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Abstract: Regular maintenance is paramount for a healthy 

road network, the arteries of any economy. As the resources 

for maintenance are limited, optimization is necessary. A 

number of conflicting objectives exist with many influencing 

variables. Although many methods have been proposed, the 

related research is very active, due to difficulties in adoption 

to the actual practice owing to reasons such high-dimensional 

problems even for small road networks. Literature survey tells 

that particle swarms have not been exploited much, mainly 

due to unavailability of many techniques in this domain for 

multi-objective discrete problems like this. In this work, a 

novel particle swarm algorithm is proposed for a general, 

discrete, multi-objective problem. In contrast to the standard 

particle swarm, the bare-bones technique has a clear advantage 

in that it is a parameter-free technique, hence the end users 

need not be optimization experts. However, the existing 

barebones algorithm is available only for continuous domains, 

sans any particle velocity terms. For discrete domains, the 

proposed method introduces a parameter-free velocity term to 

the standard bare-bones algorithm. Based on the peak 

velocities observed by the different dimensions of a particle, 

its new position is calculated. A number of benchmark test 

functions are also solved. The results show that the proposed 

algorithm is highly competitive and able to obtain much better 

spread of solutions compared to three other existing PSO and 

genetic algorithms. The method is benchmarked against a 

number of other algorithms on an actual pavement 

maintenance problem. When compared against another 

particle swarm algorithm, it not only shows better 

performance, but also significant reduction in run-time 

compared to other POS algorithm. Hence, for large road 

network maintenance, the proposed method shows a lot of 

promise in terms of analysis time, while improving on the 

quality of solutions.  
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1 INTRODUCTION 

Highways play an important role in the economic and social 

well-being of a country at the national and local levels. 

Pavement is a key element of road infrastructure. Increasing 

traffic volumes, heavier loads and poor reinstatement 

following excavation by public utility companies allied with 

repeated adverse weather conditions are causing significant 

functional and structural deterioration in the pavement such as 

cracking, localized depression, rutting, potholes, texture loss, 

etc. Increasing demands to repair, associated with increased 

pavement deterioration, as well as deficient resource 

allocation, have made the task of maintaining pavement 

network more challenging and difficult [1]. Regular 

maintenance and rehabilitation (M&R) is essential to preserve 

and improve a pavement network. Because of ever increasing 

resource deficiency, maintenance activity must be timely and 

effective. Unnecessary maintenance increases overall 

maintenance costs, whereas delayed maintenance may 

increase rehabilitation costs. In recent years, therefore, 

efficiency has become a key issue in highway pavement 

maintenance planning [2].  

Pavement management systems (PMSs) are essential tools 

that ensure that all pavement sections are maintained at 

adequately high service levels with a low budget and resources 

usage, without causing any significant negative effect on 

environment, safe traffic operations and social activities. At 

both network level and project level, many highway agencies 

employ prioritization programming models to compare 

pavement investment alternatives. In prioritization models, the 

pavement condition data are used to find a factor or index to 

represent the present pavement condition. Prioritization is 

done by ranking all the pavement segments based on a 

priority-ranking index. This ranking index usually considers 

different parameters such as highway class, traffic volume, 

quality index, etc. The maintenance and rehabilitation needs 

selection and budget allocation are conducted based on this 

priority-ranking index [3]. 

An alternative approach to prioritization, in the form of 

optimization, is also used. A PMS is required to keep all 
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pavement segments at satisfactorily high serviceability and 

structural conditions. However, it shall only require minimum 

resources (budget, equipment, manpower, etc.) and should not 

produce any significant negative effect on the environment, 

safe traffic operations, and social and community activities. 

Since many of these objectives are conflicting requirements, 

the decision-making process of PMSs for scheduling 

pavement maintenance activities should involve a multi-

objective consideration that handles the competing 

requirements of different objectives [4]. Optimization has 

been widely used in research for selecting pavement 

maintenance plans. In this regard, many mathematical 

programming techniques (e.g. linear and dynamic 

programming), computational intelligence methods (e.g. 

genetic algorithms and particle swarms) or hybrid models that 

combine the two techniques have been experimented with [4]. 

A variety of stochastic and deterministic programming 

techniques have been developed for finding optimal pavement 

maintenance plan. Stochastic programming techniques such as 

Markov decision process were used to overcome a deficiency 

of data availability [5]. To address particular optimisation 

problems, deterministic programming techniques such as 

linear or nonlinear programming [6] quadratic programming 

[7], integer programming [8], dynamic programming [9] and 

robust optimisation [10] were used. 

Many researchers use genetic algorithm for single and multi-

objective optimization for pavement decision making 

problems: single objective GA [11], and Multi objective GA 

[12]. When it comes to using PSO for pavement problems, 

Wang and Goldschmidt [13] proposed a project interaction 

pre-optimization model that integrates the project interaction, 

traffic-demand prediction interaction and maintenance-

condition interaction into the decision optimization process. 

Cluster models with similarity and dissimilarity analysis were 

employed in the project interaction pre-optimization process to 

avoid roadwork on two paths between origin and destination at 

similar times. The pre-optimization model was used as an 

input of a global multi-objective optimization model-based 

particle swarm optimization (PSO). The multi-objective PSO 

problem was converted into a single-objective problem by 

using the weighted aggregation method [13]. Shen et al. 

(2009) used chaos particle swarm optimization (CPSO), a new 

random global optimization algorithm which has strong local 

searching capability, in their pavement maintenance decision 

programming. It was applied on an expressway network to 

satisfy just a single objective, which was maximization of 

economic benefit. The pavement maintenance decision results 

proposed by the CPSO were validated by comparing with the 

results of the NSGA-II algorithm. It was found that the 

convergence speed of CPSO to reach the optimal solution was 

quicker than the convergence speed of NSGA-II [14]. In 2010, 

Tayebi and Hassani used PSO with single-objective function 

scenarios for a pavement management system at the network 

level [15]. The same hypothetical problem formulation of the 

Pavenet_R model by [16] was used to apply a PSO algorithm 

for pavement maintenance programming [15]. Chou and Le 

formulated a multi-objective PSO algorithm (i.e. classical one) 

to study the effect of overlay maintenance activities on the 

performance of pavement reliability with an optimized 

treatment cost. The maintenance cost and performance 

reliability of the pavement were considered simultaneously in 

the developed algorithm as multi-objective functions. For 

considering uncertainties of input parameters and maintenance 

effect on pavement service life, a probabilistic model 

integrated with a Monte Carlo simulation was proposed to 

predict performance reliability [17]. Moreira et al. applied two 

optimization algorithms for pavement maintenance 

scheduling. The first one was NSGA-II for solving a multi-

objective problem, while the second algorithm was a genetic 

algorithm to optimize a single-objective problem [18]. Santos 

et al. developed a novel adaptive hybrid genetic algorithm 

(AHGA) by combining GA with local search (LS) methods for 

finding the optimal pavement M&R strategy [19]. GA, 

NSGA-II and single-objective PSO are the state of the art 

methods for solving pavement maintenance scheduling 

problem. GA and NSGA-II were applied on pavement 

maintenance scheduling problem with different problem 

formulation, different objectives, single or multi objective, or 

different methods of constraints handling. In addition, PSO 

was used for solving this problem considering single-objective 

function. Therefore, it is required to use an optimization 

algorithm that has few parameters to modify that is easy to 

implement. In addition, this algorithm has capability to 

discrete multi-objective optimization problem for pavement 

maintenance management. 

Despite the research efforts with numerous methods, their 

adoption in engineering practice has been difficult. The main 

reason for the lack of application has been due to the long 

times taken by the algorithms for the typically large 

dimensions encountered in pavement scheduling, i.e. many 

pavement sections and the associated treatment decision 

variables covering multiple time periods.  In addition, many 

more objectives, such as impacts on society, the environment 

and mobility are given consideration in the modern era, 

requiring a truly multi-objective approach for maintenance 

scheduling [20]. Hence, the speed and performance are 

paramount for this application area and the drive to achieve 

these keeps the research domain very active to this day. As 

seen earlier, many evolutionary approaches, such as genetic 

algorithms (GAs) and particle swarm optimizers (PSOs), have 

been experimented to overcome the aforesaid issues. GAs, 

especially, have been extensively researched about for 

pavement maintenance and significant improvements have in 

terms of speed. However, GAs require the selection of good 

numerical values for certain parameters, such as mutation and 

crossover operators, making their use both subjective and, for 

non-experts, non-optimal. In comparison to GA, PSO has not 

been studied as much as shown above. In addition, regular 

PSO algorithms are also plagued by their dependence on 

numerical values chosen for certain parameters, e.g. the 

acceleration coefficients of the particles. 

This is the context in which another PSO method, called 

bare-bones, is proposed for PMS. Bare-bones PSO [21] unlike 

other PSO methods, is a parameter-free technique where the 

user does not have to choose values for parameters involved. 

However, the proposed method [21] is for continuous search 
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domains, whereas pavement maintenance consists of various 

decisions that are essentially discrete in nature. For example, 

there could be two decisions like ‘no actions needed’ and 

‘repave with a 5 mm thick layer’, and these are essentially 

linguistic quantities that, with some effort, can be converted 

into discrete values. Hence, the proposed method should be 

usable with discrete search spaces. This paper proposes an 

alteration to the original proposal whereby discretization is 

possible. In addition, the existing barebones PSO algorithm, in 

contrast to the regular PSO, does not use any velocity terms 

for the particles. This paper shows why velocity terms are 

needed for discrete domains, and also proposes and 

implements a way to reintroduce them. In this regard, the new 

algorithm exploits the strengths of the regular and barebones 

methods to arrive at a feasible solution method, bringing forth 

a significant novelty. 

The paper continues as follows. The next section introduces 

review on MOEA for discrete Problems. Then a section 

introduces the basics of the maintenance 

optimization.Thereafter, a section is dedicated to explaining 

the essentials of PSO. Section 4 provides the theory of the 

proposed algorithm. Then a section briefly outlines some 

performance metrics that are used to evaluate the solutions 

obtained via different methods. This is followed by a part 

containing the numerical details of the actual problem tackled. 

An extensive section is devoted to analysing the results 

obtained via the proposed algorithm and puts in the 

perspective of those obtained via three other methods followed 

by conclusions. 

2 STATE OF THE ART MOEA METHODS 

FOR DISCRETE OPTIMIZATION PROBLEMS 

There are number of evolutionary algorithms that have been 

widely used to solve continuous and discrete optimization 

problems. The most popular MOEA that has been used and 

applied successfully to solve a numerous optimization 

problems is non-dominated sorting genetic algorithm II 

(NSGA-II) [22]. For handling many-objective optimization 

problems, new version of evolutionary optimization algorithm 

called NSGA-III was proposed by extending the NSGA-II 

framework [23]. Multi-objective evolutionary algorithm based 

on decomposition MOEA\D was developed by Zhang and Li 

in 2007 [24]. MOEA\D was improved and applied to solve a 

multi-objective optimization problem by decomposing it into 

several single optimization sub-problems by using common 

aggregation methods [25–32]. To use advantages of various 

optimization algorithms for dealing with complicated multi-

objective optimization problems, numbers of hybrid multi-

objective evolutionary algorithms were developed [33–35].  

A new heuristic algorithm called multi-objective quantum 

evolutionary algorithm (MOQEA) was proposed. This 

algorithm was developed based on the theory of quantum 

computing that has little q-bit individuals are evolved to find a 

satisfactory outcome [36]. A novel hybrid discrete differential 

evolution (HDDE) algorithm was formulated to solve flow 

shop scheduling problems with makespan criterion. An 

effective insert neighbourhood based local search algorithm 

structure was embedded to balance the global exploration and 

local exploitation [37]. An ensemble of discrete differential 

evolution DDE algorithms was proposed to solve the 

generalized traveling salesman problem and evaluated on a set 

of benchmark problems. The suggested method allow the 

DDE algorithm to make use crossover operators and number 

of parameter values simultaneously [38]. A discrete harmony 

search (DHS) algorithm was developed for solving flexible 

job-shop scheduling problem (FJSP) to satisfy weighted set of 

multiple objectives. To improve the local exploitation ability, 

number of local search methods were included [39]. 

In addition, a new version of PSO called modified particle 

swarm optimization for discrete problem suggested. This 

version is compared to the original version of PSO by splitting 

the cognitive component of the original version into two 

different components which can be called good experience 

component and bad experience component [40]. A PSO 

algorithm with an event-based heuristic were combined to 

develop a new improved algorithm called a hybrid particle 

swarm optimization (HPSO). It was implemented to solve the 

dynamic and discrete berth allocation problem and the 

dynamic quay crane assignment problem [41]. 

Moreover, the proposed a discrete artificial bee colony 

(DABC) algorithm that were hybridized with an iterated 

greedy (IG) and iterated local search (ILS) algorithms IG 

algorithm embedded in the VNS procedure based on swap and 

insertion neighbourhood structures. The key aim of the 

hybridization is for performing the global search by the 

exploitation of the search space and increasing the search on 

the local minima and then achieving the balance in both global 

and local search effectively [42]. A discrete artificial bee 

colony (DABC) algorithm was proposed to solve the lot- 

streaming flow shop scheduling problem to satisfy the 

objective that is minimization of total weighted earliness and 

tardiness penalties [43]. A new version of the artificial fish 

swarm algorithm was developed to solve binary optimization 

problem. The proposed algorithm was applied on 

multidimensional knapsack problem (MKP) and then tested on 

a set of benchmark functions [44]. The chaos driven discrete 

artificial bee colony (CDABC) algorithm was developed. Four 

unique chaos maps of Burgers, Lozi, Delayed Logistic and 

Tinkerbell were included to measure the effectiveness of 

applying these instead of Mersenne Twister as chaos pseudo-

random number generators [45]. A nature-inspired algorithm 

called honeybee mating optimization HBMO algorithm was 

developed. It was applied to address a related routing issue to 

the personal rapid transit (PRT) system [46]. Another swarm 

intelligence (SI) algorithm called dragonfly algorithm (DA) 

was proposed to solve binary and multi-objective optimization 

problems. The main characteristics of dragonfly algorithm 

were found to explore and exploit the search space 

respectively [47]. 

Furthermore, a Binary Grey Wolf Optimizer application 

(BGWO) was presented to find the commitment program of 

unit commitment UC problem. It was applied to satisfy just a 

single objective which is a cost minimization associated with 

bound, equality and inequality constraints [48]. A new version 
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of Ant Lion Optimizer called Multi-Objective Ant Lion 

Optimizer (MOALO) was proposed. To test the effectiveness 

of the developed algorithm, is employed. Also, the algorithm 

was applied to a number of multi-objective engineering design 

problems and also a set of unconstrained and constrained 

benchmark functions [49]. A new algorithm called multi-

objective discrete virus optimization algorithm (MODVOA) 

was developed for solving the flexible job-shop scheduling 

problem with controllable processing times (MOFJSP-CPT). It 

was applied to satisfy the objectives which are minimization 

of the makespan and the total additional resource consumption 

[50]. 

3 DESCRIPTION OF THE PAVEMENT 

MAINTENANCE DECISION PROBLEM 

3.1 Optimization Problem Parameters 

The M&R analysis procedure depends on the following data 

and decision criteria: current state of the pavement based on 

distresses, minimum acceptable serviceability level, treatment 

cost and budget, and analysis period. For determining the 

treatment needs, the highway network is divided into a 

number of pavement segments of the same length [3,16]. The 

segments are assumed to have uniform conditions throughout 

their span, making it suitable for the M&R scheme to 

prescribe a single maintenance decision for that segment. 

The agency costs of highway assets consist of the expenses 

for maintenance, rehabilitation and reconstruction. 

Rehabilitation is necessary for the highway asset at least once 

over its lifetime to keep it above the minimum acceptable 

serviceability and safety levels. The cost of any particular 

rehabilitation activity, usually a form of construction, comes 

from: materials, preliminary engineering, and construction 

management [51]. If a rehabilitation action is to be applied in 

subsequent years, then the costs of it can be discounted to 

present worth in the following manner: 

Present cost =  Future cost × PWF   (1) 

where PWF is the present worth factor, given by: 

PWF =  
1

(1+𝑅)𝑡
       (2) 

The typical range of discount rates R recommended by 

FHWA is 3% to 5% [52], t = time at which the money is spent 

(specified in years). In this work, a value of 4% is used for R. 

Depending on the situation, highway agencies have the 

option to choose a rehabilitation action from a list of activities. 

One such list, which is also used in this work, is given in table 

1. It is also essential to specify the warning level for each 

treatment action. A warning level is defined as the minimum 

level of pavement performance, such that the treatment must 

be applied when the pavement reaches it. The total span of the 

analysis period is commonly specified by the highway 

authority concerned. Furthermore, the unit study period, which 

might be a week, a month, or a year, is selected depending on 

the requirements of the highway authority [16]. 

3.2 Objective Functions 

The common objectives of pavement maintenance systems, 

as identified by road authorities, comprise the following: to 

minimize the present worth of overall treatment costs over the 

analysis period, to minimize user costs by choosing and 

scheduling treatment actions to decrease delays and 

disruptions to traffic, and to keep the serviceability of the 

pavement network over the minimum acceptable level with 

the resources available. Commonly, two or more of these 

objectives are combined to form a single objective by 

allocating proper weighting factors to each [16]. 

The main challenge in pavement management is the 

selection of maintenance investment alternatives for a large 

number of pavement sections over multiple time periods [53]. 

To reach the optimal maintenance investment decisions, it is 

important to optimize the M&R decision considering multiple 

objectives such as minimum cost and maximum performance, 

etc. Therefore, a multi-objective programming of pavement 

management activities is required. It can be presented 

mathematically as the following: 

The first objective is to minimize the total pavement 

maintenance cost. 

𝑓1(𝑥) = ∑ ∑ ∑ 𝑥𝑚,𝑝,𝑡 𝐶𝑚 𝐿𝑝 𝑊𝑝 (1 + 𝑅)
−𝑡𝑀

𝑚=1
𝑁
𝑝=1

𝑇
𝑡=1     (3) 

The second objective is to minimize the sum of all residual 

pavement condition index (PCI) values. 

𝑓2(𝑥) = ∑ ∑ ∑ 𝑥𝑚,𝑝,𝑡 [(PCI𝑚𝑎𝑥 − PCI𝑝,𝑡) 𝐿𝑝 𝑊𝑝 AADT𝑝,𝑡]
𝑀
𝑚=1

𝑁
𝑝=1

𝑇
𝑡=1  

                       (4) 

where, 

𝑥𝑚,𝑝,𝑡 = {
1 if treatment 𝑚 for section 𝑝 at time 𝑡 is selected
0                                                                        otherwise 

 

 

In the equations above, m is the treatment type; M stands  

for the total number of available treatment options; p is the 

pavement section number under consideration; N is the total 

number of pavement sections; t is any time in the analysis 

period, and T is the total analysis period (both are usually 

specified in years); 𝐶𝑚 is the unit cost of treatment type m; 𝐿𝑝 

is the length of pavement section p; 𝑊𝑝 stands for the width of 

section p; 𝑅 is the discount rate; PCI𝑝,𝑡 = PCI for section p at 

time t; PCI𝑚𝑎𝑥  is the maximum PCI level (100 %); AADT𝑝,𝑡 is 

the annual average daily traffic for section p at time t. For the 

problem treated in this paper, 𝐿𝑝 = 152.5, 𝑊𝑝 = 3.6 and 𝐶𝑚 = 

[0, 10, 33, 41, 78], the last being the cost values for the 5 

treatment actions given in Table 1. 

In this work, the following acceptable level for section 

performance is chosen: PCI𝑝,𝑡 ≥ 65 %. 

Table 1: Rehabilitation options in consideration 

3.3 Pavement Deterioration Model 

A PMS must predict the performance of a pavement 

network for the subsequent years in order to evaluate the 

outcome of a given set of maintenance decisions, thereby 

enabling it to optimize the maintenance decision. A pavement 

deterioration model is an essential component when 

determining treatment needs, and when estimating highway 
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user costs and benefits of the treatment application [54]. In 

general, deterioration models are established in terms of a 

pavement condition indicator and the exogenous influences 

contributing to pavement deterioration [55]. Various 

researchers have developed network-level deterministic 

deterioration prediction models for flexible pavement, to 

predict pavement deterioration by considering distress, 

pavement age, traffic loading, and maintenance effects. Here, 

a deterministic deterioration model for arterial highways in the 

wet freeze climatic region has been designed to estimate future 

pavement condition, described, in detail, in the previous work 

of the authors [56] : 

PCI = 97.744 − 0.15 𝑋5 − 0.064 𝑋4 − 0.515 𝑋2 + 3.748 𝑋3      (5) 

where X1 is the cumulative equivalent single axle load 

(ESAL); X2 is the pavement age; X3 is the maintenance effect 

(inlay and overlay thickness, in inches, estimated with the help 

of Table 1); X4 is the total longitudinal and transverse cracking 

length, in inches; X5 is the cracking area (alligator, edge, and 

block), in square inches. 

4 PARTICLE SWARM OPTIMIZATION  

Particle swarm optimization (PSO) is a simulation of the 

social behavior of birds or fish within their flock or school, 

and was developed by Kennedy and Eberhart in 1995. The 

swarm of PSO comprises a set of particles, each particle 

representing a possible solution of an optimization problem. 

Each particle moves in the search space, and this movement is 

achieved by an operator that is directed by local and global 

elements. Each solution or particle is assumed to have a 

position and a velocity. The position and velocity of the ith 

particle is denoted at iteration z by Xi(z) = {Xi,1(z), Xi,2(z), …, 

Xi,n(z)} and Vi(z) = { Vi,1(z), Vi,2(z), …, Vi,n(z)}. Here, n is the 

dimension of the search space, where n = N×T. Then, each 

particle i updates the position and velocity of its jth dimension 

at iteration (z + 1) by using the following equations [40,57–

59]: 

𝑉𝑖,𝑗(𝑧 + 1) = 𝑤 𝑉𝑖,𝑗(𝑧) + 𝑟1 𝑐1 [𝑃𝑏𝑒𝑠𝑡𝑖,𝑗(𝑧) − 𝑋𝑖,𝑗(𝑧)] +

𝑟2 𝑐2 [𝐺𝑏𝑒𝑠𝑡(𝑧) − 𝑋𝑖,𝑗(𝑧)]     (6) 

𝑋𝑖,𝑗(𝑧 + 1) = 𝑋𝑖,𝑗(𝑧) + 𝑉𝑖,𝑗(𝑧 + 1)    (7) 

where, 𝑃𝑏𝑒𝑠𝑡𝑖,𝑗(𝑧) is the local or personal best position for 

the jth dimension of particle i at iteration z; 𝐺𝑏𝑒𝑠𝑡(𝑧) is the 

global best position or particle leader at iteration z; 𝑤 is the 

inertia weight of the particle; 𝑐1 and 𝑐2 are acceleration 

coefficients that are positive constants; 𝑟1 and 𝑟2 are random 

numbers in [0,1]. As noted earlier, it is up to the user to select 

the values for 𝑤, 𝑐1, and 𝑐2. However, these parameters are 

strongly coupled to the nature of the problem and the search 

space, and choosing good values are not very easy. The values 

chosen for these parameters greatly influence optimization 

performance [60]. This is a significant drawback, introducing 

subjectivity, and this underpins the importance for parameter-

free methods, such as the one proposed in this paper. 

In the velocity update equation, the leader particle Gbest in 

each generation guides the particles to move towards the 

optimal positions. In each generation, the particle memory is 

updated. For each particle in the swarm, performance is 

estimated according to the fitness function or objective 

function of the optimization problem. The inertia weight w is 

used to regulate the effect of the previous velocities on the 

current velocity, and hence to effect a trade-off between the 

global and local exploration abilities of the particles [61]. 

4.1 Multi-Objective Optimization Problems 

Multi-objective optimization problems consider the 

simultaneous satisfaction of two or more objective functions. 

Furthermore, these multiple objectives are usually conflicting 

objectives, which means there is no single optimal solution. 

Therefore, it is necessary to find a decent trade-off of solutions 

that represent a compromise between the objectives. In multi-

objective particle swarm optimization (MOPSO) problems, the 

main challenge is to determine the best global particle "leader" 

at each generation. In a single-objective problem, the leader 

particle is found easily by choosing the particle that has the 

best position. For multi-objective problems there is a set of 

non-dominated solutions called "Pareto-optimal solutions", 

which is the set of best solutions [61,62]. 

The feasible solutions of a multi-objective optimization 

problem are Pareto-optimal solutions if there are no other 

feasible solutions that can yield progress in one objective 

without damaging a least one other objective [63]. The Pareto 

optimality is defined as, "A decision vector, 𝒙∗ ∈ ℱ, is Pareto-

optimal if there does not exist a decision vector, 𝒙 ≠ 𝒙∗ ∈ ℱ 

that dominates it. For maximization problems, this condition 

can be expressed as, ∄𝑘 ∶  𝑓𝑘(𝒙) < 𝑓𝑘(𝒙
∗). For minimization 

problems, 𝒙∗ ∈ ℱ will be Pareto-optimal if 𝑓𝑘(𝒙) > 𝑓𝑘(𝒙
∗) for 

any 𝒙 ≠ 𝒙∗ ∈ ℱ. An objective vector, 𝒇∗(𝒙), is Pareto optimal 

if x is Pareto optimal" [64].  

For a set of objective functions {f1, f2,…., fK}, the condition 

that a feasible solution 𝒙∗ dominates another feasible solution 

x, then it is denoted by �⃗�(𝒙∗) ≺ �⃗�(𝒙), the target being 

maximization. 

4.2 Discrete (Binary) Particle Swarm Optimization  

Some of the most common optimization problems have 

either discrete or qualitative distinctions between variables. In 

the discrete PSO, the solutions can be assumed to be one of 

the several discrete values. The most common example of a 

discrete PSO is binary optimization, where all decisions will 

either be 0 or 1. Fundamentally, the continuous domain PSO is 

different from a discrete PSO in two ways. Firstly, the particle 

coordinate is composed of binary values. Secondly, the 

velocity must be transformed into a probability change, that is, 

the chance of the binary variable taking the value of 1 [65,66]. 

The algorithm of PSO for continuous optimization 

problems was modified for solving discrete (binary) 

optimization problems by changing the position equation to a 

new one. The following is an equation for the modified 

algorithm [67]: 

𝑋𝑖,𝑗 = {
1    if  𝑟𝑎𝑛𝑑() < 𝑆(𝑉𝑖,𝑗)

 0                       otherwise
   (8) 

where 𝑟𝑎𝑛𝑑() is a quasi-random number chosen from the 
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continuous uniform distribution in the interval [0,1], i.e. 

U[0,1], and 𝑆(𝑉𝑖,𝑗) is the sigmoid function given by  

𝑆(𝑉𝑖,𝑗) =
1

1+𝑒
−𝑋𝑖,𝑗

     (9) 

4.3 Barebones Particle Swarm Optimization 

(BBPSO) 

The behavior of a particle is such that it converges to a 

weighted average between its local best position and the 

global best position. This behavior induced Kennedy to 

modify the original algorithm by replacing the equation of the 

particle velocity with a Gaussian sampling based on 𝑃𝑏𝑒𝑠𝑡𝑖(𝑧) 
and 𝐺𝑏𝑒𝑠𝑡(𝑧), resulting in BBPSO. The velocity equation of 

the original BBPSO algorithm is replaced by [21,64]: 

𝑋𝑖,𝑗(𝑧 + 1) = 𝑁 (
𝑃𝑏𝑒𝑠𝑡𝑖,𝑗(𝑧)+𝐺𝑏𝑒𝑠𝑡(𝑧)

2
, |𝑃𝑏𝑒𝑠𝑡𝑖,𝑗(𝑧) − 𝐺𝑏𝑒𝑠𝑡(𝑧)|) 

                 (10) 

where, N denotes a Gaussian distribution. Based on this 

equation, the particle position is randomly chosen from the 

Gaussian distribution with the mean of the local best position 

and the global best position. In addition, Kennedy developed 

another version of the BBPSO, called by BBExp, by 

modifying the equation thus: 
𝑋𝑖,𝑗(𝑧 + 1) =

{
𝑁 (

𝑃𝑏𝑒𝑠𝑡𝑖,𝑗(𝑧)+𝐺𝑏𝑒𝑠𝑡(𝑧)

2
, |𝑃𝑏𝑒𝑠𝑡𝑖,𝑗(𝑧) − 𝐺𝑏𝑒𝑠𝑡(𝑧)|) if 𝑈(0,1) < 0.5,

𝑃𝑏𝑒𝑠𝑡𝑖,𝑗(𝑧)                                                                               otherwise
  

            (11) 

As there is a probability of 50% that the jth dimension of a 

particle changes to the corresponding local best position, the 

new version of the algorithm tends to search for local best 

positions. The main advantages of BBPSO are that it is 

parameter-free and appropriate for application to real 

problems where the information on inertia weights and 

acceleration coefficients of particles is insufficient or difficult 

to obtain [21]. In addition, it is easy to implement and 

performs well when dealing with multi-objective optimization 

problems [21]. 

5 DISCRETE BAREBONES MULTI-OBJECTIVE 

PARTICLE SWARM OPTIMIZATION (DBB-

MOPSO) 

In this section a discrete version of the BBPSO, called 

discrete multi-objective PSO (DBB-MOPSO), is proposed for 

multi-objective optimization problems. The process flow of 

the DBB-MOPSO algorithm is shown in Figure 1. The process 

stages are as follows. 

Figure 1: Flow chart of the discrete barebones particle swarm 

optimization algorithm. 

5.1 Initialization 

5.1.1 Particle positions 

The first step in the initialization stage of DBB-MOPSO is 

randomly generating the swarm with a predefined size. For 

each particle, values are assigned for each dimension 

randomly from a predefined set of values, as explained in 

detail below [21]. 

One of the main steps in designing an effective particle 

swarm optimisation algorithm is the correct representation of 

particle positions for finding a proper mapping between the 

problem solution and the particle. There are two forms of 

representation, namely direct and indirect representations [68]. 

In this research, a combination of direct and indirect 

representation is adopted. A problem solution (position) in 

direct representation is encoded in a one dimensional string of 

size n, where n = N×T. Every element of the string is a 

number chosen randomly from the set {1, 2, 3… M}, where 

for the problem at hand, M is the number of pavement 

maintenance actions. For the current problem, the structure of 

direct encoding is as shown in Figure 2. 

Figure 2: Direct representation (encoding) for particle i. 

In indirect encoding, solutions for each particle are encoded 

in a position matrix, n×M. In the position matrix, the values of 

the matrix elements for each particle are binary values, 0 or 1. 

Moreover, in each column the value of most of the elements is 

0; just one element, corresponding to the maintenance action, 

is 1. For the direct representation in Figure 2, the indirect 

encoding is shown in Figure 3: 

Figure 3: Indirect representation (encoding) for particle i. 

5.1.2 Particle velocity, local best position 

Indirect encoding is used to initialize the velocity of each 

particle. The n×M matrix is generated and all elements of the 

matrix are assumed to be 0. The initial personal best position 

of each particle is assumed to be equal to the initial position of 

the particle, 𝑃𝑏𝑒𝑠𝑡𝑖,𝑗(0) = 𝑋𝑖,𝑗(0), where 𝑋𝑖,𝑗(0) is the initial 

position of the jth dimension of the ith particle and in the 

swarm. To save the non-dominated solutions found across all 

iterations, an archive, or memory, is initialized from the initial 

swarm. 

5.2 Updating Local Best Positions 

The local best position for particle i, 𝑃𝑏𝑒𝑠𝑡𝑖(𝑧), is the best 

position reached by the particle itself to date. The local best 

position is updated at each iteration according to the equation 

(12). If the fitness value of the previous 𝑃𝑏𝑒𝑠𝑡𝑖(𝑧) is smaller 

than the fitness value of the current position 𝑋𝑖(𝑧 + 1), the 

current 𝑃𝑏𝑒𝑠𝑡𝑖(𝑧) will not be replaced. Otherwise, it will be 

replaced by the current position 𝑋𝑖(𝑧 + 1) [21]. Usually, one 

solution is kept as the local best, as the algorithm does not 

have any means of handling multiple local best solutions. 

Hence, when our new local position and the current values are 

non-dominated, we keep the current one intact. 

𝑃𝑏𝑒𝑠𝑡𝑖(𝑧 + 1)

= {
𝑃𝑏𝑒𝑠𝑡𝑖(𝑧),    if  �⃗�(𝑃𝑏𝑒𝑠𝑡𝑖(𝑧)) ≺ �⃗�(𝑋𝑖(𝑧 + 1))

𝑋𝑖(𝑧 + 1),                                              otherwise
 

        (12) 

 where, i = 1, 2, …, I, and I is the total number of particles 

in the swarm (i.e. the swarm’s size). 
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5.3 Updating Global Best Positions 

The leader particle or global best position 𝐺𝑏𝑒𝑠𝑡(𝑧) is the 

best solution found from the swarm of particle neighbours so 

far. For single-objective optimisation problems the global best 

position is found in a straightforward manner. Conversely, in 

multi-objective optimisation problems, the multiple 

conflicting objectives make it challenging to select a leader 

solution. To overcome this problem, DBB-MOPSO maintains 

a memory (archive) with a sufficient capacity to store non-

dominated (Pareto) solutions, as proposed by [21,64].  

To find the leader particle, the sigma method is used here. 

This method was developed by Mostaghim and Teich [2003]. 

In this method, a value 𝜎𝑖 is assigned to each solution with

coordinates (𝑓1,𝑖 , 𝑓2,𝑖), and thus all the solutions that are on the

line 𝑓1 = 𝜎 𝑓2 have the same 𝜎 value. The sigma value (𝜎)
can be determined for two objectives as follows, 

𝜎 =
𝑓1
2−𝑓2

2

𝑓1
2+𝑓2

2 (13) 

The leader particle, 𝐺𝑏𝑒𝑠𝑡(𝑧), among the archive members 

of each generation is selected as follows. Firstly, the sigma 

value 𝜎 is assigned to each non-dominated solution (e) in the 

archive. Secondly, the sigma value is determined for each 

particle (a) of the current generation. Then, for each particle in 

the archive, e, the difference between that and each particle in 

the current swarm is calculated and the sum of all the squared 

differences is estimated. The archive particle, g, that has the 

least sum of all archive particles is chosen as the global best 

position or the leader particle [69]. 

5.4 Updating Particle Positions and Velocities 

To handle the multi-objective optimisation problem, a new 

version of BBExp, namely BBVar, has been proposed to 

update a particle’s position by [21], and it works as shown 

below: 

𝑋𝑖,𝑗(𝑧 + 1) =

{
𝑁 (

𝑟3 𝑃𝑏𝑒𝑠𝑡𝑖,𝑗(𝑧)+(1−𝑟3) 𝐺𝑏𝑒𝑠𝑡(𝑧)

2
, |𝑃𝑏𝑒𝑠𝑡𝑖,𝑗(𝑧) − 𝐺𝑏𝑒𝑠𝑡(𝑧)|) , if 𝑈(0,1) < 0.5,

𝐺𝑏𝑒𝑠𝑡(𝑧),    otherwise

(14) 

where, 𝑟3 is a random number chosen from U[0,1]. This

formulation avoids the use of particle velocities used in the 

regular PSO algorithm.  

For discrete problems the definition in Equation (14) is of 

not much use as the resulting positions, for each dimension of 

a particle, will have to be either 0 or 1. In this work, the 

velocity term is reintroduced for the discrete barebones 

algorithm. However, rather than using the parameters as 

defined in Equation (6), it is proposed to make use of Equation 

(14), where the difference between the current particle 

position and the estimated position in the next iteration, by 

using Equation (14), is defined as the equivalent velocity of 

the particle. Hence, it is proposed here to make the change in 

the following manner to update a particle’s velocity, to deal 

with discrete multi-objective problems: 
𝑉𝑖,𝑗(𝑧 + 1) =

 {
𝑁 (

𝑃𝑏𝑒𝑠𝑡𝑖,𝑗(𝑧)+𝐺𝑏𝑒𝑠𝑡(𝑧)

2
, |𝑃𝑏𝑒𝑠𝑡𝑖,𝑗(𝑧) − 𝐺𝑏𝑒𝑠𝑡(𝑧)|) − 𝑋𝑖,𝑗(𝑧), if 𝑈(0,1) < 0.5

𝐺𝑏𝑒𝑠𝑡(𝑧) − 𝑋𝑖,𝑗(𝑧),        otherwise

(15) 

According to Izakian et al. [2010], the particle’s position is 

proposed to be updated as follows: 

𝑋𝑖,𝑗(𝑧 + 1) =

{
1      if 𝑉𝑖,𝑗(𝑧 + 1) = 𝑚𝑎𝑥{𝑉𝑖,𝑗(𝑧 + 1)}, ∀𝑗 ∈ {1, 2, … , 𝑛} 

0   otherwise
  (16) 

For particle i, the values of all elements, except one, in each 

column j of the position matrix are 0, and only the element 

that has the maximum velocity is assigned 1. If, in a given 

column, there is more than one element with the maximum 

velocity value, then one of these elements is assigned 1 

randomly [68]. The same method is used by the DBB-MOPSO 

algorithm presented here. 

5.5 External Archive Pruning 

In multi-objective optimisation algorithms, it is necessary to 

retain the non-dominated solutions generated across all 

iterations of the search. In each generation, all new non-

dominated solutions are stored in the external archive, while 

all solutions which became dominated are eliminated. It is 

common to adopt an external archive with limited capacity 

characteristics [21,70]. To avoid reaching the maximal 

capacity of the external archive, crowding distance is used to 

eliminate some solutions without a negative effect on its 

distribution. When the archive capacity has reached the 

maximum limit, the solutions that have the largest crowding 

distance values are retained in the archive [21]. The following 

pseudo-code is the pruning archive procedure.  

5.6 Mutation Operator 

The main feature of PSO is the fast speed of convergence. 

However, in multi-objective optimization, the PSO algorithm 

could converge to non-optimal solutions. To prevent a 

premature convergence to non-optimal solutions in the 

Algorithm: PRUNING ARCHIVE: Out = PRUNE_ARCHIVE 

(fitnessNonDominatedSolutions, nonDominatedSolutions, archiveCapacity) 

B = number(nonDominatedSolutions) 

CDA = zeros(B, totalObjectivesNumber)    //CDA: crowding distance// 

FOR k = 1 TO totalObjectivesNumber  

 [sortedVal, sortedIndex] = sort(fitnessNonDominatedSolutions (k))  

 // in  ascending order // 

 firstSortedIndex = sortedIndex(1) 

 lastSortedIndex = sortedIndex(end) 

 CDA(firstSortedIndex, k) = 10000   

 CDA(lastSortedIndex, k) = 10000   //the extreme particles are given 

 a large crowding distance// 

 FOR b = 2 to (B-1)  

  CDA(sortedIndex (b)) = CDA(sortedIndex (b)) 

 +(sortedVal (b+1)- sortedVal (b-1))/( sortedVal (1)  

– sortedVal (end) 

 //crowding distance normalization// 

     END FOR 

END FOR 

[sortedCDA, sortedIndexCDA] = sort (CDA)     // in descending order//  

prunedParticleIndices = sortedCDA (1: archiveCapacity)  //Retain the  

 first archiveCapacity solutions // 

𝑂𝑢𝑡 ← 𝑝𝑟𝑢𝑛𝑒𝑑𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠   
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MOPSO, a mutation operator is used to control convergence 

speed. In addition, it allows the MOPSO algorithm to expand 

the search capability, thus gaining better diversity. At the 

beginning of the generation process, all particles of the swarm 

are affected by the mutation operator with the full range of 

decision variables, with the influence of the mutation operator 

declining as the iteration number increases [21]. The 

procedure of mutation operation is given by the following 

pseudo-code: 

5.7 Compromise Solution 

To avoid the subjective judgment of decision makers, a 

fuzzy set function is employed to mimic the agency 

preferences and to find the compromise solution from the non-

dominated solutions in the archive. Therefore, at the final 

generation of algorithm, the compromise solution is identified 

from Equation (17) [21]:  

𝜇𝑘
𝑖 = {

1,  𝐹𝑘(𝑋𝑖) ≤ 𝐹𝑘
𝑚𝑖𝑛

𝐹𝑘
𝑚𝑎𝑥−𝐹𝑘(𝑋𝑖)

𝐹𝑘
𝑚𝑎𝑥−𝐹𝑘

𝑚𝑖𝑛 ,  𝐹𝑘
𝑚𝑖𝑛 < 𝐹𝑘(𝑋𝑖) < 𝐹𝑘

𝑚𝑎𝑥

0,  𝐹𝑘(𝑋𝑖) ≥ 𝐹𝑘
𝑚𝑎𝑥

(17) 

where, 𝜇𝑘
𝑖  = membership value of the kth objective function 

and particle I; 𝑋𝑖 = non-dominated solution ith in the archive;

𝐹𝑘
𝑚𝑖𝑛and 𝐹𝑘

𝑚𝑎𝑥  = the minimum and maximum of the kth

objective function. Then, the normalized fuzzy set function 𝜇𝑖

of non-dominated solution i is estimated by: 

𝜇𝑖 =
∑ 𝜇𝑘

𝑖𝐾
𝑘=1

∑ ∑ 𝜇𝑘
𝑖𝐾

𝑘=1
𝐵
𝑖

(18) 

where, K = the total number of objectives; B = the total 

number of the non-dominated solutions in the archive. The 

particle having the maximum 𝜇𝑖, found by Equation (18), in

the archive is selected as the compromise solution [21]. 

5.8 Performance metrics 

Quality definition for multi-objective optimization 

problems is more complex than that for single-objective 

optimization problems, because the goal of optimization 

comprises many objectives. There are different metrics to 

examine the accuracy and the diversity of different procedures 

in regenerating the Pareto front of multi-objective 

optimization problems. The following metrics are used in this 

work to evaluate the quality of the swarm at every iteration. 

The maximum spread measure was developed by Zitzler et al. 

[71]. "This index is utilised to estimate the maximum 

extension covered by the non-dominated solutions in the 

Pareto front. In a two objective problem, the Maximum Spread 

corresponds to the Euclidean distance between the two farther 

solutions" [72,73]. Spacing is a measure to determine how 

well distributed (spaced) the solutions are in the non-

dominated set obtained. If the value of this metric is smaller, 

the solutions will be uniformly spaced [73]. Generational 

Distance (GD) was proposed by Van Veldhuizen and Lamont 

[1998]. It is a method to evaluate the Euclidean distance 

between each element in the non-dominated solution found 

until now and its nearest element in the Pareto-optimal set. All 

members found are in the Pareto-optimal set if the GD value is 

equal to zero [71,74]. The diversity (D) metric was developed 

by Deb et al. [2002]. It is used to estimate the extent of spread 

among the found solutions [74,75].  

Inverted Generational Distance (IGD) is for evaluating the 

quality of solutions at any iteration. This metric is given as: 

𝐼𝐺𝐷 =
√∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛
(19) 

Where n is the number of elements in the true Pareto front, 

and di is the Euclidean distance (measured in objective space) 

between each of these and the nearest member of the set of 

non-dominated vectors found by the algorithm. Hence, all the 

solutions generated are in the true Pareto front of the problem 

if the value of IGD equal to zero [71,76]. The hypervolume 

indicator is another quality measure that is widely used. 

"Given a set of points  𝑋 ⊂ 𝑅𝑑 and a reference point 𝑟 ∈ 𝑅𝑑,

the hypervolume indicator H(X) is the  

Lebesgue measure, λ(.), of the region dominated by X and 

bounded above by r, i.e. 𝐻(𝑋) =

𝜆 ({𝑞 ∈ 𝑅𝑑| ∋ 𝑝 ∈ 𝑋: 𝑝 ≤ 𝑞 ⋀ 𝑞 ≤ 𝑟}).
Alternatively, the hypervolume indicator may be written as 

the measure of the union of n isothetic hyperrectangles in d 

dimensions"[77,78]: 

𝐻(𝑋) = 𝜆 (⋃ [𝑝, 𝑟]𝑝∈𝑋
𝑝≤𝑟

) (20) 

where, [𝑝, 𝑟] = {q ∈ 𝑅𝑑|𝑝 ≤ 𝑞 ⋀ 𝑞 ≤ 𝑟}.

6 PROBLEM AND ITS IMPLEMENTATION 

The developed DBB-MOPSO algorithm is applied to a 

pavement maintenance decision optimisation problem. This 

problem is the selection of the optimal treatment action from 5 

maintenance actions for 5 pavement sections over 10 years.  

The decision variables are encoded by indirect 

representations as shown in Figure 4. The pavement segment 

data denoted by AADT and X2, X4 and X5, required for 

Equations (4) and (5), are given in Table 2 and Table 3Error! 

Reference source not found.. In addition, two other GA 

algorithms are used for comparison. In this regard, the 

proposed algorithm is compared with the above as they are the 

state which are two other GA based methods, namely, multi-

objective genetic algorithm, and non-dominated sorting 

genetic algorithm II (NSGA-II) [22]. Like the PSO based 

algorithms, the two GA methods are also implemented in 

MATLAB. The encoding technique that is used to handle 

discrete variables for GA and NSGA-II is the direct 

representation, while combination of direct and indirect 

Algorithm: MUTATION: mutatedSwarm = MUTATE (currentSwarm, 
z) //z = iteration number// 

Z = max. number of iterations 

mutatedSwarm  = currentSwarm 

FOR i = 1 TO allParticles     

IF 𝑒((−8∗𝑧) 𝑍⁄ ) > 𝑟4  // 𝑟4 is a quasi-random number in U[0,1] // 
 FOR j = 1 TO allDimensions 

𝑚𝑢𝑡𝑎𝑡𝑒𝑑𝑆𝑤𝑎𝑟𝑚 𝑖,𝑗 == 1   // j is randomly chosen  

from {1,2,3,….,M} //  

 END FOR 

     END IF 

End FOR   
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representation is applied for DBB-MOPSO and DMOPSO. 

Table 4 shows the settings with which the four evolutionary 

algorithms are run. Parameters in Table 4 are chosen that the 

evolutionary parameters in each of the algorithms are 

identical. Lower and upper bounds mean search domain of 

decision variables and included in table 4. Since our decision 

variables are between 1 and 5, the upper and lower bounds are 

set to these limits, so the variable is allowed to all the possible 

values. 

Figure 4: Maintenance optimization problem. 

Table 2: Pavement data for 5 sections over years 1-5. 

Table 3: Pavement data for 5 sections over years 6-10. 

Table 4: Description of the settings used for each algorithm. 

The iterations for the PSO methods and the generations for 

the GA methods are set equal, although the concepts of 

iterations and generations, for the former and the latter 

respectively, do not have any similarities.  It should be noted 

that out of the two PSO algorithms, the proposed method does 

not need the selection of any additional parameters, which is a 

clear advantage of it. 

For the four algorithms, the performance metrics given in 

Section 5 are estimated. For verifying the non-dominated 

solutions spread in the entire region of the Pareto front, the 

diversity measure is estimated. Figure 5(a) shows the proposed 

algorithm has lower diversity at the 100th generation 

compared to the DMOPSO, NSGA-II and GA. Hence, the 

latter three perform better. However, the diversity values in 

the range of 0.95 – 1.00 between the algorithms is a good 

indication that all of them performed on a par. As shown in 

Figure 5(b), DBB- MOPSO has slightly smaller value of 

generational distance GD compared to DMOPSO and NSGA-

II at the 100th iteration while it has significantly smaller value 

of GD compared to GA. Therefore, the convergence speed of 

the DBB-MOPSO to the Pareto front is better than the three 

algorithms at this stage. 

Figure 5: The diversity metric (a) and generational distance (b) of the 

both algorithms. 

According to Figure 6(a), the maximum spread of the DBB-

MOPSO algorithm is approximately in the same range of 

DMOPSO, but the maximum spreads of the GA algorithm and 

NSGA-II over the whole iteration range are definitely greater 

than that of DBB-MOPSO. Also considering the Diversity 

measure, this means the GA and NSGA-II have better 

performance compared to DBB-MOPSO and DMOPSO. 

Figure 6(b) shows that DBB-MOPSO, DMOPSO, and NSGA-

II at the first half of whole generations have approximately the 

same range of spacing but at the second half, the DBB-

MOPSO and DMOPSO has smaller values of spacing. In 

addition, the GA has larger value of spacing at whole 

generations compared to DBB-MOPSO. This shows that the 

solutions of DBB-MOPSO and the DMOPSO are more 

uniformly spaced compared to GA and NSGA-II algorithms. 

The four metrics show that the GA algorithms outperform the 

PSO algorithms generally. Furthermore, it is also shown that 

DBB-MOPSO and DMOPSO have similar performances. This 

shows that there is no performance degradation when using 

the proposed PSO method instead of the existing one. 

Figure 6: Maximum spread (a) and spacing (b) metrics of the both 

algorithms. 

In order to show the distributions of solutions on the found 

Pareto fronts, Figure 7 presents the results from DBB-MOPSO 

and the other three algorithms. After 100 generations, for the 

DBB-MOPSO algorithm, 10 non-dominated solutions from 

100 solutions are found as shown in figure 7. For the 

DMOPSO algorithm, there are 17 non-dominated solutions 

from the 100 solutions found. For the genetic based 

algorithms, the number of non-dominated solutions is much 

higher after 100 generations, as shown in Figure 7Error! 

Reference source not found.. Based on Figure 7, compared 

to the spread of non-dominated solutions of NSGA-II and GA, 

the non-dominated solutions spread of DBB-MOPSO is 

slightly better than that of DMOPSO, especially for the cost 

objective f1. 

Figure 7: Pareto fronts created by the four algorithms, together with 

the respective compromise solutions (in red). 

To simulate the agency preferences, the compromise 

solution, as described in Section 4.7, is calculated for the 

Pareto fronts of the four algorithms. The solution having the 

maximum membership value (𝝁𝒊) in the archive is selected as

the optimal pavement maintenance in both algorithms. In 

Figure 7Error! Reference source not found., the found 

compromise solutions are plotted in red. Table 5 shows the 

optimal maintenance decisions, i.e. the compromise solutions, 

obtained from the Pareto fronts of DBB-MOPSO and 

DMOPSO. From Figure 7 and Table 5, it is clear that the 

Pareto fronts from the GA based algorithms are better than 

those obtained by the PSO ones. When compared to the latter 

the former show about 20 times increase in pavement 

performance. Moreover, NSGA-II has outperformed all the 

others. Although the overall values of pavement conditions 

found by GA and NSGA-II are better than by that found by 

DBB-MOPSO, the overall value of the maintenance cost 

found by DBB-MOPSO algorithm is better than that found by 

DMOPSO and GA by about 16% and 97% respectively. 

Furthermore, the Pareto fronts of DBB-MOPSO and 

DMOPSO are comparatively similar. However, for the 

compromised solutions of these two techniques are compared, 

the cost obtained by DBB-MOPSO is, as mentioned earlier, 

about 16% less. The difference between the two compromised 

solutions for the second objective of pavement performance is 

less than 1%. Hence, the proposed algorithm, DBB-MOPSO, 

can be said to outperform DMOPSO. Moreover, in the optimal 

maintenance plan found by DBB-MOPSO algorithm, given in 

table 4, there is heavier investment in the pavement all the 

others. Although the overall values of pavement conditions 

found by GA and NSGA-II are better than by that found by 

DBB-MOPSO, the overall value of the maintenance cost 

found by DBB-MOPSO algorithm is better than that found by 

DMOPSO and GA by about 16% and 97% respectively. 
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Furthermore, the Pareto fronts of DBB-MOPSO and 

DMOPSO are comparatively similar. However, for the 

compromised solutions of these two techniques are compared, 

the cost obtained by DBB-MOPSO is, as mentioned earlier, 

about 16% less. The difference between the two compromised 

solutions for the second objective of pavement performance is 

less than 1%.  Hence, the proposed algorithm, DBB-MOPSO, 

can be said to outperform DMOPSO. Moreover, in the optimal 

maintenance plan found by DBB-MOPSO algorithm, given in 

Table 4, there is heavier investment in the pavement 

maintenance of all sections at the beginning of the plan period 

compared with the end of the 10 years. However, in optimal 

maintenance program found by the DMOPSO algorithm as 

shown in Table 5, there is heavy maintenance investment for 

most sections in the middle years. 

Table 5: The pavement maintenance program based on the 

compromised solutions of the four algorithms. 

Figure 8Error! Reference source not found. shows the 

time elapsed for each algorithm for the 100 generations. All 

algorithms are run on a PC with an Intel core i3 CPU (2.40 

GHz) and a 6 GB RAM memory. Based on Figure 8, DBB-

MOPSO consumes the least time of all, although the 

mechanisms of GA and PSO are not matched for a direct 

comparison. However, when compared to the other PSO 

method, DMOPSO, the proposed algorithm takes about 40% 

of time. Hence, this is a huge gain, especially for large sized 

optimizations problems, encountered in pavement 

maintenance scheduling. GA and NSGA take slightly longer 

than DBB-MOPSO for the same number of generations and 

iterations and identical amount of swarm and population. 

Figure 8: Execution time (hours) for four algorithms. 

This section covers the computational results found over 

four benchmark test functions. Actually, the DBB-MOPSO is 

developed and applied to solve pavement maintenance 

decision optimization problem that is unconstrained problem. 

Therefore, these test functions that are unconstrained 

optimization problems are selected. In addition, to examine 

the capability of developed algorithm in solving optimization 

problems that have different levels of difficulty, the 

dimensionalities of the chosen benchmark functions are 

differentiated. The different Pareto solutions are obtained from 

a benchmark website [79].  Several of standard test problems 

were selected for the experimental purpose. There functions 

are Fonseca and Fleming [80], Poloni [81], Schaffer N.1, 

Schaffer N.2 [82], and CEC 2009 [83]; these are defined in 

Table 6. 

Table 6: Test problems. 

The comparisons among different algorithms are made on the 

basis of Pareto fronts achieved at each benchmark function. 

Different figures are plotted for the found Pareto fronts to 

present clearly the quality of solutions. The Pareto fronts for 

Fonseca and Fleming’s, Poloni’s, Schaffer N.1, and Schaffer 

N.2 functions for four optimization algorithms are plotted (see

Figure 9, Figure 10, Figure 11, Figure 12 and Figure 13). The

performances of all the algorithms are competitively decent

over this function, and the Pareto fronts found from these 

algorithms are uniformly distributed. However, in all 

benchmark test functions, the DBB-MOPSO and DMOPSO 

converge to the optimal Pareto front in only 5 out of 100 runs, 

while the NSGA II and GA converge to the Pareto front after 

500 test runs. Based on the results of algorithm comparison 

and test problems, there is the significant difference in the 

pavement performance (objective f1) between DBB-MOPSO 

and DMOPSO with NSGA-II and GA, while there is no 

significant difference in four benchmark tests. A possible 

reason behind this is that since GA and NSGAII are very 

sensitive to many parameters such as population size, mutation 

operator, crossover operator, so on. Therefore, if there are too 

few chromosomes, the both algorithms have a few possibilities 

to execute crossover and only a small part of search space is 

explored. 

Figure 9: Fonseca and Fleming function. 

Figure 10: Poloni function. 

Figure 11: Schaffer N.1 function. 

Figure 12: Schaffer N.2 function. 

Figure 13: CEC 2009 unconstrained problem 4. 

From Table 7, the best results with respect to the IGD 

obtained by GA for all test functions except Fonseca and 

Fleming’s function and CEC2009 problem2. However, 

overall, this table shows that the results with respect to the 

IGD metric for all test functions found by the DBB-MOPSO 

algorithm are fairly good compared to three algorithms. In 

addition, as shown in Table 7, the results with respect to the 

HV measure found by DBB-MOPSO algorithm for all 

benchmark functions are the best when compared to those 

obtained by all the other algorithms. Figure 14 and Figure 15 

show the variation of IGD and HV results from the four 

algorithms with generations for all test functions. The DBB-

MOPSO and DMOPSO find the best results with respect to 

the IGD and HV from the first five generations for all test 

functions. These results are still the same with generations, 

whereas the IGD and HV results obtained by GA and NSGAII 

are variable with generations. Therefore, the DBB-MOPSO 

and DMOPOS are faster to reach the true Pareto front than GA 

and NSGAII. Refer to Figure 14 and 15, DBB-MOPSO and 

DMOPSO algorithms reach the Pareto front quickly compared 

to the results of NSGA II and GA. This is because the 

performance of NSGA II and GA is sensitive to number of 

populations and number of generations. Unlike PSO 

algorithm, to improve their search capabilities, they need to 

explore huge search space efficiently. 

Table 7: The results of IGD and HV for four test functions. 

Figure 14: IGD for each algorithm for four test functions. 

Figure 15: HV for each algorithm for four test functions. 

7 CONCLUSIONS 

A novel particle swarm algorithm is developed for a 

discrete multi-objective problem. This novel algorithm, being 

based on the bare-bones method for continuous search 
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domains, is parameter free presenting a clear advantage over 

the algorithms where the user has to do parameter selection. 

To achieve usability toward discrete problems, the standard 

barebones algorithm is modified to incorporate velocity terms 

as in the standard PSO. The proposed algorithm is applied to 

find optimal rehabilitation scheduling considering the two 

objectives, namely the minimisation of the total pavement 

rehabilitation cost and the minimisation of the sum of all 

residual PCI values. 

The formulation of a pavement maintenance problem is 

presented. Furthermore, the algorithm is applied to the 

problem along with three other algorithms: a particle swarm 

optimization method called DMOPSO, and two genetic 

techniques, GA and NSGA, namely. Implementation is in 

MATLAB. As this a multi-objective problem, non-dominated 

solutions obtained via the four techniques are benchmarked 

against each other, via their so-called compromised solutions. 

Here, the results show that the GA-based algorithms 

outperform both the PSO algorithms, for the same order of 

run-times, in terms of optimal objectives derived. For the same 

number of swarm iterations, it has also been shown that the 

objective function values obtained via the proposed method 

are better than those from the DMOPSO procedure for the 

same number of iterations. Especially, the cost resulting from 

the proposed DBB-MOPSO is about 8% lower than that from 

DMOPSO. Various standard performance measures are 

considered for the non-dominated solutions obtained via all 

four methods; these values are also traced across different 

iterations (for the PSOs) and generations (for the GAs). The 

measures indicate that the proposed method very similar to the 

DMOPSO in generating a Pareto front. Furthermore, the GA 

techniques outperform the PSO algorithms for most of the 

metrics.  

As the time taken for optimization is a bottleneck, 

especially for large pavement networks, the run-time of the 

algorithms are also evaluated for the four methods tested. 

Although there is no basis to directly compare the time for the 

same number of iterations (for the PSOs) and generations (of 

the GAs), for the solutions described above, the proposed 

algorithm takes the least of all. The time consumed by DBB-

MOPSO to produce the better solutions, as mentioned earlier, 

is about 40% of that taken by the DMOPSO method. This is a 

clear advantage of the proposed method, suggesting its 

suitability for large-scale pavement network scheduling.   

In future, the proposed algorithm will be put through more 

validation by benchmarking. Especially, it is being tested for 

larger sized pavement networks. Furthermore, its different 

alterations will be made to the proposed updating scheme of 

particle velocities and positions and their effect on the solution 

quality will be examined. In addition, some pavement 

scheduling problems are formulated as constrained 

optimization problems. Some of these will also be tackled by 

the current proposal. Problems with more than two objectives 

are also planned to be tackled by the proposed optimization 

algorithm. 
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Table 1 

Rehabilitation options in consideration. 

NO. Treatment action 

1 Do nothing 

2 AC* overlay 1 inches 

3 AC overlay 2 inches 

4 AC overlay 4 inches 

5 AC overlay 6 inches 

*Asphalt Concrete 

Table 2 

Pavement data for 5 sections over years 1-5. 

Years 1 2 3 4 5 

Sections 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Cracking 
length 

232 9 586 9 1 4 0 0 252 4 589 5 11 3 0 0 8 323 4 585 7 66 3 13 8 22 7 249 579 1 35 2 4 95 68 8 0 588 9 38 5 0 98 8 

Cracking 

area 
15 6 0 0 0 0 12 1 1 57 0 0 0 0 8 2 62 1 15 0 0 28 3 13 8 12 32 0 0 0 13 22 7 0 0 

Age 7 26 14 92 8 61 2 08 5 02 8 35 16 01 9 67 3 16 6 02 9 31 16 97 10 64 4 02 7 09 10 42 18 08 11 75 5 02 8 09 11 42 19 08 12 75 5 58 8 74 

AADT 3674 4325 9140 2054 2880 5820 2975 9362 2456 2949 5830 3067 9608 2485 3000 6068 3163 9854 2515 3063 6306 3227 10100 2329 3123 

Table 3 

Pavement data for 5 sections over years 6-10. 

Years 6 7 8 9 10 

Sections 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Cracking 

length 
370 7 598 7 41 4 1 64 8 138 2 608 5 25 3 5 94 1 718 4 159 1 131 5 16 7 169 9 457 2 221 1 108 2 23 4 172 8 457 2 261 4 111 7 27 9 171 9 

Cracking 

area 
47 12 1 31 8 0 73 9 522 1 11 2 117 5 0 64 3 144 9 122 1 66 9 0 31 8 92 111 4 117 2 0 73 2 92 104 5 73 6 0 8 66 6 

Age 12 03 20 08 13 62 7 09 9 81 13 06 21 15 14 41 7 89 10 74 14 44 22 14 15 87 8 97 12 21 15 36 23 14 16 8 9 97 13 23 16 36 23 79 17 8 10 65 13 85 

AADT 6558 3291 10570 2143 3183 6831 3355 11270 1957 3243 7104 3415 11800 1771 3303 7377 3517 12100 1847 3363 7672 3615 12500 1999 3423 
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Table 4 

Description of the settings used for each algorithm 

Algorithm Parameters 

DBB-MOPSO 
Swarm size = 100; dimensions = 50; archive size of 100; number of 

iterations = 100. 

DMOPSO 
Swarm size = 100; dimensions = 50; archive size of 100; number of 

iterations = 100; a velocity range [6, -6] [67], c1 = 2, c2 = 2 [68]. 

GA 
Population size = 100; number of decision variables = 50; number of 

generations = 100;  lower bound =1; upper bound = 5; 

NSGA-II 
Population size = 100; number of decision variables = 50; number of 

generations = 100;  lower bound =1; upper bound = 5; 

Table 5 

The pavement maintenance program based on the compromised solutions of the four algorithms. 

Years 1 2 3 4 5 6 7 8 9 10 

Sections 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

D
ec

is
io

n
s 

DBB-MOPSO 5 5 4 3 3 4 4 5 4 4 5 1 4 3 3 4 1 5 2 3 5 5 4 5 5 2 3 4 3 5 1 2 4 5 5 1 1 3 2 2 4 1 4 1 1 3 1 3 2 4 

DMOPSO 2 4 5 1 5 4 5 4 2 5 5 4 5 2 5 2 5 1 5 2 3 5 5 4 5 4 5 5 2 2 3 2 4 4 4 4 3 4 2 1 4 2 4 2 3 2 1 1 1 2 

GA 4 5 5 5 4 5 4 4 4 4 4 4 5 5 4 5 4 5 4 5 5 4 5 4 4 4 5 5 4 5 5 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

NSGA-II 5 4 5 4 5 5 2 5 3 5 4 1 5 4 2 4 4 5 4 4 4 2 5 4 2 4 2 5 2 1 2 2 5 2 2 4 1 5 1 2 2 1 4 1 1 1 1 4 1 1 








