IPv4, and possibly source IP address, source and/or destination

ports. In contrast to the approach in [14], this research proposes a much simpler

optimisation method, somewhat trading speed for accuracy, since forecasting future load

based on past load by necessity is associated with prediction errors.

 As for algorithm, entropy is being used as a traffic descriptor. Classification of

traffic using entropy to identify traffic patterns is discussed in [6][13][24][45]. In [24],

the authors identify traffic clusters for aggregation using a priority parameter. The

clustering is based on a parameter vector, including source and destination IP addresses.

Two of the objectives for traffic clustering is to identify abnormal traffic and identifying

 18

the largest flows. Thus, the algorithm is on flow level, whereas in this research, the study

is focused on the effect of aggregation with respect to the overall offered traffic intensity.

In [13], the authors suggest that the entropy can be used to estimate asymptotic properties

of network queues, such as packet loss and delay. In this simulation approach, the

determination of these properties are directly from the queues, as differences between

queues are important in order to determine optimal routes, and these figures therefore

need to be more exact. It can be shown that entropy is closely related to the scaled

Cumulant Generation Function (CGF) in large deviations theory [6][33], a technique used

for queueing analysis in Asynchronous Transfer Mode (ATM) networks.

2.7 Chapter Summary

Network traffic is expected to be heterogeneous, showing dissimilarity on various

time scales. It has been extensively acknowledged that many traffic types are self-similar

(long-range dependent), which may lead to starvation of traffic with shorter memory, just

as prioritising of short-memory traffic may normalise long-range dependent traffic. Even

if the control is implicit to be much slower than the traffic processing speed, the analysis

of existing traffic and network load should be miserly and fast enough to capture

dissimilarities on, say, time scales of seconds or fractions of seconds.

 19

Chapter 3

TRAFFIC AGGREGATION FOR CONGESTION

CONTROL

3.1 Introduction

The requirements on the service and network capabilities are dependent on traffic

type. Traditionally, traffic has been classified in real-time and non real-time types of

services, where real-time services tend to be more delay sensitive, whereas non real-time

services are more sensitive to packet loss. A typical distinction in IP are services using

User Datagram Protocol (UDP) and TCP, respectively. In ATM, this roughly correspond

to Constant bit rate (CBR) or Real-Time Variable Bit Rate (RT-VBR) and Non-Real-

Time Variable Bit Rate (NRT-VBR) or Available bit rate (ABR) services.

To describe the vast range of communication services available today, many

having different characteristics, many models have been suggested in the literature. In the

simulations, three traffic types are used – smooth, bursty, and long-range dependent

traffic. Rather than trying to model traffic directly, this thesis tries to approximate traffic

aggregates by mixing stochastic processes with different characteristics. The aim is to

approximate aggregates by different proportions of the constituent stochastic processes.

These roughly correspond to the services telephony (audio), streaming video, and Internet

traffic. These three traffic types can for be described on a high level by three quantities –

intensity, burstiness, and autocorrelation. Traditional plain voice traffic is often modelled

as arriving according to a Po with exponential duration. Such traffic is also known as

Markovian, or memoryless. It is well known that this model is inappropriate to model

bursty video traffic or data traffic exhibiting a non-negligible memory. Therefore, the use

of MAP is to model bursty traffic, and a fBm is to represent aggregate Internet traffic.

These models are described below.

 20

 The main characteristic of traffic is its intensity, which is defined as

 𝜌 =)
*
 , (3.1)

where 𝜆 is the number of packet arrivals per time unit and 𝜇-. is the mean processing

time of a packet, so that 𝜇 is the average number of processed jobs per time unit. Traffic

intensity is a measure of the average occupancy of a server or resource during a specified

period of time. This is defined by ITU-D [54]. The traffic intensity represents the mean

number of requests in progress per time unit, or equivalently, the work load on in a queue.

The intensity is used to describe traffic at any point in the network, that is, offered traffic,

carried traffic and blocked traffic (as a percentage of offered traffic). It should be pointed

out, however, that for traffic types with long memory, this quantity is difficult to

determine.	

 Bursty traffic can be characterised by its peakedness factor, defined as

 Z =
Var X
𝐄 X

	. (3.2)

For a Poisson process that 𝐄 X = λ = Var(X), so its peakedness factor is Z = 1. In

contrast, bursty traffic has a peakedness Z > 1. It is also useful to define the

autocorrelation of a process X as

 𝜌 𝑖, 𝑗 = 𝛾 𝑖, 𝑗 /𝜎@, (3.3)

where

 𝛾 𝑖, 𝑗 = 𝑬 𝑋B − 𝜆 𝑋D − 𝜆 , (3.4)

where 𝑋B and 𝑋D are observations (number of packets) at times 𝑖 and 𝑗, respectively, on

some time scale. The quantity 𝜆 is the average arrival rate of the process.

 For Poisson (memoryless) traffic, 𝛾 𝑖, 𝑗 is negligible for 𝑖 ≠ 	𝑗 . In fact, this

property defines lack of memory. Short memory processes have non-zero correlation on

lags 𝑖 ≠ 	𝑗 which tends to decrease exponentially – at least asymptotically. For long-

memory processes, however, the correlation decreases slower than exponentially and can

be pronounced on very long time lags. This has the effect of relatively long periods of

low or high arrival rates, which has a large impact on network performance.

 21

3.2 Entropy

Traffic models have different statistical properties and are described by different

sets of parameters. This make them hard to compare with traditional statistical methods.

For example, the mean and variance of long-range dependent traffic is difficult to

determine on short time scales. A different approach is to use the entropy of the traffic as

a single parameter characteristic. The entropy measures the “randomness” of an arrival

process, so it can be interpreted as a measure of the memory and the behaviour of a given

traffic trace. The entropy 𝐻(𝑋) of a stochastic process 𝑋 is defined as

 𝐻 𝑋 = − 𝑝B 𝑙𝑜𝑔 𝑝B
K

BL.
, (3.5)

where 𝑛 is the number of states and 𝑝B is the probability of the process attaining state 𝑖.

The states are defined by the number of packets arriving during a time interval

corresponding to two consecutive sampling times.

The higher the entropy, the more random the process is. Therefore, this thesis

expects the entropy of the Po to be the highest, which also turns out to be the case. On

average, the MAP traffic is close to the Poisson traffic, but it has higher variance. The

fBm traffic has significantly lower entropy on average, but much larger variance. The

variability in entropy allows fast characterisation of traffic and decision of traffic

aggregation so that the entropy of the aggregated traffic has lower variance than the fBm

traffic itself. Along with appropriate resource scaling of the router queues, we show that

the QoS and/or throughput is improved. Since entropy is not additive, direct scaling is not

recommended. Both an estimation of mean and of high frequency variability are needed

to estimate the scaling parameters. During investigation, this thesis uses the resource

scaling factor 1.75𝐻P (where 𝐻P is the entropy of the traffic aggregate) to the entropy 𝐻Q

of the remaining traffic. The value is chosen based on empirical investigation. In principle,

say that the aggregate consists of two traffic streams, one with higher entropy than the

other. Then the total entropy is < 2 times the highest entropy - since the traffic with highest

entropy dominates the entropy of the aggregate. 1.75 is chosen as an approximation to 2

times the mean entropy of the two streams.

 22

3.3 Traffic Aggregation

Network traffic is assumed to be heterogeneous, exhibiting variation on various

time scales. It has been widely accepted that many traffic types are self-similar (long-

range dependent), which may lead to starvation of traffic with shorter memory, just as

prioritisation of short-memory traffic may regulate long-range dependent traffic. Since

long-range dependent traffic may cause congestion where resources are allocated

statically, it might be possible to improve the network performance by allocating

resources dynamically based on the characteristics of the traffic. In fact, the long range

dependence of traffic means that the load it induces can be predicted using its

autocorrelation structure. The predicted load may serve as a control variable for dynamic

traffic aggregation, which must be performed on much longer time scales than, for

example, routing table lookups.

 Even if the control is assumed to be much slower than the traffic processing speed,

the analysis of offered traffic and network load should be parsimonious and fast enough

to capture variations on, say, time scales of seconds or fractions of seconds by suggesting

using entropy of the traffic traces and the resulting aggregation strategies as a single

measure of their randomness. Given the three traffic types and their different

characteristics, the focus is in the most efficient way to aggregate the traffic and map it

onto available resources and use as efficiency measure the statistical performance in

throughput, packet loss and delay.

 Firstly, it is instructive to look at the scaling properties of these processes and

define the time aggregated traffic as the average of a time block of size m, so that

 𝑋			Q
R = 	

1
𝑚
	 𝑋QR-RT. + ⋯+ 𝑋QR . (3.6)

 When looking at the sample mean 𝑋 of a traffic process X (where 𝑋 is

approximating 𝜆 in Equation (3.1) above), a standard result in statistics is that the

variance of 𝑋 decreases linearly with sample size. That is, if 𝑋., 𝑋@,…, 𝑋K	represent

 23

instantaneous traffic with 𝜆 = 𝚬(𝑋B)	and variance 𝜎@ = Var(𝑋B) = 𝚬((𝑋B − 	𝜆)𝟐), then the

variance of 𝑋	= 𝑛-. 𝑋BK
BL. equals

 Var(𝑋)= 𝜎@𝑛-.. (3.7)

 For the sample mean 𝑋, having for large samples that

 𝜆 ∈ 𝑋 ± 𝑧\/@𝑠. 𝑛-./@ , (3.8)

where 𝑧\/@ is the upper 1 − 𝛼/2 quantile of the standard normal distribution which

appears only when constructing confidence intervals for the parameter and 𝑠@ =

𝑛 − 1 -. 𝑋B − 𝑋
@K

BL. is the sample variance estimating 𝜎@ . The condition under

which Equation (3.7) and Equation (3.8) hold are that;

(1) The process mean 𝜆 = 𝑬 𝑋B exists and is finite,

(2) The process variance 𝜎@ = 𝑉𝑎𝑟 𝑋B exists and is finite,

(3) The observations 𝑋., 𝑋@, … , 𝑋K are uncorrelated, that is,

 𝜌 𝑖, 𝑗 = 0, for 𝑖 ≠ 𝑗. (3.9)

This thesis assumes that conditions (1) and (2) always hold, but not necessary condition

(3).

3.3.1 Smooth Traffic

Smooth traffic is traditionally modelled by a Po. The Poisson process, also called

Markovian or memoryless, aggregates in time so that the variance to the mean decreases

fast. The average magnitude tends to a well-defined limit (that is, the aggregate variance

tends to zero) as 𝑚 increases. This produces a smoothing effect in time, which is very

advantageous from a performance point of view. Thus, only one parameter – the intensity

– is required to characterise a Poisson process, and the same parameter determines the

server capacities necessary for a given performance.

In contrast, self-similar traffic does not exhibit such behaviour [38][4]. Time

aggregates does not smooth such processes rapidly, and the large variations can be

experienced even on large time scales. This phenomenon motivates an adaptive traffic

 24

aggregation that allocates resources in proportion to some measure of the load on a

particular time scale.

3.3.1.1 The Poisson Process (Po)

 The traditional traffic arrival model is the Po, which can be derived in a

straightforward manner. Note that the Po is a discrete process (for example, the number

of packets) in continuous time. Fixing a time 𝑡 and looking ahead a short time 𝑡 + ℎ, a

packet may or may not arrive in the interval (𝑡, 𝑡 + ℎ]. If ℎ is small enough and the packet

arrivals are independent, then the probability of a packet arrival in this interval can be

assumed to be approximately proportional to length of the interval, ℎ [54]. The

probability of two or more arrivals in this interval can be considered negligible by

defining a Po as follows.

Figure 3.1: A Poisson call arrival process [29]

Definition 3.3.1.1. A Poisson process with intensity 𝜆 is a process 𝑋 = 𝑁 𝑡 ∶ 	𝑡 ≥ 0

taking values in 𝑆 = {0,1,2, … } such that

(1)

 𝑁 0 = 0, 𝑎𝑛𝑑	𝑖𝑓	𝑠 < 𝑡	𝑡ℎ𝑒𝑛	𝑁(𝑠) ≤ 𝑁(𝑡),

(2)

 𝑷(𝑁 𝑡 + ℎ = 𝑛 +𝑚|𝑁 𝑡 = 𝑛 =
𝜆ℎ + 𝑜 ℎ
𝑜 ℎ

1 − 𝜆ℎ + 𝑜 ℎ
			
𝑖𝑓	𝑚 = 1
𝑖𝑓	𝑚 > 1
𝑖𝑓	𝑚 = 0

(3) if 𝑠 < 𝑡	 then the number 𝑁 𝑡 − 𝑁(𝑠) of arrivals in the interval (𝑠, 𝑡] is

independent of the times of arrivals during [0, 𝑠].

 25

An example of packets arriving according to a Poisson process are illustrated in

Figure 3.1, showing arrivals in continuous time. In discrete-time, this thesis is concerned

with the arrivals in a time interval 𝑡, 𝑡 + ℎ , which can be described by the counting

process related to the Poisson process, where 𝑁(𝑡) represents the number of arrivals of

a process 𝑋(𝑡) up to time 𝑡.

Theorem 3.3.1.1. The counting process 𝑁(𝑡) has the Poisson distribution with

parameter 𝜆𝑡 that is,

 𝑷 𝑁 𝑡 = 𝑗 =)Q s

D!
𝑒)Q, 𝑗 = 0, 1, …. (3.10)

 By substituting 𝑡 for ℎ, the length of a discrete-time interval, 𝑁(ℎ) is the number

of arrivals in each interval. This is the way Poisson traffic is generated in the simulations.

Note that the Poisson process is one of the simplest continuous-time Markov process,

which means that it is memory-less, which follows from condition (3) in the definition.

Figure 3.2 shows the scaling of a Poisson process, where the time interval becomes longer

as in Equation (3.6) with a scaling factor 𝑚 = 8 in two consecutive steps.

3.3.2 Bursty Traffic

It has been shown that video sources exhibit various degree of burstiness and

autocorrelation [40][40][42]. The autocorrelation can be interpreted as short-range

memory. This is partly explained by the nature of most movies and their coding. In its

original form, a movie consists of frames that change in rapid succession. Within a movie,

it is common that scenes do not change with high frequency. To save bandwidth, video

coding therefore utilises this fact and encode changes to a reference frame. When a scene

changes, more data is needed to set up a new scene, whereas within the same scene, only

updates with lower bandwidth need to be transmitted. The size of these updates also

depend on the type of scene.

Modelling of video traffic is complicated by a number of possible encodings,

compression, and source type, such as movies or video conferences. Simply refer to

bursty traffic as video traffic, without any claim that the chosen model MAP is suitable

for all video sources. Also note that interactive multimedia, such as video conferencing,

 26

is more sensitive to delay, whereas streaming video is more sensitive to delay variation

(jitter) [14]. By using delay as the optimisation target, the results may be considered more

relevant for the former type of video source.

Figure 3.2: Aggregation of Poisson traffic

3.3.2.1 The Markovian Additive Process (MAP)

The MAP has been suggested as a model for traffic types exhibiting burstiness

and autocorrelation [5][12][37]. The process is generated by creating a jump between two

states (active and silent) that is controlled by a Markov chain. A Markov chain is

represented by a matrix where each row sums to unity (probability matrix). The

simulation of Markov chains is discussed in the cited reference [56]. The parameters are

set so that the probability of remaining in either state is high if the process was in this

state immediately before. This generates a bursty arrivals process with autocorrelation

(memory), contrary to the arrivals following a Poisson process.

 27

 To define the MAP, assume that there are 𝑁 independent traffic sources which are

controlled by the same Markov chain. The chain jumps between the active and the silent

states, which is represented by 𝑆 = 	 {0,1}, with zero representing the silent state and one

the active state. The Markov chain is defined by the transition probabilities between the

silent and the active states

 𝑎 = 𝑷(𝑋Q = 1|𝑋Q-. = 0) (3.11)

 𝑑 = 𝑷 𝑋Q = 0|𝑋Q-. = 1 . (3.12)

The Markov chain can now be expressed as

 𝑀 = 1 − 𝑎 𝑎
𝑑 1 − 𝑑 , (3.13)

where the steady state probabilities are 𝜋x =
y

PTy
 and 𝜋. =

P
PTy

 , respectively. The

smaller the parameters 𝑎 and 𝑑 are, the burstier the traffic generated by the model. As

defined above, the MAP is a discrete time model, which makes simulation straightforward.

Note that the lengths of a sources remaining in the state is geometrically distributed. Thus,

the mean duration of an active period is 𝑑𝑛 1 − 𝑑 K-.z
KL. = 1/𝑑 time units, and the

mean duration of a silence period is 1/𝑎 time units.

 When fed to a queue with service capacity 𝑠, a stability criterion is required to

have a limited stationary queue length, that is

𝑎

𝑎 + 𝑑
<
𝑠
𝑁
. (3.14)

Figure 3.3 shows the scaling of a MAP as in Equation (3.6) with a scaling factor 𝑚 = 8

in two steps. Although bursty, the MAP is still Markovian, which means that even if

packet arrivals are correlated, the change of states of the source is memoryless. The

aggregation of a MAP is shown in Figure 3.3. It scales similarly to the Poisson process

(Figure 3.2), but converges slightly slower to its process mean.

 28

Figure 3.3: Aggregation of MAP traffic.

3.3.3 Long-Range Dependent Traffic

It may happen that the autocorrelation (3.3) decay very slowly, so that

 𝜌 𝑘 = ∞z
}L-z , (3.15)

This is the case when

 𝜌(𝑘) ≈ 𝐶.|𝑘|-\ as the time lag 𝑘 → ∞, (3.16)

where 𝛼 ∈ (0, 1) and 𝐶. > 0 is a constant, that is, the autocorrelation decays according

to a power law distribution. A process for which (3.16) holds is known as a long-range

dependent process, or a long memory process. The aggregation of such processes is such

that

 𝑉𝑎𝑟 𝑋(R) = 𝜎@𝑚-\, (3.17)

with 0 < 𝛼 < 1, that is, the aggregate converges to the sample mean slower than for a

short-memory process.

 29

 In contrast, for Markovian and short-memory processes, the autocorrelation is

bounded as

 𝜌 𝑘 ≤ 𝑏. 𝑎}, (3.18)

where 0 < 𝑏 < ∞ and 0 < 𝑎 < 1 are positive constants and 𝑘 is the time lag. It follows

that the sum of autocorrelation

 𝜌(𝑘)
z

}L-z

= 𝐶@ < ∞ (3.19)

is finite.

 Long-range dependent traffic shows significant dependence in time on long time

scales. This type of traffic is generated by superimposing a large number of short-memory

processes or by certain flow control, such as the bandwidth of TCP-controlled traffic [31].

It should be noted that long-range dependence is difficult to ascertain, since it requires

determination of how correlations converge to zero, and therefore needs investigation of

traffic measured during long time intervals. Long-range dependent processes have the

interesting property that can be predicted with better accuracy than short-memory

processes. The stronger dependence of an observation 𝑋Q and past values 𝑋Q − 1, 𝑋Q −

2,…,	the more certain a future value 𝑋Q + ℎ close to past values is likely to be. This fact

is used by Tuan and Park [48] for predictive congestion control.

 Long-range dependence is closely related to the concept of self-similarity, where

the latter describes the scaling properties of a process. The degree of dependence of the

increments 𝑋 𝑡 = 𝑌 𝑡 − 𝑌(𝑡 − 1) of a process is specified by the Hurst parameter H,

where

 𝐻 ∈ 0, 1 . (3.20)

If 𝐻 = .
@
	, the process is independent (or memoryless). When 𝐻 > .

@
	, the process is

positively correlated, and when 𝐻 < .
@
	,	 it is negatively correlated. Assume that the

process is positively correlated, so that .
@
< 𝐻 < 1. This follows from the nature of

Internet protocols as well as, for example, human browsing behaviour.

 30

 A cumulative process in continuous time 𝑌(𝑡) is self-similar with Hurst parameter

𝐻 if

 𝑌 𝑎𝑡 = |𝑎|�𝑌(𝑡), (3.21)

for all 𝑎 > 0 and 𝑡 ≥ 0. Long-range dependence and self-similarity are not equivalent in

general. However, when .
@
< 𝐻 < 1, self-similarity implies long-range dependence and

vice versa. In this case, the autocorrelation function expressed in the Hurst parameter 𝐻

is

 𝜌 𝑘 ≈ 𝐻 2𝐻 − 1 𝑘@�-@, (3.22)

and 𝜌 𝑘 behaves asymptotically behaves as (3.16) with 𝛼 = 2 − 2𝐻.

3.3.3.1 Fractional Brownian Motion (FBM)

 A parsimonious model for self-similar, long-range dependent traffic is the fBm,

𝐵�(𝑡), defined on an interval 0, 𝑇 . The fBm is a process such that

1. 𝐵�(𝑡) is Gaussian on 𝑡 ∈ 0, 𝑇 ,

2. The process starts from zero, that is 𝐵� 0 = 0 almost surely,

3. 𝐵�(𝑡) has stationary increments,

4. The expectation is 𝑬 𝐵 𝑡 − 𝐵(𝑠) = 0 for any 𝑠, 𝑡 ∈ 0, 𝑇 ,

5. The autocovariance of 𝐵�(𝑡) is

𝑬 𝐵� 𝑡 𝐵� 𝑠 = .
@
|𝑡|@� + |𝑠|@� − |𝑡 − 𝑠|@� for any 𝑠, 𝑡 ∈ 0, 𝑇 . (3.23)

The process is self-similar and long-range dependent for 𝐻 > .
@
.

 Figure 3.4 shows the aggregation of an fBm subject to a scaling factor of 𝑚 = 8.

The aggregate does not converge to any well-defined mean value, but a noticeable

variability persists for the aggregate traffic.

 31

Figure 3.4: Aggregation of FBM traffic.

3.4 Congestion Control by Traffic Aggregation

Congestion control by aggregation uses the statistical multiplexing gain by

superimposing different traffic types on a single queue. Due to long-range dependence

inherent in many traffic types and present on long time scales, this type of control logic

is well suited to be located in the SDN Orchestrator. Considering three traffic types –

voice, video, and long-range dependent traffic, modelled by a Po, a MAP and fBm,

respectively. A deterministic queue model G/D/n is considered for simplicity, where X ~

G is any traffic aggregate following a general distribution G, s is the deterministic server

capacity in packets per time unit related to D, and n is the number of queues. For

comparison, delay, packet loss and throughput are studied in the absence of traffic

aggregation, where each traffic type is fed to its own queue. The traffic streams have

similar long-term intensity, and each queue can either be allocated capacity statically or

dynamically. In the former case, all resources are simply divided into n equal blocks

 32

allocated to the queues. In dynamic capacity allocation, a queue is configured for a

capacity determined by the entropy of the traffic it is fed with.

 By using entropy, an aggregation logic can be formulated based on a single

parameter. The entropy of a traffic trace is a measure of its information content or,

equivalently, its “randomness”. The more similar to a uniform distribution the traffic is,

the higher the entropy. In this thesis scheme, the instantaneous traffic descriptor is

assumed and available from every node at all times. It is sufficient to let the traffic be

described by the number of packets arriving at each discrete time instant (of some

convenient granularity) of each source type.

 The statistical multiplexing gain by aggregation of traffic increases the utilisation

of the queue resources and thereby likely improves the throughput and the QoS for all

traffic types. Heuristically, the idea is that short-memory traffic should be allocated

resources sufficient to provide services with low (but non-zero) overflow probability. At

the same time, the variability of the self-similar traffic can be expected to be limited by

the scaled buffer size. The QoS parameters used are the delay and packet loss for each

queue during the simulation time frame, from which the total and maximum delay and

packet loss of the node are determined. It is assumed that the SDN Orchestrator can

measure the traffic intensity of each traffic type so that the control logic can decide which

two traffic types to aggregate onto a single server, leaving the third traffic type on a

separate server to avoid bandwidth starvation of any of the traffic types.

3.5 Wavelet Analysis

In analysis of communication networks, different characteristics appear on

different scales. Wavelets are mathematical tools for analysing time series or images by

decomposing them with respect to different scales. A Wavelet is a “small wave”, which

essentially grows and decays in a limited time period. A comprehensive exposition on

wavelet analysis of time series can be found in [39]. See also [38] for wavelet analysis of

long-range dependent processes. A wavelet transform is a representation of a signal – in

this case packet arrivals – that allows decomposition into fluctuations on different scales.

The discrete wavelet transform (DWT) is defined on discrete time instances that

 33

correspond to the sampling rate in the system. A multiresolution analysis is such a

decomposition which is aligned in time. Due to its construction, it is a suitable method to

analyse self-similar.

 In a continuous time, a wavelet is a transform that satisfies

 𝜓 𝑢 𝑑𝑢 = 0
∞

-∞
 (3.24)

 𝜓 𝑢 𝑑𝑢 = 1
∞

-∞
	, (3.25)

for some kernel (or filter) 𝜓 𝑢 , together with other regularity conditions. The kernel can

be chosen in many ways and this generates different types of wavelet transforms. The

discrete wavelet transform can be regarded as an approximation to the continuous wavelet

transform. Consider the real-valued wavelet filter 𝒲 with filter coefficients {ℎ� ∶ 𝑙 =

0, . . . , 𝐿 − 1} where the width L of the filter is an even integer, so that ℎx ≠ 0, ℎ�-. ≠ 0.

define ℎ� = 0 for 𝑙 < 0 and 𝑙 ≥ 𝐿. A wavelet filter must satisfy

 ℎ� = 0
�-.

�Lx

	, (3.26)

 ℎ�@ = 1
�-.

�Lx

	, (3.27)

 ℎ�ℎ�T@K

�-.

�Lx

= ℎ�ℎ�T@K

∞

�L-∞

= 0,					𝑛 ≠ 0. (3.28)

An interesting and important fact is that the wavelet coefficients are

approximately uncorrelated. The DWT therefore uncorrelated even highly correlated

series. Let 𝑿 be a time series represented by a column vector and let 𝑾 =𝒲𝑿, where 𝒲

is the discrete wavelet filter. Define the wavelet details as 𝒟D = 𝒲D
�𝑾𝒋,			𝑗 =

1, , 𝐽	and 𝒮� = 𝒱��𝑽�, where 𝒱 is the scaling filter. Then

 𝑿 = 𝒟D + 𝒮�

�

DL.

 (3.29)

is called a multiresolution analysis of 𝑿. The multiresolution forms an additive

decomposition where each component can be associated with a particular scale 𝜆D = 2D.

 34

 The Daubechies D (4) wavelet filter is based on the filter coefficients

 ℎx =
1 − 3
4 2

	; (3.30)

 ℎ. =
−3 + 3
4 2

	; (3.31)

 ℎ@ =
3 + 3
4 2

	; (3.32)

 ℎ� =
−1 − 3
4 2

	; (3.33)

Let 𝒯 be the time shift operator defined by

 𝒯𝑿 = 𝑋�-., 𝑋x, 𝑋., . . . , 𝑋�-@ (3.34)

Let 𝒲B denote the 𝑖Q�	 row in the wavelet filter. Then the rows in the wavelet

transformation matrix 𝒲 are related by 𝒲BT. = 𝒯@𝒲B and

 𝒲 =

ℎ. ℎx 0 0 ⋯ 0 0 ℎ� ℎ@
ℎ� ℎ@ ℎ. ℎx ⋯ 0 0 0 0
0 0 ℎ� ℎ@ ⋯ 0 0 0 0
0 0 0 0 ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 0 0 0 0
0 0 0 0 ⋯ 0 0 0 0
0 0 0 0 ⋯ ℎ. ℎx 0 0
0 0 0 0 ⋯ ℎ� ℎ@ ℎ. ℎx

 (3.35)

The pyramid algorithm provides an efficient algorithm to compute the DWT of a

time series. The pyramid algorithm can be expressed in linear matrix operations as

follows:

Step 1: Define the 𝑁×�
@
	matrices

 𝒲. =

ℎx ℎ. ℎ@ ℎ� 0 0 ⋯ 0 0 0 0
0 0 ℎx ℎ. ℎ@ ℎ� ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 ⋯ ℎx ℎ. ℎ@ ℎ�
ℎ@ ℎ� 0 0 0 0 ⋯ 0 0 ℎx ℎ.

 (3.36)

 𝒱. =

𝑔x 𝑔. 𝑔@ 𝑔� 0 0 ⋯ 0 0 0 0
0 0 𝑔x 𝑔. 𝑔@ 𝑔� ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 ⋯ 𝑔x 𝑔. 𝑔@ 𝑔�
𝑔@ 𝑔� 0 0 0 0 ⋯ 0 0 𝑔x 𝑔.

 (3.37)

where ℎ. and 𝑔. are found from (3.8) and 𝑔� = (−1)�T.ℎ�-.-�.

 35

Step 2: Multiply the time series vector 𝑿 with 𝒲. and 𝒱., respectively, which yields the

first order wavelet coefficients and scaling coefficients:

 𝑾. = 𝒲𝟏𝑿 (3.38)

 𝑽. = 𝒱.𝑿.		

(3.39)

Divide 𝑁	by 2, goto step 1 and apply the filters to the data vector 𝑽..

Step j: Let 𝑁 ∶= 	𝑁D = 𝑁/2D, goto step 1 and apply the filters to the data vector 𝑽D-..

Repeat wavelet transform of 𝑿 is given by

 𝑾 =

𝑾.
⋮
𝑾�
𝑽�

		. (3.40)

Unfortunately, the DWT requires that the number of data points is a power of 2. This

requirement is relaxed for the Maximum Overlap Discrete Wavelet Transform

(MODWT), which is well-defined for any sample size 𝑁. The MODWT is also suitable

for multiresolution analysis. Define the maximal overlap discrete wavelet transform

wavelet filter, ℎ� ∶ 	 ℎ� ≡ ℎ�/ 2 and the maximal overlap discrete wavelet transform

scaling filter, 𝑔� ∶ 	 𝑔� ≡ 𝑔�/ 2 so that

 ℎ� = 0
�-.

�Lx

	, (3.41)

 ℎ�@ =
1
2

�-.

�Lx

	, (3.42)

 ℎ�ℎ�T@K

∞

�L-∞		

= 0, (3.43)

for all nonzero integers 𝑛. This gives the first level MODWT 𝐽x = 1

 𝑊.,Q = ℎ�𝑋Q-�					R£y	�

�-.

�Lx

	, (3.44)

 𝑉.,Q = 𝑔�𝑋Q-�					R£y	�

�-.

�Lx

	, (3.45)

 36

for 𝑡 = 0, . . . , 𝑁 − 1. By repeating this operation on 𝑉.,Q gives the details on successively

longer scales.

 In the multiresolution analysis, the partial time series on different scales add up to

yield the original time series itself. Illustrations of these partial time series show a strictly

positive result as required. In the following, multiresolution analyses of Markovian, self-

similar and aggregate traffic are illustrated. A Daubechies MODWT of width 𝐿 = 4	is

used. The figures show, from the top, fluctuations on levels 𝐽 = 1, 2, . . . 5, the details, and

the smooth on level 𝐽 = 5.	Multiresolution analyses up to level 𝐽x = 5 of Poisson and

MAP traffic are shown in Figure 3.5 and 3.6, respectively. Note the rapidly decreasing

amplitudes on large scales. This indicates that the traffic is fairly regular and without

causing long periods of saturation in a queue, provided that the intensity is less than the

processing capacity 𝜆 < 𝑠 .

Figure 3.5: Multiresolution analysis of Poisson traffic

 37

Figure 3.6: Multiresolution analysis of MAP traffic

 For the fBm, the multiresolution analysis (Figure 3.7) shows large variations on

both short and long scales. Even if the average load is lower than the processing capacity

in the queue, there are relatively long periods of time where the workload in a queue

builds up and causes congestion. Comparing the multiresolution analyses of the total

aggregate traffic shown in Figure 3.8 and some of the Bellcore used in [31] and shown in

Figure 3.9, reveals similar behaviour on both short and long scales. Notably, the

amplitude on longer scales does not decrease significantly, but remains between 10-20%

of the first details.

 38

Figure 3.7: Multiresolution analysis of fBm traffic

Figure 3.8: Multiresolution analysis of total simulated traffic

 39

Figure 3.9: Multiresolution analysis of Bellcore traffic [57]

3.6 Chapter Summary

 This chapter conceptually using entropy as a single traffic aggregation decision

parameter. Entropy is not necessarily the best, but it is a single characterizing quantity

and therefore convenient to use as a decision parameter. Most importantly, however, is

that it can be efficiently measured in high-speed networks. At gigabyte rates, packets

arrive at nanosecond intervals, and therefore streaming data algorithms need to be used

for its estimation [59][60][62]. Using the entropy is convenient because some

parsimonious characterization of the traffic which then would allow for truly real-time

congestion control is needed. The investigation into traffic aggregation is to improve

throughput and performance. As in the multiresolution analysis, a time series X is

expressed as a sum of J vectors, each of which contains a time series related to X on a

particular scale. This decomposition shows variations in X from high to low frequency,

which is very useful to illustrate the characteristics of different traffic types [58].

 40

Chapter 4

OPTIMAL ROUTING FOR CONGESTION CONTROL

4.1 Introduction

Optimal routing is a network optimisation which provides route optimisation on

load balancing mechanisms. The routes are chosen so that the aggregation along the

routes either minimises the total end-to-end delay, or the maximum end-to-end delay. The

optimal routing provides "fairness", that trading average performance for better worst

performance. At the end of the day, as long as service level agreements are fulfilled,

carriers would target the worst performance.

4.2 The Workload Management Process

Consider a single server queue in discrete time under a first-come first-served

(FCFS) queueing discipline. Assume a single class of jobs, which can be justified if

different traffic types are mixing into a single traffic stream without any priorities

assigned to any of the traffic types. Now the following two fundamental and rather natural

assumptions in a system is said to be work conserving if

(1) No servers are idle when there is at least one job waiting,

(2) The service times are independent of the queue length.

For a discrete-time queue, a time stamp 𝑡 represents a time interval between 𝑡 and 𝑡 + 1.

Thus, let 𝐴Q be the amount of additional jobs arriving at the queue at time 𝑡, and 𝑆Q be the

amount of jobs processed by the server at this time. Then the delay of jobs in a queue,

represented by the queue lengths 𝑄Q, can be described by

 𝑄QT. = max 0, 𝑄Q + 𝐴Q − 𝑆Q , (4.1)

 41

known as Lindley’s equation [38]. This equation is the basis of the simulator, described

in [Section 5.8]. Note that the queue length never can be negative, so it is not possible to

save processing power when the queue is idle.

 This thesis defines work load as the content of the queue plus arriving jobs minus

processed jobs. The net change in work load can be written 𝑈Q = 𝐴Q − 𝑆Q, and Equation

(4.1) can be expressed as

 𝑄QT. = max 0, 𝑄Q + 𝑈Q . (4.2)

Sometimes this recursion is used from a past moment in time up to the present time. Then

the time index representing the past time is negative. Consider the first step in the

recursive from 𝑡 = −1 to 𝑡 = 0,

 𝑄x = max 0, 𝑄-. + 𝐴-. − 𝑆-. . (4.3)

By letting 𝑈Q = 𝐴-Q − 𝑆-Q, changing of sign in the index of 𝑈 for convenience and

iteration (4.3), make

 𝑄x = max 0, 𝑈. + 𝑄-. (4.4)

 							= max 0, 𝑈. + max 0, 𝑄-@ + 𝑈@ (4.5)

 							= max 0, 𝑈., 𝑈. + 𝑈@ + 𝑄-@ . (4.6)

 The first equation says that the queue length at time 𝑡 is the work arriving minus

the work processed in one-time step, plus the previous queue length. On the second line,

the expression for 𝑄 shifted in time by using the recursion, and on the third line, the

max{.} operator is “moved out” according to the relation 𝑈. + max 0, 𝑈@ + 𝑄-@ =

max 𝑈. + 0, 𝑈. + 𝑈@ + 𝑄-@ . By continuing the recursion, a sequence with an

increasing number of terms is obtained, representing the net change in work load at time

𝑡. Denoting the sum of work load changes by 𝑊Q = 𝑈. + 𝑈@ +⋯	𝑈Q, make

 𝑄x = max 𝑊x,𝑊.,… ,𝑊Q + 𝑄-Q , (4.7)

where 𝑊x	is defined as 𝑊x = 0. 𝑊Q is called the workload process. If there is some finite

time – 𝜏 in the past when the queue was empty, then

 𝑄x = max 𝑊x,𝑊.,… ,𝑊« . (4.8)

 42

An example of a work load process is shown in Figure 4.1.

 Supposing that the queue has been running for a long time, and that it is stable,

that is

 𝑬(𝐴Q) < 𝑬(𝑆Q) (4.9)

holds. The stability condition implies that the mean arriving work is less than the mean

processed work. This assumption is necessary – otherwise a queue with a finite buffer

would constantly overflow.

Figure 4.1: The workload process for a GI/G/1 queue [29].

 If Equation (4.9) holds, then the queue must be empty at some point in time. It

then follows that the steady state queue length is independent of the initial queue length.

In this case, the steady state queue length 𝑄 can be written

 𝑄 = max
Q¬x

𝑊Q. (4.10)

provided that the stability condition (4.9) is satisfied. The equation (4.10) is derived in

the reference. The maximum (or supremum) over t in the limit must be constant when the

workload W is the aggregation of arrivals minus departures, and the remaining queue

content carries over from event to event. This reflects the steady-state queue length [33].

This is a general result for a GI/G/1 queue (where GI is short for Generally distributed

and Independent arrivals). For first-come first-served queueing systems the delay is equal

to the work load function at the time of the arrival of a job.

 43

 4.3 Theory of Large Deviations

This thesis shows that the queue length distribution is related to the work load

process. Since the events that occur relatively seldom is interested, such as buffer

overflow, the theory of large deviations can be used to obtain some approximate results.

Large deviations are used to analyse probability distributions at their tails, far away from

the distribution mean. Suppose to have a queue with a buffer of size 𝑏 . Taking the

probability on both sides of Equation (4.10) gives the packet loss probability

 𝑷(𝑄 > 𝑏 = 𝑷 (sup
Q¬x

𝑊Q > 0). (4.11)

Now, the inequality can be used as

 𝑷(sup
Q¬x

𝑊Q > 𝑏 = 𝑷 ∪Q¬x 𝑊Q > 𝑏 sup
Q¬x

	𝑷 𝑊Q > 0 , (4.12)

which for large 𝑏 leads to the approximation

 𝑷 max
Q¬x

𝑊Q > 𝑏 ≈ sup
Q¬x

𝑷	 𝑊Q > 𝑏 . (4.13)

 The approximation implies that when the probabilities 𝑷 𝑊Q > 𝑏 decay

sufficiently fast with increasing 𝑏 , the left-hand side of Equation (4.13) can be

approximated by its largest term. This probability can be interpreted as the fraction of

time when then queue length 𝑄 exceeds 𝑏. The asymptotic form of this probability is

given by Cramér’s theorem.

Theorem 4.2.1. Let 𝑋., 𝑋@, 𝑋�, …	be a sequence of bounded, independent and identically

distributed random variables with mean 𝜇, and let 𝑆K be the sum of (the first) n variables,

and

 𝑀K =
1
𝑛
𝑆K =

1
𝑛
𝑋. +⋯+	𝑋K (4.14)

denote the empirical mean of 𝑆K. The the tails of the probability distribution of 𝑆K decay

exponentially with increasing n at a rate given by a convex rate function I(x)

 𝑷 𝑀K > 𝑥 ≍ 𝑒-K³(´)						𝑓𝑜𝑟	𝑥 > 𝜇 (4.15)

 𝑷 𝑀K > 𝑥 ≍ 𝑒-K³(´)						𝑓𝑜𝑟	𝑥 < 𝜇 (4.16)

 44

The sign ≍ (asymptotically equal to) means that the expressions on the left hand side

tends to the right hand side as 𝑛 tends to infinity. For a proof, see for example [33].

 There is a close relationship between the rate function and the scaled CGF,

denoted Λ 𝜃 . The CGF is the logarithm of the moment generation function, 𝑀 𝜃 ,	which

is defined as

 𝑀 𝜃 = 𝑬 𝑒·¸ = 𝑒·´𝑓 𝑥 𝑑𝑥, (4.17)

where 𝑋 is a random variable with probability density function 𝑓(𝑥). The CGF is then

Λ 𝜃 = ln𝑀(𝜃). These functions can be used to compute the moments or cumulants of

a distribution. The values at the origin are

 𝑀 0 = 1 (4.18)

 Λ 0 = 0, (4.19)

and the mean and variance can be computes as

 𝜇 = 𝑬 𝑋 =
𝑑𝑀(𝜃)
𝑑𝜃

|·Lx =
𝑑Λ(𝜃)
𝑑𝜃

|·Lx (4.20)

 𝜎@ = 𝑉𝑎𝑟 𝑋 =
𝑑@𝑀(𝜃)
𝑑𝜃@

|·Lx =
𝑑@Λ(𝜃)
𝑑𝜃@

|·Lx +
𝑑Λ(𝜃)
𝑑𝜃

|·Lx
@

		. (4.21)

 A convenient property of the scaled CGF is its additivity,

 𝛬¸T¼ 𝜃 = log𝑬 𝑒·(¸T¼) = log 𝑬 𝑒·¸ 	𝑬 𝑒·¼ (4.22)

 																		= log 𝑬 𝑒·¸ + log 𝑬 𝑒·¼ = 𝛬¸ 𝜃 + 𝛬¼(𝜃). (4.23)

4.3 The Chernoff Formula

In order to compute the rate function in Cramér’s theorem (4.2.1) for a sequence

of independent random variables, Chernoff’s Formula can be used. The formula is

derived by finding an upper bound on the tail probabilities. Let 𝑋., 𝑋@, …	, 𝑋K	 be

independent and identically distributed random variables with average 𝑀K =
.
K
𝑋., 𝑋@, …	, 𝑋K . An upper bound on the probability 𝑷 𝑀K > 𝑥 can be defined as

follows. Let 𝐼À(.) be the indicator function of a set 𝐴 ⊂ ℝ such that

 𝐼À 𝑥 ≜ 1
0					

𝑖𝑓	𝑥 ∈ 𝐴
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.24)

 45

Consider an interval 𝐴 = 𝑎,∞ on the x-axis. Then 𝐼À 𝑥 is a step function with value

one if 𝑥 ∈ 𝑎,∞ and zero otherwise. Figure 4.2 shows graphically that for any number

𝑎 and positive number 𝜃, 𝐼[P,z) ≤ 𝑒·´/𝑒·P. Note that 𝑬 𝐼 KP,z (𝑛𝑀K) = 𝑷 𝑛𝑀K >

𝑛𝑎 , and

 𝑷 𝑀K > 𝑎 = 𝑷 𝑛𝑀K > 𝑛𝑎 (4.25)

 																													= 𝑬 𝐼[KP,z) 𝑛𝑀K (4.26)

 																											≤ 𝑬 𝑒·KÅÆ/𝑒·KP (4.27)

 																																								= 	 𝑒-·KP𝑬 𝑒· ¸ÇT⋯T	¸Æ (4.28)

 																															= 𝑒-·KP 𝑬 𝑒·¸È
K

 (4.29)

where the random variables 𝑋B are independent and identically distributed is assumed.

Denoting the scaled cumulant generating function by 𝛬 𝜃 = ln 𝑬 𝑒·¸Ç ,	this thesis

have 𝑷 𝑀K > 𝑎 ≤ 𝑒-K ·P-É · . Since this holds for each 𝜃 can be optimised over 𝜃

which gives

 𝑷 𝑀K > 𝑎 ≤ min
·Ëx

𝑒-K ·P-É · = exp −𝑛max
·Ëx

𝜃𝑎 − 𝛬 𝜃 . (4.30)

If 𝑎 is greater than the mean 𝑚, a lower bound is given by

 𝑷 𝑀K > 𝑎 ≍ exp −𝑛max
·Ëx

𝜃𝑎 − 𝛬 𝜃 . (4.31)

The result of this argument is known as Chernoff’s Formula.

Theorem 4.3.1 (Chernoff’s Formula). The rate function can be calculated from the

cumulant generating function 𝛬 𝜃 using

 𝐼 𝑥 = max
·

𝑥𝜃 − 𝛬(𝜃) , (4.32)

with 𝛬(.) defined by

 𝛬(𝜃) ≜ 𝑙𝑛 𝑬 𝑒·¸È (4.33)

 46

Figure 4.2: Chernoff’s formula (with 𝜃 = 0.5 and 𝑥 = 10).

 The asymptotic results in Theorem 4.2.1 and Equation (4.32) can now be used to

estimate the queue length 𝑄 , and find an approximate probability distribution of

𝑷 𝑄 ≥ 𝑏 for large 𝑏. Figure 4.3 shows log𝑷 𝑄 > 𝑏 for an M/D/1 queue and an M/M/1

queue. For both queues the traffic load is 𝜌 = 𝑬 ÀÍ
𝑬 ÎÍ

= 0.7 . the packet loss rate is

asymptotically exponential in 𝑏 for large 𝑏 in both cases, but with different slopes.

 The exponential decay may be expressed as

 𝑷 𝑄 > 𝑏 ≍ 𝑒-ÏÐ	, (4.34)

with decay rate 𝛿 determined from the rate function of the workload process by

 𝛿 = min
´

𝐼(𝑥)
𝑥
	. (4.35)

There is an important relationship between the rate function, which describes the

macroscopic properties of the traffic, and entropy, describing its microscopic states. The

entropy can be interpreted as the information content in a distribution, or its “randomness”.

The more similar to a uniform distribution, the higher the entropy. Formally, the entropy

for a discrete distribution 𝑋 is defined as

 𝐻 𝑋 = − 𝑝B log 𝑝B,
B

 (4.36)

 47

where 𝑝B is the probability of occupying state 𝑖 . In practice, the number of packets

arriving at any time instant represent a state where 𝑝B is the frequency of occupying a

particular state divided by the sample size. The entropy has been proposed as a traffic

descriptor in the literature. Crosby et al. [6] suggest that the entropy is sufficient to

estimate cell loss and delay in ATM networks. Tuan and Park [48] also uses entropy to

measure the information content of long-range dependent traffic for classification of the

traffic into load levels.

Figure 4.3: Comparison between an M/D/1 and an M/M/1 queue with the same traffic

intensity 𝜌 = 0.7 where the M/D/1 queue has the steeper decay.

4.4 Congestion Control

The aim of congestion control in communication networks is to provide services

to its users that meet certain performance criteria, often represented by a set of QoS

parameters. The performance criteria typically differ between services. One of the

challenges in meeting QoS requirements is avoiding bandwidth starvation of certain

traffic types by others. This may happen when one or more traffic types are given

unconditional priorities. Another cause of congestion is traffic long-range dependence.

Congestion control by using two fundamental techniques is studied for efficient resource

utilisation – traffic aggregation and dynamic routing. Traffic aggregation refers to the

 48

resource utilisation in the nodes, that is, processing capacity and buffer size. Dynamic

routing, on the other hand, aims at directing traffic so that the overall network

performance is maximised. It affects both loads at the nodes and transmission resources.

In this study, however, the transmission resources are assumed to have sufficient capacity

for any traffic stream, and do not induce any significant propagation delay. This

assumption is reasonable in optical Dense Wavelength Division Multiplexing (DWDM)

backbone networks. WDM is promoted by the industry as the de facto preferred transport

medium in 4G/5G networks. Several initiatives such as the 5G-XHaul are investigating

the use of WDM in 5G. 5G-XHaul is a European Union funded project to investigate the

use of WDM-PON technology for mobile backhaul and mobile fronthaul. The 5G-XHaul

initiative is part of the EU Horizon 2020 5G Infrastructure Public-Private Partnership (5G

PPP). For the purpose of the thesis, the assumption of using WDM allows disregarding

capacity limitations on the links [55].

 The distinguish between congestion control on flow level, such as TCP (also

referred to as congestion avoidance), and congestion control on network level, being the

focus of this investigation. On the network level, the static QoS guarantees implemented

by resource reservation, or soft QoS guarantees implemented through traffic prioritisation

and scheduling. As noted in [14], such QoS enforcement may adversely affect traffic not

subjected to QoS restrictions and lead to bandwidth starvation. The described algorithm

does not impose any QoS restrictions. It is designed to allocate resources so that it is being

utilised in the best possible way. The only physical restriction affecting the traffic is the

scaling of node resources with respect to traffic entropy.

 Letting 𝜆 be the arrival rate and 𝛾 the throughput, a common type of feedback

congestion control on flow level has the form

𝑑𝜆
𝑑𝑡

= \𝜖,
−𝛼𝜆,			

𝑖𝑓	𝑑𝛾/𝑑𝜆,
𝑖𝑓	𝑑𝛾/𝑑𝜆,

			, (4.37)

where 𝜖, 𝛼 > 0 are constants. Thus, if an increase in traffic flow rate results in an increase

in throughput 𝑑𝛾/𝑑𝜆 > 0 , then the flow is increased linearly by 𝜖, whereas if an

increase in flow rate leads to a decrease in throughput 𝑑𝛾/𝑑𝜆 < 0 , then the flow rate is

decreased exponentially. Gerla and Kleinrock [19] describes different effects of

congestion and propose mechanisms to mitigate these effects. Most notably are variants

of resource reservation, where a single type of traffic is prevented from fully occupying

 49

a network resource (for example, a link or a buffer). Setting rules for resource allocation

have been shown to be efficient in avoiding congestion and network instability effects.

Rather than using a protocol-based congestion control like Equation (4.37), we

investigate how available network resources best can be utilised is investigated and how

that affects performance on a network level. By pointing it out, however, that combination

of congestion control methods on different levels need to be implemented to have a robust

network operation, such as admission control and rate control on flow level (such as TCP-

controlled flows).

4.4.1 Congestion Control by Optimal Routing

A natural method for congestion control is using routes involving nodes with low

load. Such routing achieves load balancing of the network resources. With a central

knowledge of the load and average delay of each node, an end-to-end minimum delay

route can in principle be found by solving a shortest path problem for each flow. However,

shortest path algorithms (for example Dijkstra’s algorithm) are based on link properties,

whereas here have node properties. Therefore, construct a link cost matrix from the node

delays as follows.

 Denote the delay incurred by node 𝑖 by 𝛿B . Assuming independence between

nodes, so that the delays are additive, the delay on path 𝑝 can be written

 𝛿Ô = 𝛿BÕ

�Õ

BÕ

			, (4.38)

where the nodes on path 𝑝 are indexed 1,… ,𝑁Ô. If these delays are mapped onto links,

where each link along path 𝑝 receives a fictitious delay ∆ÔÈ,ÔÈT.

 ∆BÕ=
𝛿BÕ
2
+
𝛿BÕT.
2

	, (4.39)

see that

 𝛿Ô = 𝑁Ô − 1∆BÕ +
BÕL.

𝛿.
2
+
𝛿�Õ
2
	. (4.40)

 50

Since the last terms are the delay at the ends of the path, the shortest path has not been

affected. Applying Dijkstra’s algorithm on this link cost structure then gives the minimum

delay path.

4.5 Chapter Summary

In this chapter, we justify out simulation set-up by some general arguments from queueing

theory and large deviations theory. Firstly, we may conclude that exact calculation of the

QoS in a network is hard, or more specifically #P-complete. This follows from the fact

that finding the exact blocking in a general loss network is #P-complete [34], and that

blocking, just like delay and packet loss, are related to the properties of queues offered

traffic that is leaving other queues. Note that #P-complete problem is at least as hard as

an NP-complete problem, and for such problems even approximations are difficult to find.

Exact calculation of traffic and QoS parameters in a meshed network with heterogeneous

traffic and dynamic routing is in practice impossible. We therefore revert to simulation to

verify the efficiency of dynamic routing, as expressed by the QoS parameters delay,

packet loss and throughput. These quantities can easily be deducted from the simulated

queues representing routers or switches.

 51

Chapter 5

Simulation and Results

5.1 Introduction

In this study, the end-to-end delay as the main optimisation target parameter and

performance indicator are used. Two other system characteristics are also measured;

packet loss and throughput. Packet loss is considered less important than delay due to the

retransmission capabilities of TCP. Throughput, on the other hand, is a measure of

resource utilisation rather than service quality. It is therefore of less importance when

considering end-to-end connections in a network context. In this thesis, the investigation

will be focus more to performance on network level rather than on flow level. In this

context, throughput is not an additive measure, since large throughput downstream would

not be useful when the throughput upstream is lower.

 For the performance analysis, both the total delay and the maximum delay of end-

to-end connections are determined. In addition of being a measure of service quality, the

delay can also be seen as a measure of the load of the individual queues, since it is directly

related to the average queue length. There is also an obvious trade-off between delay and

packet loss. The probability of packet loss increases with decreasing buffer size, but at

the same time, the delay decreases. Indeed, small buffers have been suggested for self-

similar traffic [38]. The principle is that for such traffic, it is better to discard packets than

causing overload with large delays as a consequence.

5.2 Simulation of Congestion Control

In the simulation, the performance improvements of the proposed traffic

aggregation and routing strategies is shown. The use of simulation can be motivated by

two facts. Firstly, an analytic treatment of the strategies is #𝒫-complete and additional

 52

complexity is introduced by traffic long-range dependence, which consequently affects

all routes and performance measures. Secondly, the control logic would be based on

statistical network properties, so a simulation approach directly gives a realistic

“blueprint” of the algorithm. To carry out simulation of congestion control strategies,

several criteria needs to be defined

(1) Network topology

(2) Router capabilities

(3) End-to-end traffic distribution

(4) Simulated load from the different traffic types

(5) Aggregation and routing logic, and QoS evaluation

In simulating the effect of the congestion control logic, the network topology fixed

is kept. In the simulations, a network topology consisting of seven nodes is used. Please

refer Figure 5.1. These nodes are assumed to be identical for the sake of clarity of the

performance evaluation results. The end-to-end traffic distribution is randomly sampled

to allow for maximum flexibility in routing scenarios. Each router is fed with an

individually simulated traffic load, consisting of Poisson, MAP, and fBm traffic. The

intensity of the simulated traffic traces is the same for each node, again to simplify the

interpretation of the simulation results.

 The control logic performs measurements on incoming traffic streams and is

assumed to possess information of the queue states of the nodes and the traffic distribution

matrix. Based on this information, it configures the nodes depending on the aggregated

traffic characteristics and determines end-to-end routes in the network. Finally, the QoS

parameters delay and packet loss in each node are collected and the end-to-end parameters

are determined. A comparison of both the total sum of end-to-end delays, packet losses,

and throughputs, and the sums of maximum end-to-end delays, packet losses and

throughputs are used for performance evaluation. The logical representation of the

congestion controlled network is shown in Figure 1.1. It consists of a network of nodes

(routers and switches) with high-speed optical links connecting to them, and a SDN

Orchestrator (hosting the central logic) that is able to pull traffic statistics and the states

of each node from the network, to configure buffer sizes and transmission rates in the

nodes, and to modify their forwarding tables. For a full flexibility in traffic generation,

node configuration, route optimisation, and detailed statistics, this thesis developed a

 53

simulation framework dedicated to the present study, rather than using SDN development

platforms like Mininet or NS-3. The simulator is written in Python, and was run on a 64-

bit dual-processor HP 6830s Linux Fedora 25 platform. Each simulation consists of

generating three traffic traces, each of size 512 (that is, 512 time steps), performing three

different aggregations, and calculating the resulting entropy for each node in the network.

Being a power of two, this is a convenient size for wavelet decomposition

(multiresolution analysis). Based on the entropy, the nodes are configured proportionally,

and the queues are simulated by feeding them with the computed traffic aggregates.

 Next, the performance measures are calculated and used to determine optimal

routes. The route optimisation is iterative and uses a fixed-point equation which

converges in a few iterations. In each step, the traffic aggregation at the nodes has to be

recalculated. Each iteration on the network runs for approximately 100 seconds on the

platform used. Each network scenario – route optimisation with respect to total end-to-

end delay or maximum end-to-end delay – is simulated 100 times to generate statistical

gain figures. The simulation is facilitated by using a G/D/n queue, which means that the

time steps are equidistant with 𝑡x = 0 and 𝑡K ∈ 𝑛 − 1 ℎ,𝑛ℎ , where ℎ is an arbitrary

time unit. The packet loss and delay induced in each node is calculated from the simulated

queue length distributions.

Figure 5.1: Dijkstra’s algorithm using delays along a path as cost, mapped onto the

links (red).

 54

5.3 Components of Network Simulation

In this section, the components used in this research are briefly explained. As

mention in the subsection below, the reason why the proposed network topology is

justified, how the router capabilities is being initialised, and the traffic distribution used

in the simulation.

5.3.1 Network Topology

The network topology is chosen so that there are sufficiently many routing

possibilities to yield interesting results and still small enough to allow for fast simulation.

The speed of simulation is imperative in generating a large number of cases, which is

necessary due to the self-similar nature of the traffic. The topology is a 3-connected

network, which is described in [29]. The 3-connectivity ensures a certain level of

resilience, which also implies path diversity. The network is modelled by a graph, on

which shortest paths are determined. Since the network topology is assumed given, the

shortest paths are determined with respect to delay, rather that distance, only the

connectivity matrix is used in most of the simulations by assuming that the links have

infinite capacity and induce zero delay. This is considered a good approximation for

optical fibre networks carrying moderate data volumes. To be able to compute the shortest

paths, however, the links are associated with a fictitious delay parameter deduced from

the router delays, as described in section 5.6.

The network topology is a 3-connected graph, which means that between any two

nodes there are (at least) 3 edge-disjoint paths. This fact, referred to as path diversity, is

used in the dynamic routing, where the path with the lowest total delay is chosen to

transport the traffic. The volume of traffic transported clearly affects the network load.

The traffic matrix is a random matrix with uniformly distributed entries that is regenerated

at each simulation run. The matrix is chosen so that for a large number of simulations,

the effects of the traffic distribution is levelled out even with a very general assumption

(uniform distribution). The order of flow mapping also influences the performance. The

effect of this mapping is abated by iteration of a fixed-point equation.

 55

5.3.2 Node Capabilities

The nodes are initially assigned a total processing and buffer capacity that can be

configured into 𝑛 queues, with the resources dynamically distributed among the queues.

The number 𝑛 of queues is here either 3, or 2, where 3 queues correspond to no traffic

aggregation and each traffic type simply is fed onto its own queue, and 2 queues

correspond to aggregation of two traffic types. Note that the single queue case is trivial

from the point of view of aggregation strategy, that is, how traffic should be aggregated.

The traffic separation by queues can in principle be implemented using (for example

traffic type identification) as discussed in Section 2.3.1.

 Whenever traffic aggregation is disabled, the processing and buffer capacity is

equally divided onto the three queues. When enabled, resources are divided

proportionally to the entropy of the aggregates. Traffic is represented by some capacity

unit, which can be thought of as packets. Simulation is carried out for traffic traces of

length 𝑛 = 512, following Lindley’s recursion

 𝑄QT. = max 0, 𝑄Q + 𝐴Q − 𝑆Q 	, (5.1)

where 𝑄Q is the buffer content, 𝐴Q denotes arriving packets and 𝑆Q serviced packets

between time 𝑡 and 𝑡 + 1. Whenever the number of arriving packets exceeds the free

buffer space, so that 𝐴Q > 𝐵 − 𝑄Q , loss of 𝐴Q − (𝐵 − 𝑄Q) packets occur [33][54].

Assuming unit time increments, the queue delay is calculated as the expected queue

length, determined for each queue. Letting 𝑝(𝑘) denote the probability of finding 𝑘

packets in the buffer gives the delay

 𝑬 𝑑 = 𝑘𝑝(𝑘)
Ø

}L.

 (5.2)

Packet loss is measured by counting the number of packets exceeding system capacity,

and throughput are the number of forwarded packets. The first equation can be taken as

a definition of Lindley’s equation. It means that the queue content at time 𝑡 equals the

previous queue content plus arrived traffic minus departed traffic, with the condition that

the queue can never be negative. The second equation is a standard result for the mean

number in a system [33][54][61].

 56

5.3.3 Traffic Distribution

For each simulation scenario, the end-to-end traffic distribution matrix –

expressed as a stochastic matrix – is simulated. For a stochastic matrix, the row sum must

equal unity. The minimum assumption on the distribution is a uniform distribution

𝑝BD	~	𝑈(0,1) of end-to-end destination probabilities, ensuring that the row sum is unity.

The uniform distribution may not be appropriate for real networks, but in order to obtain

as general results as possible, a minimum of network specific assumptions needs to be

imposed. The same traffic distribution is used for each traffic type, for simplicity.

5.4 Traffic Simulation

The traffic is simulated independently for each type, and new traffic simulations

are carried out for each new scenario and node. The three traffic types Poisson, MAP and

fBm are simulated using the same traffic parameters in all cases to make the comparison

of aggregated traffic more discernable. The time scale is a generic time step reflecting the

packet arrival intensity and processing capacity of the nodes. To simplify the simulated

queue characteristics and traffic aggregation, we express the work load as a number of

packets, each assumed to be of equal length are expressed. These packets are generated

by one of the three traffic processes (Poisson, MAP, or fBm) the servers are assumed to

process packets with a constant bitrate, without any priority between traffic types. Using

such an experimental framework, the traffic in a network is mainly determined by

§ The intensity of the traffic types,

§ The traffic distribution on a network level, given by a traffic matrix,

§ The server capacities, and

§ Traffic aggregation and routing strategies.

To study the performance gain on a network level as free from market specific

assumptions as possible, the offered traffic intensity constant and node capacities uniform

are kept. The traffic distribution is uniform in order to stochastically spread its effect. The

important quantity is the quotient of the total mean arrival rate to the server processing

capacity (Equation 3.1), which should be close to the node capacity in order to obtain

performance measures of interest.

 57

5.4.1 Simulation of Poisson Processes

The Poisson arrivals are simulated using the following algorithm. Let

𝑁 𝑡 : 𝑡 ≥ 0 be the counting process of a Poisson process with rate 𝜆. Then 𝑁(1) is

Poisson distributed with mean 𝜆. Let 𝑌 = 𝑁 1 + 1 and 𝑡K = 𝑋. + 𝑋@ +⋯+ 𝑋K denote

the 𝑛Q� arrival of the Poisson process, where the 𝑋B are independent and identically

distributed according to an exponential distribution with rate 𝜆 . Note that 𝑌 =

min 𝑛 ≥ 1 ∶ 	 𝑡K > 1 = min 𝑛 ≥ 1 ∶ 	𝑋. + 𝑋@ +⋯+ 𝑋K > 1 is a stopping time.

Suppose the inverse transform method is used to generate independent and identically

distributed exponential inter-arrival times 𝑋B. Then can represent the variables as 𝑋B =

− .
)
ln	(𝑈B). Re-writing the expression for Y gives

 									𝑌 = min 𝑛 ≥ 1 ∶ ln 𝑈. + ln 𝑈@ + ⋯+ ln 𝑈K < −𝜆 (5.3)

 = min 𝑛 ≥ 1 ∶ ln 𝑈.𝑈@ …𝑈K < −𝜆 																										 (5.4)

 = min 𝑛 ≥ 1 ∶ 	𝑈.𝑈@ …𝑈K > 𝑒-) 																															 (5.5)

Therefore simulate 𝑌 by generating independent uniformly distributed variates 𝑈B,	and

taking the product of these variates until it first falls below 𝑒-). The number of uniformly

distributed variates in the product yields 𝑌. Then get the desired Poisson variate as 𝑋 =

𝑁 1 = 𝑌 − 1. Traffic traces of size 512 are generated in each simulation scenario.

5.4.2 Simulation of Markovian Additive Processes (MAP)

The MAP can be used to model and simulate bursty traffic, such as video sources.

The general model has a number of states, where the transition between the states is

controlled by a Markov chain. In this study, the MAP have two states only, a silent and

an active state, denoted 𝑑 and 𝑎, respectively. Denoting the traffic intensity by 𝑋Q, the

Markov chain controlling the transition between the two states is defined by the transition

probabilities

 𝑎 = 𝑷 𝑋Q = 1 𝑋Q-. = 0 , (5.6)

 𝑑 = 𝑷 𝑋Q = 0 𝑋Q-. = 1 . (5.7)

 58

The Markov chain is then represented by the matrix

 𝑀 = 1 − 𝑎 𝑎
𝑑 𝑑 − 1 , (5.8)

so that the steady state probabilities are given by

 𝜋y 	= 	
𝑑

𝑎 + 𝑑
		 (5.9)

 𝜋P 	= 	
𝑎

𝑎 + 𝑑
	. (5.10)

The smaller the conditional probabilities 𝑎 and 𝑑, the burstier is the resulting traffic. At

each time instant, the conditional probabilities of the sources being silent or active are

given by (5.6)-(5.7), keeping track of the states of the process at each time instant.

 The process simulation uses a training period to “burn in”, and a block of arrivals,

which amounts to aggregation of individual MAP sources. In the simulation, aggregation

of size 100 has been used. Traffic traces of size 512 are generated in each simulation

scenario. During one time step in the queue, this thesis can simulate state change of the

MAP by comparing the probabilities in the Markov chain with a uniformly distributed

random number 𝑢 = 𝑈(0,1). If the chain is in active state and 𝑢 < 𝑎, it is switched to

silent state. When in active state, the total packets of a block, say 𝑘 packets, are added to

the queue. When fed to the queue, a maximum amount of 𝑠 packets are processed and

removed from the queue in each time step. Simulation of queues with finite buffers are

easily accomplished in discrete time, and various performance metrics can be calculated

by introducing counters into the simulation process.

5.4.3 Simulation of fractional Brownian motion (fBm)

 A fBm can be simulated using the Cholesky method. It uses the Cholesky

decomposition of the covariance matrix, 𝐶 = ∑∑′, where ∑ is a lower triangle matrix of

the covariance matrix given by Equation (3.23). It can be shown that such a

decomposition exists whenever the autocovariance matrix is positive definite (and

symmetric, which is true by its construction). The simulated packet arrivals are then

obtained by multiplying the matrix ∑ by a vector of independent normal standard random

variables 𝜂 of suitable size, that is

 𝑿 = ∑𝜂 (5.11)

 59

It is necessary to restrict the resulting values to be equal to or greater than zero, since

traffic obviously cannot be negative. The traffic load is chosen so that the peak rate

exceeds the service rate 𝑠 of the queue in order to obtain interesting node performance

parameters, whereas the mean arrival rate must be slower than 𝑠. The Markov parameters

are chosen as in [29] with 𝑑 = 0.072 and 𝑎 = 0.028. With a router capacity of 𝑠 = 60

packets per time unit, this choice of parameters generates traffic with a peak rate

exceeding 𝑠, but with a mean rate less than 𝑠. This exact method of simulating fBm is

purely algebraic, based on the Cholesky decomposition of the covariance matrix. The

simulated process can be negative, but such results are discarded in the simulation.

5.5 Traffic Aggregation

The traffic aggregation logic is based on comparing the entropy for aggregated

and non—aggregated traffic streams. With three traffic types and two queues, two traffic

types can be aggregated, which can be done in three ways, and compare the resulting

entropies. The entropy is used in two steps. Firstly, the traffic types to aggregate is

determined. The decision of which traffic types to aggregate is made so that the aggregate

has an entropy as close as possible to the entropy of the non-aggregated traffic. The

entropy of the single traffic types in different simulations is such that for Poisson traffic,

it is high and nearly constant, whereas for fBm, the average is lower but with high

variability. The entropy of MAP traffic is somewhere in between. Therefore, decision of

aggregation is mainly driven by the behaviour of the fBm traffic. Next, the aggregated

and non-aggregated traffic is mapped onto two queues in the node. Here, the entropy is

used as a scaling parameter, where the capacity is allocated in proportion to the entropy.

This is a simple heuristic, which is applied both to processing capacity and buffer space.

More sophisticated control logic can be devised, but this simple principle suffices to study

the effect of traffic aggregation on heterogeneous traffic.

5.6 Routing Strategy

For the analysis on a network level, this thesis assumes that paths can be chosen

optimally with respect to delay. This means that an end-to-end connection is set up on the

route which incurs the least amount of delay. Note that a shortest path can be defined with

 60

respect to any numerical weight, not only physical distance. Such weights may be cost,

delay or some reliability measure. To find a minimum delay path, this thesis uses the

algorithm by Dijkstra, see for example [29].

 In finding an end-to-end optimal path, start from the first end node 𝑠, and scan its

neighbours 𝑗 for the lowest weight. Letting 𝑑	(𝑠, 𝑗) be the total weight going from 𝑠 to 𝑗,

the algorithm successively uses the relation

 𝑑	 𝑠, 𝑗 = min
B∈Î

𝑑	 𝑠, 𝑖 + 𝑑BD , (5.12)

where S is the set of nodes and 𝑑BD is the weight on edge (𝑖, 𝑗). The algorithm compares

the minimum weight paths going from 𝑠 to any node 𝑖, adding the weight going from 𝑖 to

𝑗. Dijkstra’s algorithm uses weights on edges, whereas the delay actually incurred in the

nodes, so node delays need to be mapped onto edges. This can be done since the delays,

just like distances, are positive and additive. The minimum delay route is determined

locally, and by using this route for a particular end-to-end connection, the node delays

would change. Since the global properties of minimum delay routing is the one to focus,

iterative procedure is needed where minimum delay routes are re-calculated as traffic are

added to the already determined minimum delay routes.

 To find the optimal end-to-end routing from a network perspective, we use a

fixed-point equation is used

 𝐹 ∆RBK = ∆RBK. (5.13)

Such fixed-point equations are commonly used to analyse blocking networks [29], where

𝐹(.) is a function of the total blocking on a route, given by Erlang’s B-formula. The

algorithm (and equation) is inspired by the Erlang fixed point theorem, which is based on

a fixed point iteration [63].	The blocking is a convex function of the load, just as the delay.

Assume that at least one such fixed point exists and that the equation converges to this

point (or points). This assumption is partly justified by the fact that the node delays are

limited and a function of traffic load. Thus, assuming delays incurred by the traffic offered

to the routers, this thesis sequentially determines the end-to-end minimum delay paths,

adding traffic to the nodes along the path corresponding to an end-to-end traffic matrix.

This gives the initial solution to the fixed-point equation (5.13). The minimum delay

routes are then successively re-calculated, using the previously defined edge delays,

updating the traffic on the routers along any computed path, and updating the edge delays

 61

accordingly. Interestingly, the fixed-point equation converges in many cases to two

solutions, leading to a hysteresis in the network delay. This stability phenomenon has also

been observed in blocking networks [20][29]. In blocking networks, which lack

centralised control, trunk reservation has been suggested as a stabilising strategy [20]. In

this case, the centralised logic selects the best network routes, using delay measurements

from the nodes.

5.7 Quality of Service Evaluation

A node consists of two or three queues, which are simulated independently in the

sense that once resources are assigned to a specific queue, these cannot be shared by

another queue in the node. The queues are fed with the aggregate or single type traffic,

represented by vectors of arriving packets. At each time instant, the queues are governed

by Lindley’s equation (4.1) with the constraint of limited buffer space B

 𝑄QT. =
			max 0, 𝑄Q + 𝐴Q − 𝑆Q
0																																		

			
𝑖𝑓	𝑄Q + 𝐴Q − 𝑆Q ≤ 𝐵	
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																		

∕	., (5.14)

which can be expressed 𝑄QT. = min max 0, 𝑄Q + 𝐴Q − 𝑆Q , 𝐵 . The arrivals 𝐴Q are given

by the vectors of offered load, and 𝑆Q = 𝑠 is a constant number of packets processed in

each time step.

 In the router simulator, at each time instant the number of lost packets is being

counted, that is 𝑌 = max 0, 𝑄Q − 𝐵 , where 𝑄 is the queue length in a queue with infinite

buffer. These are the packets in excess of router capacity, that is, the packets that are

being processed during the time step, and the free buffer space. By recording the number

of packets in the system at each simulation step (the state occupancy), the delay can be

determined. Whilst, from the recorded state occupancy, the state probabilities 𝑝K, and the

delay is given by

 𝛿B = 1
á

KLx

. 𝑝K (5.15)

packets per time step, and where C is the total router capacity. In the simulation, a M/D/1

queue is used, so the single queue services 1 packet per time step (and since it is

deterministic, exactly one packet is processed in each small time interval). The difference

in performance is measured using the standard “error” measure

 62

 ∆𝑚 =
𝑚£ −𝑚â

𝑚â
	, (5.16)

where 𝑚£	is the observed metric and 𝑚â is the reference metric. When 𝑚â is zero, the

metric degenerates, and sets as

 ∆𝑚 =
1
0
−1
				
𝑖𝑓	𝑚â = 0	𝑎𝑛𝑑	𝑚x > 0
𝑖𝑓	𝑚â = 0	𝑎𝑛𝑑	𝑚x = 0
𝑖𝑓	𝑚â = 0	𝑎𝑛𝑑	𝑚x < 0

			 (5.17)

As a general rule, the performance measure is being improved so that 0 ≥ ∆𝑚 ≥ 1 to

avoid large values whenever underlying metric is small. This also allows to represent the

difference in performance as a percentage figure. In order to make the percentage figures

comparable, the average number of affected packets is scaled; the number of buffered,

lost and forwarded packets to the total number of packets, respectively.

5.8 The Effect of Traffic Aggregation

The effect of traffic aggregation on need level is analysed, comparing two

aggregation strategies with the case of no aggregation, and recording delay, packet loss

and throughput. Each case is simulated 1000 times, where each case consists of the three

traffic types of size 512 time steps. Each case therefore consists of 512,000 simulation

points. Traffic aggregation in combination with optimal routing is discussed in Section

5.9.

5.8.1 Node Level Traffic Aggregation

Traffic aggregation on node level includes the operations of merging two of the

three traffic streams and configuring the node resources proportionally. This thesis

compares two cases of traffic aggregation; aggregation of real-time traffic, always

aggregating Poisson and MAP traffic, and dynamic aggregation, where traffic types are

aggregated so that the entropy of the two resulting traffic streams are equal as possible.

The entropy-based traffic aggregation is analysed in isolation to be able to assess its

efficiency and impact on performance on node level. The aggregation decision is based

on the entropy of each of the streams of voice, video, and data traffic. Aggregation is

performed so that the entropy of the traffic load in each channel is as equal as possible.

 63

 For each queue with capacity C (including buffer space),

 𝑛D𝛼D ≤ 𝐶,
�

DL.

 (5.18)

where N is the number of sources in an aggregate, and 𝛼D is the effective bandwidth of

the traffic flow 𝑗. Do not try to estimate the statistical multiplexing gain, but the gain in

the QoS triple consisting of delay, packet loss and throughput. In each simulation, the

total and maximum delay, the total and maximum packet loss and the total and maximum

throughput are collected, and compares that with the situation where no aggregation is

performed, using three queues, and resources are allocated equally between these queues.

The improvement is referred to as gain. The gain in throughput and performance are

compared by comparing the strategies of

(1) No aggregation, static mapping of traffic to equally configured queues

(2) Aggregation of real-time traffic sources (Poisson and MAP) mapped onto queues

with proportionally scaled resources

(3) Dynamic aggregation, where traffic is aggregated to make the entropy as equal as

possible between the two queues, and proportionally scaled resources

By measuring the change in total and maximum delay, packet loss and throughput

when compared to no aggregation, this thesis has descriptors of the relative performance

of each strategy. Clearly, the larger relative improvement the better. There is, however,

justification to order the performance statistics after importance, having;

(1) Maximum delay. The statistic measures the worst end-to-end delay, which is the

main performance indicator to be improved. It is, however, closely related to the

total delay, and the former should not be improved at the expense of the latter.

(2) Maximum and total packet loss. For real-time services, packet loss can lead to

severe quality degradation. For best effort traffic, however, packet loss is typically

compensated by retransmissions controlled by TCP. Also note the duality between

delay and packet loss; the larger the buffer, the longer delays and the smaller

packet loss. The change in total packet loss – if negative – should be small due to

its adverse effect on real-time traffic. Packet retransmission is not considered in

the study, since it is traffic dependent and leads to a bias in the throughput figures.

 64

(3) Total throughput. The statistic represents the utility of shared resources, and the

larger the increase, the better. The improvement is achieved through statistical

multiplexing of the traffic or increased buffering.

5.8.2 Real-Time/Non Real-Time Traffic Aggregation

 It has been suggested in the literature [9] that aggregation of real-time sources

would give the best QoS. The aggregation strategy is to aggregate real-time traffic,

justified by their similar characteristics and QoS demands, while keeping non real-time

traffic separate and denote this strategy RT/NRT for brevity. The node resources are

scaled in proportion to the entropy of the two traffic streams. On node level, a comparison

of the RT/NRT with the case of separate queues is shown in Figure 5.2.

Figure 5.2(a): Delay Average Performance between RT/NRT Aggregation over Static

Aggregation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 11 21 31 41 51 61 71 81 91

A
ve

ra
ge

 D
el

ay
/1

0
C

as
es

Number of Simulation

Delay Average Performances between RT/NRT Aggregation over Static Aggregation

Aggregation of RT/NRT Static Aggregation

 65

Figure 5.2(b): Packet Loss Average Performance between RT/NRT Aggregation over

Static Aggregation

Figure 5.2(c): Throughput Average Performances of RT/NRT Traffic Aggregation and

Static Aggregation

These graphs illustrate the results of independent simulations and is not a time

average. Therefore, the results vary noticeably. The purpose is to show the relation

between static and dynamic aggregation. The results indicate an increase in delay and

maximum packet loss, by the negative relative changes, and an increase in maximum

throughput. Since both the average and the maximum delay increases, the overall

performance of real-time traffic is deteriorating when compared to queueing without

traffic aggregation. This is a consequence of the resource scaling. When more traffic is

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 11 21 31 41 51 61 71 81 91

A
ve

ra
ge

 P
ac

ke
t L

os
s/

10
 C

as
es

Number of Simulation

Packet Loss Average Performances between RT/NRT Aggregation over Static Aggregation

Aggregation of RT/NRT Static Aggregation

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31 41 51 61 71 81 91

A
ve

ra
ge

 T
hr

ou
gh

pu
t/1

0
C

as
es

Number of Simulation

Throughput Average Performances between RT/NRT Aggregation over Static Aggregation

Aggregation of RT/NRT Static Aggregation

 66

buffered, the delay increases. By the effect of traffic scaling, the expectation of that

processing capacity should be increased faster than buffer size using this strategy.

 The increase in maximum throughput is associated with the aggregation of real-

time traffic, and can be attributed to statistical multiplexing of real-time sources. This is

an expected result, as aggregation of Markovian sources and resources improves the

efficiency. At the same time, since the change in average throughput remains very small,

the other queue must experience a similar decrease in throughput. There is no or small

net gain in throughput in this case. While the maximum throughput increases, there is

negligible improvement in total throughput which indicates a shift in processing resources

to the real-time traffic.

5.8.3 Dynamic Traffic Aggregation

 A comparison of the dynamic aggregation strategy with no aggregation is shown

in Figure 5.3.

Figure 5.3(a): Delay Average Performances between Dynamic Traffic Aggregation

and Static Aggregation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 11 21 31 41 51 61 71 81 91 101

A
ve

ra
ge

 D
el

ay
/1

0
C

as
es

Number of Simulation

Delay Average Performance of Dynamic Traffic Aggregation over Static Aggregation

Dynamic Aggregation Static Aggregation

 67

Figure 5.3(b): Packet Loss Average Performances between Dynamic Traffic

Aggregation and Static Aggregation

Figure 5.3(c): Throughput Average Performances between Dynamic Traffic

Aggregation and Static Aggregation

A fully dynamic traffic aggregation enabled by SDN is more flexible than any

deterministic strategy, and therefore has the potential to be much more efficient. In this

strategy, this thesis aggregates the two traffic streams that gives an as even value of

entropies as possible. There is a discernable improvement in total and maximum packet

loss as well as maximum and throughput. Note that the gain in total throughput is higher

and the gain in maximum throughput is lower than for RT/NRT aggregation. The

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 11 21 31 41 51 61 71 81 91

A
ve

ra
ge

 P
ac

ke
t L

os
s/

10
 C

as
es

Number of Simulation

Packet Loss Average Performance of Dynamic Traffic Aggregation over Static Aggregation

Dynamic Aggregation Static Aggregation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 11 21 31 41 51 61 71 81 91

A
ve

ra
ge

 T
hr

ou
gh

pu
t/1

0
C

as
es

Number of Simulation

Throughput Average Performance of Dynamic Traffic Aggregation over Static Aggregation

Dynamic Aggregation Static Aggregation

 68

increased throughput and improved packet loss follow from a more agile resource scaling

strategy.

5.8.3.1 Relative Difference between Dynamic and RT/NRT Aggregation

 It is instructive to compare the dynamic with the RT/NRT strategy. The result is

shown in Figure 5.4.

Figure 5.4(a): Delay Average Performances between Dynamic Traffic Aggregation and

RT/NRT Aggregation

Figure 5.4(b): Packet Loss Average Performances between Dynamic Traffic

Aggregation and RT/NRT Aggregation

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

1 11 21 31 41 51 61 71 81 91

A
ve

ra
ge

 D
el

ay
/1

0
C

as
es

Number of Simulation

Delay Average Performances of Dynamic Traffic Aggregation over RT/NRT Traffic Aggregation

Dynamic Aggregation Aggregation of RT/NRT

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 11 21 31 41 51 61 71 81 91

A
ve

ra
ge

 P
ac

ke
t L

os
s/

10
 C

as
es

Number of Simulation

Packet Loss Average Performances of Dynamic Traffic Aggregation over RT/NRT Traffic Aggregation

Dynamic Aggregation Aggregation of RT/NRT

 69

Figure 5.4(c): Throughput Average Performances between Dynamic Traffic

Aggregation and RT/NRT Aggregation

The dynamic aggregation strategy shows a net improvement of packet loss and a

slightly higher total throughput over the RT/NRT strategy. The increase in total

throughput and decrease in maximum throughput in the comparison indicates a higher

degree of fairness in QoS provisioning between the traffic streams. A higher maximum

throughput is obtained when real-time traffic has precedence, as an effect of the smaller

fluctuations on longer time scales.

 The improvement in total delay can be motivated as follows. The aggregation of

Markovian sources (audio and video) tends to be well-behaved, and therefore benefit

from economy of scale in a larger queue. The average delay should therefore be lower

and the gain positive. The slight deterioration for the maximum delay, likely to be that of

long-range dependent (LRD) traffic may be due to resource scaling. That is, after the

aggregation, the LRD traffic may be allocated less resources than it would have in it’s

static dedicated queue. This would also mean that more resources are allocated to the

Poisson-MAP aggregate, lowering the delay further. The variance is large as a

consequence of the self-similar traffic.

 To summarise, the simulation results show a marked improvement in terms of

packet loss and/or throughput. The presentation of these statistical figures is justified by

the fact that the variability of self-similar traffic is decreased by buffer limitations, which

potentially would affect LRD traffic at all nodes along its path. The main idea is that

resource utilisation improves with aggregation, so that similar traffic types share a queue,

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

1 11 21 31 41 51 61 71 81 91

A
ve

ra
ge

 T
hr

ou
gh

pu
t/1

0
C

as
es

Number of Simulation

Throughput Average Performances of Dynamic Traffic Aggregation over RT/NRT Traffic Aggregation

Dynamic Aggregation Aggregation of RT/NRT

 70

and thereby benefit from statistical multiplexing. For dissimilar traffic types, on the other

hand, starvation of resources of one type by another may decrease performance. It is

therefore suggested to separate self-similar traffic from Markovian traffic, and allocation

resources in proportion to the load.

5.9 The Effect of Optimal Routing

Controlled flow routing can be used to further take advantage of the resources

available in the network. This thesis investigates routing optimised with respect to the

total delay, that is, the sum of delays incurred at all nodes in the network, and sum of the

maximum delays. For the search of an optimal flow assignment, the algorithm by Dijkstra

is used. Dijkstra’s Algorithm finds the shortest path between two nodes 𝑠 (the start node)

and 𝑡 (the destination node) by scanning the neighbours at each step, and builds a tree of

shortest paths to all nodes from 𝑠. It uses the “distances” of the edges, where the distance

can be any positive real number, which be called as the edge weight. Thus, the weight

can be Euclidean distances, number of hops, or, with a slight modification, delay.

 Initially, all weights are set to ∞. Starting from the start node 𝑠, the algorithm

finds the nearest neighbour of 𝑠 by comparing the edge weights. It then progresses to the

nearest neighbour 𝑗 and repeats the scanning. At each step, the weights are updated to be

the smallest weight encountered so far, resulting from all paths traversed up to the current

step. The pseudo code of Dijkstra’s algorithm is as follows.

Algorithm 5.0.1 (Dijkstra’s Algorithm).

Given a (undirected) graph G = (V, E), non-negative edge costs c(.) and a starting vertex

𝑠 ∈ 𝑉.

STEP 0:

 Set S ≔ 𝑠 , 𝑙 𝑠 ∶= 0, 𝑙 𝑖 =∞, i	∈ 𝑉, 𝑖 ≠ 𝑠

STEP 1 to |V| - 1:

 While 𝑆 ≠ 𝑉 do

 find 𝑥 such that 𝑙 𝑥 = min	{𝑙 𝑦 :	𝑦 ≠ 𝑆}

 set 𝑆 ∶= 𝑆 ∪ 𝑥

 71

 for all y	∈ 𝑉 − 𝑆 do

 𝑙 𝑦 ≔ min	{𝑙 𝑦 , 𝑙 𝑥 + 𝑑´å}

 end end

Output: the shortest total weights from 𝑠 to all 𝑖 ∈ 𝑉. •

 In this algorithm, two important observations are made. Firstly, the shortest path

need not be unique. However, all shortest paths must have the same total weight in the

network. This thesis is interested in any such shortest path, by looking for a global

optimum. Secondly, in its original form, the algorithm does not give the shortest path, but

only the sum of weights along this path. The actual paths can be found by labelling each

edge, and adding an edge (i, j) to an edge set E each time such an edge is traversed and a

node j is added to the set S. After the destination node t has been reached, backtracking

is used from t through the edges in E to find the path back to s. Now, in order to make

two modifications to find the optimal flow assignment with respect to delay, firstly, the

delays, which are properties of the nodes, need to be mapped to edge weights. Secondly,

since the algorithm finds the shortest path with all weights given, an iterative procedure

is needed to find a global flow assignment in the network where weights depend on the

assignment. Please refer to Figure 5.1 as illustrated.

 The first modification is based on the additivity of delays. Since the delays are

additive, the total delay of an end-to-end connection can be expressed as

 ∆æQ= 𝛿B

Q

BLæ

, (5.19)

where 𝑖 starts and ends at the respective end points {𝑠, 𝑡}. In this expression, ∆æQ is the

total end-to-end delay, and 𝛿B is the delay incurred in node 𝑖. By setting the edge weights

to 𝑑BD =
ÏÈ
@
+ Ïs

@
, see that

∆æQ		=
𝛿æ
2
+

𝛿æ
2
+
𝛿B
2

+
𝛿B
2
+
𝛿D
2

+. . . +
𝛿}
2
+
𝛿Q
2

+
𝛿Q
2
=

 𝛿æ
2
+ 𝑑æB + 𝑑BD+. . . +𝑑}Q +

𝛿Q
2
.																															

 72

The first and the last term do not influence the shortest path, since the start and end notes

are fixed. To obtain a numerical value of the total delay, simply add these two terms to

the results from Dijkstra’s algorithm.

 Now, the minimum delay route can be determined locally, for a particular end-to-

end connection. This choice of path, however, assumes that the delays remain fixed in the

network. Since in this thesis the global properties of minimum delay routing is studied,

an iterative procedure is needed where minimum delay routes are re-calculated as traffic

are added to the already determined minimum delay routes. The end-to-end distribution

of traffic is given by an n×n probability matrix, where each row signifies the node 𝑖 traffic

is originating from and each column the node 𝑗, a percentage 𝑝BD of the traffic is addressed

to. This is called the traffic matrix in the following. For this matrix must have 𝑝BD = 0

and ∑B𝑝BD = 1. In each simulation, the 𝑝BD are drawn from a uniform distribution with the

condition that ∑B𝑝BD = 1. This ensures that the assumptions on the end-to-end traffic

distribution is minimal.

 To find the globally optimal end-to-end routing from a network perspective, the

fixed-point Equation (5.13) is used.

 𝐹 ∆RBK = ∆RBK. (5.20)

After initial generation and dynamic aggregation of traffic, the fixed-point equation

iteratively simulates and maps delays as weights onto the edges, computes the minimum

delay paths, and aggregates the traffic along these paths.

Algorithm 5.0.2 (Fixed-Point Optimal Route Algorithm).

Given a network (graph) G = (V,E) with n = |V| nodes, an n-dimentional traffic vector

t and an n	×	n traffic matric T.

STEP 0:

 Populate 𝒕x by generating traffic and apply dynamic traffic aggregation.

STEP 1 until convergence:

 for each node 𝑖 ∈ 𝑉	do

 determine delays 𝑑B incurred

 end for each link 𝑖, 𝑗 ∈ 𝐸 do

 73

 set weights 𝑤 𝑖, 𝑗 = ÏÈ
@
+ Ïs

@

 end for each node 𝑖 ∈ 𝑉	do

 for each node 𝑗 ∈ 𝑉	do

 Find minimum delay paths 𝑃RBK
(B,D)	using Dijkstra’s algorithm

 Set 𝒕 𝑖 = 𝒕x 𝑖 + 𝑇D (𝑖, 𝑗)𝒕(D)RBK end end

Output: minimum delay flow allocation. •

 Assumes that the fixed-point algorithm converges. Should it happen that the

algorithm shows oscillating behaviour, the solution with the best characteristics is chosen.

Since the minimum delay paths may be longer than the shortest paths in terms of hops,

the effect of optimal routing next is being analysed.

5.9.1 Traffic Aggregation Under Minimum Total Delay Routing

Considering congestion control on a network level, optimal routes through the

network can be chosen minimise the number of hops (ordinary shortest paths), the total

end-to-end delay, or sum of maximum end-to-end delays. The gain is determined as the

performance improvement with traffic aggregation at the nodes and optimal routing,

compared to the situation with traffic aggregation at the nodes and shortest path routing.

It should be noted, that in the network scenarios, nodes carry not only its own traffic,

which is a random quantity.

 The performance gains for the case of routing minimising the sum of end-to-end

delays are shown in Figure 5.5. As for the gain due to traffic aggregation in individual

nodes, the largest gain is in packet loss. The distribution of gains, however, depends on

the node configurations and the traffic levels. The positive gains in delay, packet loss and

throughput are significant with p-value less than 0.3%. The simulations result of the

system are the average of 100 simulations. From the data set, the average and variance

are obtained. Two-sided confidence interval is used with z = 3, corresponding to a

probability of 99.74% from a standard normal distribution table. Consequently, the

confidence interval is not significant at level p = 1.00-0.997 = 0.003.

 74

Figure 5.5: Performance Gain with Dynamic Traffic Aggregation and Optimal Routing

This result is compared with two cases: RT/NRT routing under optimal routing and

dynamic aggregation under shortest path routing. The optimally routed RT/NRT

aggregation is shown in Figure 5.6. A marked improvement in delay is showing, but

declining in packet loss and throughput.

Figure 5.6: Performance Gains with RT/NRT Aggregation and Optimal Routing

5.9.2 Dynamic Traffic Aggregation Under Shortest Path Routing

 The effect of dynamic traffic aggregation under optimal routing compared to

simple shortest path routing is shown in Figure 5.7. These graphs illustrate the results of

independent simulations and is not a time average. The scales are negative (relative the

global optimum), and therefore the result for optimal routing is better than the result for

0

5

10

15

20

25

30

Delay Packet Loss Throughput

G
ai

n
(%

)

Performance Gain between Dynamic Traffic Aggregation and Optimal Routing

Dynamic Traffic Aggregation Optimal Routing

-10

-5

0

5

10

15

20

25

30

Delay Packet Loss Throughput

G
ai

n
(%

)

Performance Gains with RT/NRT Aggregation and Optimal Routing

RT/NRT Aggregation Optimal Routing

 75

static routing. Under optimal routing, the total delay and throughput is worse than for

optimal routing, following from the fact that the average paths are longer than in shortest

path routing. However, maximum delay and packet loss is improved, indicating an

improvement in the worst end-to-end QoS. As a conclusion;

(1) When using optimal routing, the overall performance gain is better for dynamic

traffic aggregation than for RT/NRT routing. This follows from the better resource

utilisation in the nodes.

(2) Optimal routing can improve the worst end-to-end QoS at the expense of average

values, following a dynamic load distribution in the network.

Figure 5.7(a): Delay Average Performances of Dynamic Traffic Aggregation Under

Optimal Routing and Shortest Path Routing

Figure 5.7(b): Packet Loss Average Performances of Dynamic Traffic Aggregation

Under Optimal Routing and Shortest Path Routing

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 11 21 31 41 51 61 71 81 91A
ve

ra
ge

 D
el

ay
/1

0
C

as
es

Number of Simulation

Delay Performance Differences between Optimal and Shortest Path Routing

Optimal Routing Shortest Path Routing

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

1 11 21 31 41 51 61 71 81 91

A
ve

ra
ge

 P
ac

ke
t L

os
s/

10
 C

as
es

Number of Simulation

Packet Loss Performance Differences between Optimal and Shortest Path Routing

Optimal Routing Shortest Path Routing

 76

Figure 5.7(c): Throughput Average Performances of Dynamic Traffic Aggregation

Under Optimal Routing and Shortest Path Routing

5.9.3 Traffic Aggregation Under Minimum Maximum (Min-Max) Delay Routing

 When the optimal routes are chosen to minimise the maximum end-to-end delay,

the gain in total and maximum delay is higher than in the previous case, as shown in

Figure 5.8. By comparing Figures 5.5 and Figure 5.6, it can be seen that routes optimised

with respect to maximum end-to-end delay gives higher overall gain. Using the maximum

end-to-end delay as optimisation criterion has some obvious advantages. Firstly,

minimising the maximum delay leads to a higher degree of fairness in the network.

Secondly, from an optimisation point of view, the maximum delay is a stricter and explicit

condition than the total delay, which should improve the convergence of the solution to a

minimum.

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

1 11 21 31 41 51 61 71 81 91

A
ve

ra
ge

 T
hr

ou
gh

pu
t/1

0
C

as
es

Number of Simulation

Throughput Performance Differences between Optimal and Shortest Path Routing

Optimal Routing Shortest Path Routing

 77

Figure 5.8(a): Delay Average Performances of Dynamic Traffic Aggregation Under

Min-Max Delay Routing over Optimal Routing

Figure 5.8(b): Packet Loss Average Performances of Dynamic Traffic Aggregation

Under Min-Max Delay Routing over Optimal Routing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 11 21 31 41 51 61 71 81 91

A
ve

ra
ge

 D
el

ay
/1

0
C

as
es

Number of Simulation

Delay Performance of Dynamic Traffic Aggregation Under Min-Max
Delay Routing and Optimal Routing

Dynamic Traffic Aggregation Optimal Routing

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 11 21 31 41 51 61 71 81 91

A
ve

ra
ge

 P
ac

ke
t L

os
s/

10
 C

as
es

Number of Simulations

Packet Loss Performance of Dynamic Traffic Aggregation Under Min-Max
Delay Routing and Optimal Routing

Dynamic Traffic Aggregation Optimal Routing

 78

Figure 5.8(c): Throughput Average Performances of Dynamic Traffic Aggregation

Under Min-Max Delay Routing over Optimal Routing

To summarise, dynamic traffic aggregation provides a more flexible utilisation of

resources. At the same time, preserving fairness between traffic streams in imperative.

On node level, traffic aggregation leads to gains in packet loss and throughput – in

particular maximum throughput. When combined with optimal routing, a load balancing

effect on network level is achieved, resulting in increased fairness without using any

particular scheduling or priority principles. Routes optimised with respect to maximum

delay gives better results than when optimising with respect to total delay, which is a

direct consequence of improving the worst end-to-end performance.

5.10 Chapter Summary

This chapter summarise that by empirically, investigation into traffic aggregation and

routing are to improve throughput and performance. We compared different aggregation

and routing strategies and showed (by simulation) that aggregation in combination with

Min-Max optimal routing gives substantial gain in all performance metrics, and was

better than any other combination of studied actions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61 71 81 91

A
ve

ra
ge

 T
hr

ou
gh

pu
t/1

0
C

as
es

Number of Simulation

Throughput Performance of Dynamic Traffic Aggregation Under Min-Max
Delay Routing and Optimal Routing

Dynamic Traffic Aggregation Optimal Routing

 79

Chapter 6

ALLOCATION OF NETWORK FUNCTION USING ANT

COLONY OPTIMISATION

6.1 Introduction

The deployment of a centralised logic must be very resilient to failures of nodes

and links. A promising strategy is therefore using NFV to allocate the logic dynamically,

depending on availability and load on the nodes in the network. In this context, the

network can be viewed as a “cloud” of resources, and it is assumed that a controlling

entity is available to assign the control logic in an optimal fashion. If the failure

probability of a node is 𝑞, and there are 𝑛 nodes, the possibility to allocate the control

function to any of the 𝑛 nodes results in an operational probability of

 𝑝 = 1 − 𝑞K	, (6.1)

assuming that nodes fail independently from each other. Of course, this is a theoretical

result, since the network would anyway be disconnected should a number 𝑚 << 𝑛 nodes

fail.

Resource allocation in clouds can be divided into different categories or steps.

Mills et al. [35] evaluate different allocation heuristics and categorise the optimisation

type based on initial placement, where new requests are allocated subject to available

resources, consolidation, where a new request may modify existing allocation to achieve

lower cost, and trade-off between SLA and cost. The cost/demand structure is also

categorised into reservations, where the customer pays a fixed price for a service running

for a specified amount of time, on-demand access, where customers put requests and the

cost is dependent on utilisation, and spot market, where the price of a service also depend

on demand. With resource allocation in a cloud is understood the allocation of VM to

physical nodes, or hosts, where the hosts are characterised by the number of processors,

 80

and the amount of processing capacity and random access memory (RAM) (and possibly

other parameters). The scheduling of tasks is not considered part of the project, but it is

desirable that the framework should be possible to extend to this situation, if desired. An

important step in defining an algorithm for the resource allocation problem is defining

objective of the optimisation. Two different objectives of the customers and the cloud

operator are identified. In a simplified setup, by assuming that for the customer, the cost

is fixed, and so tries to maximise the utility of resources. For the operator, the total amount

of resources is fixed, and the potential for adding more customer requests to the cloud

depends on the assignment of the existing requests.

Resource allocation is Non-Deterministic Polynomial-Time (𝒩𝒫)-hard, so the

number of possible solutions grows exponentially with the number of servers and the

number of customers. This is a variant of the bin packing problem, and can also be

formulated as an integer program. In this thesis, the following terminology is used.

Consider an IT cloud consisting of physical resources. The cloud is managed by the cloud

operator, who fully controls the resources and how requests are assigned. Requests for

resources are specifically VM, and the requesting entity (not necessarily human) is called

a customer. The customer may have preferences where its request should be allocated.

The final resource allocation, however, is determined by the cloud operator. In the context

of the algorithm, the customer is also referred to as an ant.

The physical resources are residing in several levels. The lowest unit is referred

to as a host. Hosts are aggregated into clusters – typically residing in the same location,

and several clusters form a cloud. This thesis is not considered geographically distributed

clusters, so a cluster and a cloud is essentially the same. The term cloud has been used as

it is clearer from an engineering point of view. The resources together with the requests

is referred to as a system when a general abstract term is needed.

 81

6.2 Cloud Resources and Descriptors

Both the cloud resources and the requests are assumed to be described in sufficient

detail so that an assignment can be made, and that this information is available to the

algorithm at all times. The resources are quantifications of available physical properties,

such as number of processors in the Central Processing Unit (CPU) core, CPU speed,

amount of RAM, amount of disk storage space and network bandwidth. The idea of using

a constantly updated database with a resource vector for each node [30], has been adopted

as a general and technically appealing solutions to manage cloud state data. The network

is clearly dynamic, so rather than allocating according to the physical resources of a node,

it should be done with respect the instantaneously available free resources of a node. The

result of the optimisation is an assignment of VM-node pairs.

Some of the resources are static, such as the CPU core, and can be included as

side constraints (or rather, an infeasible assignment results in a zero probability). Other

properties are dynamic and change with each assignment. Also here, by distinguishing

between resources that set a definite limitation on the service capability, such as the

amount of memory available, should the VM requirements exceed a node’s capabilities,

the node is considered not to be able to host that VM. The second type of resource - for

example processing power or network bandwidth - scales gradually with the number of

VMs. Service quality can then be seen as the expected average processing time (or

throughput).

Assume that a VM can be specified in the same terms as a physical node. For

simplicity, let the resource vector be the triple (core, cpu, memory), as described in [30].

Thus, a VM requirement can be directly compared to a node’s available resources, and

be allocated to any physical node having sufficient resources. Assume that a host can

have a number of VMs, and this number is limited by the aggregate requirements on the

node resources. Also that a VM occupies the resources it specifies [46], should a node

not have sufficient amount of free resources, the assignment is infeasible and will be

disregarded.

 82

6.3 Optimisation Criteria

ACO is described in [10], where the optimisation method is applied to the TSP.

The method has also been used on related bin packing problems [17]. Lee et al. [30]

propose using a vector of different resources to describe the state of the system, and a

scalar function to describe the instantaneous system state parsimoniously. The system

variables can be stored in a central database for easy retrieval of cloud state data by the

resource allocation function. In the scenario under consideration - initial placement of

VM requests - customers would only benefit from trying to gain as good service quality

as possible, since the price is fixed for a specified time. The cloud operator, on the other

hand, may save cost by assigning resources optimally. The optimisation goal is to find in

some respect best trade-off between cost and quality. A multi-optimal approach seems

infeasible due to the hardness of the problem. Solutions optimal with respect to different

criteria will tend to be vastly different, and there is no way to find a trade-off by

interpolation due to the discrete nature of resource assignment. A second question is how

to define service quality from a system perspective. With a central function for resource

allocation, requests are assigned one by one, and simple heuristics would give no

guarantee of fairness in service quality. In this paper, the minimum level of quality is

therefore determined by the SLA of each request.

The actual ACO simulation is performed in C++. This implementation is off-line and

intended to study the optimality properties of the algorithm. In CloudSim, however, the

source code is Java, and the logic has to be on-line. The algorithm is therefore

reformulated using a dynamic programming approach where the virtual machines are

mapped onto servers with respect to available server resources. The CloudSim is run

under Eclipse, with addition of the three policy rules (greedy, round-robin, and optimal).

The number of ants equal is set to the number of nodes (5), and the number of cycles to

1000. The auxiliary parameters are set to alpha = 0.5, beta = 0.5, evaporation = 0.5 and

tau = 0.1, for all i and j, rather conservatively. The attractiveness (visibility, eta) is the

‘distance matrix’ constructed from scaled processing capacity.

In the ACO, ants’ movements are governed by target probabilities that is a product

of two parts. The first is an assignment probability that is proportional to the

 83

attractiveness of a match from the customer point of view (called visibility in [10]), and

the second a memory of the best past assignments represented by the fictitious pheromone

trail. As long as the SLA of a request can be fulfilled, the attractiveness is non-zero,

otherwise it is zero. The probability of transition to another (including self) node is

 𝑝BD =
(𝜏BD(𝑡))\(𝜂BD(𝑡))ì

(𝜏BD(𝑡))\((𝜂BD(𝑡))ì
í (6.2)

evaluated for feasible assignments, otherwise 𝑝BD = 0. The pheromone 𝜏BD(𝑡) and the

attractiveness 𝜂BD(𝑡) are time dependent, which is indicated by the argument in t. The first

property changes with each cycle, and the second with each move within a cycle.

Several papers also consider optimisation with respect to geographically

distributed clusters [22][34], and include network bandwidth as a system parameter.

Another view is to divide requests into tasks, and schedule the tasks optimally [45]. Both

consolidation and scheduling requires the possibility of migration of resizing of tasks.

The optimisation algorithm described in this paper is adapted to the initial placement

problem for the reservation type of cost and allocation in a single cluster. Consolidation

and scheduling are not considered. The algorithm as such, however, is sufficiently general

to be extended to more general resource allocation problems. From a global optimisation

perspective, the system lets the customers find an assignment according to their

preferences and the given constraints, and then select the best assignment out of a number

N of trials.

6.3.1 Attractiveness

From the customers’ point of view, it is reasonable to maximise their own benefit

at each step. Assuming that the service comes at a fixed price per VM configuration, the

customer would try to maximise the service quality accordingly. This is likely represented

by response time, that is the sum of CPU processing time and network transmission delay.

The transmission delay is not considered here, as it depends mainly on the infrastructure

outside the cloud. The attractiveness refers to the property of the algorithm on which the

probability of choosing a server is based. The free capacity measure is used to describe

this property based on the principle that the more free capacity in a server, the

more ”attractive” it is for the customer to be allocated to.

 84

The CPU capacity is typically measured in MIPS (Millions of Instructions Per

Second). The effective processing power available to applications is dependent on system

configuration and simultaneously running processes etc. In [30], the authors propose

measuring the available CPU and RAM capacity by performing a matrix inversion

operation and measure the execution time. This method would give an accurate

instantaneous measurement on which the attractiveness can be based. For this discussion,

however, it is sufficient to assume that this information is available. Thus, assume that a

customer selects server based on the available processing power of the CPU (the total

processing power adjusted for system processes and other VMs using it). The customer

then sees the available processing power as a resource potentially available to itself.

6.3.2 Cost

Cost can be defined in terms of idle capacity, that is, unoccupied capacity that

cannot be assigned to another VM due to limitations in some other resource type. The

cost will depend on the applications, or in other words, the distribution of demands of

arriving requests. The cost for a cloud operator can be expressed in the degree of

infrastructure utilisation, or equivalently, return on investments. The operator wishes to

allocate requests to resources in a ”best fit” manner, so that not more resources than

necessary are occupied by an allocated request.

The greedy principle from the cloud operator’s perspective is that the more VMs that can

be allocated, the higher the utilisation and the return on investment. As a metric for system

efficiency, the energy of the relative free resources is used here. The energy unit for

processing capacity becomes (instructions)2/s2. The optimisation then follows the

principle of minimum energy. The system energy is defined as

 E = (𝐶B − 𝑟BD)@,
ïÈ

DL.

K

BL.

 (6.3)

where 𝐶B is the capacity of the server and 𝑟BD is the VM capacity requirement of VM j on

host i. The total requirement sums over the 𝑣B VMs allocated to host i.

 85

Rescaling Equation (6.3) gives

 E = (1 − 𝑟BD/𝐶B)@,
ïÈ

DL.

K

BL.

 (6.4)

which is the objective function that will be minimised. Under this metric, it is more

efficient to allocate available resources occupying the best fit between request and

resource. The best fit is when the resource matches the VM specification exactly. Then,

the energy of the match is zero.

6.4 Algorithm for Resource Optimisation

ACO is suitable for many optimisation problems that can be modelled by a graph,

including resource assignment [10][17]. It is, however, in its original form modifying the

edges, but not the nodes, in a graph. The algorithm is an adaptation of the ACO algorithm

for solving the TSP, described in [10]. The assignment problem is modelled as a complete

graph on the set 𝑛	of nodes. Initially, the ants are distributed between the nodes in a

round-robin fashion and could also originate from a source node (a ”nest”), but this is not

necessary, as the algorithm only performs a single iteration in each cycle. The ants could

also be distributed randomly, which would affect the order of assignment. In the example

below, however, this has no or little effect. The ants move according to a matrix of

transition probabilities, where self-loops are allowed, so that an ant may request its job to

be assigned to the node it originally occupies. The probabilities are proportional to the

attractiveness of the target and the pheromone level of the edge between the origin and

the target. The algorithm therefore has to keep track of the resource requirements of each

ant, and the instantaneous amount of free resources at each node.

As opposed to the TSP, where the attractiveness is fixed, the system state changes

with assignment of a new job (the property of the ant, or customer). Therefore, after each

move, the transition probabilities change and must be recalculated. The attractiveness of

a server to a given customer decreases when resources are assigned another customer. As

a measure of attractiveness, the (possibly scaled) available CPU processing power of the

host is used. Whereas in the TSP, the goal is to find a path, the objective here is to find

an assignment. Since the constraints ensure that all allowed assignments are feasible, the

algorithm only runs for one iteration, where each ant is moved (including possibly back

 86

to its origin) exactly once. The number of cycles will have to be fairly large though, in

order to find an optimum. After an iteration, a candidate assignment has been generated.

The algorithm has to keep track of the so-far best assignment through the cycles.

The constraints also differ from the TSP case, where an ant is forbidden to visit a

node already visited by a tabu list. In the present case, the tabu list simply consists of the

nodes that cannot with remaining resources accommodate the ant, that is, the VM. This

includes the host it is initially starting from. Next, the system cost 𝑐� is calculated

according to Equation (6.3). This energy can be a composite measure including other

resources, such as RAM as suggested in [30]. For the purpose of describing the algorithm,

however, the energy is only based on the CPU processing power.

The deposited amount of pheromone, ∆𝜏	on each edge is now dependent on

system cost, rather than on a single ant’s trail as in the TSP. This quantity is given by

 ∆𝜏 = 𝑄/𝑐}, (6.5)

where 𝑄 is a scaling constant and 𝑐} the cost in cycle 𝑘	 ∈ 1, 2, … , 𝑁 . Since 𝑐}	can be

zero, a maximum limit on ∆𝜏 is set to one. This limit is rather arbitrary, and is an

additional system parameter that may affect the convergence properties of the algorithm.

Since the attractiveness changes dynamically throughout the algorithm, the

transition probabilities are given by two matrices: the attractively matrix A, which

changes throughout an iteration but is reset for each cycle, and the pheromone level

matrix P, that remains constant throughout a cycle, but is updated after each cycle. The

cost is used to update matrix P, first by multiplying all previous pheromone levels 𝑝BD	by

the evaporation constant (1 − 𝜌), and then by adding ∆ 𝜏 onto edges describing

assignments made in the iteration. The minimum cost 𝑐RBK and the corresponding

assignment obtained so far is recorded after each cycle, the matrix A and the vectors of

free node resources and assignments are restored to their initial values, corresponding to

no yet assigned VMs.

 87

Algorithm 6.0.1 (Resource Allocation).

Given matrices of server capabilities S and VM requirements V.

STEP 0: (initialise)

Let 𝐽	be a list of initial node assignments, and set algorithm parameters 𝛼, 𝛽, 𝜏x, 𝜌 and K,

the number of cycles. Set the matrix of free resources to A = S and the matrix of

pheromone concentrations P = (𝜏x), the matrix where all entries equals 𝜏x. Set 𝑐RBK= ∞

STEP k = {1, 2, . . . ,N}: (iterate)

while k < K (the number of cycles) do:

Randomly select a node i and a customer request,

Divide a customer request into tasks (ants). For each ant j:

 Calculate the probabilities 𝑝BD	(Eq. (6.2) based on A and P,

By simulation, select a move of ant j, assign to the selected target node if

resources are available; assign resources, update A (end).

 When all ants have been moved once:

 Calculate the cost 𝑐} (defined by the energy in Eq. (6.3) of the assignment,

 and update matrix P by ∆𝜏.

 If 𝑐RBK< 𝑐}, let 𝑐RBK= 𝑐}	and 𝐽RBK	=𝐽}. Reset J, A = S,

 and let P = (1 − 𝜌) P. (end)

 Delete customer request (end)

end;

Output 𝑐RBKand 𝐽RBK	, the optimal assignment. •

It should be noted, that the algorithm assigns VMs all at once, so for the CloudSim

experiment described below, the assignment rule has to be formulated so that VMs can

be assigned sequentially. Also, the result of the algorithm depends on the random number

generator, and so to find an optimum the algorithm may have to be run several times, and

possibly with different seeds. The memory induced by the pheromone trails may therefore

take many runs to change from a suboptimal assignment to an optimal.

 88

6.5 Experiments

To test the algorithm, a small cluster with hosts similar to the one described in

[30] (Section 6.5, Experiments, Tables 6.3 and 6.4) is used. The simplicity of this scenario

with five servers having different characteristics and a single type of VM, makes manual

comparison with other assignment schemes straightforward. To evaluate different

assignment strategies, it is a good idea to have hosts with different characteristics but

identical VMs that clearly shows how different strategies being assigned. The algorithm

as such could easily be extended to larger and more general cases. Like in [10], the

number of ants (VMs) is set equal to the number of nodes. The properties of the host

servers in the cluster are listed in Table 6.1, and of the virtual machines in Table 6.2.

To compare the algorithm with other assignment schemes, this thesis compares

the result with the round-robin, and a customer greedy heuristic schemes. In the round-

robin scheme, the VMs are simply distributed one at each node, and the relative free

capacity

Table 6.1: Cluster specification: MIPS and RAM capacities.

Host ID Core MIPS RAM

0

1

2

3

4

1

2

2

1

2

1000

500

300

2000

300

2048

2048

2048

2048

2048

Table 6.2: Virtual machine specification: requirements on MIPS and RAM.

VM ID Core MIPS RAM

0-4 1 300 512

is shown in Table 6.3. In Tables 6.3, 6.4 and 6.5 the entries for each host are the

percentage of free capacity, calculated as 1- (occupied capacity)/(total host capacity). The

cost as defined in Equation (6.3), that is, the sum of the squared entries, is 1.3725. Taking

the number of processors into account, the energy is 2.2025.

 89

Table 6.3: Efficiency of round-robin assignment.

Host ID No. VM

Free

Capacity

w/o PEs

Free Capacity

With PEs

0

1

2

3

4

1

1

1

1

1

0.7

0.4

0.0

0.85

0.0

0.7

0.7

0.5

0.85

0.5

Energy 1.37 2.20

The round-robin and the greedy algorithms are deterministic, whereas the ACO

algorithm is random. The algorithm may therefore give a different result at each run. This

depends on the random number generator. Since the round-robin assignment scheme is

deterministic and not an optimisation method, it is likely to perform poorly when there

are VM with different requirements. In this example, however, the assignment is good,

under the energy metric. By letting each customer choose server according to the largest

amount of available processing capacity, the assignment is as shown in Table 6.4. The

cost in this case is 3.65. The same value is achieved when taking the number of processors

into account, since there is one VM per host. The greedy scheme is essentially what would

be expected from a single iteration of the algorithm.

The algorithm applied to the same problem gave the assignment shown in Table

6.5. It should be noted that lower capacity hosts (1, 2 and 4) are assigned VMs, but not

node 3. The minimum energy obtained is 1.32. After having reached the minimum energy,

the algorithm was run for up to N = 10000 without showing any further improvement.

Taking the number of processors into account, the energy is 2.15 for this policy.

 90

Table 6.4: Efficiency of greedy assignment.

Host ID No. VM

Free

Capacity

w/o PEs

Free

Capacity with

PEs

0

1

2

3

4

1

0

0

4

1

0.7

1.0

1.0

0.4

1.0

0.7

1.0

1.0

0.4

1.0

Energy 3.65 3.65

Table 6.5: Efficiency of ACO assignment.

Host ID No. VM

Free

Capacity

w/o PEs

Free Capacity

with PEs

0

1

2

3

4

2

1

1

0

1

0.4

0.4

0.0

1.0

0.0

0.4

0.7

0.5

1.0

0.5

Energy 1.32 2.15

The parameter values used are 𝛼 = 0.5, 𝛽	= 0.5, 𝜌 = 0.1 and 𝜏x = 0.1. The cut-off

limit for the inverse of the cost was set (rather arbitrarily) to unity. Elaborating on the

system parameters would probably influence the convergence of the algorithm greatly,

but has not been studied in detail in this project. The convergence shown in Figure 6.1

shows one possible run trace of the algorithm. It could, for example, also jump up and

down before settling down.

 91

Figure 6.1: The convergence of the algorithm in the example.

The Figure shows that the first value is somewhat greedy (but still random) and come at

a rather high cost, but once the minimum is reached, it stays there.

6.5.1 CloudSim Implementations

In the CloudSim experiment the goal was to keep things as simple as possible

apart from the hosts and VMs. Only one user, one datacenter and one broker was therefore

initiated. The VMs represent the ants, and the cloudlets jobs assigned to the VMs. The

implementation uses 10 cloudlets, like in the code by [41]. These can of course be chosen

differently, but the cloudlets are basically just a test to see that the cloud works. The CPU

capacity is measured in MIPS (million instructions per second) in CloudSim - per

processor (Pe). Thus, MIPS and RAM are properties used of the hosts in the datacenter

(bandwidth and storage are not used). For the algorithm can use any unit, either GHz or

MIPS, as exchangeable and give the same results. Host IDs are set manually, so these are

defined according to Table 6.1.

The three assignment strategies where implemented in CloudSim. CloudSim (3.0.3) in

run under the Eclipse Mars environment. Additional java files used are a cloud simulation

file, specifying details of VMs and hosts, and a VM allocation policy class containing the

assignment logic. The CloudSim environment is used to verify the online version of the

algorithm, and produces the same result as the offline C++ implementation. The cloud

was defined as described in Tables 6.1 and 6.2. The round-robin assignment was

 92

implemented by [41] and has been used for comparison. The simulation uses ten cloudlets

of equal small sizes to illustrate that the clouds with the given assignment policies work

properly. The round-robin assignment is shown in Table 6.3. For the greedy algorithm,

the assignment policy is implemented so that each VM is assigned the host with the

largest available MIPS (CPU capacity), possibly after some VM already has been

assigned to the host. The assignment is in agreement with Table 6.4. The optimal

assignment is implemented so that VMs can be assigned sequentially. This is necessary,

because the algorithm described makes a repeated assignment of all VMs at once, whereas

in CloudSim, VMs are assigned on a first-come first-served basis. Therefore, optimal

result of the algorithm needs to reformulate as a policy, and in order to do so, we may use

dynamic programming is used.

Consider the energy Equation (6.4). This is the cost to minimise by assignments

of VMs to hosts and also have the rather obvious restrictions on the problem

 𝑟BD ≤ 	𝐶B,
ïÈ

DL.

 (6.6)

 					𝑟BD ≥ 0, (6.7)

for all i and j. The dynamic program can be written

 𝑉} 𝑦 = min 𝑉}-. 𝑦 , 𝑉}-. 𝑦 + (1 −
𝑟}
𝐶}
)@ (6.8)

where y = (1 − 𝑟BD/𝐶B)@
ïÈ
DL.

K
BL. is the relative free capacity at each instant, and 𝑟}	is

a new VM to be allocated to a host with capacity 𝐶} in step k. The dynamic programming

formulation of the problem is the base for the implementation of the policy in CloudSim,

since it is sequential as compared to the algorithm which is parallel. Thus, the energy

Equation (6.4) is therefore implemented only implicitly in the simulation.

The algorithm described assigns VMs so that the largest decrease in energy occurs

for each VM assignment to a host. For example, the decrease is much greater when the

free capacity decreases from 1 to 0.5, than when the capacity decreases from 0.5 to 0.

Thus, heuristically (and knowing the capacities of the hosts), if the proportion of available

MIPS goes below the threshold (50%), the second best match is used.

 93

The policy aims at both minimising unutilised capacity in a host. It also aims at

distributing VMs so that the load is less than unity. Since the energy in Equation (6.4) is

a sum of squares, this leads to a minimum energy assignment. The result of the simulation

is in agreement with Table 6.5. The assignment is in practice made as follows. For the

first VM, the host with the lowest capacity able to accommodate the VM is found, and an

assignment is made. In this case, the free capacity decreases from 1 to 0.5, or the energy

contribution (which is the squared value), from 1 to 0.25. The second VM could be

assigned to the same host. Then the energy contribution would decrease from 0.25 to 0.

But assigning it to another host with the same capacity would give an energy decrease

from 1 to 0.25 as well, which is lowers the energy sum more than the decrease from 0.25

to 0 which is achieved when the VM is assigned to the first host.

Continuing in this way, a situation where the decrease in energy is larger when

assigning a VM to a host which already has a VM assigned, rather than assigning it to

another host with larger free capacity. So for host with ID 0, the decrease in energy is

larger by assigning two VMs to this host, as compared to assigning one VM to host 0 and

one VM to host 3. The cost in the implemented in CloudSim therefore looks for the host

for which the VM allocation gives the largest decrease in energy. This is used in the

CloudSim policy as an optimisation parameter to find the best match. Figure 6.2 shows

the energy for each of the three assignment strategies for an increasing number of standard

size VMs in Table 6.2. The algorithm described in this study (green line) has lower energy

than the other two, although the round-robin strategy (blue line) is close to optimal.

Figure 6.2: Comparison of the efficiency the algorithms; greedy (red), round-robin

(blue) and AOC (green).

 94

6.6 Chapter Summary

This chapter concludes that the proposed algorithm using ACO shows a better

results compared to the most used algorithm in the market; Greedy and Round-Robin

Algorithm. Since ACO is a meta-heuristic (randomised algorithm) it is difficult to give

complexity estimates. However, in practice the algorithm can be reformulated and

implemented as a dynamic program.

 95

Chapter 7

CONCLUSIONS AND FUTURE WORK

In this final chapter, all the works in this thesis are concluded and in brief, explain

regarding the future works that may improve the methods of the system in the future study.

7.1 Conclusions

This thesis investigates a logic for congestion control on network level based on

SDN and NFV and showing that traffic aggregation on node level combined with optimal

routing with respect to delay. Traffic aggregation is performed on node level using

entropy of aggregate traffic streams as decision variable for aggregation and resource

allocation. The optimal paths are selected to minimise either the total end-to-end delay or

the maximum end-to-end delay. Note that path optimisation with respect to maximum

end-to-end delay gives slightly better results compared to optimisation with respect to

total delay and that the congestion control should be combined with admission control at

access points and end-to-end flow control, such as TCP (or a modification of TCP).

By comparing three policies for assigning VMs to hosts; round-robin, a customer

greedy heuristic, and an optimised allocation policy derived from an ACO algorithm,

these have been simulated in CloudSim. To measure a cloud operator’s cost, an energy

function has been used, and the main objective has been cast-off to find as assignment

policy that minimises this energy. When comparing the three assignment policies, the

round-robin can be said to be both simple and efficient (has low energy) in this setup. The

greedy assignment, where a customer can choose to allocate a VM where there are most

available resources is rather expensive.

 96

An optimal assignment can be found using the algorithm described in this thesis,

which minimises the energy used to measure cloud operator costs. The benefit for the

cloud operator is to minimise the possibility to add further VMs to the cloud without

performance degradation or delays. All assignment policies have been simulated and

tested in CloudSim, and the processing of cloudlets have in this setup been shown to be

equally efficient.

7.2 Future Work

The congestion control algorithm proposed in this thesis use traffic measurements

and predicted network states for aggregation and routing decisions. It gives measurable

performance gains at reasonable traffic levels. It should therefore be combined with

admission control to protect the network from severe overload and end-to-end flow

control to achieve fairness and rate limitation on flow level. For future study, the

relationship between different types of congestion control (hop, end-to-end, access, and

transport level) should be investigated.

Furthermore, since different services are sensitive with respect to different QoS

measures, a composite metric for route optimisation should be investigated. It should also

be intrusive to analyse control actions on different time scales. This may affect stability

as well as the efficiency of the congestion control. Although long range dependent traffic

is likely to attain a load level close to previous one, predictive congestion control can

likely be improved by adequate modelling and computing forecast intervals, which

should improve the resource utilisation further.

 97

References

 [1] Z. Abbasi, F. Noroozi, and A. Sharifi, “Congestion Level Prediction of Self-
Similar Traffic Based On Wavelet Transform,” 2005.

[2] A. Adas, “Traffic models in broadband networks,” IEEE Commun. Mag., vol. 35,
no. 7, pp. 82–89, 1997.

[3] M. B. Al-Somaidai, “Survey of Software Components to Emulate OpenFlow
Protocol as an SDN Implementation,” Am. J. Softw. Eng. Appl., vol. 3, no. 6, p. 74,
2014.

[4] J. Beran, Statistics for Long-Memory Processes. 1998.

[5] E. Buffet and N. G. Duffield, “Exponential Upper Bounds via Martingales for
Multiplexers with Markovian Arrivals,” vol. 31, no. 4, pp. 1049–1060, 2014.

[6] S. Crosby, I. Leslie, and J. T. Lewis, “Bypassing Modelling : an Investigation of
Entropy as a Traffic Descriptor in the Fairisle ATM network,” pp. 1–10, 1995.

[7] M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic:
evidence and possible causes,” IEEE/ACM Trans. Netw., vol. 5, no. 6, pp. 835–
846, 1997.

[8] M. E. Crovella and A. Bestavros, “Explaining World Wide Web Traffic Self-
Similarity,” October, pp. 1–19, 1995.

[9] K. Dolzer, W. Payer, and M. Eberspächer, “A simulation study on traffic
aggregation in multi-service networks,” IEEE Int. Conf. High Perform. Switch.
Routing, HPSR, pp. 157–165, 2000.

[10] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimisation by a colony
of cooperating agents,” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 26,
no. 1, pp. 29–41, 1996.

[11] D. D’souza, K. P. Sundharan, S. Lokanath, and V. Mittal, “Improving QoS in a
Software-Defined Network,” pp. 1–9, 2016.

[12] N. G. Duffield, “Exponential bounds for queues with Markovian arrivals,”
Queueing Syst., vol. 17, no. 3–4, pp. 413–430, 1994.

[13] N. G. Duffield, N. G. Duffield, J. T. Lewis, N. O’Connell, R. Russell, and F.
Toomey, “Entropy of ATM Traffic Streams: A Tool for Estimating QoS
Parameters,” IEEE J. Sel. Areas Commun., 2006.

 98

[14] H. E. Egilmez and S. T. Dane, “OpenQoS: An OpenFlow controller design for
multimedia delivery with end-to-end Quality of Service over Software-Defined
Networks,” Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA ASC), pp. 1–
8, 2012.

[15] N. Feamster, J. Rexford, and E. Zegura, “The Road to SDN: An Intellectual
History of Programmable Networks,” ACM Sigcomm Comput. Commun., vol. 44,
no. 2, pp. 87–98, 2014.

[16] W. C. Feng, K. G. Shin, D. D. Kandlur, and D. Saha, “The Blue active queue
management algorithms,” IEEE/ACM Trans. Netw., vol. 10, no. 4, pp. 513–528,
2002.

[17] S. Fidanova, “ACO algorithm for MKP using various heuristic information,” in
Numerical Methods and Applications, 2003, pp. 438–444.

[18] A. E. García and K. D. Hackbarth, “Next generation IP access networks planning:
Approximated methods,” WSEAS Trans. Commun., vol. 5, no. 3, pp. 535–542,
2006.

[19] M. Gerla and L. Kleinrock, “Flow Control: A Comparative Survey,” IEEE Trans.
Commun., vol. 28, no. 4, 1980.

[20] R. J. Gibbens, P. J. Hunt, and F. P. Kelly, “Bistability in communication networks,”
Disord. Phys. Syst., no. 1973, pp. 113–128, 1990.

[21] R. J. Gibbens, S. Sargood, C. Van Eijl, F. Kelly, H. Azmoodeh, R. Macfadyen, and
N. Macfadyen, “Fixed-point models for the end-to-end performance analysis of IP
networks,” 13th ITC Spec. Semin. IP Traf c Manag. Model. Manag., pp. 1–8, 2000.

[22] H. Goudarzi and M. Pedram, “Maximizing profit in cloud computing system via
resource allocation,” in Proceedings - International Conference on Distributed
Computing Systems, 2011, pp. 1–6.

[23] Z. J. Haas and J. H. Winters, “Congestion Control By Adaptive Admission,” Proc.
IEEE Int. Conf. Comput. Commun., pp. 560–569, 1991.

[24] Y. Hu, D. M. Chiu, and J. C. S. Lui, “Entropy based adaptive flow aggregation,”
IEEE/ACM Trans. Netw., vol. 17, no. 3, pp. 698–711, 2009.

[25] X. Huang, C. Lin, F. Ren, G. Yang, P. D. Ungsunan, and Y. Wang, “Improving
the convergence and stability of congestion control algorithm,” in Proceedings -
International Conference on Network Protocols, ICNP, 2007, pp. 206–215.

[26] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM Comput.
Commun. Rev., vol. 18, no. 4, pp. 314–329, 1988.

 99

[27] F. Keti and S. Askar, “Emulation of Software Defined Networks Using Mininet in
Different Simulation Environments,” in Proceedings - International Conference
on Intelligent Systems, Modelling and Simulation, ISMS, 2015, vol. 2015–Octob,
pp. 205–210.

[28] J. Kristoff, “TCP Congestion Control,” 2002.

[29] C. Larsson, “Design of Modern Communication Networks – Methods and
Application, Academic Press,” 2014.

[30] H. Lee, Min, L. Y. Jeong, and H. Jin, “Performance analysis based resource
allocation for green cloud computing,” J Supercomput DOI 10.1007/sl 1227-013-
1020-x, no. September, pp. 1013–1026, 2013.

[31] W. E. Leland, M. S. Taqqu, and D. V. Wilson, “On the Self-Similar Nature of
Ethernet Traffic (Extended Version),” IEEE/ACM Trans. Netw., vol. 2, no. 1, pp.
1–15, 1994.

[32] J. V. Lévy and R. Riedi, “Fractional Brownian motion and data traffic Modeling:
The Other End of the Spectrum,” Fractals Eng., no. August, 1997.

[33] J. T. Lewis and R. Russell, “An Introduction to Large Deviations for Teletraffic
Engineers,” Program, pp. 1–45, 1997.

[34] K. Mills, J. Filliben, and C. Dabrowski, “Comparing VM-placement algorithms
for on-demand clouds,” in Proceedings - 2011 3rd IEEE International Conference
on Cloud Computing Technology and Science, CloudCom 2011, 2011, pp. 91–98.

[35] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “Optimizing rules placement
in OpenFlow networks,” in Proceedings of the third workshop on Hot topics in
software defined networking - HotSDN ’14, 2014, pp. 127–132.

[36] J. Ni, T. Yang, and D. H. K. Tsang, “Source modelling, queueing analysis, and
bandwidth allocation for VBR MPEG-2 video traffic in ATM networks,” IEE Proc.
- Commun., vol. 143, no. 4, pp. 197–205, 1996.

[37] S. A. M. Ostring, “Dual Dimensional ABR Control Scheme Using Predictive
Filtering of Self-similar TrMiC,” 1999.

[38] K. Park and W. Willinger, Self-Similar Network Traffic and Performance
Evaluation, vol. 53. 2000.

[39] D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis. 2000.

[40] A. Pulipaka, P. Seeling, and M. Reisslein, “Traffic models for H.264 video using
hierarchical prediction structures,” in Global Communications Conference
(GLOBECOM), 2012 IEEE, 2012, pp. 2107–2112.

[41] Raju, “CloudSim Example with Round Robin Data center broker & Round Robin
Vm Allocation Policy with Circular Hosts List,” 2016. .

 100

[42] B. Ryu, D. P. Connors, and S. Dao, “Modeling and simulation of broadband
satellite networks part 1: Medium access control for QoS provisioning,” IEEE
Commun., vol. 37, no. 3, pp. 72–79, 1999.

[43] K. Saravanan and Suresh R.M., “Service Oriented Real-Time Buffer Management
for QoS on Adaptive Routers,” J. Thoretical Appl. Inf. Technol., vol. 55(2), 2013.

[44] S. Shenker, “A Theoretical Analysis of Feedback Flow Control,” in The
Conference on Communications Architecture and Protocols (SIGCOMM), 1990,
pp. 156–165.

[45] J.-T. Tsai, J.-C. Fang, and J.-H. Chou, “Optimized task scheduling and resource
allocation on cloud computing environment using improved differential evolution
algorithm,” Comput. Oper. Res., vol. 40, no. 12, pp. 3045–3055, 2013.

[46] T. Tuan and K. Park, “Congestion control for self-similar network traffic,”
Network, vol. 0, pp. 447–480, 1998.

[47] R. Wallner and R. Cannistra, “An SDN Approach: Quality of Service using Big
Switch’s Floodlight Open-source Controller,” Proc. Asia-Pacific Adv. Netw., vol.
35, p. 14, 2013.

[48] K. Wu and D. S. Reeves, “Capacity Planning of Survivable MPLS Networks
Supporting DiffServ,” pp. 1–20.

[49] “Software-Defined Networks and OpenFlow,” Internet Protoc. J., vol. Volume
16, no. No. 1
https://www.cisco.com/c/dam/en_us/about/ac123/ac147/images/ipj/ipj_16-
1/161_sdn_fig03_lg.jpg.

[50] L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “Experimental validation and
performance evaluation of OpenFlow-based wavelength path control in
transparent optical networks,” Opt. Express, vol. 19, no. 27, p. 26578, 2011.

[51] J. Dix, “The promise of software defined networking,” 2013. [Online]. Available:
https://www.networkworld.com/article/2167667/lan-wan/lan-wan-the-promise-
of-software-defined-networking.html.

[52] “Seamless Legacy to SDN transformation.” [Online]. Available:
https://pfsw.com/solutions/sdn-nfv/.

[53] “SDN vs NFV vs Traditional Networking,” 2015. [Online]. Available:
http://sateeshkolagani.com/?p=221.

[54] Iversen, V.B., “Handbook: Teletraffic Engineering,” 2013. ITU-D. Technical
University of Denmark. pp. 21-22, 884-93

[55] “5G PPP Architecture Working Group, View on 5G Architecture,” 2016.

 101

[56] Stewart, W.J., “Introduction to the Numerical Solution of Markov Chains,” 2014.
Princeton University Press, USA.

[57] W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, “On the self-similar
nature of Ethernet traffic (extended version),” Transactions on Networking 2 (1),
February 1994.

[58] D.B. Percival, A.T. Walden, “Wavelet Methods for Time Series Analysis,”
Cambridge University Press, USA, 2000.

[59] A. Lall, V. Sekar, M. Ogihara, J. Xu, H. Zhang, “Data streaming algorithms for
estimating entropy of network traffic,” Proceedings of the Joint International
Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’06), 2006, pp. 145–156.

[60] A. Lakhina, M. Crovella, and C. Diot., “Mining anomalies using tra_c feature
distributions,” Proceedings of ACM SIGCOMM, 2005. (mining-anomalities-
TR.pdf)

[61] Gross, D., Harris, C.M., “Fundamentals of Queueuing Theory,” third ed. John
Wiley & Sons Inc., USA., p. 275 and p.10, 1998.

[62] A. Wagner, B. Plattner., “Entropy Based Worm and Anomaly Detection in Fast
IP Networks” In Proceedings of IEEE International Workshop on Enabling
Technologies, Infrastructures for Collaborative Enterprises, 2005.
(wetice05_entropy.pdf)

[63] Kelly, F., and Yudovina, E., “Lecture Notes on Stochastic Networks,”
Cambridge University Press, 2014.

 102

Appendix 1

Mathematical Symbols – Explanations

 𝑍 =
𝑉𝑎𝑟(𝑋)
𝑬(𝑋)

𝑬(𝑋) denotes the expectations and 𝑉𝑎𝑟(𝑋) denotes the variance of a random variable or

process 𝑋.

 𝜆 ∈ 𝑋 ± 𝑧\/@𝑠. 𝑛-./@

(change notation) 𝜆 lies in the interval 𝑋 − 𝑧\/@𝑠. 𝑛-./@ , 𝑋 + 𝑧\/@𝑠. 𝑛-./@ , and 𝑧\/@
is the upper 1 − 𝛼/2 quantile of the standard normal distribution and
𝑠@ = (𝑛 − 1)-. (𝑋B − 𝑋)@K

BL. 	is the sample variance estimating 𝜎@.

 𝑝 𝑘 ≈ 𝐻 2𝐻 − 1 𝑘@�-@,

≈ should be interpreted as “is approximately”, such as the ordinary least squares line
approximating a random but correlated set of points.

 𝑄QT. = max 0, 𝑄Q + 𝐴Q − 𝑆Q ,

The max 	 operator takes on 0 whenever 𝑄Q + 𝐴Q − 𝑆Q < 0, and 𝑄Q + 𝐴Q − 𝑆Q otherwise
(similarly for min). The operator may take an index, denoting the variable that should
be changed to attain the functional maximum (or minimum), such as

 𝑷 𝑀K > 𝑎 ≤ min
·Ëx

𝑒-K ·P-∧ · = exp −𝑛max
·Ëx

𝜃𝑎 −∧ 𝜃 .

 𝑷 𝑄 > 𝑏 = 𝑷 sup
Q¬x

𝑊Q > 𝑏 .

The 𝑷 operator denotes the probability (with respect to some probability measure).
sup
Q¬x

𝑊Q > 𝑏 is the supremum (the largest value) of 𝑊Q for any 𝑡 > 0 such that 𝑊Q > 𝑏.

This is a slight abuse of notation: Should the value of 𝑊Q never exceed 𝑏, the conditional
supremum would be undefined, but its probability zero.

 103

 𝑷 sup
Q¬x

𝑊Q > 𝑏 = 𝑷 ∪Q¬x 𝑊Q > 𝑏 ≥ sup𝐏
Q¬x

𝑊Q > 0 ,

In this equation, the notation ∪Q¬x 𝑊Q > 𝑏 are all the events where 𝑊Q > 𝑏. You may
think of it as the sum of the time segments 𝑡., 𝑡@ 	, 𝑡�, 𝑡ö , . . . , 𝑡K. 𝑡KT. where for 𝑡 ∈
𝑡B, 𝑡BT. it is true that 𝑊Q > 𝑏, and the sum divided by the total time of consideration 𝑇

giving the probability.

 𝑷 𝑀K > 𝑥 ≍ 𝑒-K³ ´ 𝑓𝑜𝑟	𝑥 > 𝜇

 𝑷 𝑀K < 𝑥 ≍ 𝑒-K³ ´ 𝑓𝑜𝑟	𝑥 < 𝜇

The notation ≍ means “is asymptotically equal to”, so that the right-hand side approaches
the left-hand side as (in this case) 𝑛 →∞ (as 𝑛	approaches infinity). It does not indicate
how fast the left-hand side approaches the right-hand side, but rather indicates the
mathematical form “for large 𝑛”.

 𝑀 𝜃 = 𝑬 𝑒·¸ = 𝑒·¸ 𝑓 𝑥 𝑑𝑥,

The symbol 𝑑 signifies the differential operator (derivative) and is not in italics to
distinguish it from the variable 𝑑, which can be anything.

 𝐼À(𝑥) ≜
1 𝑖𝑓	𝑥 ∈ 𝐴
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The symbol ≜ denotes identity, and can be read as “is defined by”.

 𝑬 𝐼[KP,∞) 𝑛𝑀K = 𝑷 𝑛𝑀K > 𝑛𝑎

The symbol 𝐼[KP,∞) is the indicator function, taking value 𝑛𝑀K in the interval [𝑛𝑎,∞)
and 0 otherwise.

