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Abstract
Three-phase induction motors are industrial work horses known as inductive loads. Inductive loads always create low power
factor due to consuming more reactive power. Low power factor not only makes a penalty charge for costumers, but also
produces energy losses in electrical systems. To prevent these problems, the power factor which is the ratio of active and
reactive power must be maintained toward unity. The power factor can be controlled by manipulating either of active or
reactive power. In induction motors, active power is proportional to the motor load that variation of motor load results in
increase or decrease in power factor. However, adding reactive power by capacitors would be a substantial solution to improve
and control the power factor in unity. Many researches expressed that injecting improper reactive power to improve the power
factor creates under- and over-correction. To prevent such problems, equation of power factor correction can be employed in
order to obtain the optimal value of reactive power. In this equation, the presence of power factor at every single loading point
is required. Estimation techniques can be a significant key to determine the power factor at every loading point. In this paper,
several statistical methods including, kriging, regression, artificial neural network and support vector regression, are tested in
three induction motors. A comparison is presented to verify the great performance of support vector regression method.

Keywords Induction motors · PF · MCMD · Kriging · Regression · ANN · SVR

1 Introduction

Three-phase induction motors (IMs) are the main industrial
work horses that consume both active and reactive power [1,
2]. IMs are known inductive loads that produce a high power
quality problem in electrical systems [3]. Inductive loads con-
sume more reactive power. Consuming more reactive power
in loads such as IMs creates energy loss and voltage drop
in the electrical systems [4]. To reduce the energy loss and
voltage drop, PF of IMs which is the ratio of active and reac-
tive power must be maintained toward unity [5, 6]. In IMs,
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the active and reactive power varies while the motor load
changes from no-load to full-load that consequently PF will
be changed [7]. Bimbahara [8] described the reason that at
no-load condition there is no mechanical resistance, the only
magnetization reactance and motor resistance losses are pre-
sented. The stator current will be divided in two components
active and reactive current in order to supply bothmechanical
resistance and magnetization reactance. Since the resistance
losses (friction and windage loss) are quit small, only a few
active current pass through the resistance losses, but the
majority of stator current as a reactive current flow inmagne-
tization reactance and therefore the no-load current creates
high-angle legs the stator voltage in the range of 75°–85° [9].
The stator PF at no-load will be approximately between 0.1
and 0.3. However, as mechanical resistance increases, active
current or power increases gradually and flow in rotor side
to supply mechanical resistance. Then, it decreases the angle
and improves the power factor in stator side about 0.8–0.9
[9].

In industrial factories, many motor loads are changing or
even sometimes are working at light-load that causes low PF.
The low PF in majority of IMs consuming more current is
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stored in the windage magnetic field and regenerated back
to the grid line at each AC cycle [10, 11]. This exchange
is known reactive current which can be a cost factor. To
reduce this cost, generating reactive power is required in
order to improve low PF [12]. Capacitors bank is one of the
significant solutions to generate reactive power and correct
the low PF. Obtaining the optimum value of required reac-
tive power still is an unresolved challenge because in many
cases the improper capacitors bank creates under- and over-
correction in which under-correction produces low PF and
over-correction causes self-excitation in IMs [13]. Presence
of PF at any loading condition can obtain the proper size of
capacitors. The PF can be determined by the equivalent cir-
cuit of IM that presents rotor and stator parameters. However,
the equivalent circuit parameters need no-load test and lock
rotor test that create a difficulty [2].

Many papers presented methods to determine the param-
eters using measured data and other available information
frommanufacturer data. For instance, Pedra [14], Haque [15]
andMarcondes and Guimaraes [16] presented determination
of IM parameters from manufacturer data. Estimation of IM
parameters with genetic algorithm is reported by Phumiphak
and Chat-uthai [17]. However, by using the equivalent circuit
method the value of PF can be obtained only at no-load and
full-load. In thismethod, to determine the PF at any loads, the
slip or rotor speed requires that providing these parameters
can create a difficulty in measurement [18].

Ukil presented amethod usingmeasured current andman-
ufacturer data (MCMD) to determine the PF of a small IM
[9]. It also used the voltage and motor current measurements
with zero crossing method and instantaneous power method
to obtain the PF at any loads. In this method, the indicated
results showed poor results particularly at large IMs due to
variation of reactive current. A normal meter device creates
a difficulty to measure the PF at every single loading points
due to numerical fluctuation. Power analyzer can be used to
measure and record the PF at every loading points to resolve
the reading issues. However, power analyzer not only is an
expensive device, but also is required the motor being switch
off for cable connection [19].

Therefore, estimation techniques would be an economical
solution to predict the PF at every loading point. Hence, these
techniques provide an online monitoring in order to enhance
reliability and security of power quality in electrical sys-
tems. In this research, several statistical methods with two
categories are used. Kriging and polynomial regression as
numerical techniques, artificial neural network (ANN) and
support vector regression (SVR) as intelligent techniques
are used to estimate the PF of IM 100HP from no-load to
full/over-load conditions. Thesemethods required input data.
The input values can be taken either from motor datasheet or
by a few measurement points of voltage, current and input
power from no-load to full-load conditions. In this paper, the

Fig. 1 Simulated IM by MATLAB/Simulink

estimated PF is compared with measured PF by simulation
and practical work as well.

2 Case studies

In this study, a three-phase IM with range of 100HP is con-
sidered from a stone cutting machine. The measurement
procedure took place when the operator moves the blade
for cutting the stone by variable volume gradually. A power
analyzer named Uni power (UP-2210) is used to measure
and record all components of three phases including volt-
age, current, active and reactive power, PF and harmonics.
The power analyzer stored all components in 6-min inter-
val from no-load to full/over-load conditions. In addition, a
three-phase IM in size of 100 HP with the same specification
of IM from industrial is modeled by MATLAB/Simulink.
A torque meter is used to increase motor load step by step.
Then, a simulated PF meter measures the PF from no-load
to full-load. The simulation diagram is shown in Fig. 1. The
measured PF by power analyzer and simulation is illustrated
in Fig. 2 in which the measured PF by simulation indicated
a result close to the measured PF by power analyzer.

3 Kriging technique

Kriging is a geostatistical method, which is known as an
interpolation technique. The kriging estimates unknown val-
ues based on nearby observed values at surrounding location
and weights them in order to minimize the error of a pre-
dicted value. The kriging is more applicable in cases that
the distance between each observed points and an unknown
point is known. Therefore, the general kriging equation can
be expressed in Eq. (1).

Ẑ(S0) �
N∑

i�1

Wi Z(Si ) (1)
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Fig. 2 Measured PF by MATALB/Simulink

where Z(Si ) is the observed value at the i th location.Wi is an
unknown weight for the observed value at the i th location.
S0 is the prediction location. N is the number of observed
values. To apply this equation, obtaining of weighs Wi are
important in whichWi can be computed by a semivariogram.
The semivariogram is a function that relates semivariance of
data points. It also describes the spatial autocorrelation of
the observed values. There are many semivariagram models
such as exponential, gaussian and spherical models. Expo-
nential model, which can be a suitable for estimating PF, is
applied in this study. Therefore, the exponential function will
be expressed in Eq. (2)

γ (h) � c

(
1 − exp

(−3h

a

))
(2)

where c is sill that semivariance at which levelling takes
place, h is a distance between variables and a is a range that
represents the maximum distance in x-axis of semivariagram
model. The important key point of this method is apply-
ing a suitable semivariogram model to perform high output
accuracy. Selecting the exponential model is more applica-
ble since it is similar to the PF curve. Therefore, in Eq. (2),
c can be replaced as a rated PF at maximum load (mPF), h
is a distance between all load points and a is replaced as
a maximum load (mL). γ (i) is semivariagram of exponen-
tial model. Lagrange matrix will be applied to obtain the
weights of observed values. In the matrix, two main vectors
are needed. One is obtained values of semivariagram model
γ (i) and another is the distance between observed value and
the point that will be estimated. Then, the Lagrange multi-
player matrix can be expressed in Eq. (3).

⎡

⎢⎢⎢⎢⎢⎣

W1

W2
...
Wn

λ

⎤

⎥⎥⎥⎥⎥⎦
�

⎡

⎢⎢⎢⎢⎢⎣

γ11 γ12 · · · γ1n 1
γ21 γ22 · · · γ2n 1
...

...
. . .

...
...

γm1 γm2 · · · γmn 1
1 1 · · · 1 0

⎤

⎥⎥⎥⎥⎥⎦

−1⎡

⎢⎢⎢⎢⎢⎣

γ10
γ20
...
γn0
1

⎤

⎥⎥⎥⎥⎥⎦
(3)

In Lagrange multiplication, Wi is (m ×1 matrix) the
weight of actual and estimated points which is unknown, γi
is (m ×n matrix) output of the semivariagram function and
γno is a vector (m ×1) between the unknown loading points
and observed loading points. Thus, from the obtaining val-
ues of W1,W2, . . . ,Wn , the unknown PF can be estimated
by Eq. (4).

PF � W1F1 +W2F2 +WF3 + · · ·WnFn (4)

where Wi is a weight between an estimated point and
observed points and Fi is the observed PF. Then, multiplying
observed points to obtained weights, PF at a desired point is
going to be estimated. In the kriging algorithm, a loop func-
tion has been applied in order to estimate the PF at any desired
loading condition [20, 21].

4 Regression technique

Regression analysis is a kind of statistical modeling that
uses to describe the relationships between the independent
variable x and the dependent variable y. Regression analy-
sis is also applied to predict values named coefficients (βi )
between a dependent variables (yi ) and independent variables
(xi ).

Predicted coefficients (βi ) with independent variables (xi )
create a new dependent variables (ŷi ) with a significant
model. Least squares method which is more used of regres-
sion analysis estimates the coefficients. There are many
functions to use in least squares method including poly-
nomial, exponential, logarithmic and power. Among these
functions, polynomial function is more suitable in least
square methods because of providing a model by nth degrees
[15]. The polynomial function can be expressed by Eqs. (5)
and (6).

yi �
n∑

i�1

f
(
xi,β

)
+ εi (5)

ŷi � f (xi , β) � β0 + β1x1 + β2x
2
2 + · · · + βmx

m
n (6)

where in Eq. (5), yi is observed value. f
(
xi,β

)
is a

polynomial function εi is error between observed and esti-
mated values. In Eq. (6), (β0, β1, β2, . . . βm) are the coef-
ficients of polynomial where m indicates the coefficients.(
x1 + x22 + · · · xmn

)
are independent variables where m and n
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are number of polynomial degree and number of variables,
respectively. In Eq. (7), β multiplied by xi, provide an esti-
mated value as ŷi . The difference between yi and ŷi is εi .
Now, by obtaining the value of β and εi with new set of xi ,
the values of yi will be determined. Therefore, Eqs. (5) and
(6) can be described in Eq. (7).

[Y ] � [X ][β] + [ε] (7)

where [Y ] is n-by-1 vector of dependent variables, [X] is n-
by-mmatrix of estimatorswith one column for each estimator
and one row for each observation. [β] is a m-by-1 vector of
unknown parameters that can be obtained by Eq. (8). [ε] is
an n-by-1 vector. In order to minimize the errors ε, the least
square procedure is applied in Eq. (9) in whichVondermonde
matrix will be used to solve this equation.

β �
(
XTX

)−1
XTY (8)

SSE �
n∑

i�1

(
yi − ŷi

)2 (9)

In polynomial regression, the number of polynomial
degrees is described as following. For instance, first order
creates a linear model. Second and third orders are named as
quadratic and cubic make nonlinear models. Therefore, the
presence of the real model is important for determination of
polynomial degree in order to obtain the best fitting [18, 20].

Polyfit and Polyval are substantial functions in statisti-
cal MATLAB tools. Polyfit (p) function is used to obtain
the coefficients for polynomial of degree (n). It can be also
described as p � polyfit(x, y, n) in which x is observed
point and determined as an independent value. y is observed
value and is determined as a dependent value. n is a degree of
polynomial that specifies the polynomial power of the coef-
ficient in p. p obtains the polynomial coefficients by using
least squares procedure with selecting the number of degree
(the length of p is n+1). In the procedure of polyfit, indepen-
dent axis (x) requires forming a Vondermonde matrix with
n+1 columns. Polyfit solves the polynomial coefficients with
p � V /y that expressed in Eq. (10).

⎛

⎜⎜⎜⎝

p1
p2
...
pn

⎞

⎟⎟⎟⎠ �

⎛

⎜⎜⎜⎜⎝

xn+11 xn1 . . . 1
xn�1
2 xn2 . . . 1
...

...
. . . 1

xn+1n xnn
... 1

⎞

⎟⎟⎟⎟⎠

−1⎛

⎜⎜⎜⎝

y1
y2
...
yn

⎞

⎟⎟⎟⎠ (10)

Polyval is a function that evaluates p at query points.
The function can be describes as y � polyval(p, x) in
which y output is the polynomial coefficients of degree n
evaluated at query points x . Therefore, combination of both

functions with required number of degree can predict values
at unknown points with significant accuracy.

5 Artificial neural network

In artificial neural network (ANN), the back-propagation is
a multilayer feed-forward, and it is one of the most applied
neural network models. The back-propagation utilizes the
methods of mean square error and gradient descent to realize
the modification to the connection weight of the minimum
error sum of squares. In this algorithm, some measured val-
ues are given to the network as a training sample. Then, the
initial values are assigned for the connection weights [22].
For updating weights, the error between the estimated and
measured values is back-propagated via the network.

Then, reducing the error between estimated and measured
values will be done after procedure of supervised learning. In
the nonlinear model, the network is structured in three layers
feed-forward back-propagation.

From Fig. 2, the structure of this network contains an
input layer, a hidden layer of neurons (nonlinear transfer
function) and an output layer of neurons (linear transfer
functions). x j ( j � 1, 2, . . . , n) indicates the input variables,
zi (i � 1, 2, . . . ,m) describes the output of neurons in the
hidden layers, and yt (t � 1, 2, . . . , l) states the output of the
neural network [23].

Neural network enables to create any kind of patterns by
given sufficient input values. Training the network by suitable
method such asLevenberg–Marquardt back-propagationwill
determine the excellent weight in order to fit the inputs and
targets. The training process of updating the weights values
can be done with two important steps (Fig. 3).

The first step is hidden layer that the below function in
Eqs. (11) and (12) explains the calculation of hidden layer
for outputs of all neurons. neti is the activation value of the i th
node, zi is the output of the hidden layer, and fH in Eq. (13)
is a activation function that in this case sigmoid function is
determined.

neti �
n∑

j�0

w j i x jvi � 1, 2, . . .m (11)

zi � fH (neti )i � 1, 2, . . . ,m (12)

fH (x) � 1

1 + exp(−x)
(13)

The second step is the output in which the below function
in Eq. (14) shows the output of all neurons in the output layer.

yt � ft

(
m∑

i�0

wi t zi

)
t � 1, 2, . . . , l (14)
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Fig. 3 Structure of NNBP layers. (Reproduced with permission from
[23])

where ( ft (t � 1, 2, . . . , l) is a line function. The weights
set with observed values and are minimized by the delta rule
according to the learning samples. The topology in this study
determines by a set of observed values and errors in order to
select the suitable number of neurons.

6 Support vector regression

The theory of SVR was developed by Vapnik in 1997 and is
known as one of the significant technique in terms of solving
regression problem. The SVR method constructs a hyper-
plane in high-dimensional space in order to minimize the
generalization error between defined upper and lower bound
[24]. SVR can only act in linear way but bymapping themain
space into the higher-dimensional space, it would construct
a set of hyperplanes close to the all data points to solve a
nonlinear model. The data point is D � {

Xi , ti }ni where xi
is the input vector, ti is the target output and n is the num-
ber of data sample. Therefore, the regression function can be
expressed in Eq. (15).

Y � f (x) � wφ(x) + b (15)

where φ(x) is the hyperplane in high-dimensional space. X
is a m-dimensional feature space. w and b are coefficients of
SVR that solve the regression problem. w and b are required
to be found by minimizing the regularized empirical risk
function in Eq. (16) and a loss function in Eq. (17).

Fig. 4 Error ε and limits ξ in the ε-insensitive function. (Reproduced
with permission from [25])

Remp � C
1

n

n∑

i�1

Lε(ti , yi ) +
1

2
wTw (16)

Lε(ti − yi ) �
{
0 |ti − yi | ≤ ε

|ti − yi | − ε otherewise
(17)

In the risk function, C 1
n

∑n
i�1 Ls(ti , yi ) is empirical risk

error and 1
2w

Tw is a regularization term or the flatness
of the function that needs to be minimized for simplifica-
tion of the model. Lε(ti − yi ) is an intensive loss function.
Parameter C is named as a capacity of the SVR that decides
the trade between the regularization term and the empirical
risk. E is named as size of the hyper-dimensional cylin-
der that covers the function with the training data points.
SVR performs linear regression in high-dimensional feature
space using ε-insensitive loss, and at the same time tries to
reduce model complicity by minimizing wTw. The mini-
mizationwould be determined by introducing slack variables
ξ−
i , ξ+i i � 1, . . . n since ε-insensitive loss is equal to slack
variables. Figure 4 indicates ε and limits ξ in the ε-insensitive
function.

The parameters C and ε will be set by designer during
training step for optimizing slack variables [25]. To calculate
the parameters of w and b,, Eq. (16) changes to Eq. (17).
Slack variables ξ−

i and ξ+i represent upper and lower limits
in the output and minimized by Eq. (18).

Minimize
1

2
wTw + C

n∑

i�1

(
ξ−
i + ξ+i

)

Subject to the constraints:
⎧
⎪⎪⎨

⎪⎪⎩

α+
i −ti + yi + ε + ξ+i ≥ 0

α−
i ti + yi + ε + ξ−

i ≥ 0
μ+
i ξ+i ≥ 0

μ−
i ξ−

i ≥ 0

(18)
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where α+
i , α−

i and μ+
i , μ−

i are the coefficients of Lagrange
multipliers. The w will be obtained by applying partial
derivative in Eq. (19).

∂R f

∂w
� 0w �

∑

i

(α+
i − α−

i )xi

∂R f

∂b
� 0

∑

i

(α+
i − α−

i ) � 0

∂R f

∂ξ+i
� 0α+

i + μ+
i � C

∂R f

∂ξ−
i

� 0α−
i + μ−

i � C (19)

Moreover, for obtaining the value of b, two main param-
eters are required. One is w which is calculated by Eq. (19)
and another is S (Support vector) that can be considered from
Eq. (20). Therefore, considering both Eqs. (19) and (20), b
would be determined in Eq. (21). Therefore, regression func-
tion in Eq. (22) solves the nonlinear problem.

S � {
i | 0 < α+

i + α−
i < C

}
(20)

b � 1

|S|
∑

i∈S

[
ti − wT − xi − sign(α+

i − α−
i )ε

]
(21)

y �
∑

i

(α+
i − α−

i )K
(
Xi , X j

)
+ b (22)

where (α+
i −α−

i ) is support vector coefficients and K
(
Xi , X j

)

is the kernel function. There are several kernel functions to
solve the minimization problem. In this study, radial basis
function (RBF) using Gaussian is used by Eq. (23) where σ

is the dispersion coefficient of the Gaussian.

K
(
Xi , X j

) � exp

(
− 1

2σ 2

∥∥Xi − X j
∥∥
)

(23)

In Lagrange multipliers, the following Karush–Kuhn—
Tucker (KKT) and the quadratic programming will consider
nonzero values to the α+

i , α−
i which are defined support

vectors. By multiplying the support vectors to the kernel
K (Xi , X), the output provide errors equal, less or greater
than ε. Kernel function is equal to vectors Xi and X j in
the feature space as φ(Xi ) and φ

(
X j

)
where K

(
Xi , X j

) �
φ(Xi )∗φ

(
X j

)
. Therefore, the training of the SVR can solve

a quadratic and convex optimization problem [25].

7 Results and discussions

Input power measurement method is applied for motor load
calculation in order to indicate PF against motor load. Deter-
mining the PF at any load points leads to select the proper size
of capacitors in order to prevent under- or over-correction.

Fig. 5 Results of estimated PF by MCMD method

Under-correction indicates low PF that produces a penalty
of charge. Over-correction generates more reactive power or
current than the motor needed. In such cases, self-excitation
takes place due to higher reactive current than magnetizing
current.

Hence, aforementioned reasons can prove the importance
of the PF fromno-load to full/over-load conditions. Ukil pub-
lished a method using measured current and manufacturer
data (MCMD) to estimate the PF from no-load to full/over-
load condition, and the result of IM 100HP in Fig. 5 shows
that the MCMD method produced hug errors from no-load
to full/over-load conditions in large IMs. This method only
provided satisfied performance in small IMs because in the
small IM the reactive current is almost constant from no-load
to full/over-load.

However, the method was not able to estimate the PF in
the large IM because reactive current cannot be constant
due to high air gap that variation of motor loads from no-
load to full/over-load causes reactive current to be changed
highly. In this paper, to resolve these issues, several estima-
tion techniques have been implemented in order to minimize
the errors. Kriging and regression as numerical techniques
are used to estimate the PF. In Kriging, the distance between
target points and observed load points is considered. Then, by
using exponential function and Lagrange matrix, the weight
of observed points is computed. Multiplying of observed
points in their weights computed the PF at a desired point.
In this method, a loop function is applied to predict the PF
at every loading from no-load to full-load conditions. The
obtained weights times the observed PF provided the PF at
target load points.

Figure 6 indicated that Kriging generated results very
close to the measured points from no-load to full-load. How-
ever, it can be seen huge errors between estimated and
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Fig. 6 Results of estimated target PF by Kriging method

Fig. 7 Results of fitness in polynomial regression

measured values from full-load to over-load. Since Krig-
ing is an interpolation technique, it is not able to make an
extrapolation at over-load condition. However, in regression,
polynomial function is applied in which polynomial degrees
provided significant roles that each number of polynomial
degree creates different models. Polyval and Polyfit in MAT-
LABcanbe significant functions to determine thepolynomial
coefficients and then create a model fit to the observed PF
curve.

Figure 7 and Table 1 illustrated the trained data and pre-
dicted polynomial coefficients in first, second, third and
fourth orders. The evidence confirmed that polynomial
regression with fourth order produced best fitting to the
observed PF curve. Therefore, based on the existed model,
Fig. 8 indicates the estimated unknown PF from no-load to

Table 1 Predicted coefficients of polynomial degrees

Orders β1 β2 β3 β4 β5

First
order

0.0063 0.2498 – –

Second
order

−9.1E−05 0.0173 −0.0121 –

Third
order

4.8E−07 −1.8E−04 0.0220 −0.079 –

Fourth
order

1.3E−08 −2.7E−06 8.7E−05 0.0133 0.0108

Fig. 8 Results of estimated PF in polynomial regression

full/over-load conditions. However, from full-load to over-
load there is a huge gap between estimated and measured
PF. Although both methods produced results from no-load
to full-load very close to the measured points, kriging and
regression methods could not fit the model in the over-load
condition that results indicated extreme errors at over-load
condition.

The reason is that both methods are not able to extrap-
olate the data at unseen points. Figures 6 and 8 indicated
that these methods obtained unacceptable results with huge
errors at over-load conditions. To optimize these issues, the
study found intelligent techniques including ANN and SVR
in order to estimate the PF not only between the known obser-
vation, but also to estimate the PF at over-load conditions
with high performance. In ANNmethod, feed-forward back-
propagation algorithm is used inwhich five and three of input
data are selected as training and testing, respectively. Con-
sidering three hidden layer and a Levenberg–Marquardt to
train the algorithm indicated a significant generalization.

Figure 9 shows the fitness between observed points and
output points where the output values are fitted to the input
data. Figure 10 illustrates the estimated PF from no-load to
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Fig. 9 Results of fitness in NNBP

Fig. 10 Results of estimated PF in NNBP

full-load and over-load. The results illustrated that NNBP
performed a great fitting from no-load to over-load. In spite
of the fact that NNBP produced the results very close to mea-
sured points with small error, several times are applied to run
the algorithm that each running generated different results.
Therefore, in this method, obtaining the best result creates a
difficulty due to running the algorithm more than once. This
can be a main disadvantage of ANN method. To optimize
the issue of NNBP, the SVR is used to provide a fixed model
and estimate the PF at any loading point. The strategy of
SVR is constructed a set of hyperplanes close to the all data
points with a lower and upper bound. The RBF kernel func-
tion is used to obtain the support vectors. The parameters of
SVR have a significant role in terms of creating a suitable
model. In this case, the proper design of parameters indi-

Fig. 11 Results of estimated PF in SVR

Fig. 12 Results of fitness in SVR

cated a model very close to the observed points. The excited
model leads to estimate the unknown points from no-load to
full-load and over-load conditions properly. The estimated
PF from no-load to over-load points is shown in Fig. 11.
As a result, the comparison between implemented methods
expressed that the SVR method obtained satisfactory results
in small, medium and large IMs. The possibility of adjusting
the parameters is one of the main advantages of this method
that is able to provide desired models (Fig. 12).

The designed parameters of SVR are shown in Table 2.
As a result, Table 3 illustrates the fitness and accuracy of

existed models where the fitness is computed by R-squared
and the accuracy obtained by minimum value divided by
maximum value at each points, and then the average value
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Table 2 Parameters of SVR Parameters Values

C 23

ξ 25

ε 0.00015

Table 3 Validity and accuracy of proposed methods

Methods Fitness R2 Error (%) Accuracy
(%)

Computation
time (s)

Simulation – 2.946 96.864 0.032

MCMD – 14.448 85.552 0.005

Kriging – 1.681 98.319 0.015

PR first
order

0.8855 9.749 91.454 0.047

PR second
order

0.9975 2.036 97.971 0.043

PR third
order

0.9993 0.860 99.150 0.046

PR fourth
order

0.9999 0.932 99.104 0.048

ANN 0.9997 0.364 99.443 0.370

SVR 0.9999 0.348 99.653 0.272

provided accuracy. Error of estimated points is obtained by
mean absolute percentage error (MAPE). In Kriging and
MCMD, the input data are not trained as like as other meth-
ods due to different strategies. The error results observed
that MCMD produced a lower accuracy in 85.5%. However,
the SVR provided a high accuracy in 99.6% compared with
others. The error is calculated by mean absolute percentage
error (MAPE) which is shown in. The computation time in
proposed methods are illustrated in second.

8 Conclusions

The power factor of induction motors is one of the signif-
icant elements that must be maintained toward unity. The
power factor is variable while the motor load changes from
no-load to full/over-load. This variation caused monitoring
and determining the low power factor at any loading condi-
tion becomes important due to finding the optimal reactive
power for power factor compensation. In this paper, several
estimation techniques are applied to estimate the power fac-
tor at any loading conditions. Kriging and regression which
are numerical methods estimated the power factor with rea-
sonable results from no-load to full-load. However, both
methods produced very poor results from full-load to over-
load. Neural network and support vector regression which
are intelligent techniques created greater results from no-
load to full/over-load conditions in which the support vector

regression method indicated a satisfactory performance with
accurate results greater than ANN and numerical methods.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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