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Abstract: This article presents an evolution-based model for the US airport network. The topological 

properties and the volume of people travelling are both studied in detail, revealing high heterogeneity in 

space and time. A recently developed community structure detection method, accounting for the spatial 

nature of these networks, reveals a better picture of the communities within. 
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1. INTRODUCTION 

Transportation networks are a good example of spatial 

networks. In this case, network topology is entangled with 

spatial aspects such as the location of nodes and the length of 

links. Such networks are also characterised by the association 

of a “transport cost” to the link length, implying that longer 

links are typically balanced by some benefit, such as 

connecting to a high-degree node, or a node in an attractive 

location. Transportation networks typify the specific nature 

of spatial networks particularly with regard to issues such as 

congestion, fast-growing urban sprawl and disease 

propagation. Network structure and dynamics play a key role 

in most, if not all, of these challenges. Transportation 

networks can be planar, as in road and rail networks, or non-

planar, as in airport networks. In addition, transportation 

networks are usually weighted, where the link weight 

describes the intensity of some form of interaction, e.g. the 

number of transported passengers. Air transportation 

networks are an important example of spatial networks. 

Nodes identify airports and links represent the existence of a 

direct air service among them. Weights on links may 

represent the number of passengers flying on that connection, 

and the distribution of weights is an initial indication of the 

existence of possible strong heterogeneities (Barrat et al. 2004). 

In recent years, the analysis of complex transport networks 

has received considerable attention, mainly in terms of 

commuting networks (De Montis et al. 2007, Patuelli et al. 

2007). Airport networks have also been studied to 

characterise their level of degree correlations and clustering 

(community structure), their evolution in time, and their 

potential scale-free properties (Guimerà et al. 2005, Gegov et 

al. 2011). Community structure is when nodes can be 

grouped into sets of nodes such that each set is more densely 

connected inside than with the rest of the network. 

Community structure is later explained in more detail. The 

emergence of community structures in airport networks has 

implications for network efficiency and its socio-economic 

characteristics. In terms of network efficiency, network 

failure due to external factors such as bad weather conditions, 

volcanic eruptions, and political or security issues, may have 

significant impact on the air traffic depending on the 

criticality of the involved nodes and the extent of their 

influence. In terms of socio-economic characteristics, the 

emergence of community structure depends on the specific 

individual traveller’s needs, and the location and distribution 

of relevant activities.  

2. US DOMESTIC AIRPORT NETWORK 

Over the past few decades air travel in the US has changed 

considerably. Apart from the obvious increase in the number 

of airports, connections and passengers, the structure 

(topology) of the USAN has transformed, thereby affecting 

all aspects of air travel. Up to the 1970s the USAN had 

mainly a hub-and-spoke architecture: flights coming from 

many origins (spokes) converge to the airport (hub) from 

which new flights start toward other destinations (spokes). 

The hub-and-spoke architecture is characterised by a high 

spatial network concentration, a time coordination of flights 

at the hub - according to a “flight wave” concept (Burghouwt, 

De Wit 2005), and the integration of air services at the hub 

(e.g. baggage transfer). This kind of air service increases both 

the number of served destinations and the load factor 

(fraction of filled seats) for each aircraft. In fact, point-to-

point services that guarantee the same number of destinations 

from each origin could have too low demand levels to assure 
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profitability to the airline. The main disadvantage for 

passengers is that they would have to change flights at the 

hub, taking more time to reach their final destination. 

Furthermore, passengers travelling between other 

destinations may experience poor service, including 

infrequent flights and many changes. As a result, a number of 

low-cost airlines emerged in the 1980s, providing point-to-

point direct services between poorly connected destinations. 

One example is JetBlue, which is still considered very 

successful even when compared against larger airlines, such 

as American Airlines and United Airlines (Bounova 2009). 

Consequently, the USAN transformed from a hub-and-spoke 

to a small-world architecture, with high clustering and low 

characteristic path length (average number of air trips one 

needs to take to get from A to B, considering all pairs of 

airports). 

3. METHOD 

This study investigates the evolution of the USAN from 1990 

to 2010. The network is modelled in a discrete time-series 

consisting of three stages: 1990, 2000 and 2010. Each of 

those is further split into six bi-monthly intervals, in order to 

capture finer temporal detail and to explore seasonal 

variations in the network. Hence, the network model consists 

of 18 network snapshots depicting topology and traffic for a 

two-month time-slice. Each network is defined by a set of 

nodes (the airports) and a set of links (the direct flight 

connections), representing topology. In addition, the links are 

weighted by the total number of passengers (both inbound 

and outbound) that flew on that connection within the 

specified time-slice. In this way it is possible to study, over 

time, both dynamics on the network in terms of traffic 

fluctuations and dynamics of the network in terms of 

topology fluctuations. Fig. 1 shows a map of the US regions 

and states, including the locations of the main airports in 

terms of passenger flows. 

 
 

Fig. 1. US macro-regions and major airports in 2010. 

Adapted from (Mackun et al. 2011). 

4. COMMUNITY STRUCTURE 

Community structure is a prominent feature in many 

biological, social and technological complex systems 

(Meunier et al. 2010, Blondel et al. 2008). It is defined as the 

presence of highly intra-connected modules of nodes that are 

loosely inter-connected to the rest of the network. In other 

words, nodes are organised in clusters and most links are 

inside those clusters. The reason for this phenomenon is that 

nodes that share functional similarity and/or dependency tend 

to interact more and therefore they should be more 

connected. There are two main advantages of this community 

architecture: the first is efficiency, as most interactions are 

within modules which are internally well-connected, thereby 

reducing the path length (the number of links that separate a 

pair of nodes); and the second is robustness, as entire 

modules may fail autonomously, without severely affecting 

the operation of other modules, and hence, the function of the 

entire network. 

In recent years, research on complex networks has proposed 

many community detection methods (Lancichinetti, 

Fortunato 2009) that aim to discover the most sensible 

partition of a network into communities. Most of them work 

on the principle of modularity (Newman, Girvan 2004) 

optimisation, aiming to maximise the modularity benefit 

function describing the quality of a network partition into 

communities. The more links that fall within a community 

compared to an ensemble of benchmark random networks 

with the same community structure, then the more bias there 

is for links to connect to nodes belonging to the same 

community, and therefore the higher the modularity Q in (1) 

(Expert et al. 2011). In essence, modularity measures how 

sharply the modules are defined. 

Q = (fraction of links within communities)  

 – (expected fraction of such links)                       (1) 

The expected fraction of links within communities is 

calculated from an ensemble of random networks that 

resemble the network under scrutiny in terms of network 

properties and organisation. In addition, it is necessary to 

quantify the average level of interaction between a pair of 

nodes, and this is achieved by defining a null model matrix 

Pij that describes the expected weight of a link between nodes 

i and j, over the ensemble. The standard choice for Pij, 

defined by (Newman, Girvan 2004) preserves the strength 

(total weight on all adjacent links) of nodes in the random 

networks: 

Pij
NG

 = ki kj /2m                                                                  (2) 

where ki is the strength of node i and m is the total weight in 

the network. A limitation of this null model, and of 

community detection methods that use it, is that only network 

topology and traffic are considered, but this is insufficient for 

networks embedded in space, such as the USAN. The reason 

for this is that most spatial networks (excluding the Internet 

for example) are very biased towards short-range connections 

due to the cost involved in long-range interactions in physical 

space. Therefore, standard community detection methods 

(typically based on the NG null model) will discover 



 

 

     

 

communities of nodes that are spatially close, as opposed to 

communities that have particularly strong internal 

interactions (Ball et al. 2011, Estrada, Hatano 2009). To 

address this, (Expert et al. 2011) proposed an alternative null 

model for Pij that takes into account the effect of space by 

favouring communities of nodes i and j that are more 

connected than expected, given the physical distance dij 

between them: 

Pij
Spa

 = Ni Nj f(dij)                                                                   (3) 

where Ni is the importance (typically the strength) of node i 

and f(dij) is the function that incorporates the effect of space. 

This so-called deterrence function describes the expected 

level of interaction between nodes i and j that are separated 

by some distance dij. In other words, the function defines how 

interaction decays, similarly to gravity, as distance between 

objects increases. 

Expert’s null model is ideal for uncovering space-

independent community structure, and hence, it is the one 

applied to the USAN network model. The necessary inputs 

are the adjacency matrix (encoding topology and passenger 

flows), the distance matrix (containing the Euclidean distance 

between all pairs of airports), the importance vector (holding 

the passenger flow at each airport), and the bin size, which is 

used to bin the data from the distance matrix. For application 

to our model, several bin sizes were tested and, after 

comparing their effect on the deterrence function of the 

algorithm, a bin size of one was chosen due to distance being 

expressed in terms of degrees of arc length, where one degree 

is approximately 60 miles. 

5.  RESULTS 

Expert’s spatial community detection method, described 

earlier, is applied to each of the 18 USANs (each one 

representing the topology and passengers for a bi-monthly 

period). The output is a vector, assigning each airport to a 

specific community of airports, in which all members have 

particularly strong interactions in terms of passenger flows 

between them, given their physical separation. Figs. 2-19 

represent the USAN at various stages over time, where each 

airport is denoted by a circle, the size of which is directly 

proportional to the passenger flow (inbound and outbound 

passengers), and the colour represents the community. 

Airport connections and airport-to-airport flows are not 

shown for clarity, and colour is not consistent across the 

networks as it is only used to differentiate between different 

communities in a single network. In other words, the figures 

below depict the size of airports by passengers handled, and 

the groups of identically coloured airports that have 

particularly strong passenger flows between them. Alaska, 

Hawaii and the Mariana Islands are not shown here but they 

represent a very small fraction of the network. The airport in 

the bottom right is for the Virgin Islands. In the following 

analysis of results, the term “hub” is used to describe an 

airport that handles a high volume of passengers, and the 

terms “community” and “cluster” are used interchangeably.  

5.1. Year 1990 

Figs. 2-7 depict bi-monthly snapshots of the USAN for the 

year 1990. 

Fig. 2. JAN-FEB 1990 

Fig. 3. MAR-APR 1990 

Fig. 4. MAY-JUN 1990 

 

Fig. 5. JUL-AUG 1990 



 

 

     

 

Fig. 6. SEP-OCT 1990 

Fig. 7. NOV-DEC 1990 

In Jan-Feb (Fig. 2) there is a well-defined cyan community of 

west-coast airports, such as Los Angeles (LA) and San 

Francisco, together with Chicago, suggesting high passenger 

mobility between those locations. In Fig. 3 the network for 

Mar-Apr implies a particularly large community (light-green) 

of the main US airports. This means that there were 

particularly active interactions between all the light-green 

locations during this time, in contrast to the previous image 

for Jan-Feb. May-Jun in Fig. 4 displays a geographically 

clustered set of communities in the east, together with the 

largest community in red which spans almost the entire US. 

In other words, the geographically clustered communities 

represent the regions where passengers mainly flew locally, 

and the red community refers to long-distance passengers. 

Jul-Aug (Fig. 5) shows a very inter-mixed network, with 

significant long-distance travel suggested by the spatial 

spanning of the communities. However, the cyan Dallas 

cluster is an exception, as it covers only Dallas and small 

nearby airports. Sep-Oct (Fig. 6) sees an overall decline in air 

travel, matching the end of the tourist season, and two large 

communities in blue and green. In Fig. 7 Nov-Dec has no 

major change in traffic patterns apart from the fact that 

Chicago (a key US hub) is taken over by the spanning blue 

community, implying that it was used extensively for air 

travel, particularly among the blue regions. 

5.2. Year 2000 

Figs. 8-13 depict bi-monthly snapshots of the USAN for the 

year 2000. 

 

Fig. 8. JAN-FEB 2000 

Fig. 9. MAR-APR 2000 

Fig. 10. MAY-JUN 2000 

Fig. 11. JUL-AUG 2000 

 

 



 

 

     

 

Fig. 12. SEP-OCT 2000  

Fig. 13. NOV-DEC 2000 

Jan-Feb in Fig. 8 displays a prevailing cyan community of 

most major airports dominating the west and a large part of 

the rest of the US. In Fig. 9, Mar-Apr displays a very similar 

pattern but the number of passengers has increased, which is 

reflected by the larger circles. In particular, yellow Atlanta 

(ATL) is clearly the leading US airport in terms of passengers 

handled during this period. May-Jun in Fig. 10 suggests that 

Dallas and Chicago have separated from the largest 

community in the previous image, forming their own 

community (in blue) with a few more airports in the north-

east. Again, Atlanta is nearly the only member of its yellow 

cluster, but its size implies that it plays the role of the main 

hub in the US, connecting many of the other regions. This 

will be explored in more detail in the discussion section. Jul-

Aug (Fig. 11) appears similar to the networks for Jan-Apr, 

with a main green cluster covering most of the US and 

Atlanta still on its own. In Fig. 12 Sep-Oct the number of 

passengers has predictably decreased. The east appears to be 

mixed while the west, Dallas and Chicago are all part of the 

same red cluster. Nov-Dec in Fig. 13 is similar to the 

previous network for Sep-Oct. 

5.3. Year 2010 

Figs. 14-19 depict bi-monthly snapshots of the USAN for the 

year 2010. 

 

Fig. 14. JAN-FEB 2010 

Fig. 15. MAR-APR 2010 

Fig. 16. MAY-JUN 2010  

Fig. 17. JUL-AUG 2010 

 

 



 

 

     

 

Fig. 18. SEP-OCT 2010 

Fig. 19. NOV-DEC 2010 

Fig. 14 Jan-Feb has two large clusters in red and green that 

cover the west and a big part of the US, respectively. Atlanta 

(blue) is still the largest hub but passenger demand is low due 

to the low season. Mar-Apr in Fig. 15 shows an increase in 

passengers and a clearly dominating red community in the 

west. The south is covered by the pink Dallas cluster, and 

yellow Atlanta and light-green Chicago are the first and 

second largest hubs, respectively. May-Jun in Fig. 16 is 

different in two respects. Firstly, Chicago has formed a 

yellow cluster covering the south-west and the east, and 

secondly, orange Dallas has separated from the south cluster, 

so it has become more of a long-distance travel airport than in 

the previous two months. Jul-Aug (Fig. 17) is very similar to 

May-Jun. This means that there is a particularly high volume 

of travellers among the east coast, the west coast and 

Chicago, possibly due to high business and leisure long-

distance travel in the summer. Sep-Oct (Fig. 18) has a good 

mix of many clusters, suggesting that during these months 

there has been more long-distance travel within the US. The 

green, yellow and blue communities are particularly well 

spread out, highlighting the extent of long-range travel. Nov-

Dec (Fig. 19) is similar to the previous two months but now 

the Chicago and LA clusters have merged again (see May-

Jun and Jul-Aug), forming one of the two largest clusters (red 

and green). 

6. CONCLUSIONS 

The US Airport Network is a complex system that is 

continuously evolving to meet the growing demands for air 

travel. Investigating the community structure within has 

illuminated important hidden characteristics of the network’s 

topology and dynamics. Specifically, the findings reveal high 

heterogeneity in both space and time. In other words, the 

network is non-uniform (in space) and non-linear (in time) in 

terms of its connections and traffic. In addition, the spatial 

community detection method has identified a more realistic 

picture of the intricate structure within the network, which is 

invaluable for our understanding of this critical transportation 

system. Furthermore, the proposed network model may be 

used for urban and transport planning, and for forecasting 

future trends in the US Airport Network.  
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