
Synthesis of Continuous Whole-Body Motion in
Hexapod Robot for Humanitarian Demining

By

DHAYAA RAISSAN KHUDHER

A Thesis Submitted in Partial Fulfilment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department of Electronic and Computer Engineering

College of Engineering, Design and Physical Sciences

BRUNEL UNIVERSITY LONDON

April 2018



Abstract

In the context of control, the motion of a legged robot is very challenging compared

with traditional fixed manipulator. Recently, many researches have been conducted

to control the motion of legged robot with different techniques. On the other hand,

manipulation tasks have been addressed in many applications. These researches solved

either the mobility or the manipulation problems, but integrating both properties

in one system is still not available. In this thesis, a control algorithm is presented

to control both locomotion and manipulation in a six legged robot. Landmines

detection process is considered as a case study of this project to accelerate the mine

detection operation by performing both walking and scanning simultaneously. In

order to qualify the robot to perform more tasks in addition to the walking task,

the joint redundancy of the robot is exploited optimally. The tasks are arranged

according to their importance to high level of priority and low level of priority. A new

task priority redundancy resolution technique is developed to overcome the effect

of the algorithmic singularities and the kinematic singularity. The computational

aspects of the solution are also considered in view of a real-time implementation.

Due to the dynamic changes in the size of the robot motion space, the algorithm

has the ability to make a trade-off between the number of achieved tasks and the

imposed constraints. Furthermore, an appropriate hierarchy is imposed in order

to ensure an accurate decoupling between the executed tasks. The dynamic effect

of the arm on the overall performance of the robot is attenuated by reducing the

optimisation variables. The effectiveness of the method is evaluated on a Computer

Aided Design (CAD) model and the simulations of the whole operation are conducted

using MATLAB and SimMechanics.
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Introduction

1.1 Introduction

Mobile robots are nowadays dedicated for the automation of many tasks, such as,

transport in automated factories, agriculture, demining, and space explorations. The

mechanical structure of a mobile robot depends on the nature of the mission to be

performed and the the working environment. There are three basic types of the

mobile robots: wheeled or track-laying robots, legged robots, and hybrid systems.

Wheeled robots are the most common as they are very effective on even or moderate

terrain whereas tracked robots are able to traverse much more varied ground types;

but, liked wheeled robots, there is limited ability to choose exactly where to impart

their load forces on the ground. Furthermore, both are characteristically 2 Degree of

Freedom (DoF) systems (e.g., they can be defined in polar coordinates).

Legged robots are considered to possess superior mobility with an inherent albeit

limited ability to change height, thus providing an additional DoF. The contact with

the ground is discrete, which allows a selection of the points of support according to

the local conditions of the ground. Various applications have been realised, such as
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inspection or exploration activities in challenging environments. Nevertheless, despite

its attractive mobility attributes, using this type of robot is, to date, still very limited

in real world. Unlike wheeled and tracked robots, that require a continuous path of

support, legged systems have a distinctive characteristic of discontinuous contacts

with the ground. In addition, legged robots provide different kinds of locomotion

scenarios (gaits), which enable choices of speed/stability to be made not available

to other kinds of robots [2]. These attributes enables a legged robot to accomplish

tasks in difficult and hazardous environments such as minefields (Figure 1.1).

Figure 1.1: Virtual environment of minefield.

The idea of exploiting robots in hazardous areas, such as, minefields has been

suggested by many designers [3, 4, 5]. Both legged and wheeled robots are engaged

in such duties [6]. Ponticelli et al. [7] has shown that legged robots have advantages

over wheeled or tracked robots for navigation through dangerous areas. The ability of

legged robot to move with intermittent foot placement allows the robot to manoeuvre
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over mine or slippage places [8]. The additional DoF means that a legged robot can

adapt its body orientation to compensate for terrain gradient [4], and the ability to

adjust body attitude while the feet are still on the ground, means that, it becomes

an ideal platform for a manipulator arm to be mounted to the body [9]. However,

the control of legged robots are very complex; due to the high number of DoF and

the dynamical change in the contact state [10, 11].

Obviously, a minefield presents real hazards to human operatives and to robots

[12]. Therefore, correct configuration of a robot is very important consideration

and must be justified against design criteria. The key components prerequisite in

considering hexapod robot for this project, is that this robot can achieve static

stability by three legs at each instant of time [13]. The stability of the legged robot is

affected by internal and external factors. The internal factors include the kinematics

and dynamics of the leg-body system and the selection of gait type [14]. On the

other hand, the external factor is the nature of the ground [15]. For the robot to

cross over various terrain conditions, it should have proper balance between the

manoeuvrability, stability and obstacle overcoming [16]. In general, any leg cannot

achieve the locomotion task separately; therefore, cooperation between legs should

be considered [17]. According to this reality, two important things will be addressed:

the contribution of each leg in the overall motion, and the role of each leg in the

body configuration (body balance).

In this thesis, the robot’s behaviour (motion and manipulation) is designed according

to the tasks that the robot can achieve [18]. These tasks are selected according to

the size of the motion space and the importance of the task. The design method

relies on dividing the tasks (according to their priority) into different levels [19]. An

efficient method that prevent conflict between the tasks will provide an opportunity

to perform multiple tasks simultaneously [20]. Indicating that the overall body

stability is the highest priority that should be satisfied first [21]. While there are

many methods suggested for the stability criteria for legged robots, most of them are
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based on same fundamental concept, which is to keep the Centre of Gravity (CoG)

of the robot inside the supporting legs [22, 23]. For the purpose of using a six-legged

robot in minefield, statically stable method would be appropriate as the robot has

to walk very slowly [17]. Therefore, accelerating the process depends on performing

multiple actions during walking task.

1.2 Motivations

The traditional demining methods are very dangerous and difficult task; any site of

previous hostilities is extremely hazardous with many terrains such as bomb craters

and many uncertainties as to the whereabouts of ordnance. The problem of landmine

would be partially solved if mines could be reliable detected, identified and accurately

marked. Although this is a considerable challenge for robotic researches, legged robot

might be an effective and efficient means of detecting, and marking mines while

guaranteeing the safety of people engaged in the clearing task.

Although there have been many attempts to use six legged robots in dangerous areas;

however, these attempts are limited to conventional remote control models. The new

trend in control strategies is based on tasks that can be achieved by an autonomous

robot. The overall performance of the robot can be improved if all its motion space

is used optimally to perform more than one task at the same time.

1.3 Aim and Objectives

The aim of this thesis is to design an autonomous hexapod robot and its control

system, with the capability to carry a manipulator arm for minefields scanning,

location mapping, and to avoid obstacles. Furthermore, to distinguish the type

4



Chapter 1. Introduction 1.4. Research Methodology

of terrain and accordingly decide on the gait type and legs configuration. The

challenge is how to control the interacting systems of the body movement, body

attitude adjustment, manipulator sweep, and leg foothold. Integrating all these

characteristics in one legged robot will increase its overall performance. In order to

achieve the aforementioned aim, the objectives of this thesis are summarised in the

following points:

• Defining the robot tasks using operational space techniques.

• Generating a continuous walking in a six-legged robot by defining the motion

reference at the robot’s CoG. The reference path includes the desired direction

and orientation of the robot’s body. The trajectories for each leg is generated

and constrained by the robot’s body path.

• Tracking a certain straight-line path defined over the ground by the manipulator.

The arm can compensate for any changes might happen at the arm-base.

• Reducing the dynamic effect that generated by the manipulator on the robot’s

body by decomposing the contact forces at each leg to normal forces.

• Evaluating the effectiveness of the algorithm using different motion and scanning

scenarios.

1.4 Research Methodology

In order to perform a walking task in a legged robot, the robot’s legs must initiate

proper contacts with the ground. Part of the available motion space is utilised to

satisfy some constraints that arise from the interaction with the environment. The

adopted method is to design a CAD model using SolidWorks and modelling all

physical parameters, such as, the robot’s mass, the moment of inertia and the contact
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forces. The designed model is imported to MATLAB, and the effectiveness of the

algorithm and the robot response are verified using Simulink.

The overall mobility of the robot is achieved by defining set of control points in the

task space, such as, the robot’s CoG, legs feet, and the manipulator End Effector

(EE). The associated constraints are formulated as linear equality constraints (e.g.,

zero velocity at the contact point) and linear inequality constraints (e.g., joint limit

and obstacle avoidance). The reference points are mapped from the task space to

the joint space using a Quadratic Programming (QP) solver to ensure handling

both types of constraints. In order to prevent the conflict between the executed

tasks, a proper decoupling between them is implemented. The approach is based on

projecting the tasks with low priority level in the null-space of the higher priority one.

The problem of the computational intensity involved with this method is treated by

reducing the optimisation variables using QR decomposition method.

Typically, the entire balance is affected when the robot encounters an obstacle inside

its path during the walking task; to overcome this problem, the inverse dynamic

method is adopted to get a compliant response. During its operation, the manipulator

arm produces a dynamic effect on the robot’s body, this impact is compensated by

controlling the internal force of the robot.

1.5 Contributions to Knowledge

In mobile robotics, continuous locomotion is still generally the domain of wheeled

robots, which can operate on paved roads. Although legged robots can walk over

uneven terrains, the lack of continuous motion attribute limits their widespread

usage. Furthermore, integrating both walking and manipulation at the same time

in one legged system is still not common. These two major milestones have been

adopted as the essence of this research and the process of detecting landmines using
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a six legged robot with manipulator arm is considered as a case study in this project.

There are many challenges involved in using a robot in hazardous environments, such

as, body path planning, legs trajectory generation, planning the arm end-effector

path, and handling contact forces between legs and ground. The contributions of

this thesis are summarised as the following:

• The overall motion of the robot is achieved by defining a reference path at the

robot’s CoG and the contribution of each leg to track this path is evaluated. The

continuity of the robot’s motion is evaluated using different walking scenarios.

The velocity of the robot is considered to verify the validity of the approach.

• In order to enhance the scanning operation, a new trajectory planning is

designed for the manipulator arm. The trajectory is formed from linear and

semi-circular path. This planning provides a significant improvement to the

overall robot behaviour in terms of continuity scanning.

• Formulating the problem of mapping the reference path form the operational

space to the configuration space as an optimisation problem and solved it using

quadratic programming method.

• Integrating both walking and manipulation in one-legged robot by an appro-

priate exploiting to the joints redundancy of the robot.

• Both the kinematics and dynamics variables are considered in one optimisation

problem. The effectiveness of the controller is enhanced by reducing the

problem size (eliminating some components from contact forces). The whole

body motion is integrated by imposing a proper decoupling between tasks.

7



Chapter 1. Introduction 1.6. Thesis Outline

1.6 Thesis Outline

This thesis is organised as follows:

• Chapter Two, an overview of legged systems is introduced to focus on the

general characteristics of three commonly used types of legged robot. A

background to the control strategies used in legged systems is given to explain

main aspects in this field. The concepts of task-space, multi-tasks control, and

the prioritisation of multi-task control are highlighted in terms of the state

of the art. Finally, three aspects, namely, CoG tracking, controlling of force

contact, and whole-body behaviour of relevant works are covered.

• Chapter Three, the robot modelling and structure of the adopted robot platform

is presented. The kinematics and the dynamics modelling of the robot leg are

introduced. The trajectory planning and the influence of trajectory smoothing

on the robot performance are addressed. Finally, modelling the contact force

between the robot and the ground is detailed.

• Chapter Four, A QP method is exploited to resolve the constrained kinematic

redundancy problem. Both inequality and equality constraints are considered

explicitly. The problem of redundancy resolution is considered at the inverse

differential kinematics level. The CoG of the robot is considered as a control

point, and the tracking task is verified by performing three walking modes.

• Chapter Five, a new scanning technique for detecting landmines and unexploded

ordnance (UXO) is introduced. In order to speed up the landmine detection

and marking, both scanning and moving forward are achieved simultaneously.

The robot performs two tasks, the first task is to keep the sensor-head in a

fixed level with respect to the ground and the second task is to keep the base

of the arm within a specified range of position and orientation. A coupling

8



Chapter 1. Introduction 1.7. Publications

between the velocity of the end-effector and the velocity of the manipulator

base is initiated to ensure the efficiency of the whole process. Four experiments

are conducted to verify the validity of the approach.

• Chapter Six, the constraints that arise from the robot dynamic and the inter-

action with the ground are included in the optimisation problem. The overall

performance of the robot is enhanced by decomposing the tangential forces

from the contact force components.

• Chapter Seven, conclusions and future works.

1.7 Publications
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Background

2.1 Introduction

Unlike wheeled and tracked systems, where their body balance are controlled passively

[23], legged robots have the advantage to control their body balance actively [24].

The intermittent contact with the ground enables the robot to ride or avoid obstacles

[25]; these attributes enable legged robots to accomplish tasks in tough and risky

environments, such as minefield [7]. However, motion generation for this sort of

robots is very challenging; because they own a large number of DoF and their CoG

is not actuated [26]. Furthermore, the robot cannot achieve its functionality without

satisfying various combinations of constraints [27], such as position limit [28], velocity

limit [20], and balance [29].

Transition of the robot’s body from one position to another involves performing

more than one task. According to how the assigned tasks are accomplished either

sequentially or simultaneously, the qualification of a legged robot is determined.

There are many actions associated with legged systems: crawling, walking, and

trotting [30]; regardless of the travelling style, all these actions require moving many
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parts at the same time [22].

In this chapter, most aspects related to legged robot are explored. In section 2.2,

an overview of the common legged robot is presented, the purpose of this section is

to highlight the differences of these robots in terms of structure and design. The

general control approaches, used to control legged systems are investigated in section

2.3. The arguments are restricted to three control aspects, namely, stability, gait

generation, and impact of the environment. In section 2.4, the concept of Task Space

Control (TSC) is defined and the requirements for this technique in floating-base

system are determined. The concept of Multi-Task Control (MTC) is explained and

the methods to deal with it are explored in section 2.5. In section 2.6, decoupling

techniques are discussed. Some related works are reviewed in section 2.7. Finally,

the chapter is summarised in section 2.8.

2.2 Legged Robot Overview

Balancing of any legged robot is a very crucial factor in their functionality [22]. There

are three models of stability, namely, dynamic, statically stable1, and quasi-static

stability [31]. For the sake of comparison, three main types of legged robot are

considered in this overview, namely, bipedal, quadruped, and hexapod. The purpose

of this comparison is to demonstrate the effect of the contact with the ground on the

robot control and the overall body balance.

While walking, bipedal robot has less contact with the ground than both four and

six legged robots. The motion generation in two legged robot is less affected by the

interaction with the environment. The difficulty of the control part lies in the body

balance, as the CoG should align with the leg in stance phase [32]. In general, the

CoG of the robot follows a sinusoidal shape trajectory. Figure 2.1 shows two legged
1The projection of CoG of the robot is always inside supported polygon.
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robot tracking a straight line path at its CoG. Any operation that the robot can

perform cannot be associated with walking task, as its balance could be affected

directly by the performed tasks. The main operations the this robot can perform

are valve opening or closing, door manipulating, welding, and drilling; the robot can

perform these tasks (that require contact with the environment); but when its legs

are in contact with ground to ensure the balance.

Figure 2.1: Bipedal Robot.

There are many types of two legged robots are dedicated for research and development,

such as, ASIMO by Honda [33], ATLAS by Boston Dynamics [34], HRP by AIST

[35], and Romeo by Aldebaran [36].

In case of four legged (Figure 2.2), while the robot can perform one cycle by lifting

up one leg, the other three legs remain in contact with ground. The static stability

walking can be realised by (3/4) duty factor2. In terms of distribution of legs under
2The proportion of the support phase time to one cycle time.
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the body, the design of most quadrupedal robots is inspired from mammals. While

this configuration offers a good characteristic from the energy consumption viewpoint

[37], the overall body balance is the main concern in controlling this kind of robot

especially during walking over rough terrains [23].

Figure 2.2: Quadrupedal robot.

Figure 2.3: SpotMini robot from Boston Dynamics [1].
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The latest versions of four-legs robot are LittleDog and SpotMini by Boston Dynamics

(Figure 2.3) [1], and StatIETH by ETHzurich [38]. Both of these robots are controlled

based on dynamic balancing gait. Although this kind of balance has efficiently

been proved in challenging terrain, it is not applicable when negotiating hazardous

environments, such as, in minefield.

A six legged robot (Figure 2.4) could potentially negotiate both walking speed and

balancing efficiently. The robot can move three legs in each alteration (case of tripod

gait) and keep the other three legs on the ground [24]. This characteristic would

enhance the robot speed and balance, as the robot can walk with duty factor of 1/2

[14]; the robot can realise different kinds of gait, such as, wave gait [39], and free

gait [40]. The stability would be perfectly maintained in case of hexapod robots

[41], as the projection of CoG is always inside the supported polygon with any gait

type. The aforementioned attributes give the robot a preference over other legged

robots, especially in negotiation rough terrains [40]. In the field of hexapod robot,

the popular platforms are COMET-IV [42], and SILO-6 [4].

Figure 2.4: Haxapod robot.
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2.3 Control of Legged Robots

In the context of legged robot control, there is a vast amount of work addressing the

locomotion control [43, 44, 45, 31]. Most earlier approaches are based on the methods

that used in fixed-base robots [46]. One paradigm to control the robot position

is by considering each leg as an independent manipulator arm, and generating a

specific trajectory for each one separately using inverse kinematics methods [24].

The motion of the robot is assured statically by keeping the CoG of the robot inside

the polygon created by the legs in support phase [23]. The stability of the body is

checked continuously before moving any leg and propelling the robot’s body forward,

this action is achieved during all legs are on the ground. There are three significant

characteristics make the aforementioned method not applicable in six legged robots:

no firmly connection to the ground, having more joints than the required to achieve

one task, and the motion space is reduced by the interaction with the ground [47].

In the following sub-sections, the attributes that related to this project are discussed

in details, such as stability, gait generation, and the impact of the environments.

2.3.1 Stability

Stability is an essential factor for mobility of legged robots, the robot can fall at any

time if the stability is not assured. According to the tasks assigned to the robot and

the nature of the environment, the overall stability of legged robots can be achieved

statically or dynamically. The necessary condition of statically stable locomotion is

retaining the vertical projection of robot CoG inside the polygon that is formed by

the legs in contact with the ground. This concept is developed in many researches to

increase the probability of stability by defining a new concept called the margin of

stability; the idea of this concept is based on the distance between the projection of

CoG to the nearest border of the polygon. The essential idea behind this approach
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is based on the geometric criterion; no dynamic effects, such as, the contact forces

and momentum are considered.

On the other hand, the dynamic stability is determined by the supported polygon

and the force components generated at the CoG. Depending on the contact type

between the robot and the ground, there are two common methods to address

dynamic stability: the zero moment point (zmp), which is mainly used in two legs

robot, see [48], and considering the robot’s CoG as a control point [49, 15, 13]. The

contribution of each leg in the overall motion of the robot is calculated according

the reference path that prescribed at CoG. Each component of this path contains

full information about the robot rotation and translation [50].

2.3.2 Gait Generation

In legged robot, the gait is defined as alternating movements of legs, the robot’s

body is propelled in a particular direction as a result of this alterations. Typically,

in a legged system the gait cycle consists of two phases, namely, stance phase when a

leg’s foot is in contact with ground and transfer phase when the leg is raised up (no

contact with ground). Supporting and driving the robot’s body forward are achieved

during the stance phase; the foot placement and foothold are accomplished during

the transfer phase.

In the field of six-legged robot, there are two main types of gait: the gait with

(5/6) duty factor (Figure 2.5a) and tripod gait (1/2) duty factor (Figure 2.5b). The

first style of walking provides high degree of stability; typically, this sort of gait is

suitable for walking over rough terrains, as there are five legs over ground at the

time. The second type permits a trade-off between the stability and walking speed.

The sequence of lifting legs depends on the gait design; the sequence of (1, 6, 3, 2, 5,

4) is considered in this project.
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(a) Gait with (5/6) duty factor. (b) Tripod gait.

Figure 2.5: Gait types for a six legs robot.

2.3.3 Impact of the Environment

The problem of physical interaction between a robot and its surrounding has been

addressed widely by various approaches. Most these approaches are based on

implementing a force feedback in addition to the conventional feedback parameters

(position, velocity, and acceleration). The inadequacy of conventional force control

method has been specified, in the field of traditional manipulators [51] and legged

robots [52].

In order to satisfy the stability and walking continuity, the contact between the robot

legs and ground should be compliant; the term compliant reflects the ability of a

robot to absorb the impact of shocks on the ground. There are two techniques to

provide this very important characteristic in legged robots. The first technique is

called passive compliant, which is based on using springs, dampers, and gearboxes

between legs links and joints [25]. There are no actuations involved with this method,

and the controller has no role in the robot compliance. On the other hand, the

compliant can be actively controlled using impedance control technique [53, 54] or

Operational Space Control (OSC) [55, 56].
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2.4 Task Space Control

The key element to develop a versatile and dextrose-legged robot is to design the

motion in the space of the tasks instead of the space of the robot’s joints [57]. More

specifically, this method involves designing the motion in the space of the task to be

performed and then mapping the reference to the state-space of the robot’s joints

[55]. This approach is very appealing, since it offers the ability to accomplish many

tasks by the robot simultaneously [58].

The fundamental concept of the task space control is based on partitioning the

whole behaviour of the robot into sub-tasks [14]; each sub-task requires some DoF to

execute. Hence, an appropriate categorising for all tasks according to their priority

and a precise evaluating for the contribution of each joint in the overall operation

will enhance the robot performance [59].

In many applications, the reference trajectory is specified as a position and orientation

of a certain point in a task coordinate system [60]. Given a task as the reference

of motion, the inverse kinematics problem is to find the joint velocity by given the

reference velocity in the task-space [46].

Typically, the CoG of the robot can be virtually described as six DoF (three DoF

for translation and three DoF for orientation) [27] and the whole path of the robot

can be defined at this point. As a consequence of having more DoF, the robot can

achieve many tasks in addition to the walking task depending on the robot’s state

and the constraints [61]. In general, the presence of more constraints (e.g., contact

force, velocity limit, position limit) will reduce the dimension of the motion space

[62]. Therefore, utilising the robot’s redundancy wisely can enhance the ability of

the robot to accomplish many objectives [63].

Manipulating more tasks by the robot in addition to the walking task is still limited
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in ensuring stability [21], decoupling contact force from joint torque [64] or velocity

limit [65].

2.5 Multi-Task Control

The concept of multi-task implies the ability of the robot to perform more than one

task at the same time [66]. In a fixed base manipulator arm, the robot can achieve

one main task by its end-effector, such as, grasping [67], cutting [68], or welding [69].

The robot with more DoF than required to perform a task is called redundant robot;

the joints redundancy is necessary when it is required to perform further tasks by

the robot [70].

Kinematics redundancy has become increasingly common in robotics in order to

enhance the robot achievements [28, 58, 20]. In the field of industrial robots, kinematic

redundancy has been used to improve the capability of the robot to avoid obstacles

[51], singularity3 avoidance [71] and joint limit [72].

Legged robots are intrinsically redundant; they have many joints (some are virtually

represented by 6 DoF) than the required to perform one task. The robot should

handle many sub-tasks in addition to the main task, for instance, tracking CoG

path cannot be achieved without maintaining the overall balance of the body and

satisfying the dynamic effect of the mechanical parts [73].

The robot’s legs play important roles in propelling the body forward, absorbing the

impact of the contact [74], and maintaining the body level with respect to ground

[13]. On the other hand, the contacts that arise during the walking task have a

negative impact on the motion control, as the contacts impose more constraints [75]

need to be satisfied by the controller. Depending on their importance, the tasks
3Kinematic singularity is a configuration in which a robot loses some DoF. This case happen

when the Jacobian matrix becomes rank deficient.
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are arranged in different priority level, for example, the body’s balance, joint limit,

and velocity limit are more important than body posture. Accordingly, the motion

space will be used to perform all these tasks in case of consistency between them,

otherwise, a proper decoupling between them should be implemented.

Several approaches have been proposed by researchers to solve the kinematic redun-

dancy problem; these are based on defining supplementary tasks to be performed in

addition to the main task. The tasks are augmented in one task-space formulation

[76, 77]. By assuming that there is no conflict between tasks, this method guarantees

that many tasks can be executed at the same time. However, the consistency be-

tween tasks cannot be ensured practically without guaranteeing a proper decoupling

between tasks. In order to solve the inconsistency between tasks, weighting methods

have been proposed by modifying the joints control command according to a certain

condition. [78]. The aforementioned methods cannot be used in a complex system,

such as, legged robot due to the dynamical changes in the constraints.

The approaches based on projecting the task with low priority level in the null-space

of the tasks with high priority level have achieved wide attentions impose a strict

decoupling between the executed tasks [79, 80, 81, 82, 83]. Although this method

can perfectly decouple tasks in different priority order, it cannot handle tasks that

formulated as inequality, such as, joint limit and force bound. Many studies have

considered the inequality constraints using the projection methods by converting

them it to equality constraints using the potential field approach; this method is

based on projecting the gradient of the inequality task to the null space of the main

task [84]. Conceptually, this method cannot consider the inequality task in the first

level and it suffers from high computational cost.
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2.6 Prioritising Multi-Task Control

Prioritisation is a process of arranging many tasks in different priority levels to ensure

that the tasks with low priority level are completely decoupled from the tasks with

higher priority [85]. In case of some tasks are linearly dependant on one another

(case of rank deficient in linear systems) [86], these tasks cannot be accomplished in

the same level. Alternatively, in order to consider the utility of the redundancy, the

tasks should be arranged in a strict order. In general, the tasks can be formulated as

a set of linear equality functions (e.g., zero velocity at the contact) or a set of linear

inequality functions (e.g., joint limit), many algorithms are proposed to handle both

types of tasks [82]. However, the algorithm that can handle equality and inequality

tasks in any level is preferred [87, 88].

In order to take the inequality constraints into account the linear programming (LP)

method has been proposed [89, 90, 91]. Although this method offers the ability to

handle both type of tasks in any level of priority, finding the optimal solution using

LP suffers from two main difficulties. First, due to the complex polyhedron achieved

by the simplex algorithm, discontinuities happen when the solutions move from a

vertex to other. Second, this method is not beneficial in real time computation [92].

For more blemishes using linear programming see [93].

Instead of the inverse kinematics problem using generalised inverses [94], an alterna-

tive approach is to use QP [95]. This method provides considering the inequality

tasks in any level of priority [87]. The original QP formulation, both equality and

inequality constraints are presented [96].

The QP method has been used widely in robotics for both inverse kinematics [97]

and inverse dynamics [98]. While the optimisation variable in inverse kinematics

is the robot’s velocity [99], the robot’s joint torque, joint acceleration, and contact
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force are the optimisation variables in inverse dynamics [100]. Based on how to

consider these three variables directly or indirectly, there are three approaches [101],

see Chapter Six for more details.

Recently, promising algorithms have been proposed to handle any type of constraint

by weighting or imposing a certain level of priority in the velocity level. Kanoun et

al. [87] suggested a method to solve a cascade of QP and find the result in one-step

inside the hierarchy. Escand et al. [97] proposed a QR decomposition method to

reduce the computation time. In the dynamic level, Saab et al. [62] proposed an

algorithm to reduce the computation cost by reducing the force components.

In order to qualify the robot to perform more tasks in addition to the walking

task, new constraints should be defined [102]. According to this fact, adding or

removing constraints will cause changing the size and structure of Jacobian matrix

[57]. Therefore, a trade-off between the number of the achieved tasks and the

constraints must be realised [102] and an appropriate hierarchy should be imposed

in order to ensure an accurate decoupling between tasks [103]. A proper decoupling

prevents the conflicts between the executed tasks [88], and allows full exploitation to

the redundant DoF [98].

2.7 Relevant Works

Four main aspects are considered in this work, namely, CoG tracking control, posture

control, controlling of force contact, and walking and manipulation. The relevant

works are categorised in the following three sub-sections. One more point to take

into account here, the structure of the robot is irrelevant, as the task space control

is related to a task to be controlled regardless to the type of the robot.
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2.7.1 CoG Tracking

There are many attempts to track the CoG of legged robots, starting from the

methods that rely on purely static stability methods 4 [13, 49, 12, 104, 105]. In

these methods, the body transition is achieved while all legs are on the ground; the

robot’s balance should be assured before doing any motion. In order to increase the

balance condition, an attempt is made to define new stability criterion based on

stability margin 5 [13], this method is based on shrinking the original polygon by a

certain distance to increase the probability of body balance. By the same token, [49]

proposed a method based on swaying the robot body in opposite direction to the

leg that will take off. Although, this approach enhanced the stability criterion, the

dynamic effects due to the contact forces and the momentum are not considered.

In quadrupedal robot, Buchli et al. [106] reduced the stability criterion to lines

created by each diagonal pairs of legs. They proved that the stability polygon is not

necessary for quasi-steady state walking. In addition, they developed an efficient

way to calculate the CoG path by given foothold position and assuming a zero

velocity condition at the contact points. However, this assumption at the foothold

is not applicable especially in natural environments unless there is an appropriate

decoupling between tasks and joints motion [107].

An interesting work has been done to track the path of the CoG of four legged robot

by Kalakrishnan et al. [108]. They generated paths for CoG and the foot in transfer

phase using fifth order spline; each segment of a spline is generated according to

the body configuration and foothold (no predefined whole CoG path is considered

in this approach). The robot speed is enhanced by this method as the phase of

body adjustment while all legs are over the ground is eliminated. Although, they

used ZMP as a stability criterion, the position of CoG is evaluated every cycle. The

4The CoG stay inside the polygon of legs in support.
5A shortest distance between the projection of CoG and an edge of supported polygon.
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generated CoG trajectory is created instantaneously (according to the CoG and

foothold), this implies that the body direction and velocity cannot be controlled

directly. There are two assumption associated with this approach: zero velocities at

the contact points and the Jacobian of the contact points remains full row rank.

2.7.2 Controlling of Force Contact

The goal of controlling the force contact is to get compliant interactions between

the robot and its environment. Exploiting position control techniques based on

traditional proportional integral derivative (PID) controller is not enough in the

field of legged robot or any application that involves interaction with surroundings.

Apart from passive compliant, there are many approaches to gain active compliant,

most of them depend on torque as a control command. However, the presence of

passive joints in legged systems hinder the direct implementation of standard torque

control methods in such robot. Although, there are many attempts to handle this

problem using artificial methods [109, 110, 111, 112] or state estimation [113, 114],

only model based control will be considered in this review.

There are three main approaches to handle the force between the robot and the

contact surface. The first approach relies on eliminating the effect of the contact

force; Mistry et al. [64] proposed a method to calculate joint torques by given joints

accelerations. In this method the Jacobian matrix is decomposed to orthogonal and

upper-triangular matrices using QR decomposition method. Two assumptions were

considered in this approach, which are no motion at the contact and the system

remains fully constrained. The method was evaluated on bipedal robot to perform

squatting (no walking).

Righetti et al. [115] extended the orthogonal decomposition method to include

inequality constraints. To ensure that the contact force stays within a certain bound,
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they defined a linear friction cone around each contact point. The problem of inverse

dynamics has been formulated as a QP to minimise both the torque command and

contact force.

The second approach is based on operational space control [55]; this method generates

a dynamically consistent torque using the inertia matrix as a weighted matrix. In

the same sequel, Park et al. [60] has generalised OSC to floating-base robot; the

problem size is reduced by difining a 6 DoF virtual joints that describe the relation

between the robot and the inertial frame.

The third method relies on considering only the normal force components in the

optimisation problem. Saab et al. [62] introduced a solution to handle both equality

and inequality constraints in a stack of tasks 6. The computation cost of this method

has been enhanced by formulating the problem without requiring to compute the

mass matrix [116]. They calculated the torque that satisfies the contact condition

using Recursive Newton-Euler algorithm.

2.7.3 Whole-Body Behaviour

Whole-body behaviour is arguably one of the most important characteristics in legged

robots to generate agile and dexterous motions. So far, two typical categories have

been considered in this field: full-body balance and whole-body motion planning.

While the first category involves retrieving the overall balance of the robot during

applying an external force, the robot performs walking and manipulation in the

operation space in the second category. A short review is conducted in the following

to discuss the aforementioned categories.

Sentis et al. [117] constructed the whole-body by integrating various control primi-

tives; three categorise have been defined in this approach: constraints, tasks, and
6All tasks are ordered according its priority
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posture primitives. A strict hierarchy is established between the tasks to ensure a

proper decoupling between them. This framework was implemented on the humanoid

robot Asimo [117].

In the same context, Henz et al [118], introduced a new method to combine the

robot balance with whole-body control. This method is based on projection of the

subordinate tasks in the null-space of the higher priority tasks. The interesting part

of this method is that it solves the force distribution part numerically. Furthermore,

this approach handles the external perturbation without measuring them. The robot

TORO was used to evaluate the validation of this approach [118].

In the field of quadrupedal robot, Winkler et al. [119] have introduced a method

based on both inverse dynamic to ensure motions and a virtual mode to account for

tracking error by creating a feedback for torque commands. The overall stability has

been ensured using ZMP criterion. The method was evaluated on HyQ robot, which

is a hydraulically actuated robot.

Kudruss et al. [75] formulated the problem of Centre of Mass (CoM) dynamics

in humanoid robots as an optimal control problem. The concept of this approach

relies on defining sets of contact models (templates), these sets are used to generate

CoM path and dynamically consistent contact force. The technique represents the

first obvious application of combining walking and manipulation at the same time.

Climbing a stair was the evaluation criteria and this was performed by HRP-2

Humanoid robot. The power consumption of motors has been reduced by 25% using

handrail support.

Dai et al. [120] proposed a method to take into account the dynamics of CoM of

the robot, which can be represented by angular and linear momentum. The full

kinematics model has been considered to satisfy the kinematics constraints, the

inverse dynamic has been used to calculate the joint torques.
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2.8 Summary

The traditional techniques to control the motion of six-legged robot are inadequate

to get satisfying performance for such complicated system. The new trend toward

high performance robot is focusing on the tasks as fundamental units in designing

the robot’s motion. In this chapter, an overview of the main types of legged robot

has been presented. Many aspects related to legged robots, such as, the stability, gait

generation, and the impacts of the environment have been discussed. The concepts

of task control, multi-task control, and the methods to prioritise tasks have been

introduced. Finally, a review of literature related to considering multiple tasks in

any level of priority has been conducted.
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Robot Modelling and Structure

3.1 Introduction

The assigned tasks and the structure of a legged robot play a crucial factor in the

design criteria of the robot’s motion [22]. The stage of constructing a real legged robot

cannot be initiated directly, due to the complexity of the robot; hence, designing a

simulation model is very necessary to perform the preliminary tests [121]. Creating

a digital prototype for the robot requires defining the robot’s kinematics, dynamics,

trajectory, and the interaction with environments [4].

Typically, the design should consider all constraints that emerge from the robot

kinematics, dynamics, and the operational space [122]. The specifications of the

robot, such as, dimensions, shape, legs configuration, the arm structure, and weight

have a direct influence on the constraints associated with the robot’s motion [123].

The designing phase is started by creating a CAD model of a six legged robot using

SolidWorks; then, this model is exported to MATLAB to set all constraints in the

corresponding parts. The normal and tangential forces between the robot’s legs and

the ground impose additional constraints need to be modelled. Simscape multi-body
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provides several powerful toolboxes to model the contact forces and the forces that

generated due to the effect of other legs (the internal forces).

Kinematic modelling includes defining the types of all joints that used in each leg and

the length of each link [46]. The method expresses the relation between the adjacent

links and the relation between the inertial frame and the frame of end-effector.

The robot’s balance and performance are influenced by the quality of the generated

trajectories; hence, the concept of the trajectory smoothing is highlighted by consid-

ering two types of smoothing techniques: cubic polynomial and quantic polynomial

[46].

In this chapter, the robot platform, kinematics, dynamics, the trajectory plan-

ning, and the contact force modelling are presented in detail. In addition, some

mathematical preliminaries for the proposed approach are addressed.

3.2 Six legged Robot Platform

Constructing a real six-legged robot is very expensive especially when using torque con-

trolled actuators (the robot needs 24 actuators in total), sensors (e.g., encoders,force

sensors, and gyroscopes), and controllers (PID controller). Therefore, all the pre-

liminary evaluations are achieved using a CAD model designed in SolidWorks. The

designed robot is dedicated to demining applications, therefore, three design require-

ments have been considered in this model, namely, shape, weight, and size of the

robot. The rectangular shape has been chosen for two reasons: it gives the ability to

walk along a straight-line easily and the gait of each leg could be the same and to

provide enough space for the manipulator arm to scan the area in front the body.

The main reason behind choosing a certain weight and shape for the robot is to

minimise the probability of detonating a mine in case of unintentional stepping over
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it. Additionally, the specified size enables the robot to navigate in small spaces.

Figure 3.1 shows a CAD model of a six-legged robot; the figure gives an approximate

visualisation of the robot dimensions with respect to human. Each leg has three

joints, which are ordered similar to reptile’s legs. The rotation axis of the first joint

is about the normal coordinates; the rotation axis of two other joints is shifted by

90◦ around the vertical direction. The leg is consists of three links, namely, hip, tibia,

and ankle. The hip joint represents the connection part between the robot’s body

and the leg. The length of the links is 0 cm, 15 cm, and 30 cm for hip, tibia, and

ankle link respectively. The length of ankle link is chosen to provide an appropriate

distance to isolate the body of the robot from ground.

The robot is equipped with manipulator arm to carry a sensor head at its end-effector

for detecting land mines and any object that may be in the way of the robot. More

details about the specifications of the arm will be presented in Chapter 5.

In general, the robot looks like a trunk with seven limbs. The full body has 24 DoF

(6 × 3 DoF) for the legs and (1 × 6 DoF) for the arm. In order to consider the

physical parameters of the robot, the CAD software automatically calculates physical

parameters such as mass and inertia tensor. In addition, it provides powerful tools to

visualize the developed model. Table 3.1 illustrates the physical specifications of the

robot body and legs. To perform various virtual experiments and to obtain required

outputs, the CAD model was imported to MATLAB / SimMechanics environment.

Simscape Multibody has a powerful environment to simulate multi-body systems. It

has different types of joints, actuators, framing system, and sensors. Many types

of controller can be implemented in this environment such as position control and

torque control. Additionally, it has its own simulator, therefore, no need to use an

external simulator for instance (gazebo or V-REP).
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Figure 3.1: CAD model of hexapod robot using SoildWorks. The figure shows an
approximate visualization to the dimensions compared to human size.

Table 3.1: The specification of the robot.

Part Dimension (cm) Weight (kg)

Body 111 (length) × 85 (width) × 50 (height) 20

Hip 15 1

Tibia 20 1

Ankle 25 1
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The robot is controlled using two controller: inverse dynamic controller to provide a

feed-forward torque control command and a PID controller to compensate for any

error between the reference input signal and the measured signal. While the first

controller provides a low gain feedback control command, the second one supply

a high feedback gain; a compliant response is achieved by combining these two

controller. The basic idea of this type of controller is by applying the reference

trajectory that consist of the variables (joint position qdes, joint velocity ˙qdes, and

joint acceleration ¨qdes); the measured joint position q and velocity q̇ of the robot are

supplied back to both controller to generate the torque command. The Simulink

environment for the PID controller and the inverse dynamic controller are presented

in Appendix C.

Figure 3.2: Block diagram of the robot control structure. The output of the inverse
dynamic and PID controller are denoted as τinvDyn and τPID respectively.
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3.3 Forward and Inverse Kinematics

The forward kinematics define the position and orientation of the end-effector of an

articulated body with respect to a base coordinate frame [46]. The position and the

orientation of the end-effector can be represented as a function of the joint angles of

each individual link; this relation can be mathematically expressed as:

x = f(θ) (3.1)

where x is the position and orientation of the foot-tip and θ represents the angles of

the leg joints.

The standard method to representing the kinematics model of any link series is

the Denativ-Hartenberg (DH) method. This method is based on assigning a frame

to each joint, and then defining the relation between adjacent frames [124]. Each

frame is identified by two joint parameters (joint rotation and joint translation)

and two link parameters (link’s length and link’s twist) [125]. The joint variables θ

are needed to describe the joint rotation (joint angle in the case of revolute joint),

or represent the joint translation d (joint distance in the case of prismatic joint).

The link parameters are the link length l and the link twist α, which represents the

rotation of a certain link around x-axis. While there are no prismatic joints in the

considered leg, the value of joint distance is fixed to zero and the values of l remain

constant. For a leg with three DoF, there are four frames, as shown in Figure 3.3.

The frame (x0, y0, z0) represents the base frame, which is attached to the robot’s

body. The last frame (x3, y3, z3) represents the robot’s foot. Table 3.2 lists the DH

parameters of one leg of the robot.
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Figure 3.3: Coordinates definition for defining DH parameters presented in Table
3.2.

Table 3.2: D-H parameters of three joints leg.

One Leg

Link li αi di θi

1 l1 -90 0 θ1

2 l2 0 0 θ2

3 l3 0 0 θ3

The relative translation and rotation between ith and i-1 coordinate systems (adjacent

links) can be represented as a homogeneous transformation matrix:

T i−1
i =



Cθi −SθiCαi SθiSαi liCθi

Sθi Cθ1Sαi −CθiSαi liSθi

0 Sαi 0 0

0 0 0 1


(3.2)
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where T is the transformation matrix, C and S are short for cos and sin respectively.

The leg-foot reference frame 3 can be expressed with respect to the leg-base frame 0

as:

T 0
3 = T 0

1 T
1
2 T

2
3 =

3∏
i=1

T i−1
i (3.3)

T 0
3 =



Cθ1C(θ2 + θ3) −Cθ1S(θ2 + θ3) Sθ1 px

Sθ1C(θ2 + θ3) −Cθ1S(θ2 + θ3) Cθ1 py

S(θ2 + θ3) C(θ2 + θ3) 0 pz

0 0 0 1


(3.4)

The position of the leg-foot (px, py, pz) can be represented with respect to leg base

frame as:


px

py

pz

 =


(l1 + l2Cθ2 + l3C(θ2 + θ3))Cθ1

(l1 + l2Cθ2 + l3C(θ2 + θ3))Sθ1

l2Sθ2 + l3S(θ2 + θ3)

 (3.5)

ẋ = Jθ̇ (3.6)

where ẋ is the velocity at task-space, J is the leg Jacobian matrix that map the

position and the orientation of the foot-tip to the joint-space, and θ̇ is joints velocity.

Due to non-linearity, including rotation at the joint translation, the problem can be

made linear by differentiating Equation (3.1) with respect to θ, obtaining the velocity

differential model as in Equation (3.6). This equation describes the relationship

between the velocity (angular and linear) of EE and the joint velocities, which is
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essential in velocity level control, as shown in Equation (3.6).

J =


∂Px
∂Pθ1

∂Px
∂Pθ2

∂Px
∂Pθ3

∂Py
∂Pθ1

∂Py
∂Pθ2

∂Py
∂Pθ3

∂Pz
∂Pθ1

∂Pz
∂Pθ2

∂Pz
∂Pθ3

 (3.7)

J =


(l1 + l2Cθ2 + l3C(θ2 + θ3))Sθ1 −(l2Sθ2 + l3S(θ2 + θ3))Cθ1 −l3S(θ2 + θ3)Cθ1

(l1 + l2Cθ2 + l3C(θ2 + θ3))Cθ1 −(l2Sθ2 + l3S(θ2 + θ3))Sθ1 −l3S(θ2 + θ3)Sθ1

0 l2Cθ2 + l3C(θ2 + θ3) l3C(θ2 + θ3)


(3.8)

θ = f−1(x) (3.9)

θ̇ = J−1ẋ (3.10)

where θ̇ is the joint velocity and ẋ is the foot-tip velocity.

The elements of the Jacobian matrix are described in Equations (3.7) and (3.8). The

problem of computing the joint variables for a given position and orientation of the

EE is termed Inverse Kinematics (IK). This situation is fundamental in OSC. In

other words, derivation of IK equation is essential for foot placement, trajectory

planning, obstacle avoidance, and singularity robustness. In order to calculate θ with

respect to x the inverse of Equation (3.1) is required as shown in Equation (3.9).

In order to solve the linear system of Equations (3.6) when ẋ is known, it is necessary

to invert the Jacobian matrix J , as shown in Equation (3.10).

However, in many situations, there are several difficulties associated with solving the

IK problem, particularly when considering the operational space constraints, such

as obstacles. The problem of inverse Jacobian matrix can be exacerbated when the

space of joint is greater than the space of task (case of redundancy), because there
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are more than one solution. Another situation when a robot loses some DoF, the

Jacobian matrix will become rank deficient (case of singularity).

Several researchers have addressed the problem of IK and calculation of Jacobian

matrix using weighted pseudo-inverse [86] and damped least-squares methods [126].

These methods entail several difficulties when applied in highly redundant robots

such as six-legged robot. These approaches give no guarantee to implement different

types of constraint [127]. They are time consuming in terms of computation [96].

Using traditional methods will become prohibitive due to high complexity of the

mathematical structure of the formulation. Therefore, IK problem can be solved

using numerical algorithms after formulating it as an optimisation problem [128].

In addition to the above difficulties, exploiting IK in controlling legged-system is

hindered by the presence of passive joints, which describe the position and the

orientation of the robot body [129]. Furthermore, as legged robots have abundance

in the number of joints; it is convenient to take advantage of redundancy in achieving

multiple tasks. However, a proper decoupling between executed tasks is compulsory.

One of the interesting methods of decoupling tasks is by projecting the secondary

tasks in the null-space of the more important tasks. Therefore, Equation (3.10) can

be generalised to include the null-space of Jacobian matrix as indicated below for

two tasks.

q̇ = Jẋ1 + (I − J−1J)ẋ2 (3.11)

where q̇ is the velocity in the joint-space, (I − J−1J) is a projector in the null-space

of J , ẋ1 ∈ <m, ẋ2 ∈ <n−m.

As this method provides a proper decoupling between tasks and could be utilised

as long as there is enough space. However, this is not in case of implementing both

unilateral and bilateral constraints. Therefore, in this thesis, the IK problem is
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derived as an optimisation problem and solved using QP as explained later in Section

4.4 and Section 6.4.

3.4 The Robot Dynamics

The values of dynamic parameters of the robot, such as CoM position, inertia (In),

and contact forces are essential to formulate the control problem [130]. Calculating

these parameters from the mechanical structure is not straightforward. Therefore,

modelling the robot using CAD system will allow getting the values of the dynamic

parameters. A complete dynamics model of a realistic hexapod robot is required to

analyse and compensate for the dynamic effect. In this project, Lagrange formulation

is used to model the dynamic parameter [131]. Full derivation of the robot equation

of motion is shown in Appendix A. The dynamic model of the robot without contact

force is described as:

M(q)q̈ +H(q, q̇)q̇ +G(q) = τ (3.12)

where M ∈ <(6+n)×(6+n), inertia matrix of the system, q̈ ∈ <n×1is the joint accelera-

tion, H (q, q̇) ∈ <(6+n)×1 is a vector of Coriolis and centrifugal forces, G∈ <(6+n)×1

is vector of gravity forces, τ ∈ <(n×1) is vector of joint torques. Equation (3.12)

represents the system in free space (no contact force) and without passive joints (the

system is totally actuated). However, legged robots consist of two crucial factors

that should be implemented in its model.

M(q)q̈ +H(q, q̇)q̇ +G(q) + Jc
Tfc = ST τ (3.13)

where Jc is the Jacobian at contact point, fc is the contact force (normal force and
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friction force), S = [In×n 0n×6] is the selection matrix, the first six elements of this

matrix are selected equal to zero to allow to represent the passive 6DoF joint of the

robot body.

In case of floating base robot, such as, a six legged robot, the contact forces com-

ponents between the robot’s legs and ground and the passive joints at CoM of the

robot should be included in the equation of motion, as shown in Equation (3.13).

3.5 Trajectory Planning

There are two main considerations make planning the trajectory for a legged robot

is very complex [22]. First, the base of legged robot is inherently not fixed to ground

and consequently, the operation workspace cannot be specified, as it depends on the

robot instantaneous position and orientation. Second, depending on its structure,

legged robots have more than one limb (six legs and one manipulator in this case), a

synchronisation should be implemented between all limbs.

The essential problem of trajectory planning is to allocate a motion modularity for

the robot to move from a particular starting place to some required ending place

(in some cases, it is required to acquire a specific final configuration). In general,

trajectory planning requires three important issues [46]. First, defining detailed

information about the starting point, ending point, and the intermediate points;

these points can be predefined, in case of an obstacles-free path. Second, satisfying

the constraints that arise from the configuration space (joints limit, velocity limits,

and joints torque) and from the operational space (avoiding obstacles and following

specified path geometry). Finally, the dynamic effects of the robot physical parts

(joint stiffness and joint damping).

The simplest type of path planning is between two points sometime called point-

39



Chapter 3. Robot Modelling and Structure 3.5. Trajectory Planning

to-point path [132]. Typically, in addition to zero velocity at both ending, the

requirements of this type of path planning are the position of starting and ending

point. Consequently, there is no concern about the way that the EE reached the final

point. However, this approach is not applicable in the case of multi-limb robots or

when the operational space imposes constraints should be satisfied [133]. Therefore,

in this thesis, the trajectory planning will consider creating intermediate points

between the initial and final point. The intermediate points are defined according

to the tasks that the robot performs and the robot configuration. The sequence of

these points will constitute the whole path considered as a reference input.

Three main trajectories are considered, namely, CoG, feet, and the trajectory of

the manipulator EE. Different constraints are imposed depending on the trajectory

of corresponding limb, for instance, the trajectory of robot’s feet consist of force

constraints must be satisfied. The trajectory of the manipulator has constraints

of avoiding obstacles inside its path. The overall position and orientation of the

robot are confined the trajectory of the robot’s CoG. Consequently, generating the

trajectory of both EE and feet-tips are depending on the CoG trajectory. The results

of trajectory generation are the position, velocity, and acceleration of any frame with

temporal qualities [46]. These three parameters are described by a time sequence to

define the position and orientation (pose) of a controlled point in space.

In terms of implementing many kinds of constraints related to the task space, the

operation space method is very useful to generate trajectory [134]. This method

is based on exploiting the inverse kinematics techniques, by given a pose of any

points in space the corresponding values in configuration space can easily obtained

[49]. However, this method is hard to apply in case of singularity and exist of joint

redundancy [135]. Having achieved the configuration of the robot related to each path

point, the trajectory in the configuration-space is interpolated using an interpolation

method to get smooth trajectory [34]. The modularity of the generated trajectory

has a direct effect of the overall performance of the robot [136], as will be shown
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later on.

q(t) = a0 + a1t+ a2t
2 + a3t

3 (3.14)

where q represents the position in the joint space, and the value of aj, j = 1, 2, 3 are

a constant numbers determined using a set of boundary conditions and t represents

the time.

According to the desired continuity level of the position, velocity, and the acceleration,

there are two main ways to interpolate a sequence of predefined points [125], namely,

cubic polynomial, and quantic polynomial. When the desired trajectory is with

velocity parabola and linear acceleration, the cubic polynomial method will be

enough, as in Equation (3.14). Four conditions should be implemented before

applying this method, which are the positions and velocities at both end of a

path primitive1. For more details about setting the constraints and solving for the

coefficients (a0, a1, a2, and a3 ), see [124].

Figure 3.4 shows the trajectories of the robot’s hip joint, tibia joint, and ankle joint

that created by cubic polynomial.

1Segment of path with certain configuration.
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Figure 3.4: The trajectories of the robot’s hip joint, tibia joint, and ankle joint. The
trajectory is generated by a cubic polynomial.

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (3.15)

where q represent the position in the joint space, and the value of aj, j = 1, 2, 3, 4, 5

are a constant numbers determined using a set of boundary conditions and t represent

time.

On the other hand, when the continuity in the acceleration level is required in

planning a trajectory, higher-order polynomial should be considered [125], such as

quantic polynomial, Equations 3.15. This is a prerequisite when the robot has to

avoid resonances due to contact with the environment or the dynamic effect such as

friction [137] In this method six conditions have to be satisfied, as shown below.
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q0 = a0

qf = a0 + a1tf + a2t
2
f + a3t

3
f + a4t

4
f + a5t

5
f

q̇0 = a1

q̇f = a1 + 2a2tf + 3a3t
2
f + 4a4t

3
f + 5a5t

4
f

q̈0 = 2a2

q̈f = 2a2 + 6a3tf + 12a4t2
f

+ 20af t3f

(3.16)

where q0 is the initial position, qf is the final position, q̇0 is the initial velocity, q̇f is

the final velocity, q̈0 is the initial acceleration, and q̈f is the final acceleration.

In the case of a sequence of multiple of intermediate points each point with contineous

velocity and acceleration more constraints should be implemented [138]. Figure 3.5

shows the trajectories of hip joint, tibia joints, and ankle joint of leg 1. The trajectories

have been generated using quintic polynomial.

Figure 3.5: The trajectory of the robot’s hip joint, tibia joint, and ankle joint. The
trajectory is generated by a quintic polynomial.
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As anticipated, the trajectory smoothing is further affecting to the generated velocities

at each joint. Figure 3.6 shows the velocities of hip, tibia, and ankle joints of leg 1.

It is clear from the figure that the generated velocities of leg 1 joints using quantic

polynomial are smoother than the other method (using cubic polynomial). The effect

is more pronounced for the period of transfer phase (time 0-1.26 s). The rest of time

(when the leg on the ground), the effect is less, as the leg is in contact from both

sides. It is worth to mention that the velocity of both tibia and ankle joints is equal

to zero when the leg is in stance phase, due to there are no direct role for these joint

in propelling the robot’s body.

(a) Hip joint velocity.
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(b) Tibia joint velocity.

(c) Ankle joint velocity.

Figure 3.6: The effect of the trajectory smoothing on the velocity of leg1 joints.

In torque controlling method, the produced torque at joints is also effected by the

method of trajectory generation. Figures (3.7, 3.8, 3.9) depict a comparison between

torques at leg 1 joints. The reference trajectories ,which created by cubic and quintic

polynomial, have been exploited to produce joints torque.

45



Chapter 3. Robot Modelling and Structure 3.5. Trajectory Planning

Figure 3.7: The torque at hip joint of leg 1, the blue and red curves represent the
torque at hip joint, which produced by cubic and quintic polynomial respectively.
Both signals at time 0-1.5 s have been magnified to indicate the difference between
them.

Figure 3.8: The torque at tibia joint of leg 1, the blue and red curves represent the
torque at tibia joint, which produced by cubic and quintic polynomial respectively.
Both signals at time 0-1.5 s have been magnified to indicate the difference between
them.
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Figure 3.9: The torque at ankle joint of leg 1, the blue and red curves represent the
torque at ankle joint, which produced by cubic and quintic polynomial respectively.
Both signals at time 0-1.5 s have been magnified to indicate the difference between
them.

A far from the configuration space, the localization of foot tip is also affected by

the impact of trajectory state. Figure 3.10 illustrates the path of foot tip of leg

1 using cubic (blue line) and quintic (red line). In case of cubic polynomial and

due to slippage, the position of foot tip along x-axis at stance phase is regressed.

The amount of this regression will continue as long as the robot continues to move

forward.
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Figure 3.10: The effect of trajectory smoothing on the overall performance of the
robot. This figure shows the foot tip trajectory along x-axis, The red line is a
trajectory generated by cubic polynomial and the blue trajectory is generated using
quintic polynomial.

3.6 The Contact Force in the Robot Dynamic

According to the structure of the legged robot, there are three types of rigid contact

between the robot’s legs and the environment [60]. These types are classified as point

(in case of six-legged or four-legged robot) Figure 3.11a, line (edge contact) Figure

3.11c, and surface contact (in case of humanoid robot) Figure 3.11b. Each type of

contact imposes a different rather constraints [26]. As the contact points increases,

the number and type of the imposed constraints are raised accordingly [92].

While walking, the contact constraints will vary and the dynamics of the robot

will be changed [139]. In general, modelling the contact by assuming the contact

point as a fixed-base is an unattainable goal due to the switching transition and the

probability of slippage [60]. Modelling all force components will cause complicating
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to the problem.

(a) Point contact.

(b) Plane Contact (c) Edge Contact.

Figure 3.11: Types of contacts between the legged robot and the environment.

Fi =


fix

fiy

fiz


3×1

(3.17)

where Fi ∈ <1×3 is the net force at the contact i and [fix, fiy, fiz]ᵀ are the forces in

(x, y, and z) directions respectively.
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There are many approaches to handle the conundrum of force distribution in legged

systems. Most of these approaches are based on optimisation methods [92, 140, 141,

142, 139]. Each point contact consists of three components as in Equation (3.17).

Γ =



F ᵀ
1

F ᵀ
2
...

F ᵀ
n


n×3

(3.18)

According to the number of contacts, the stability equation can be written in a

matrix form as in Equation (3.18). The full equilibrium equations are depicted in

Appendix B [143].

∆Γ = FCoG (3.19)

where

∆ =

I3 I3 · · · I3

σ1 σ2 · · · σn

 (3.20)

σ =


0 −zi yi

zi 0 −xi
−yi xi 0

 (3.21)

∆ ∈ <6×18 in case of all legs of hexapod are on ground, is the matrix of coefficients,

and FCoG ∈ <1×6 is the force and moment acting at the body CoG.

fz ≥ 0 (3.22)

√
(f 2
x + f 2

y ) ≤ γfz (3.23)

The effect of the contact force at foot on the CoG can be written as linear form, as

50



Chapter 3. Robot Modelling and Structure 3.6. The Contact Force in the Robot Dynamic

in Equation (3.19). As it is clear from Equation (3.19) that the matrix ∆ is not

square even with three legs in contact with ground, hence solving Equation (3.19) for

Γ is not straightforward. Two conditions should be satisfied, these constraints are:

the normal force fz should be greater than zero Equation (3.22), and
√

(f 2
x + f 2

y )

should be less than the normal force multiplied by the static coefficient of friction γ,

Equation (3.23).

There are two interesting approaches to remedy the problem of contact. In order to

reduce the problem size, both of them considered the force and the moment at the

CoG. Park et al. [60] extended the approach of [55] (weighting acceleration energy

by the inertia matrix) to a torque minimisation problem, as below.

min
τ3<n

1
2 τ

ᵀWτ (3.24)

where

W = SM−1(I − (JcM−1Jᵀ
c )JcM−1)Sᵀ (3.25)

S = [06×6 In×n], M is the inertia matrix, and Jc is the Jacobian of the contact

point. The resulting τ according to this approach represent torques that dynamically

consistent with contact forces.

Jᵀ
c = Q[Rᵀ 0]ᵀ (3.26)

Qᵀ
c(Mq̈ +H +G) = Qᵀ

cS
ᵀτ +RΓ (3.27)

Qᵀ
u(Mq̈ +H +G) = Qᵀ

uS
ᵀτ (3.28)

where Q ∈ <(n+6)×(n+6), R ∈ <6×6 are orthogonal matrix, and upper triangular

matrix respectively.

Righetti et al. [101] decomposed Equation (3.13) into constrained (3.27) and uncon-

strained (3.28) equations using QR decomposition method. Then, they formulated
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an minimisation problem using QP for unconstrained equation only.

In order to prevent legs from slippage, Equation (3.19) must be satisfied. However,

dealing with non-linear constraint is very hard [144]. Therefore, converting the

friction cone Figure 3.11a to pyramid inscribed inside the friction cone Figure 3.12

[142].

Figure 3.12: Friction cone around each foot-tip.

−fx + γ√
2
fz ≤ 0

fx + γ√
2
fz ≤ 0

−fy + γ√
2
fz ≤ 0

fy + γ√
2
fz ≤ 0

(3.29)
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Equation (3.29) represents a set of simplified linear inequality conditions.

In this thesis, a virtual-links are assumed to define the relation between the robot

and the ground [60]. This links consist of six joints with 6-DoF’s three prismatic

joints represent the transition in Cartesian space and three rotational joint represent

the orientation. The CoG of the robot has been chosen as a connection point with

world as illustrated in Figure 3.13.

Figure 3.13: Virtual-links between the robot and the ground.

Six-legged robot has at least three legs in contact with ground (the case of tripod

gait). The stance legs formed a polygon underneath the robot for each instant of

time, Figure 3.14. Therefore, a single contact would be enough to describe the virtual

connection between each foot and the contact surface. To ensure proper functionality,

the contact point should be considered by a certain limit of the normal force and

tangential forces Figure 3.11a.
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(a) Five legs support. (b) Three legs support.

Figure 3.14: Legs support types in six-legged robot.

Due to more than one leg in contact with ground, the effect of contact force at

switching time from transfer phase to stance phase is remarkable in case of six-legged

robot. Figure 3.15 shows the effect of normal force at legs (6, 3, 2, 5, and 4) on

normal force at leg 1. The effect of internal force has been examined on the robot

with gait sequence (1, 6, 3, 2, 5, 4) and duty factor of (5/6). The legs (1, 3, 5) are

placed in left side and legs (2, 4, 6) are laid in other side. The top part of the figure

illustrate the value of normal force for two states, namely, transfer phase (the green

area at time 0-0.85s) and stance phase (the yellow area at 0.85 - 4.8s). The normal

force equal 3850 N at time of contact, this big value is expected because of the impact

of the contact. During stance phase, the normal force at leg 1 stay stable with very

small value until time of leg 6 to switch from transfer to stance. The impact of the

contact force at leg 6 causes a spike in the value of normal force at leg 1. Same effect

would be happened at time of contact of leg 2 or leg 4, as both legs are placed in

opposite side of leg 1. The effect would be reversed at time of contact of leg 3 or leg

5. This is expected as both legs are in same side of leg 1. The bottom part of figure

3.16 illustrates the normal force of legs (6, 3, 2, 5, and 4). The value of normal forces

at different legs are varied depending on the leg position as shown in table 3.3. The

influence of internal force can be attenuated by smoothing leg trajectory more as

discussed in section 3.5. Smoothing trajectories using optimisation methods, such as
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genetic algorithm, would be an appropriate method to get such trajectory[145, 146].

However, trajectory smoothing is out of the scope of this thesis.

Figure 3.15: The green area at time 0 - 0.8 s represents the transfer phase of leg 1,
the value of normal force is equal to zero, as no contact between robot and ground.
The stance phase represented by yellow area at time 0.8 - 4.8 s, this portion of figure
illustrates the impact of contact between leg 1 and ground, also it explains the effect
of other legs on normal force at leg 1.

Table 3.3: The values of normal force at time of contact of legs.

Leg Normal Force (N)

Leg 1 3859.7

Leg 2 3861.2

Leg 3 2560.3

Leg 4 2422.3

Leg 5 3118.4

Leg 6 3121.6
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In terms of friction force and with same analogy, legs (2, 4, 6) have a greater influence

on the value of friction force at leg 1 than legs (3 and 5). Figure 3.16 shows the

impact of friction force of legs (6, 3, 2, 5, 4) on the friction force at leg 1. These

measurements have been conducted on the robot with a gait sequence (1, 6, 3, 2, 5,

4) and with a duty factor of (5/6). Table 3.4 shows the values of friction force at

each leg.

Table 3.4: The values of friction forces at time of contact.

Leg Friction Force (N)

Leg 1 1441.9

Leg 2 1440.9

Leg 3 828.7

Leg 4 1453.4

Leg 5 920.4

Leg 6 925.7
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Figure 3.16: The top part of the figure demonstrates the friction force at leg 1. The
green area at time 0 -0.8 s represents the transfer phase of leg 1, the value of friction
force is equal to zero, as no contact between robot and ground. The stance phase
represented by yellow area at time 0.8-4.8 s, this portion of figure illustrates the
effect of other legs on friction force at leg 1.

3.7 Sensors

In order to perform the assigned tasks and to integrate its interaction with the

environment, the robot is equipped with two types of sensors, namely, proprioceptive

sensors and exteroceptive sensors. The first type gives the ability to sense the internal

state of the robot, for instant, joint position, velocity, and torque sensors. The second

type allows the robot interact with the surrounding. These sensors including vision,

distance, and force sensors are used to detect the workspace of the robot.

In this section, brief information will be given about the used sensors. These sensors

are distributed around the robot to measure current configuration. To do so, simscape
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provides different kind of sensor such as, position, velocity, acceleration, and torque

for each joint. Furthermore, it gives the ability to sense the difference between

different frames, which is useful to figure out the exact location of the robot with

respect to the inertial frame. Definition of a number of reference frames connected

to the robot on one side and the environment on other side are required in case of

floating base robot. These frames represent virtual joints. The frames between foot

tip of each leg and the manipulator end-effector with the world frame should be

established.

Measuring the acceleration in x, y, z direction and the angular velocity around the

CoM of the robot body are provided by three axis accelerometer and three axis

gyroscope. Sensing the gravity can be achieved by inertial measurement unit (imu),

which is measure the gravity independently from the environment conditions.

Measuring the force contact and friction at the contact point between the robot

and ground is required to cope with interaction impact. For instance, when the

robot walks over irregular terrain, the legs must absorb this impact by changing its

configuration to keep the robot’s body within a certain level, and keeping the friction

force within specified limit will prevent from slippage.

Three cameras are used to figure out the presence of obstacles in front of the robot.

One camera is installed underneath the robot body and attached to CoM frame. This

camera provides a view along x-axis. The other two cameras are attached to right

and left side of the arm end-effector respectively. Both these cameras give a view

along y-axis. By integrating the view of all cameras, the path of the manipulator

EE is generated.
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3.8 Summary

The robot’s platform was designed using SolidWroks; the CAD model of the robot

has been exported to MATLAB/SimMechanics. The size of the considered robot

platform and the robot’s dimensions were explained in details.

A brief mathematical preliminary about the robot kinematics and dynamics modelling

of the robot was introduced, and the types of control equation in velocity level and

torque level have been presented. The requirements of operation space control were

introduced. In order to recognise its difficulty, particularly in legged systems, a

discussion about IK problem has been conducted. The floating-base characteristic

together with redundancy and its impact on the control process have been argued.

Moreover, the trajectory generation and smoothing methods have been illustrated.

The effect of trajectory smoothing on the overall behaviour of the robot was discussed.

Two techniques have been considered, namely cubic polynomial and quantic polyno-

mial. The effectiveness of both methods was tested on generated joint angles, joint

velocity, joint torque, and legs slippage. In addition to its ability to produce smooth

trajectory, the quantic polynomial method was exploited to create a continuous

acceleration, which is required torque controlling methods.

As the robot has intrinsic interaction with the ground, the impact of the contact forces

are in fact cannot be neglected. Therefore, modelling some physical effects, such as

contact force and friction force in the contact points has considerable importance.

The impacts of theses force on the performance of the robot are discussed, and the

impact of the internal force, which produced by other legs, was explained.

Due to its flexibility to handle both linear equality and inequality equations, QP has

been chosen to tackle with optimisation problem. Finally, some of used sensors were

explored, such as, imu, gyroscope, encoders, and force sensors.
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Tracking Centre of Gravity Path

4.1 Introduction

The locomotion of a legged robot is very challenging mission; as several subtasks

need to be performed at the same time [147]. These subtasks must be arranged

according to their importance to the main task, for instance, transition from one

pose to another could not be achieved without ensuring some necessary constraints

(e.g., body balance). In case of legged robot, some constraints are imposed by the

mechanic parts or dynamics of the robot, others are induced by interaction with the

environments. Typically, the imposed constraints are formulated as a set of linear

equality or inequality and stacked in a strict hierarchy according to their importance

[148]. When designing the motion of the robot, a trade-off between the available

motion space and the number of constraints that need to be satisfied should be

considered [62]. In general, having large motion space (more DoF) enables the legged

robots to execute more task and satisfy some constraints. However, the presence of

passive joints at the CoG of the robot’s body makes controlling the robot not direct

[60].
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In this chapter, the desired path of the robot is defined at its CoG and considered as

a reference to track by the robot’s legs. Each entity of this path includes the desired

translation in Cartesian coordinates and orientation (Euler angles) of the robot.

Although, the robot has plenty of DoF (18 DoF in the considered robot), tracking

the reference path requires 6 DoF; therefore, there are 12 redundant DoF can be

exploited to perform additional tasks. To this end, the challenge is how to calculate

the value of each joint (18 DoF) by given a path with 6 DoF defined at CoG. Using

the forward kinematics methods directly is not applicable due to the large number

of DoF. Alternatively, task space control technique provides a proper approach to

map the reference path from the operational space to the robot’s configuration space

using IK methods [55].

Utilising IK techniques to realise the robot motion are appealing [149]; however,

matrix inversion involved in these techniques is always ill conditioned due to the

number of unknowns are larger than the known variables. Therefore, solving this

problem based on optimisation is more appropriate and provides a convenient way

to get a minimum solution [94].

The problem of redundancy resolution at the inverse differential kinematics level is

considered in this chapter to find the velocities in the configuration space, and the

QP algorithm is used to handle the equality and inequality constraints in any level

of priority.

In order to demonstrate the relation between the CoG of the robot and each foot tip,

transformation matrix is derived using DH notation, and floating-base is represented

using the virtual links.

The main contribution of this chapter is to formulate the inverse kinematics problem

as an optimal problem and solved using QP solver. Following the idea of [150]

to observe the joints limit and velocities bound, the major difference is that this

approach are applied on six legged platform, which has more limbs to be controlled.
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4.2 Kinematics Modelling of Six-Legged Robot

The DH notation is used to formulate the homogeneous transformation matrix

between the CoG of the robot and the foot of each leg. This matrix describes

the relation between frames in terms of translation in x, yand z coordinate and

the orientation in roll, pitch, and yaw angles. The first transformation matrix is

denoted as T1 which represents the transformation matrix between the CoG of the

robot and the foot tip of leg1. In same way, T2, T3, T4, T5, and T6 represent the

transformation matrices of leg2, leg3, leg4, leg5, and leg6 respectively with the CoG.

In this section, the first matrix T1 will be derived; other matrices can be deduced

similarly. Figure 4.1 shows the frame of CoG (fCoG), the frame of body-hip joint

(f0), the frame of hip-tibia joint (f1), the frame of tibia-ankle joint (f2), and the

frame at the contact (f3).

Both fCoG and f0 share same rotation values around x, y and z-axis in different

leg-bases. The position of f0 for leg 1 related to fCoG is (45, 24, 0) cm in x, y, and z

respectively. The positions in Cartesian coordinate of hips of other legs are illustrated

in Table 4.1.
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Figure 4.1: Frames assigned to body CoG, and all connection points between the
robot’s body and legs. The frames at leg one are shown to explain the position and
the orientation of each joint in leg1.

Table 4.1: The position of hips of legs (2, 3, 4, 5, 6) with respect to body CoG.

Leg position in x, y, z (cm)

Leg 2 (45, -24, 0)

Leg 3 (0, 24, 0)

Leg 4 (0, -24, 0)

Leg 5 (-45, 24, 0)

Leg 6 (-45, -24, 0)

While the leg (during transfer phase) has indirect influence on CoG, the translation

and orientation of CoG are a function of translation and orientation of legs during

stance phase. Therefore, the transformation matrix will be derived assuming the leg
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is in contact with ground. The spatial displacement between CoG and hip TCoG,h, as

the following:

TCoG,h =



1 0 0 45

0 1 0 24

0 0 1 0

0 0 0 1


(4.1)

Other transformation matrices hip-tibia, tibia-ankle, and ankle-foot are denoted as

Th,t, Tt,a, and Ta,fo are:

Th,t =



Cq1 0 Sq1 l1Cq1

Sq1 0 −Cq1 l1Cq1

0 1 0 0

0 0 0 1


(4.2)

Tt,a =



Cq2 −Sq2 0 l2Cq2

Sq2 Cq2 0 l2Sq2

0 0 1 0

0 0 0 1


(4.3)

Ta,fo =



Cq3 −Sq3 0 l3Cq3

Sq3 Cq3 0 l3Sq3

0 0 1 0

0 0 0 1


(4.4)

where C and S are short for cos and sin respectively, l1, l2, and l3 represent length

of hip, tibia, ankle link respectively. The joints angle are indicated by q1, q2, and q3.
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T1 =



Cq1 −Sq1Cq1 Sq1Cq1 px

Sq1C(q2 + q3) −Cq1S(q2 + q3) Cq1 py

S(q2 + q3) C(q2 + q3) 0 pz

0 0 0 1


(4.5)


px

py

pz

 =


(l1 + l2Cq2 + l3C(q2 + q3))Cq1

(l1 + l2Cq2 + l3C(q2 + q3))Sq1

l2Sq2 + l3S(q2 + q3)

 (4.6)

The overall transformation matrix between body CoG and foot-tip is as Equation

(4.5). The position of the foot tip (px, py, pz) can be represented with respect to leg

frame as shown in Equation (4.6). The relation of the foot tip configuration vector

x and the angles of a leg in the joint-space q represented as follows:

x = f(q) (4.7)

where x ∈ <3 is the position of the foot tip.

4.3 Mathematical Formulation

4.3.1 Floating-Base Representation

In general, a floating-base robot is, by definition, not fixed firmly to any location

in the ground, controlling such a robot is still challenging because no actuation are

implemented in its CoG [50]. In the following text, the fundamental notations and

the Jacobian matrices required for floating-base are introduced. In addition to the

actuated joint angles, the robot has 6 un-actuated joints, which represent the virtual
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link between the world frame and the CoG frame; the whole motion space can be

expressed as below:

q =
[
qa qu

]
(4.8)

where q ∈ <1×24 are the whole joint angles, qa ∈ <1×18 are the joint of all legs, and

qu ∈ <1×6 are the passive joints, which represent the position and orientation of the

CoG.

J =
[
Ja Ju

]
(4.9)

where J , Ja and Ju are the whole system Jacobian, robot joint Jacobian and robot

base Jacobian respectively.

Ja =
[
Jleg1 Jleg2 Jleg3 Jleg4 Jleg5 Jleg6

]
(4.10)

where Jleg1−6 represent the Jacobian of leg 1 - 6.

In the same manner, the Jacobian matrix of the whole system can be represented as

Equation (4.9). Since all actuated joints exist in legs, the Jacobian of actuated joint

can represented by Equation (4.10).

The control points, which are described by these Jacobian are the feet-tips, and

any point on the robot body can be defined in the same way as a function of the

whole body motion. The Jacobian that represented in Equation (4.9) can map the

differential form of Equation (4.8) to the space of the tasks to be performed as:

ẋ = J q̇ (4.11)

q̇ = J−1ẋ (4.12)
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The dimension of ẋ can be determined by the number of tasks to be performed, this

can be achieved by precisely define tasks. Inversion of Equation(4.11) is needed when

the motion rate q̇ is required for a given tasks, as in Equation (4.12).

4.3.2 Controlling of Multiple Tasks

Inverse kinematics problems include defining the motion of the robot in task space

then mapping the task reference to the configuration space according to Equation

(4.12).

P =



p1

p2
...

pk


(4.13)

where pi represents the position and the orientation of the task points and k is the

number of task points.

J =



J1

J2
...

Jk


(4.14)

In order to accomplish multiple tasks at the same time, the tasks are aggregated

in one matrix [20], as shown in Equation (4.13). The corresponding Jacobian for

several tasks is defined in Equation (4.14).

The overall behaviour of the robot is produced by controlling each task to achieve a

particular object. However, solving Equation (4.12) cannot ensure a proper decoupling
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between tasks. The null space projection method has been used widely to solve the

decoupling problem [80].

q̇ = Jẋ1 + (I − J−1J)ẋ2 (4.15)

where (I − J−1J) is a projector in the null-space of J .

Considering two tasks with different priority levels. The importance of task one (ẋ1)

is higher than task two (ẋ2). In that case, projection task two in the null space of

task one will ensure an appropriate decoupling between two tasks as in Equation

(4.15).

While this approach is attractive to impose a strict decoupling between tasks, it

cannot handle constraints formulated as inequality. Therefore, a good solver should

be characterised by the ability to prevent the tasks from interference and can handle

both equality and inequality constraints in any priority level [62].

4.4 Problem Formulation

Since Jacobian matrix is not square, i.e., the number of rows (n) is greater than the

number of columns (m), inverting it is not straight forward. Hence, solving equation

(4.12) imposes formulating it in least-square form [86], and the minimum norm

can be obtained using pseudo-inverse method or any generalised inverse techniques

[96]. However, since the problem includes inequality constraints, such as joints-limit;

the analytical solution cannot guarantee considering inequality constraints directly.

Alternatively, potential field method has been used to get an approximate solution

[151]. The prioritisation levels can be forced by projecting the lower priority tasks in

the null-space of the higher one [82, 100].
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In order to consider any type of linear constraints, QP algorithm has been widely

used in legged-robot control to solve IK problems [87] and to solve Inverse Dynamics

(ID) problem [101]. While the optimisation parameter in IK is the robot velocity,

the robot torque is the optimisation parameter in ID.

min
q̇∈<n

1
2 q̇

TWq̇ (4.16)

s.t. ẋe = Jeq̇ (4.17)

ẋi ≤ Jiq̇ (4.18)

where W is a weighted matrix (the weight of each joint velocity in each task), the

subscript e and i denote to equality and inequality respectively.

Unlike the classical algorithms, such as pseudo-inverse and projection , the QP

algorithms can intrinsically handle both types of constraints. Equations (4.16),

(4.17), (4.18) represent a classical notation of QP algorithm with two sets of linear-

equality and linear-inequality constraints.

The objective function is the velocity in joint space q̇ subject to the error minimisation

between velocity in task space ẋ and velocity in joint-space q̇.

J(q)q̇ − ẋ = 0 (4.19)

During achieving tasks, controlling the robot encounters many constrains to be

fulfilled. Generally, these constraints can be written as equality for instance, the

velocity at a contact-point equal to zero, as in Equation (4.19).
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qlo ≤ q ≤ qup (4.20)

q̇lo ≤ q̇ ≤ q̇up (4.21)

where lo lower bound and up is the upper bound for both joints position and joints

velocity. Some constraints can be formulated as inequality, such as, joints position and

joints velocity within certain maximum and minimum limits, as shown in Equations

(4.20) and (4.21) respectively.

The joint limit of hip, tibia, and ankle for each leg are summarised in Table 4.2.

Table 4.2: Joints limits of hip, tibia, and ankle for each leg.

Joint Joints limits (degree)

Hip (-35, 35)

Tibia (-10, 30)

Ankle (-10, 20)

Although the classical QP can handle both type of constraints, imposing strict

hierarchy between tasks is elusive. An interesting method proposed by [87] to

prioritise both equality and inequality linear equations in same optimisation level.

This method is based on defining a set of feasible linear equality and inequity

equations in least-square sense. Assuming Λ,Υ are two matrices in <m×n and δ, ε

are two vectors in <m, as the following:

min
ξ∈<n

1
2 ‖ Λξ − δ ‖

2 (4.22)
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min
µ∈<n

1
2 ‖ µ ‖

2

s.t. Υξ − ε ≤ µ

(4.23)

where µ ∈ <m is a vector of a slack variables.

min
ξ∈<n,µ∈<m

1
2 ‖ Λξ − δ ‖

2 + ‖ µ ‖2

s.t. Υξ − ε ≤ µ

(4.24)

According to the method, Equations (4.22), (4.23) were merged in one minimisation

problem as in Equation (4.24).

Si+1 = min
ξ∈Si,µ∈<m

1
2 ‖ Λiξ − δi ‖

2 + ‖ µ ‖2 (4.25)

s.t. Υiξ − εi ≤ µ (4.26)

For i number of priority levels the set of next feasible solutions are induced from

higher priority level as shown in Equations (4.25) and (4.26).

min
ξ,µi+1

1
2 ‖ µi+1 ‖2 (4.27)

s.t. Υiξ − εi ≤ µ∗i

Υi+1ξ − εi+ ≤ µi+1

(4.28)

To reduce the computational time, the above method was extended [150] to include

the optimal solution from the previous level as a constraint when solved for next
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priority level as in Equations (4.27) and (4.28).

Λ = Q

R
0

 (4.29)

To speed up the computation time [88] proposed a method relied on QR factorisation.

The matrix Λ is factorised to two matrices, orthogonal Q ∈ <n×n and upper triangular

R ∈ <m×m, as in Equation (4.29).

ξ = ξ1 + V1v1, v1 ∈ <n−m (4.30)

For the linear equation Λ1ξ = δ1 with size m1 and assuming Λ1 is full row rank, this

matrix can be factorised to Q1 and R1. The orthogonal can be split to U1 ∈ <n×m1 ,

which represent the rang space of Λ1 and V1 ∈ <n×(n−m1), which represent the

null-space of Λ1. By matching with Equation (4.15), the general solution of δ is

represented as Equation (4.30).

min
v1∈<n−m1

1
2 ‖ Λ2V1v1 − (δ2 − Λ2ξ1) ‖2 (4.31)

For the lower priority set of equations Λ2ξ = δ2 and by substituting the value of ξ

from Equation (4.30) , the minimisation problem for second layer can be written as

in Equation (4.31).

min
vi−1

1
2 ‖ ΛiVi−1vi−1 − (δi − Λiξi−1) ‖2

s.t. Υiξ ≤ εi

(4.32)

Using this result for i number of tasks with linear inequality, Equation (4.24), the

result can be written in general form, as in Equation (4.32).
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4.5 Trajectory Generation

4.5.1 CoG Trajectory Generation

The fundamental method to address the static stability criteria is to examine the

polygon that formed by the stance legs [24]. As long as the vertical projection of the

robot’s CoG lies inside the supported polygon the robot is statically stable. In static

walk, at any moment of time, either 3 or 6 feet are in contact with the ground and

act as stance legs. The robot’s path is defined at its CoG, and formed from several

points as:

T =

 Ro p3×1

01×3 1

 (4.33)

where Ro ∈ <3×3 is the rotation matrix of a certain point with respect to arm-base

and p is a translational vector, which describe the path point.

The position and orientation of each point is described a transformation matrix as

in Equation (4.33) with respect to the world frame. The legs in both the stance and

transfer phases will track these points. In other words, the controller will create joint

angles for all legs. By making the CoG track the assumed path, the stability of the

body in moving forward is assured. The position of the CoG is completely controlled

by the legs in stance phase.

4.5.2 Swing Leg Trajectory

The swing leg is guided to its target with the trajectory created by fifth order spline.

The coordinate system is considered so that x-axis represents the forward direction
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(longitudinal axis) and y-axis indicate to the transverse axis. The legs operate in

two different phases: swing phase and stance phase. In the swing phase the leg lifts

up and transferred to the next foothold. In the second phase, the leg stays on the

surface and propel the body forward.

q (t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (4.34)

where aj , j = 1, 2, 3, 4, 5 are the coefficient, whose value are determined using a set

of boundary conditions defined over the transfer phase for each joint. The trajectory

of leg in swing phase assumed to follow a polynomial of fifth order as in Equation

(4.34). The boundary conditions of joint angles, velocities at initial and final points

of the trajectory are applied to determine six coefficients for the trajectory of each

joint. Figure 4.2 explains the path of leg one foot at transfer phase for two situations.

Figure 4.2: Leg 1 foot path at transfer phase. The red semi-circle represents the
path of leg 1 in case of straight line. Case of turning to the left side by 10%, the
foot path is represented by blue curve.
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4.6 Experiments

In order to verify the effectiveness of the motion generation algorithm, three ex-

periments have been done. Set of initial parameters are given before starting the

evaluation: linear velocities to determine the robot’s direction, the angular velocities

at CoG to specify the orientation of the robot, the initial position, and final position

of the overall path. The legs transfer sequence is set up as (leg1, leg6, leg3, leg2,

leg5, and leg4) to get a proper level of balance. First experiment, the bath of the

robot is defined as straight-line starting from the origin and ending at point 30 cm

along x-axis. Second experiment, in order to demonstrate the ability of the robot to

navigate in a different mode, the path is determined along y-axis. Third experiment,

a turning to left at CoG around z-axis by 10◦ is added to whole path.

4.6.1 Tracking a straight line along x-axis at CoG

In this experiment, the translation profile of the robot is defined by starting point

at origin with vertical distance 30 cm and the ending point at (30, 0, and 30) cm.

In addition; the rotation angle is set to zero. The duty factor is equal to (5/6). To

ensure this distance is achieved by the robot in one cycle, the stride length is set to

(endpoint/2). Figure 4.3 shows the robot follows a straight line. The robot bath is

indicated by black line in x, y plane. The starting and ending point are demonstrated

by yellow and green ball. The length of red line at CoG represents the translation

distance along x-axis. To demonstrate the translation and rotation relations between

legs and the robot’s CoG, all legs bases are indicated by green lines. The blue and

red semi-circles represent the path of robot’s feet.
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Figure 4.3: The robot follows a straight line with 30 cm length along x-axis. The red
line represents the overall path of the robot body. The starting and ending points
are represented by yellow and green balls. The blue and red semi-circles indicate the
path of the robot’s feet.

Figure 4.4 shows the trajectory of leg one joints for one cycle. Time of whole cycle is

(7.6 s). This is divided to (1/6) as transfer time and (5/6) as stance time for one leg.

According to the leg situation and stride length, two constrains have been imposed.

At transfer part, the rang of all legs joint are limited to (-1, 1) rad for hip joint, (0,

0.8) rad for tibia joint, and (-0.8, 0.2) rad for ankle joint. The initial values of leg

one joints are (0.785, 0, 0) rad for hip, tibia, and ankle respectively, these values

give leg one a configuration to start transfer phase. The joint trajectory is generated

according to the base position and orientation, which is a function of CoG position

and orientation. Figure 4.5 illustrates the joints angles of other legs (leg6, leg3, leg2,

leg5, and leg4). The figure shows the different phases between legs to achieve the

overall motion of the robot.
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Figure 4.4: Trajectory of leg 1 joints for one cycle. The leg starts with transfer phase
between time (0 - 1.3) s. During this period, the hip joint moved the leg from back
to forth, and the tibia joint has changed the leg configuration from down to up and
then up to down with time equal (transfer phase time/2) for each. The leg start
stance landing at time 1.3 s until time 7.6 s.
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(a) Trajectory of Leg2. (b) Trajectory of Leg3.

(c) Trajectory of Leg4. (d) Trajectory of Leg5.

(e) Trajectory of Leg6.

Figure 4.5: Trajectory of robot legs, case of tracking straight line along x-axis at
CoG.

The contact point between leg and the ground is represented by a passive joint.

Therefore, in order to keep firm liaison between legs and ground, the velocity at the

contact point should be equal to zero. Figure 4.6 shows the position of leg one foot
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with respect to x-axis. At transfer phase the foot tip moved from point 34 cm to

point 66 cm i.e. a distance of 32 cm. This distance is achieved at time 0-1.3 s. There

is a slight change (0.24 cm) in the position of foot-tip during time 1.3 - 7.6 s, this

tiny slippage due to the rotation of the foot-tip.

Figure 4.6: Location of leg’s one foot along x-axis. While, the foot tip is moved a
distance of 32 cm during transfer phase, it is standstill at the stance pace time. The
deceleration before landing will help to decrease the impact of colliding.

Figure 4.7 illustrates the transition of robot’s CoG in 7.8 s. The CoG moved from

0-32 cm along x-axis. Although the reference path is set to 0 in y direction, the

actual path of the robot is swung around the reference by 2 cm around the reference

path. However, this small value of deviation does not have much effect on the overall

balance if it is compared with the width of the robot’s body 85 cm. The path in z

direction remained constance for the whole cycle, except for very short time with

very small value at time of contact.
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(a)

(b) (c)

Figure 4.7: Position of CoG in x, y, and z direction. The top figure illustrate the
Cartesian coordinates of the body CoG. The red line depict the distance that the
robot was travelled in 7.8 s. The deviation from y-axis is represented by green curve
in figure b. Figure c shows the real path in z-axis.

The robot walks at a constant velocity is about 0.044 m/s. Figure 4.8 demonstrates

the velocity of the robot in x-axis. Although, there is a drop for very short time

in the value of the robot velocity at the time of contact, the overall speed of the

body has no zero values. Excluding the spikes at the contact time, the velocity in y

direction remain constant with 0 m/s as shown in Figure 4.9.

80



Chapter 4. Tracking Centre of Gravity Path 4.6. Experiments

Figure 4.8: Velocity of CoG in x direction. The robot needs 0.044 m/s speed to get
32 cm in 7.6 s.

Figure 4.9: Velocity of CoG in y direction. The velocity in y direction is remain
zero as no rotation including in the path. It is clear from the figure that when legs
in left-hand side in contact, the robot body moves toward right-hand side and vice
versa.
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4.6.2 Tracking a Straight Sideway Line

In this experiment, the robot will use a sideway walking (crablike walking). In order

to achieve this walking mode, the path direction is set up along y-axis and the

longitudinal axis of the robot is kept along x-axis. Figure 4.10 shows the crablike

walking.

Figure 4.10: Crablike walking.

As the walking path contain no rotation, the trajectories of hip joints of all legs are

still constant. In case of the motion path perpendicular on the longitudinal axis of

the robot, the values of hip joints equal to zero (no changing), or any other values in

oblique direction (remain constant). Both tibia and ankle joints play a significant

role in this style of motion. Figure 4.11 shows the trajectory of hip, tibia, and ankle

joint of leg one in one cycle. Although, the step size depends on joint ankle, the

range of this joint is still within the limit. The tibia joint take part to keep ankle

joint inside the bound.
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(a) Trajectory of Leg1. (b) Trajectory of Leg2.

(c) Trajectory of Leg3. (d) Trajectory of Leg4.

(e) Trajectory of Leg5. (f) Trajectory of Leg6.

Figure 4.11: Trajectory of hip, tibia, and ankle joints of legs, case of crablike walking.
Both tibia and ankle joints slow down gradually to reduce the impact of contact. The
hip joints of leg5 and leg6 have changed slightly to compensate for body altitude. All
legs joints have returned to the initial values, which means the robot configuration
has been retrieved.
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As mentioned in the previous experiments, the foot tip should stay steady at support

time to avoid slippage. Figure 4.12 demonstrates the position of leg one foot-tip in

both x and y direction. Although, the body is propelled at stance time by four legs,

the foot of leg one stays fixed at same position.

Figure 4.12: Position of Foot Tip along x and y axis. The position 45, 61 cm is
conserved during the support phase (time 1.2-7.6 s).

Figure 4.13 illustrates the velocity of the robot in y direction. Although, there are

spikes in the velocity profile, the overall speed is still continuous.
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Figure 4.13: Velocity of the robot foot tip along y-axis. The effect of spikes after
transition time is very little because it does not become zero over one cycle except
at the last step.

4.6.3 Turning to Left

Legs are the source of the motion in legged robots. Controlling the walking direction

is achieved by the response of each leg to the direction angle. Since the orientation of

the robot’s body is defined by the path at CoG, therefore, the contribution of each leg

will be different in case of turning. In this experiment, turning to the left direction

by 10 degrees will be considered to explain that the generated joints trajectories are

varied. All legs should synchronise to keep smooth tracking of the body path. Figure

4.14 shows a top view of the simulated robot, and the robot travels for 20 cm in 7.6 s

time. In order to move this distance with 10◦ of rotation angle around z-axis, several

stride lengths for each leg are created. Moreover, the initial configuration of each leg

should be recovered; as a result more constraints are imposed to generate the overall

motion. Figure 4.15 explains the initial and final position after rotating by 10◦, and

the path of each leg to perform turning to left motion is illustrated in Figure 4.16.
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Figure 4.14: Top view of the robot. The robot performs walking with rotation angle
equal to 10◦. Since the rotation to the left direction, the base of right legs will travel
longer distance than left legs.

Figure 4.15: Generating trajectory with 10◦ of rotation around z-axis.
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(a) Path of leg1 foot-tip. (b) Path of leg2 foot-tip. (c) Path of leg3 foot-tip.

(d) Path of leg4 foot-tip. (e) Path of leg5 foot-tip. (f) Path of leg6 foot-tip.

Figure 4.16: Path of all legs, case of turning to left.

In this walking style, each leg has its own trajectory, and the step size of the right

hand side legs is bigger than the step size of the left hand side legs.ntribution of

joint trajectories for all joints specially in legs that are placed in opposite side to the

centre of the rotation angle is bigger than the lags that are placed in the same side

of the centre of the rotation angle. Figure 4.17 presents the joints trajectories of all

legs. Since the robot rotate towards left side, the hips joints angles of legs (2, 4, and

6) were bigger than the legs in the other side. Same situations can be noticed with

ankle joints angles in the right side which were bigger than the left side legs.
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(a) Trajectory of Leg1. (b) Trajectory of Leg2.

(c) Trajectory of Leg3. (d) Trajectory of Leg4.

(e) Trajectory of Leg5. (f) Trajectory of Leg6.

Figure 4.17: Trajectories of joints angles of all legs, case of turning to left.

In case of turning, the propelling of other legs on leg 1 was in two directions (x

and y); hence, the position of foot tip has been changed, Figure 4.18 explains the

variation of foot tip of leg 1 along x, y direction. In spite of these changes in the leg’s

foot position (1.9 cm in x-axis and 0.6 cm in y-axis), the position of the robot CoG

was accurately tracked.
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(a) Position of leg1 foot-tip along x-axis.

(b) Position of leg1 foot-tip along y-axis.

Figure 4.18: The position of leg1 foot-tip in x, y directions.

Figure 4.19 shows the position of CoG in turning to left mode, the robot travelled

20 cm in x direction and 3 cm in y direction as a result of 10◦ turning around z-axis.

89



Chapter 4. Tracking Centre of Gravity Path 4.6. Experiments

(a) x direction.

(b) y direction.

Figure 4.19: Position of CoG in x and y direction.

Same result has been achieved in case of walking in a straight line along x-axis by

this mode of motion. The only difference is that the velocity in y direction is raised

from 0 - 0.09 m/s. The swings of the body while walking has effected on the velocity

in this direction, as shown in Figure 4.20.
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Figure 4.20: Velocity of the body in x and y direction.

4.7 Summary

While walking the six legged robot has to accomplish multiple tasks and satisfy

some constraints at the same time. These tasks are represented as a set of linear

equality and inequality functions, and a decoupling should be imposed between them

according to their importance.

In this chapter, a QP algorithm has been used to handle multiple tasks in hexapod

robot. The main task is to achieve a continuous walking with duty factor of 5/6, and

to get back the initial configuration of all joints of the robot. In addition, the system

has to satisfy more constraints such as joint limit, joint velocity limit, and zero

velocity at the contact points. A control point with prescribed reference trajectory
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has been chosen at the CoG of the robot to determine its direction and orientation.

In order to evaluate the efficiency of the controller, three experiments were performed

on the robot: tracking a straight-line along x-axis, tracking a sideways line along

y-axis, and turning to the left with constant speed. The results of the experiments

demonstrated the efficiency of using QP algorithm to handle both types of constraints

(equality and inequality) in any level of priority.
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5.1 Introduction

Tracing desired paths and avoiding obstacles by a fixed-base robot arm are common

assignments [152], many controllers with different approaches are proposed to achieve

these tasks [153, 154]. Typically, the main tasks that assigned to a traditional

manipulator arm are achieved by its end-effector [155]. These tasks, for instance, a

trajectory tracking, require controlling the position and the velocity of the robot

end-effector, and any movement associated with the end-effector is related to the

robot-base, which is fixed to the ground. In other words, there is no concern about

the position and the orientation of the robot’s base. Although, there are many

applications proposed a manipulator arm carried by a mobile robot [156, 157], the

manipulation tasks are achieved during the stopping period, i.e., no motion associated

with the robot’s base throughout the manipulation task. The function of the robot is

only to allocate a new space for the manipulator to work; consequently, the motion

task and manipulation are performed separately in different period of time.

Carrying out similar missions by an arm mounted on a mobile robot are more
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challenging, if these tasks are associated with robot motion, as the robot-base is not

stationary. Lacking this property in floating-base robots implies that the position

and the orientation of the robot-base should be considered before taking any action

at the end-effector [153]. Since the arm is fixed directly to the robot’s body, the

position of the arm base is equal to the position of the body’s CoG plus certain values

in x, y, and z directions according to the body dimension. One possible solution is

to take the path of the body into account as a constraint to generate the path of the

end-effector. However, while walking over uneven terrain, the robot might encounter

unexpected conditions, which lead to disturbing the reference path.

Although the robot’s legs play a significant role to maintain the location of the

arm-base, they cannot totally guarantee to keep the arm base in a certain position

and orientation. Therefore, the arm’s joints should be engaged in compensating for

any encountered uncertainties at its base; therefore, a complementary role should be

initiated for the arm to integrate the operations of both motion and manipulation in

the suggested six legged robot.

According to the demining stander operations procedures (SOP) [158], the sensitivity

of landmines detector depends on scanning speed and the vertical distance between

the sensor-head and ground [159]. The average speed for mine detector to pass over

ground is 0.2 m/s, and the typical vertical distance that the detector should stay

above the surface is around 15 cm [160].

In the field of mine detection, a trade-off between the operation speed and accuracy

should be considered [7]. To speed up the process, the motion of both robot body and

the manipulator should be accomplished simultaneously, rather than sequentially [4].

The end-effector should move from one side to the other in continuous motion, and

the sensor-head must remain in a fixed distance with the ground to get an accurate

measurement from the mine detector. In order to preserve the continuity, a new path

planning is proposed for the robot’s arm. This path is created from straight-line
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segment to transit from one side to the other side and a semi-circle curve to move

forward.

In this chapter, the requirements to integrate tracking the path of the sensor-head

and the path of the robot’s CoG, which is represented by the arm-base are presented.

This is achieved by planning the path of EE in the operational space and formulating

the variation of the arm-base position and orientation as constraints should be

satisfied while creating the sensor-head trajectory. In order to perform this task, a 6

DoF’s manipulator arm with metal detector is designed and modelled.

To give a clear vision about delimitation of the minefield, designing a virtual en-

vironment and a short review about the state of the art in the field of exploiting

the robots in demining application is presented in Section 5.2. In Section 5.3, the

robot’s arm kinematic modelling is explained. Planning the trajectory of the arm

EE is introduced in Section 5.4. Finally, in order to verify the effectiveness of the

controller and algorithm, four experiments are conducted on the robot’s arm in some

scanning scenarios.

5.2 Demining Robot and Virtual Environment

Landmines detection activities have seen, as other modern application, as replacement

of human by machines. While exploiting mechanical tools in industries aims to speed

up production or obtain accurate results, the main objective of utilising machines in

demining is to preserve the lives of the people involved in such very dangerous tasks.

The secondary objective, but also significant, is to accelerate the scanning operation.

In the context of landmines detection, there are sustained efforts to design efficient

robots with the ability to navigate through hazardous areas. The attempts to use

wheeled robots are restricted by many limitations make them not applicable in
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minefields; for example, when detecting a landmine, the scanning operation will be

suspended if no choice to avoid it.

Due to its effectiveness, legged robots are preferable over wheeled or tracked robots

in demining application as they only require a limited number of contact points with

the surface, which can be carefully chosen; this ability reduces the probability of

triggering landmines [42]. Furthermore, legged robots are inherently omnidirectional,

which is a useful characteristic when manoeuvring in small space [5].

In order to delegate a robot to do these hazardous tasks, a very efficient controller

should be implemented in the robot to give the ability to manoeuvre when environ-

mental uncertainties are presented (e.g. uneven terrain) [161]. Most robots that are

used in demining applications are controlled by the configuration-space methods

[7, 162]. These approaches do not give the ability to use the whole DoF of the robot

efficiently [136]. Development of agile and safe legged robots requires designing the

whole-body motion in the operation-space rather than the configuration-space [57].

The task function approaches [58] are proposed to design the motion in a space

dedicated to the task to be performed and mapping the reference path to the robot’s

joint space.

The robots used in demining applications still accomplish the process sequentially

[163, 7]; in other words, they perform the scanning task and then the task of

moving the robot forward switching from one to the other. This approach makes

the detection operation too slow. Estremera et al. [24] designed an algorithm to

achieve a continuous motion based on reducing the stability margin, this approach

was tested on SIL-06 hexapod robot. However, the approach was focused on walking

and avoiding hazardous points by the robot legs and no integration with a scanning

operation by the arm is mentioned.

To speed up the process of the demining, both scanning task and moving the robot

forward should be accomplished simultaneously; this will complicate the design of the
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robot especially when it is required to keep the end-effector moving with a constant

velocity as possible [16]. Therefore, instead of designing the end-effector trajectory

as an arc [163], a linear path is suggested; hence, two lines in adjacent boxes are

blended by a semi-circular path to ensure the continuity of the scanning operation.

A coupling between the velocity of the robot base (robot body) and the sensor-head

velocity is implemented; this coupling will give the capability to accomplish many

tasks simultaneously [56].

The assumed minefield is divided into boxes each with 20 × 160 cm in x, and y

direction respectively. Figure 5.1 shows a diagram of a virtual minefield environment;

the dimensions of each box in x and y direction are chosen according to the diameter

of the mine-detector and the distance that the manipulator can reach respectively.

A new strategy for planning the trajectory of the end-effector is proposed to travel

from side to side within the red boxes of the minefield. In this section, the advantages

of scanning the area in front of the robot in a straight-line are discussed. First, it is

standard practice to divide the minefield into rectangular segments so a straight-line

path will ensure the end-effector passes over the whole area of each box. As a result,

the entire area will be scanned homogeneously. Figure 5.2 shows a diagram for one

box scanned by traditional techniques (an arc trajectory). Further, in contrast with

an arc trajectory planning, our trajectory planning will ensure a continuous motion

to the sensor-head when travelling through boxes. Having achieved this, the jerk

caused by rest-to-rest trajectory will be reduced [46]. Consequently, the effect of the

manipulator inertia will be minimized and the overall body balance will be ensured.
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Figure 5.1: Top view for the minefield with five boxes, the blue line represents the
path of the end-effector. The green circle and the solid circle indicate the initial
position and final position of the whole path respectively. The boxes of the minefield
are illustrated by red lines.

Figure 5.2: Top view of one box scanned by an arc path planning. The blue line
represents the sensor-head path, the white region represents the scanned space of
the box and the green zone represents the non-scanned area.
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5.3 The Kinematic Model of The Robot Arm

A 6 DoF arm is designed to perform the scanning task, this arm is constructed from

six revolute joints connected by six links as shown in Figure 5.3. A sensor-head is

fixed on the last link, and the arm is connected to the robot’s body at joint 1. The

transformation matrix between the arm base and the end-effector is formulated using

the DH notation. The DH parameters and the joints bound of the manipulator are

summarised in Table 5.1.

Figure 5.3: Kinematic model of 6 DoF manipulator arm. The frame of each link is
fixed at the associated joint.
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Table 5.1: DH parameters of the manipulator.

Link Angle

(rad)

d length

(cm)

alpha

(rad)

offset Joint limit

1 q1 0 0 π/2 0 (0-90)

2 q2 0 60 0 0 (0-90)

3 q3 0 60 0 0 (0-90)

4 q4 0 30 0 0 (0-90)

5 q5 0 20 π/2 0 (0-90)

6 q6 0 20 0 0 (0-90)

The transformation matrix between link 1 and link 2 is denoted by (T 1
2 ). In the same

manner, (T 2
3 ), (T 3

4 ), (T 4
5 ), (T 5

6 ), and (T 1
6 ) are the transformation links for the other

links.

T 1
2 =



Cq1 0 Sq1 L1Cq1

Sq1 0 −Cq1 L1q1

0 1 0 0

0 0 0 1


(5.1)

T 2
3 =



Cq2 0 Sq2 L1Cq2

Sq2 0 −Cq2 L1Cq2

0 1 0 0

0 0 0 1


(5.2)

T 3
4 =



Cq3 0 Sq3 L1Cq3

Sq3 0 −Cq3 L1Cq3

0 1 0 0

0 0 0 1


(5.3)
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T 4
5 =



Cq4 0 Sq4 L1Cq4

Sq4 0 −Cq4 L1Cq4

0 1 0 0

0 0 0 1


(5.4)

T 5
6 =



Cq5 0 Sq5 L1Cq5

Sq5 0 −Cq5 L1Cq5

0 1 0 0

0 0 0 1


(5.5)

T 1
6 = T 1

2 T
2
3 T

3
4 T

4
5 T

5
6 (5.6)

where T i−1
i is the transformation matrix between the link i− 1 and i.

5.4 End-Effector Trajectory Planning

To satisfy the constraints that imposed by the environment, it is convenient to plan

the EE trajectory in the space of the task and then mapping the reference path

to the joint space. In order to perform scanning operation, two significant tasks

are assigned to the manipulator. First, according the virtual minefield 5.1, the EE

moves from one side to the other in y − axis direction, this is achieved by tracking

a straight-line path with 5 cm (this height can be adjusted as required) in height

with respect to the ground along the vertical direction. In case of an obstacle inside

the path, the via-points that constitute the path will be updated according to the

dimensions (height and width) of the obstacle. The second task is moving from the

current box to the next one using a semi-circular path, which is used to blend two

linear paths in adjacent boxes. Although, the geometric nature of the two paths
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seem to be different, both paths are formed from multiple points, which represent

the geometry nature of the generated path. These points are blended by a fifth order

spline to get sooth trajectory. A trajectory of the manipulator with an obstacle

inside is shown in Figure 5.4.

Figure 5.4: Example of a path of the end-effector with an obstacle inside it. The
green circles represent the initial position and final position of the end-effector. The
seven red circles represent points depending on the dimensions of the obstacle. The
path is interpolated by a linear and parabolic polynomial spline.

T =

 Ro p3×1

01×3 1

 (5.7)

where Ro ∈ <3×3 is the rotation matrix of a certain point with respect to arm-base

and p is a translational vector, which describe the path point.

Each point is described by three translational parameters along x, y, and z axes
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and three orientation angles (roll, pitch, and yaw). The coordinate transformation

between a certain point and the arm-base can be represented by (4x4) transformation

matrix, Equation (5.7).

The path is initiated by defining a starting point that the EE will begin from. While

the values along y direction change, according to the number of the intermediate

points along the path, the values of the path along x and z will stay constant. The

orientation will stay fixed along the linear segments. In order to facilitate smooth

transition at the end of linear path to the next box, both the direction and the

orientation will be changed at the semicircle segments. The rotation of each frame in

the parabolic segment is around z-axis. The origin of the semicircle path is defined

by the ending point of a linear line in y-axis and half the linear distance between

two adjacent boxes in x direction, which is equal to 10 cm. Further, the travelled

distance by the EE is 140 cm (in y direction), in addition to 10 cm (in y direction)

while crossing to the next box. Therefore, planning the trajectory of the EE will

ensure the whole area of a box is completely covered by the detector. In addition to

the parametric representation of each frame, the motion rate is calculated according

to the length of the prescribed path.

The corresponding joint angles are obtained using inverse kinematic methods. Any

potential change in the arm-base position and orientation will be compensated

by retrieving back the pose of the EE. In this approach, a trade-off between the

computation cost associated with the inversion operation and the upper limit of the

sampling rate should be taken into account. In order to determine the height and

the width of an obstacle, three cameras are presumably installed in certain points on

the robot. Two of them are fixed on both sides of the sensor-head. The third camera

is mounted underneath the robot body. Figures 5.5, 5.6 illustrate a view of the lower

camera to the arm end-effector and the view of the camera which installed on left

side of the sensor-head. The information of these cameras is fused to generate the

required information in the trajectory planning. More details about extracting and
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fusing information from cameras can be found in [155, 164, 122, 165].

Figure 5.5: View of the camera, which fixed underneath the robot body.

Figure 5.6: View of the camera, which fixed on the left side of the EE.
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5.5 Experiments

In order to verify that all the defined tasks are achieved, four experiments have

been conducted, and the motion of the robot is considered in each evaluation. In

the first experiment, the manipulator follows a straight line path with 5 cm height

with respect to the ground at its end-effector. Following a straight line with an

obstacle inside is considered in the second experiment. In the last two experiments,

the straight-line path of the arm-base is replaced by a parabolic and an arbitrary

path to investigate the ability of the EE to track the prescribed straight line path.

The results are expressed by the simulated robot-arm inside the virtual minefield,

the values of joints angles, the position of the EE (x, y, and z) with respect to the

world frame, and the linear velocity of the EE.

5.5.1 Tracking a Path with 5 cm Height from Ground

In this experiment, the arm EE will scan two free obstacle boxes. The initial

configuration of the arm is set in a certain way so that the EE starts from the first

predefined box, and the initial position of the arm-base is [45, 0, 70] cm in x, y, and

z respectively. This position of the arm-base has been chosen in order to mediate the

boxes in y-direction, and the initial position of the EE is [100, -75, 5] cm in x, y, and

z respectively. Figure 5.7 shows the complete task of scanning two boxes. Snapshots

of top view for the sensor-head are presented in Figure 5.8; the figures show five

snapshots in a different time periods, the sensor-head position is remain constant

with respect to z-axis.
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Figure 5.7: Complete task of scanning two boxes. The arm-base follows a straight
line and a distance with 5 cm height between the EE and the ground has been
maintained.

(a) Time 0.55 s. (b) Time 0.98 s (c) Time 1.38 s (d) Time 1.86 (e) Time 2.21 s

Figure 5.8: Top view for the sensor head. The transmission of the sensor-head in
different time steps.

Figure 5.9 illustrates the contribution of each angle of the arm in this task. It is

clear from the figure that the arm posture is retrieved at the end of the task.
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Figure 5.9: Values of the joint angles of the arm for one cycle. The transition to the
next box was occurred at time 2.9 s. The highlighted areas represent the time when
the arm operate over box 1 and box 2.

Figure 5.10 shows the position of the end-effector in x, y, and z directions. The

condition of keeping the EE in a constant level of 5 cm in z direction is maintained,

the position of the EE in x, and y has been changed at time 0 - 2.7 s to show the

motion of it. When the EE transferred to the next box at time 2.7 - 3.7 s the values

in x direction were changed according to the width of the box. The variation of the

EE position in y-axis reveals two things:the travelling of the EE in both directions

of y-axis and the EE returned to the same initial configuration, which allows the

scanning operation to start in a continuous manner.
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Figure 5.10: Position of the EE in x, y, and z directions. The height of the EE has
been kept at 5 cm. The position along x-axis has changed only when the EE was
transferred to the next box. The changing in y direction included travelling from -75
cm to 83 cm while scanning the first box and from 83 cm to -75 when scanning the
other.

As shown in Figure 5.11, the velocity of the EE in y direction rose from 0 to 0.5

m/s in 0.01 s, this represents the initial velocity. The velocity continued to rise until

reaching 0.55 m/s, which represents the maximum speed before changing its direction,

when the EE starts to enter to the next box. Despite the change of direction, the

continuity of the EE speed was maintained.
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Figure 5.11: Velocity of the EE in y direction.

5.5.2 Tracking a Path with 5 cm Height and an Obstacle

Inside

In this experiment, the robot motion is tested with a case of an obstacle inside the

first box. The EE path is generated according the dimensions of the obstacle which

are captured by the cameras. Three segments constitute the path in the first box.

The first segment begins from the EE initial point to a point 5 cm away from the

edge of the object. The second segment is a semicircle spline above the object with

a diameter 11 cm (5 cm above the upper face of the object). The third segment

starting from a point with 5 cm in y direction away from the second segment to the

final position. These segments are blended by cubic polynomial to get a smooth

Cartisian path. This experiment implies that there are more constraints to satisfy

by the controller. Figure 5.12 shows the robot arm scanning two boxes, the first

box has an obstacle (landmine with a dimensions of 10 cm, 10 cm, 6 cm in x, y, z

respectively). The object is located in 90 cm, 0 cm, 0 cm in x, y, and z directions.
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The dimension of the landmine and its location has been chosen for simplicity to

evaluate the experiment. Nevertheless, the trajectory generation algorithm has the

ability to generate a trajectory for the EE with any dimension and location of an

object very quickly.

Figure 5.12: Scanning two boxes with a cylindrical shape obstacle in the first box.
While the base of the arm follows a straight line, the EE track a path with 5cm in
height above ground and an obstacle inside.

Figure 5.13 demonstrates five snapshots in different time steps for the sensor-head

before and after avoiding the landmine.
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(a) Time 1.2 s. (b) Time 1.3 s (c) Time 1.6 s (d) Time1.8 (e) Time 2.1 s

Figure 5.13: Snapshots taken by the lower camera. The transmission of the sensor-
head in different time steps.

Figure 5.14 demonstrates that the initial configuration of the arm is returned back.

Further, the contribution of all joints at time 1.1 - 2.1 s is clear in the moment of

avoiding the object, which highlighted by light purple colour).

Figure 5.14: Values of the joints angles of the arm. The presence of the object inside
box 1 is highlighted by light purple colour to indicate the roll of the joints in avoiding
task. The constraint of returning the initial configuration is satisfied.

The position profile of the EE is illustrated in Figure 5.15. The height of the EE
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is maintained at 5 cm over ground except at time 1.2 - 2.1 s where the landmine is

located. The path of the EE along x direction was not affected by the presence of

the obstacle.

Figure 5.15: The position of the EE in x, y, and z direction. The EE has lifted
over the specified level by 5 cm height, which is enough to avoid the obstacle. The
positions in x and y direction stayed unchanged as the previous experiment.

The effect of presence of the obstacle on the EE velocity is obvious as shown in

Figure 5.16. Although, the velocity dropped down by 0.05 m/s due to the gravity,

the average motion rate of the EE remained acceptable.

112



Chapter 5. Sensor-Head Trajectory Tracking 5.5. Experiments

Figure 5.16: Effect of presence of the obstacle on the velocity of the EE. The velocity
has dropped down by 0.05 m/s due to gravity.

5.5.3 Gradually Drop in the Arm Base in z-axis Followed

by Moving Forward in x-axis

In this experiment, the response of the EE to track a straight-line path while

gradually dropping the arm-base down in z direction is investigated. The path of the

arm-base is generated in such a way the body of the robot is dropped gradually in

z-axis and moved forward in x-axis. In order to get the robot’s body down, all legs

perform transfer and stance phase at the same time. Technically, if all legs lifted

simultaneously, the legs will stay in contact with ground and the body will drop

down. Pushing the body forward is achieved by all legs during stance phase. Figure

5.17a illustrates the entire path of the arm base. The path is started from initial

position at 45, 0, 78 cm along x, y, and z-axis respectively. The dropping distance in

z-axis is 10 cm and the range in x-axis is around 18 cm. The second part of the path
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is in x-axis only which is started from around 27 - 44.4 cm. The initial and final

point is indicated by two green balls. The transition of the CoG along z direction is

depicted in Figure 5.17b. The complete scanning for two boxes by the manipulator

while drooping in z direction is shown in Figure 5.17c and top view snapshots for

the sensor-head are illustrated in Figure 5.18.

(a) Path of the base while dropping the robot’
body down-up.

(b) Position of CoG in z-axis while dropping
the robot’ body down-up.

(c) Scanning two boxes while dropping the arm base down-up and moving forward.

Figure 5.17: Path of the arm base case of gradually dropping in x, z-axis and moving
forward. The initial and the final position of the path are indicated by green balls.
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(a) Time 0.55 s. (b) Time 0.98 s (c) Time 1.38 s (d) Time 1.86 (e) Time 2.21 s

Figure 5.18: Top view for the sensor head. The transmission of the sensor-head in
different time steps.

As depicted in Figure 5.19 both the joint limit and the initial configuration conditions

are perfectly maintained.

Figure 5.19: Joints angles of the arm case of gradually dropping down-up in z
direction and moving forward.

Although, the average speed of dropping the body down is 5 cm/s, the altitude of

the EE in z-axis has no affected except for a short time at 0.4 - 1.3 s, as shown in
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Figure 5.20. If it is compared with the initial position of the EE along z -axis with

respect to ground (5 cm), the response of the controller is good.

Figure 5.20: EE position in x, y, and z direction case of gradually dropping in x, z
-axis and moving forward. The position of the EE in z -axis between time 0 - 2 s is
magnified to illustrate the response. The distance between the EE and the ground is
still more than 1.5 cm.

Figure 5.21 demonstrates the average speed of the arm base in x and z directions.

Due to the body motion was started to backwards, the velocity in x direction remain

constant until time 3.7 s when the body was returned back to the initial height.

After time 3.7 s, the velocity in z direction settled down to zero, as there was no

motion occurred.
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Figure 5.21: Arm base velocity in x and z directions.

The velocity of the EE is illustrated in Figure 5.22. It is clear from the figure that

the changing in the arm-base in one direction (z-axis in this case) has no crucial

impact on the continuity of the EE motion.
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Figure 5.22: Velocity of the EE case of gradually dropping in z-axis and moving
forward in x-axis.

5.5.4 Arbitrary Base Path

In general, walking over rough terrain causes changing the altitude of the robot’s

body randomly. In order to investigate the effectiveness of the controller to cope with

arbitrary change in the base position, a path as shown in Figure 5.23 is generated.

This path is created by making the legs in the left-hand side (legs 1, 3, 5) and the

legs in the right-hand side (legs 2, 4, 6) to move in different motion phase. The range

of the arm-base motion is 45 - 43.6 cm in x direction, -3.5 - 2.9 cm in y direction,

and 75 - 78 cm in z direction. The goal of this experiment is to test the effect of

changing the arm-base in three direction in the same time.
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Figure 5.23: Path of the arm-base. This path is generated by making the legs in the
same body-side move in similar movement phase.

Although, the conditions of this experiments are very hard, the response of the

system is still admissible as shown in Figures 5.24, 5.25, and 5.26. It is worth to

mention that, generating a path in this way makes the body weight goes suddenly to

the right-hand side (when leg 1, 3, 5 in transfer phase), which causes legs slippage.

In contrast, when legs 2, 4, and 6 are in transfer phase the robot’s body is shifted in

the left-hand side. Despite this fluctuation in the body, the arm retrieved its initial

configuration, Figure 5.27.
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Figure 5.24: Arm joints angles, case of arbitrary base path.

Figure 5.25: EE position in x, y, and z direction case of arbitrary base path.

120



Chapter 5. Sensor-Head Trajectory Tracking 5.5. Experiments

Figure 5.26: Velocity of the EE, case of arbitrary base path.

(a) Time 0 s. (b) Time 1 s.

(c) Time 1.4 s. (d) Time 1.8 s.

Figure 5.27: Performance of the arm during an arbitrary motion by the robot’s body.
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5.6 Summary

In this chapter, tracking a prescribed path in the operational-space by the EE

in different arm-base position and orientation was presented. The path has been

generated according to the constraints that are imposed by tasks, for instance the

height of the path with respect to the ground and the dimensions of an object

that may exist inside the path. The entire path is formed from a set of points and

generated according to the initial point, height of the path, and the final point.

In order to verify the hypothesis, a continuous landmine-scanning manipulator-arm

mounted on a six-legged robot was presented. A new trajectory planning has been

introduced by generating a straight-line path for the sensor-head to transfer from

side to side to scan a minefield using legged robot. The jerk effect due to the motion

of the manipulator has been reduced, and the trajectories between adjacent boxes

are blended by a semi-circular path.

Four experiments have been conducted to verify the efficiency of the controller and

the trajectory planner. In the first experiment, the effectiveness of the manipulator

to track a prescribed path with 5 cm in height above the ground was evaluated while

the arm base followed a straight-line.

In the second experiment, the response of the arm to avoid an obstacle was evaluated.

The path was modified according to the location and the dimensions of the object.

The geometry of the object was extracted by cameras, which fixed on the robot’s

body. In spite of this change in the path shape, the EE motion rate was maintained.

The role of the gravity was obvious to reduce the EE speed slightly, especially at the

time of avoiding an obstacle.

In term of changing the arm-base position and orientation, two cases were considered.

First, the arm-base was gradually dropped by 10 cm along z-axis. The response
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of the EE to follow a straight-line path was acceptable. Second, the ability of the

EE to track a line path while the arm-base followed an arbitrary was conducted.

Although a slippage at the robot legs has been encountered while generating this

motion, the performance was acceptable. The purpose of the last two experiments

was to investigate the effectiveness of the controller to cope with the variation of the

robot body due to irregularity of the terrain.
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The Dynamics of the Robot with Arm

6.1 Introduction

In addition to the kinematic constraints, the functionality of legged robots is deter-

mined by the multi-body dynamic system and the contact forces. While walking

the environment imposes sets of dynamic constraints on the robot’s parts; hence,

using absolute motion control schemes are insufficient. Unless otherwise, controlling

the robot’s motion task should be planned carefully; but, this requires a precise

modelling for robot’s kinematics, dynamics, and the geometry of the surrounding.

The method of inverse kinematics finds the joints angles of the robot by given

Cartesian position and orientation in the task-space. In order to guarantee the

stability criteria, the system should be dynamically constrained [127]. Many dynamic

quantities are necessary to take into account for controlling the robot motion, such

as, the normal and tangent forces at the contact points between the robot and its

environment [91].

The equation of motion of any robotic system consists of three variables, namely,

torque, force, and acceleration [55]. Although joints torques are only required as a
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control command, the other variables (accelerations and forces) should be computed

[62]. Whether the solution is obtained analytically or numerically, there are different

types of approaches to consider the dynamic constraints for designing a controller

of legged robot. The first one is based on finding acceptable force at the contact

point and then calculating joints torque and acceleration accordingly [166, 167]. The

second approach is to get the required joint accelerations, then computing for joint

torques, no need to include the contact force [64, 136]. Finally, the approaches that

consider all variables in one optimisation problem at the same time [62, 168].

In the context of humanoid robot, Mistry et al. [64] proposed a method using

QR decomposition to derive torque command without need to explicitly compute

for contact force. While this method is appealing in controlling bipedal robots, it

cannot handle more than two contacts in continuous motion [116]. Furthermore,

they assumed that the velocity at the contacts is zero and this constraint should

hold during the control cycle. However, this assumption is practically not feasible,

especially when an external force is applied to the robot’s body.

[82] designed an operational-space inverse dynamics to generate a whole body be-

haviour by decoupling the task space and the robot’s dynamic. The method is

based on projecting the tasks in the null pace of the constraints to ensure a proper

decoupling between tasks and the constraints. Although, this approach can compute

the inertia matrix implicitly, it involves much more computations.

The aforementioned methods can handle equality constraints; however, many con-

straints (especially caused by dynamic) can only represented as inequality constraints,

such as, the contact forces.

Far from the analytical solutions using pseudo-inverse techniques, the problem of

inverse dynamics can be formulated using QP to handle both inequality and equality

constraints. Considering more than one task in a different level of priority is the

obvious drawback of the classical QP. An interesting contribution was achieved by
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[62] to consider all the optimisation variables at once in same optimisation cycle.

The computation cost has been potentially reduced, and both type of constraints

have been processed in any level of importance. This method is applied on a bipedal

robot with more than two contacts; however, no mention to the transition of the

constraints.

The main contribution of this chapter is twofold. The dynamics effects of the robot

are considered as additional constraints to be satisfied, and the redundant space

with respect to the operational tasks is optimally exploited to accomplish subsequent

tasks.

In order to demonstrate the effectiveness of the approach, the performance of the

robot is investigated in three scenarios. First, a comparison between a model based

on use all force components and a model with just normal force. Second, the dynamic

impact of the arm is tested with, without the arm, and with different weight of

sensor-head. Finally, the effect of the ground irregularity is inspected.

6.2 Robot Dynamics Model

Figure 6.1 shows a six legged robot with three contact forces at each leg. The

perpendicular component is in z direction and the other tangential forces in x and

y directions are in the contact plane. The attitude of the robot is specified by the

position and orientation of its CoG, and controlled by the position and orientation

of the body and joints with respect to the inertial frame of reference.
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Figure 6.1: Force components at each leg.

M(q)q̈ +H(q, q̇)q̇ +G(q) + Jᵀ
c fc = Sᵀτ (6.1)

whereM is the (6+n)×(6+n), symmetric positive-definite generalised inertia matrix

of the system, H(q, q̇)q̇ is (6 + n)× 1 vector of Coriolis and centrifugal force, G(q) is

(6 + n)× 1 vector of gravity force, τ is the n vector of joint torque, S = [In×n 0n×6]

is the selection matrix, which describe the under-actuation, Jc = ∂xc/∂q is the

Jacobian matrix at the contact, and fc are the contact forces. See appendix A for

full derivation of the dynamic of the robot.

The dynamic model of the robot in rigid contact with the environment is represented

by Equation (6.1). At the dynamic level, the reference behaviour is specified by

the expected task acceleration ẍ; and the control command is typically the joints
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torque τ . The operational space inverse dynamics refers to the problem of finding

the torque control input τ that produces the desired acceleration at a task ẍ∗, using

any necessary joint acceleration q̈.

Two necessary conditions have to be satisfied at the contact point. The first one is

related to the normal force should be greater than or equal to zero, and because the

robot can push against the ground and cannot drag; this constraint is unilateral.

f⊥c ≥ 0 (6.2)

where f⊥c are the normal elements of fc.

Figure 6.2 represents the normal forces at legs (1, 6, 3, 2, 5, and 4). At each step

time, one leg is in transfer phase the other legs are in contact with the ground.

According to the legs position and state, each leg has a different values of the normal

force. For instance, leg 6 located between two legs (5 and 4), which is in stance at

time 0 - 1.2 s; hence the normal force is small between 20 - 0 N. When either leg 5

or leg 4 is in transfer phase, the value of normal force of leg 6 is larger around 60 -

80 N at time 5.2 - 7.6 s.
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(a) Normal force at leg1. (b) Normal force at leg6.

(c) Normal force at leg3. (d) Normal force at leg2.

(e) Normal force at leg5. (f) Normal force at leg4.

Figure 6.2: Normal force at legs (1, 6, 3, 2, 5 ,4). The figures has been ordered
according to the legs sequence in one cycle.
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ẍ ≥ 0 (6.3)

ẍf⊥c = 0 (6.4)

The second necessary condition is that the acceleration when the leg is taking off

(transfer time) is greater or equal to zero, as indicated in Equation (6.3). Figure 6.3

shows the acceleration of leg 1 during one cycle, the acceleration values is maintained

to zero value at time of contact between time 1.2 - 7.6 s. Furthermore, the impact of

other legs with the ground is obvious; hence, the approach in [64] is not applicable

in a robot with more than two legs in contact with ground, such as the six legged

robot.

Both conditions are complement each other and never happen at the same time;

hence, the mathematical representation of this condition is written in Equation 6.4.

Figure 6.3: Acceleration of leg 1.
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6.3 Methods to Handle Contact Forces

As previously stated, the zero velocity constraint, Equation (6.5), is widely used [98]

in legged systems to ensure rigid contact with the ground. There are two reasons

to consider this constraint. First, it is an equality constraint; hence, it is easy to

implement in projection methods. Second, there is no need to include the contact

force explicitly.

ẋc − Jcq̇ = 0 (6.5)

where ẋc is the velocity at the contact point, and Jc = ∂ẋc
∂q̇

is the Jacobian matrix of

the contact point.

CQᵀ(Mq̈ +GF ) = CQᵀSᵀτ +RFc (6.6)

UQᵀ(Mq̈ +GF ) = UQᵀSᵀτ (6.7)

whereQ is an orthogonal matrix, R is an upper triangular matrix C = [Ik×k 0k×(n+6−k)],

U = [(0(n+6−k)×k I(n+6−k)×(n+6−k)], GF is the generalised forces (H and G in Equation

(6.1) ), Fc are the contact forces, and k is the number of constraints.

This method was adopted by [64], they decompose the dynamic equation into two

equitations constrained and unconstrained, as shown in Equations (6.6) (constrained

equation) and (6.7) (unconstrained equation). The aim of this decomposition is to

decouple the constraints from the tasks. Then projecting the tasks in the null space

of the constraints using the Moor-Penrose pseudo-inverse. As shown from Equation

(6.7) the torque command is generated without including the contact forces.
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Instead of eliminating the impact of the contact force, Sentis et.al. [82] proposed

a method to compute the contact force from the equation of motion and Equation

(6.5).

Jcq̈ = −J̇cq̇ (6.8)

q̈ = −J−1
c (J̇cq̇) (6.9)

fc = (Jᵀ
c )†(Sᵀτ −GF ) + (Jᵀ

cM
−1Jc)−1J̇cq̇ (6.10)

where † denote to weighted pseudo-inverse.

This method is based on differentiating Equation (6.5) once and substituting for ẍc by

0 (according the zero velocity assumption) yields Equation (6.8). Solving Equation

(6.8) for q̈ yields the acceleration in joint space in term of task-space acceleration as

in Equation (6.9).

Multiplying Equation (6.1) by JcM−1 and inserting Equation (6.9) the contact force

can be deduced as in Equation (6.10).

The control law can be realised by re-injection Equation (6.10) into Equation (6.1).

According to this method the joint space acceleration is omitted and replaced by

the acceleration at the task space. The contact forces can only be represented as

inequality constraints; therefore, the projection methods cannot handle them directly.

In the following section, the contact forces are formulated as inequality constraints

and considered with other constraints in one optimisation problem.
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6.4 QP in a Cascade

In order to implement sophisticated behaviours, a legged robot requires controlling

many tasks at the same time. These tasks should be fully satisfied using the

generalised motion space; otherwise, a proper decoupling between tasks must be

implemented by imposing a strict hierarchy between them.

Describing the overall behaviour requires defining all task points and ordering them

in a certain priority level. Each task point can be described by its position and

orientation with respect to reference frame. The desired motion is achieved by

controlling each point to realise a certain objective.

The Equations (6.1), (6.2), (6.3), and (6.8) represent the main constraints to be

fulfilled. Following the idea of [62, 169], both type of constraint and tasks can be

formulated as a hierarchy QP.

min
τ,q̈,f
‖ Φ ‖ (6.11)

ẍ = Jcq̈ + J̇cq̇ (6.12)

The optimisation variables Φ = (τ, q̈, f⊥c ) is shown in Equation (6.11). Any task can

be represented in acceleration level in the operational-space as in Equation (6.12).

In order to formulate the control law as cascade of QP, all the constraints are written

as affine functions; In addition to the above constraints, the friction cone is defined

around each leg to ensure the reaction force remain inside this cone. The friction

cone is approximated to pyramids to get linear inequality constraints [170]

Equation (6.1) is given high priority to ensure that the generated motion is dynami-

cally consistent. In order to guarantee there is no motion at the contact, the second

constraint in Equation (6.5) is defined. All contact constraints in Equation (6.2) are
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satisfied before any task does not include contact force as in Equation (6.12). The

constraints can be written in a lexicographic order1 as (6.1) ≺ (6.5) ≺ (6.2) ≺ (6.12).

Generally, six legs robot requires at least three non adjacent legs on ground at any

time to ensure the stability. In this work, the case of five legs in contact will be be

considered. While increasing the number of legs will enhance the overall balance of

the robot, the corresponding force variables will be increased. Consequently, the cost

of the computation will be increased. Hence, extract the normal force components

from the contact forces will reduce the number optimized variables [62].

6.5 Experiments

To verify that including the contact forces variables in optimisation problem will

enhance the overall performance of the robot, three experiments have been conducted.

In the first experiment, the robot will walk over flat ground, and the effect of

decomposing the contact forces to normal force only is investigated. In order to

test the robot’s ability to continue walking despite obstacles, the robot will ride an

object with height of 5 cm in second experiment. The effect of the manipulator arm

dynamic is evaluated in the third experiment. The simulation elements are listed in

Table 6.1.

1In optimisation, lexecographic order means that any decreasing in the cost of a task must not
lead to increase the cost of tasks with lower priority level [171].
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Table 6.1: The values of the simulation.

Contact stiffness (N/m) 200000

Contact damping (N/(m/s)) 300

Joint stiffness (m.N/rad) 10

Joint damping (m.s.N/rad) 15

Ground damping (N/(m/s)) 10

Ground stiffness (N/m) 10

Coefficient of kinetic friction 0.1

Coefficient of static friction 0.2

Integration scheme ode15s

Control frequency (Hz) 1000

Robot DoF 18

CPU (GHz) 3.6

Table 6.2: The Physical Parameters of the Robot.

Part Weight

(kg)

Moment of inertia

Ixx Iyy Izz (kg.m2)

CoM (cm)

Hip 1 0.101, 0.89, 0.12 -2.62, -1.42, 2.5

Tibia 1 0.334, 0.463, 0.471 0.5, 0, 1.1

Ankle 1 0.363, 0.287, 0.287 13.3, 0, 0

Body 20 17.35, 11.77, 4.87 -2.4, -5.2, -0.04

Arm link1 0.5 0.001, 0.00, 0.000 7.2e-11, -0.0, -0.0

Arm link2 1 0.000, 0.044, 0.045 0.1, 4.9e-19, 0.0

Arm link3 1 0.000, 0.035, 0.036 0.04, -0.000, -2.23

Arm link4 0.5 0.035, 1.14382e-19, 0.005 0.035, 1.14e-19, 0.005

Arm link5 0.5 0.00, 0.00, 0.00 0.02, 0.001, 0.00

Arm link6 0.5 6.0e-19, 1.5e-18, -1.4e-18 0.013, 0.00, -0.00
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6.5.1 Walking Task

In this experiment, two models have been considered to perform a normal walking

task by the robot. In the first model, all force components were included in the

optimisation problem. The force components have been decomposed to only normal

forces in the second model. The results are presented as a comparison between the

two models. The measured normal forces for both models are shown in Figure 6.4.

A chattering at the contact point is obvious due to the instability in the solver in

the first model. This phenomenon revels that decomposing the force components

and taking the normal forces are necessary especially with point contact model.

The constraints of keeping the contact force inside the friction cone was satisfied

by reducing tangential forces. As a consequent of reducing tangential force the

corresponding friction forces are increased. Figure 6.5 illustrates the effect of the

robot dynamics and the impact of the contact at other legs on the friction force of

legs (1, 6, 3, 2, 5, 4). The value of friction force is significantly reduced in the second

model. Although, friction forces are very necessary after switching from transfer to

stance, as legs velocity transferred from certain a mount to zero. The friction force

at leg one at the transfer phase, time 0 -1.2 s, is zero as there is no contact. At the

moment of contact, this force instantaneously increased to contribute propelling the

robot forward. The performance of the second model is better to keep the foot-tip

inside the friction cone. This is clear particularly at the contact of the other legs time

(2.6, 3.9, 5.1, 6.4) s. The same scenario was occurred to other legs, any variation

in the friction values is because of the position of a certain leg. The video of this

experiment is available at [172].
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(a) Leg1. (b) Leg6.

(c) Leg3. (d) Leg2.

(e) Leg5. (f) Leg4.

Figure 6.4: Normal force at the robot feet.
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(a) Leg1. (b) Leg6.

(c) Leg3. (d) Leg2.

(e) Leg5. (f) Leg4.

Figure 6.5: Friction force at the robot feet.
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Although, the dynamic consistency constraints was satisfied in the first model, a

discontinuity still appear in the torque command. Figure 6.6 shows the torque

command of hip joints of legs (1, 6, 3, 2, 5, 4). In the Figure 6.6a, the exerted torque

between time 0 - 1.2 s is exploited to transfer leg one from the initial position forward

to landing point. Since there is no contact included in this period, the generated

torque in both models is continuous. On the other hand, during stance phase, the

discontinuity in the produced torque between time 1.2 - 7.6 s is clear in the first

model. This discontinuities were vanished in the second model.

Figure 6.7 demonstrates the velocity of legs feet-tip along x direction. During the

transition phase (time 0 - 1.2 s), the velocity has risen from zero to around 0.28 m/s

and then back to zero. While stance phase, the velocity constraints (velocity is zero

at contact) has been violated at any time the legs make contact with the ground.

The performance of the second model was better.
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(a) Torque of leg1 hip. (b) Torque of leg6 hip.

(c) Torque of leg3 hip. (d) Torque of leg2 hip.

(e) Torque of leg5 hip. (f) Torque of leg4 hip.

Figure 6.6: Torques of the legs joints.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Velocities at the robot feet.
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The overall velocity of the robot along x direction is illustrated in Figure 6.8. The

robot walk in a constants speed of 0.044 m/s. A significant difference in the robot

velocity was achieved by considering the second model.

Figure 6.8: The overall velocity of the robot in x direction. Although, both results of
the two models are appealing as neither velocities not became zero, the performance
of the second model was better.

6.5.2 Stepping Over a Box while Walking

In this experiments, the ability of the robot to ride over an object and recovering the

initial configuration are investigated. Figure 6.9 illustrates a hexapod robot walking

for two cycle. Leg one experienced a box with height of 5 cm before the end of cycle

one. Although, leg one has started cycle two from a different height, neither the

robot velocity nor the body level were affected. Consequently, the controller exhibit

a good compliant reaction.
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Figure 6.9: The robot perform two cycle walking. The robot traverse a distance of
40 cm through these two cycle. Both the continuity walking and getting the initial
configuration back are satisfied. The legs 1, 4, and 5 path have traced by red line.
Legs 2, 3, and 6 have traced by blue line.

A comparison between the leg one configuration in two cases is conducted. Case one

when the robot walk over flat ground and when the robot stepping over a box in

case two. The results of two cases is demonstrated in Figure 6.10.
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Figure 6.10: Two joint configuration of leg one. The first case when the robot walk
over flat ground is indicated by dashed line. The second case when the robot rides
a box with height of 5 cm while walking. While hip joint remain unchanged, both
tibia joint and ankle joint took the responsibility to compensate for the presence of
the box. After starting cycle two, specifically at time 8.2 s, the angles of both cases
are aligned again as the situation is back.

6.6 The Dynamic Effect of the Arm

During the scanning operation, the manipulator arm has significant perturbations

on the robot motion and stability. This impact is anticipated due the motion of the

arm, which has a total weight of 4 kg and a total length of 190 cm, in an average

speed of 0.5 m/s. During the operation mode, the average distance between the

sensor-head and the front-edge of the robot is about 75 cm. In order to highlight on

the robot parts and the control parameter that affected by the motion of the arm, a

comparison between the robot with and without the arm has been conducted.
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(a) Position of leg1 foot along x-axis. (b) Position of leg1 foot along y-axis

Figure 6.11: Position of leg1 foot during one walking cycle. The blue line represents
the leg1 position when the robot walk for one cycle without arm. The position of
leg1 while using the arm is indicated by red curve.

As shown in Figure 6.11a, the position of leg1 foot along x-axis has been slightly

drifted by 4 cm. Naturally, the arm tries to pull the robot body to the right when

moving from right to left along y-axis and vice versa. Hence, its impact will be

obvious on the position of the legs at the contact points in y direction. Figure

6.11b demonstrate the position of leg 1 has been deviated by 4 cm from the original

position when the arm has not been fixed on the robot body.

The associated variation in the velocity at leg1 foot in x and y direction in illustrated

in Figure 6.12. As it is clear from Figure 6.12b, the significant change in the velocity

along y-axis at time 2.8 s when the arm tries to change its direction from right-left

to left-right.
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(a) Leg1 velocity in x direction. (b) Leg1 velocity in y direction.

Figure 6.12: Leg 1 velocity in x and y direction. The blue line represents the leg 1
velocity when the robot walk for one cycle without arm. The velocity of leg 1 while
using the arm is indicated by red curve.

Due to its position, the manipulator has a contradictory effect on the legs, which

fixed in front of the body (leg 1 and leg 2), and the legs installed on the back (leg 5

and leg 6). For instance, the normal force at leg 1 will increase when adding the arm

as shown in Figure 6.13a. On the other hand, the impact of the arm will reduce the

normal force at leg 6, as shown in Figure 6.13b.

Intuitively to handle this phenomenon, the body’s back could be designed in a weight

bigger than the weight of the front part of the body. While this solution could work

with statically stable body (no motion is involved), it cannot ensure the stability

in quasi-static case. Therefore, distributing the body’s weight between the legs by

controlling the internal force would be a proper solution. This will be verified in this

section. Further, the effectiveness of the controller will be tested by increasing the

sensor-head weight to 2.5 kg.
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(a) Normal force at leg1. (b) Normal force at leg6.

Figure 6.13: Normal force at leg 1 and leg 6 for two cases (with and without arm).

Figure 6.14 shows the arm of the robot with 0.5 kg sensor-head, Figure 6.14a and

with 2.5 kg sensor-head, Figure 6.14b. In addition to these two cases, the case of the

robot without the arm was considered to verify the effectiveness of the method.

(a) 0.5 kg sensor-head (b) 2.5 kg sensor-head

Figure 6.14: Arm with different weight sensor-head.

Figure 6.15 shows three cases of the normal force at leg1. Case one, the robot perform

a simple walking task without arm. This case has been chosen as reference for the
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other two cases. A sensor-head with two different weights of 0.5 kg and 2.5 kg were

considered for the other two cases. The aim of this test was to check the ability

of the robot to handle various type of detectors. As a result of force distribution

between the legs in stance, the normal force at leg1 was increased between time 1.2 -

5.1 s, which is the period when the arm moved toward leg1. On the other hand, the

contact force remained unchanged in three cases. This gives a perception that the

role of leg1 was restricted at time 1.2 -5.1 s to compensate for the dynamic of the

arm.

Figure 6.15: Normal force at leg 1 for three cases.

The situation of leg6 is different from leg1. If the results of Figure 6.13b are compared

with the results of Figure 6.16, it is clear that impact of the arm has been reduced.

The contact force in the second figure has been increased, this is explain the influence

of the force distribution. Further, the values of forces stayed close for three cases

between time 2.5 - 6.4 s. Variations have been occurred between the forces of the
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three cases at time 6.4 - 7.6 s, which is the time for lifting leg4 and time for the arm

to return back to right-hand side. The videos of this experiment are available at

[173, 174, 175].

Figure 6.16: Normal force at leg6 for three cases.

6.7 Summary

In this chapter, the dynamic effects of the forces arisen from the interaction with the

ground have been investigated, and the impact of the arm on the overall performance

of the robot has been tasted and improved. The contact forces are formulated as

linear inequality constraints. In order to reduce the problem size, the resulting

contact constraints were decomposed to only the normal force. In addition to these

constraints, some equality linear constraints, such as, the dynamic consistency and

the zero velocity at the contact points have been included in the optimisation problem.
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All these constraints are ordered in a cascade of linear equality and linear inequality

and solved in QP solver. The null-space that arising from the joints redundancy has

been used to control additional tasks.

The effectiveness of the controller was verified by conducting three experiments. In

the first experiment, the robot performed a simple walking task over flat ground,

and two models have been considered in this part, all force components have taken

into account in the optimisation variables in the first model, and only normal forces

are considered in the second model. The robot performance in terms of dynamic

consistency and continuity has been significantly enhanced by the second model.

The overall velocity of the robot body was improved by considering the normal and

tangential forces arisen from the interaction between the robot and the environment.

In the second experiment, the effectiveness of the controller was verified by testing

the ability of the robot to ride on an object. Both the continuity of the robot and

recovering back the initial configuration are maintained during walking.

Finally, it was proven that holding the velocity equal to zero at the contact cannot

be maintained throughout the process particularly when external forces applied on

the robot. These forces represented by the motion the arm. The influence of the

manipulator has been indicated on the position of leg 1 in x and y direction and

compared with case of no arm. The same evaluation has been carried out on the

normal force at leg1 and leg 6. These two legs have been chosen to study the effect of

the arm on the front and back legs, and legs in both sides of the robot. The results

revealed that adding more constraints such as the normal and translational force

was necessary.
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7.1 Conclusions

In this thesis, a hexapod robot with manipulator arm was introduced; both the

design and the control aspects have been addressed. Due to many uncertainties that

face the robot during achieving its work, controlling legged robots using traditional

methods, such as position control, is not applicable. Dealing with the environment

represents one of the most factors that generate these uncertainties. The six legged

robot has at least three contact points with the ground (case of tripod gait). These

contacts impose more constraints on the robot’s motion and need to be satisfied

before performing any task. Therefore, eliminating the effect of the contact forces

using decomposition methods is insufficient in case of the six legged robot due to

there are three or more contacts with the ground.

Formulating the tasks and the constraints as a linear function of equality and inequal-

ity is essential in the operational space control method. Although the traditional

techniques, such as, projection methods can properly decouple tasks, but it cannot

handle the inequality constraints. Stack of tasks method in multi-legged robot,
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such as hexapod robot, entails considering each constraints explicitly. Cascading

QP method provides an efficient technique to handle inequality constraints in any

priority level and imposing a strict decoupling between tasks; however, this method

is computationally intensive. Hence, reducing some optimisation variables is very

important in enhancing the overall performance of the robot.

The continuous walking has been achieved by tracking a specified reference path

that defined at the robot’s CoG. Although there are dips in the velocity curve

due to the impact of the contact between the robot and the ground, these dips

are occurred for very short time about (0.1 s) and the overall speed of the robot

did not reach to zero (about 0.012 m/s). The motion continuity of the robot has

been improved significantly by considering the contact forces components in the

optimisation problem. The spikes in the velocity curve during the legs contact with

the ground are reduced by 63% from the average dropping at each contact. In spite

of the rotation of the robot’s feet during propelling the body forward, the slippage

range is acceptable. Table 7.1 summarises the continuity enhancement of the robot’s

velocity by defining additional constraints.

Table 7.1: The continuity enhancement with different constraints.

The constraint The robot velocity (m/s) Dips

average

Zero velocity 0.044 0.028

All force components 0.044 0.016

Normal force only 0.044 0.004

The continuity of the manipulator has been improved by defining the path at the

sensor-head a straight line instead of a semi circular path that is used in the traditional

method, and the effect of the jerk has been reduced significantly.

There are mutual dynamic effects between the robot body and the arm. The impact
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of the body on the arm, which discussed in Chapter four, was compensated by the

joints of the arm. On the other hand, the dynamic effect of the arm due to its motion

from side to other side, which presented in Chapter six, was treated by controlling

the internal forces of the robot. The slippage range along y-axis was enhanced by

90% if it compared with the position control methods.

Ultimately, having achieved the continuity motion in multi-legged robots in uneven

ground and in presence of external forces will open up the use of these robots in

applications that required quasi-static or dynamic balance rather than static balance.

7.2 Future Works

Although there is a vast of research in the field of controlling and designing of legged

robots, new challenges will arise when assigning a specific task to a legged robot. It

is necessary to handle these challenges effectively using efficient algorithms to get

high performance robot. The suggestions and recommendations for future works are

listed in the following:

• Some constraints, such as friction cone, have been represented in this work as

linear inequality constraints. However, considering the non-linear form of these

constraints could improve the overall performance of the robot.

• Due to its direct correlation in the motion of the robot, improving the trajectory

smoothing using efficient methods, such as, reinforcement learning algorithms

will be very important. Trajectory generation has a significant role in the

smooth transition of the body parts and reducing the impact of the interaction

between the robot and the ground.

• During walking the ground reaction is indispensable not only at the contact

points, but also on the other part of the robot. Therefore, defining a zero

153



Chapter 7. Conclusions and Future Works 7.2. Future Works

moment point (ZMP) at a certain point on the robot body, such as CoM,

might provide a proper strategy to handle the dynamics associated with the

interaction.

• Although there are many simulators that offers simulating many dynamic

effects, applying the proposed approach using a real six legged robot would be

very necessary to handle unexpected situations, when they arise.
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Equation of Motion

L = K − U (A.1)

where L is Lagrangian, K is kinetic energy, and U is potential energy.

d

dt
(∂K
∂q̇

)− ∂K

∂q̇
+ ∂U

∂q
= τ (A.2)

∂K

∂q̇
= ∂

∂q̇

[1
2 q̇

TM(q)q̇
]
−→ K = 1

2 q̇
TM(q)q̇ (A.3)

K = 1
2mv

2 and K = 1
2ω

T Icω (A.4)

Ki = 1
2(vTcimivci + ωTi Iciωi) (A.5)

Where Ici is the inertia at CoM.
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Appendix A. Equation of Motion

1
2 q̇Mq̇ ≡ 1

2(vTcimivci + ωTi Iciωi) (A.6)

Since vCi = Jvi q̇ and ωci = Jci q̇ then

1
2 q̇Mq̇ = 1

2

n∑
i=1

(JTvi q̇
TmiJvi q̇ + JTωi q̇

T IciJωi q̇) (A.7)

Since M = ∑n
i=1(JTvimiJvi + JTωiIciJωi)

The equation of motion of any leg can be set in a matrix form

M(q)q̈ +H(q, q̇) +G(q) = τ (A.8)

Or in summation form

3∑
j=1

Mij(q)q̈j +
3∑

k=1

3∑
m=1

Hikmq̇k ˙qm +Gi = τi (A.9)

M(q) is an 3× 3 inertia type symmetric matrix (mas matrix)

M =
3∑
i=1

(
JTvimiJv[i] + 1

2J
T
vi
I0
i Jωi

)
(A.10)

Where Jvi is a 3× 3 liner velocity Jacobian Jωi is 3× 3the angular velocity Jacobain

and I0
i is the inertia matrix of link i about its CoM and expresses in the base (inertia

tensor).

Hikm is Coriolis and centrifugal force matrix (the velocity coupiling vector)

Hikm =
3∑
j=1

3∑
k=1

(
∂Mij

∂qij
− 1

2
∂Mjk

∂qi

)
(A.11)
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Appendix A. Equation of Motion

And Gi is the gravitational vector

Gi =
3∑
j

mjg
TJviJvi (A.12)

The dynamic equation for three joint leg is written as follows:


τ1

τ2

τ3

 =


m11 m12 m13

m21 m22 m23

m31 m32 m33




θ̈1

θ̈2

θ̈3

+


h1

h2

h3

+


g1

g2

g3

 (A.13)
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Equilibrium Equations

∑
i=1,4,5

fix + Fx = 0 (B.1)

∑
i=1,4,5

fiy + Fy = 0 (B.2)

∑
i=1,4,5

fiz + Fz = 0 (B.3)

∑
i=1,4,5

yifiz −
∑

i=1,4,5
zifiy + ycFz − zcFy +Mx = 0 (B.4)

∑
i=1,4,5

zifix −
∑

i=1,4,5
xifiz + zcFx − xcFz +My = 0 (B.5)

∑
i=1,4,5

xifiy −
∑

i=1,4,5
yifix + xcFy − ycFx +Mz = 0 (B.6)

Where Fi = [fix, fiy, fiz] are the ground reaction force on foot i and i = 1, 4, 5

(legs in support). W = [Fx, Fy, FZ ,Mx,My,Mz]T are the wrench (Force and the

moments) acting at the robot CoM and represent the robot payload. [xi, yi, zi] are

the coordinate of lag i.

These equations are normally written in a matrix form as follows:
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Appendix B. Equilibrium Equations

A1,4,5.F1,4,5 = (−BW ) (B.7)
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Simulink Environment of the Robot

Figure C.1: Simulink block diagram for PID controller of the robot.

182



Appendix C. Simulink Environment of the Robot
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Appendix C. Simulink Environment of the Robot
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