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a b s t r a c t 

We focus on the mode-I quasi-static crack propagation in adhesive joints or composite laminates, where 

inelastic behaviour is due to damage on a relatively thin interface that can be effectively modelled with 

a cohesive-zone model (CZM). We studied the difference between the critical energy release rate, G c , in- 

troduced in linear elastic fracture mechanics (LEFM), and the work of separation, �, i.e. the area under 

the traction-separation law of the CZM. This difference is given by the derivative, with respect to the 

crack length, of the energy dissipated ahead of the crack tip per unit of specimen width. For a steady- 

state crack propagation, in which that energy remains constant as the crack tip advances, this derivative 

vanishes and � = G c . Thus, the difference between � and G c depends on how far from steady-state the 

process is, and not on the size of the damage zone, unlike what is stated elsewhere in the literature. 

Therefore, even for very ductile interfaces, G c = � for a double cantilever beam (DCB) loaded with mo- 

ments and their difference is extremely small for a DCB loaded with forces. We also show that the proof 

that the critical value of the J integral, J c , is equal to the nonlinear energy release rate is not valid for 

a non-homogeneous material. To compute G c for a DCB, we use a method based on the introduction of 

an equivalent crack length, a eq , where the solution is a product of a closed-form part, which does not 

require the measurement of the actual crack length, and of a corrective factor where the knowledge of 

the actual crack length is required. However, we also show that this factor is close to unity and therefore 

has a very small effect on G c . 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

In the last few years, the validity of data-reduction methods de-

rived from linear elastic fracture mechanics (LEFM), for the exper-

imental determination of the fracture resistance during adhesive

joint debonding or composite delamination in presence of ‘large-

scale’ fracture processes, has been seriously questioned ( Sarrado

et al., 2016; Sørensen and Jacobsen, 2003; Zhao et al., 2016;

Campilho et al., 2015; Dimitri et al., 2017 ). Although not all au-

thors are so clear in stating that “LEFM is not applicable to those

specimens containing large fracture process zone around the de-

lamination front” ( Zhao et al., 2016 ), there is a general consensus

that, in presence of large process zones, J-integral theory provides

a more accurate framework to determine the fracture resistance.

In terms of real-life engineering applications, these conclusions are
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ery significant because all the current methods available in ASTM,

S ISO and BS EN standards are based on LEFM. 

It has also been noted that a very accurate characterisation of

he fracture process for the aforementioned types of problems can-

ot be obtained using a one-parameter fracture-mechanics the-

ry and, therefore, the richer modelling framework of cohesive-

one models (CZMs) should be used instead ( Sørensen and Jacob-

en, 2003 ). With a CZM, the interface response is defined by a non-

inear relationship between the interface traction σ and the rel-

tive displacement, δ, between the top and bottom sides of the

nterface, also indicated as ‘traction-separation’ law. In this article

e focus on mode-I crack propagation, whereby σ and δ represent

he direct tensile stress and the mode-I (opening) relative displace-

ent, respectively. A number of authors have exploited a relation

hich provides the traction separation law as the derivative of the

 integral, J , with respect to the relative displacement at the crack

ip, δCT . Based on this relationship, one can also show that the crit-

cal value of the J integral leading to crack propagation, J c , must be
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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qual to the area, �, under the traction separation curve, that is

he ‘work of separation’. 

One aspect that does not seem to be clearly addressed in the

iterature is how to assess the accuracy of a certain method used

o determine the fracture resistance. In other words, what do we

ean by ‘fracture resistance’? Assuming that a single energy value

an be taken to characterise the fracture resistance of an interface,

wo values can be considered: one is the work of separation, �,

nd a second value is the energy released (i.e. dissipated) per unit

f new crack area. The latter is called the critical energy release

ate, and denoted by G c in LEFM. For the more general cases con-

idered here, which include nonlinear behaviour due to progres-

ive damage at the interface, the critical energy release rate can

e still computed and will be denoted by G c , too. In the authors’

pinion, which one of these values is the most appropriate to char-

cterise the fracture resistance generally depends on the problem

onsidered, the aims of the investigation and the methods of anal-

sis used. One could argue that J c = � and therefore these two pa-

ameters are equivalent. However, we will show in this paper that,

or a non-flat R-curve (i.e. the fracture resistance varying with the

ncrease of the crack), J c � = � if the R-curve is modelled by using a

ZM with input parameters which vary along the interface. 

Therefore, to characterise fracture resistance by a single energy

alue, we have three candidates, �, G c and J c and, in general, G c � =
 c , G c � = � and J c � = �. 

In the general case, � is the only parameter that can be con-

idered as an interface property and, ultimately, the integral of

over the entire interface provides the energy dissipated during

rack propagation when the entire interface has failed. Therefore,

or the purpose of this study, we will assess the accuracy of a data-

eduction method by evaluating how closely it predicts �. 

The data-reduction methods in the current standards, as well as

hose proposed in the literature based on analytical formulae, are

ll ways to evaluate either G c or J c . Ripling et al. (1964, 1971) in

he mid 1960’s and early 1970’s proposed methods for measur-

ng the mode-I value of G c in adhesive joints. Based on these

tudies, the first American standard for determining fracture resis-

ance in adhesive joints was introduced in 1974 (current version is

STM D3433-99, 2012 ). A British Standard, which is based on the

ork by Blackman and Kinloch (1997) and their co-workers from

mperial College London in the 1990’s, was first published in 2001

 BS ISO 15024:20 01, 20 01 ). Up to this day, many different stan-

ard procedures for determining G c in adhesive joints and com-

osite laminates have been developed for different materials, spec-

mens, geometries, fracture modes etc. The double cantilever beam

DCB) specimen is the most commonly used specimen in all the

tandards due to its simple geometry and a rather simple testing

rocedure used for mode I delamination or debonding. Therefore,

lthough other tests exist, in this paper we will focus on the DCB

est only. 

A common approach for determining G c in all standards is

o use simple analytical formulae based on linear beam theories

Euler–Bernoulli or Timoshenko). In this approach, we assume that

he DCB is composed of one part where complete debonding be-

ween the arms has occurred and the other part where the arms

re still bonded together and undeformed. This is equivalent to

ssuming that the DCB arms are clamped at the crack tip. How-

ver, as is well known, due to the actual rotation of the arms

t the crack tip and nonlinear effects that take place around the

rack tip (e.g. damage, plasticity), the cantilever beam deflection

ormulae are not accurate if they are written in terms of the ac-

ual crack length. Instead, they can be made relatively accurate

f the actual crack length is appropriately ‘corrected’. In fact, in

S ISO 25217:2009 (2009) , a data reduction scheme called ‘cor-

ected beam theory’ (CBT) features corrections of the actual mea-

ured crack length, whereas in ‘experimental compliance method’
ECM) ( BS ISO 25217:20 09, 20 09 ) the value of G c is corrected by

 factor obtained from the measured compliance. In ASTM D5528

2013) and BS ISO 15024:20 01 (20 01) for carbon fibre reinfored

olymers (CFRP), an additional method, called ‘modified compli-

nce calibration’ (MCC) method, quite similar to CBT is introduced.

n ASTM D5528 (2013) it is mentioned that a round-robin testing

erformed by ASTM showed that the values of G c determined us-

ng CBT, ECM and MCC differed no more than 3.1%. However, CBT,

hich in ASTM is called ‘modified beam theory’ (MBT), is recom-

ended as it yielded the most conservative values of G c for 80% of

he specimens tested ( ASTM D5528, 2013 ). 

All the formulae used in the standards, besides requiring the

easurement of the applied force and cross-head displacement,

lso require the measurement of the crack length. Since this is usu-

lly done optically (typically by means of a travelling microscope

r a high-resolution camera), determining the exact position of the

rack tip is extremely difficult and time-consuming, and it can in-

roduce significant uncertainty in the determination of G c . 

Many authors have so far recognised the difficulty and incon-

enience of measuring the crack length in DCB experiments ( Lopes

t al., 2016; de Moura et al., 2008; Alfano et al., 2011; Tamuz et al.,

003 ) and suggested alternative approaches. Their idea is that can-

ilever beam deflection formulae can actually be re-used to express

he crack length in terms of the applied force and the cross-head

isplacement, F and v . However, in most of the above cited articles,

ith few exceptions (e.g. ‘compliance-based beam method’ (CBBM)

y de Moura et al., 2008 ), it is not noted that the crack length so

etermined is not the actual one, but really an ‘equivalent crack

ength’, a eq , which can be defined as the crack length that makes

he actual cantilever beam formulae valid. Using Euler–Bernoulli

eam theory, determining a eq is straightforward and many authors

 Tamuz et al., 2003; Alfano et al., 2011; Biel and Stigh, 2007 to

ame just a few) use this approach. However, they do not recog-

ise the important difference between a and a eq , and use a for

hat should actually be a eq . For Timoshenko beam theory, com-

uting a eq is less straightforward as a eq is a solution of a cubic

quation. This may be computed numerically (see de Moura et al.,

008 ), but a closed-form solution can also be found, as we show

ater in this paper. 

What is certainly not recognised in any of these alternative ap-

roaches is that, during quasi-static crack propagation, G c is the

erivative of the total potential energy with respect to the actual

rack length, a , not with respect to a eq . This normally results in

n error in the determination of G c which should be taken into ac-

ount in an investigation on the accuracy of these methods, such as

he one presented in this paper. In addition, the difference a − a eq 

s generally not constant, and therefore a constant correction term

uch as the one used in CBT ( BS ISO 25217:20 09, 20 09 ) may result

n an error in the evaluation of G c , too. 

As a summary, from the practical point of view of an engineer

ho intends to characterise the mode-I debonding or delamination

esistance in adhesive joints and composite laminates, the follow-

ng issues remain open: 

• A large number of standards have been released for what is

basically the same problem, with significant differences in the

testing procedures and data reduction methods, which makes it

unclear what the best method is. 

• All the approved standards require the measurement of the

crack length, which makes them impractical, although a num-

ber of authors have proposed methods which do not require

such measurement. 

• The aforementioned methods, which do not require the crack

length measurement, do not take into account the difference

between the actual and the equivalent crack length, a and a eq .

This can result in errors of an amount that is as yet unknown. 
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Fig. 1. Mode-I crack propagation under displacement control. 
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• In the case of ductile interfaces the size of the part of the

specimens where nonlinear dissipative phenomena occur is

relatively large, compared to the specimen dimensions. Accord-

ing to many authors, this violates one of the main assumptions

in LEFM and therefore can potentially lead to very significant

errors if LEFM is used, which however are not quantified by the

standards. In these cases, according to most authors, the use of

J c instead of G c as the driving energy for crack propagation pro-

duces more accurate predictions of the fracture resistance. 

• If one parameter is considered not sufficient to characterise the

interface response with sufficient accuracy and a CZM is used

instead, the available methods provide a more or less accurate

approximation of the area under the traction-separation curve

of the CZM. According to many authors, the use of the J inte-

gral also allows one to determine the entire law experimentally.

However, if the stress at the crack tip, σ CT , is equal to d J / d δCT ,

the latter should be zero when σCT = 0 . However, in the case

of a non-flat R-curve one should also expect d J/dδCT � = 0 when

σCT = 0 , as at this point J = J c and represents the fracture resis-

tance, varying with further increase in δCT . This raises concerns

regarding the range of validity of the formulation. Also, the pro-

cedure requires the precise evaluation of the crack tip displace-

ment, which is again difficult, expensive and time consuming.

Simpler ways to evaluate the CZM parameters do not seem to

be available. 

This article aims to address all the above open questions. In

Section 2 we revisit some fundamental concepts behind LEFM,

nonlinear fracture mechanics and how they relate to the predic-

tions of the ‘work of separation’, �, to be used as key input param-

eter for a CZM on the interface. To this end, the derivation of Grif-

fith’s criterion is revisited and the importance of whether the dis-

sipation process advances in a steady-state manner with the crack

tip is highlighted. We determine the relationships between G c , J c 
and � which clarify the actual range of validity of LEFM and of

J-integral theory. 

In Section 3 , we take into account that a eq � = a and derive con-

sistent formulae for G c for DCB specimens with prescribed dis-

placement or rotations valid for Euler–Bernoulli and Timoshenko

beam theories, which do not require the measurement of the crack

length. 

The accuracy of the formulae from BS ISO 25217:2009 and the

formulae we propose is assessed in Sections 4 and 5 for the case

in which � is constant on the interface (flat R-curve), using a very

similar approach to the one used by Biel and Stigh (2007) . In this

approach, numerical models, which allow for nonlinear effects at

the interface, are used as ‘virtual experiments’ to create input data

for analytical formulae (namely a, F and v ). 

In Section 4.4 we analyse the case of a non-flat R curve. For

this case, if the decohesion process is modelled with a CZM, its in-

put properties must be taken as variable along the interface. There-

fore, we present a comparison of the R-curves calculated using the

methods presented in Section 3 , including J-integral theory. The

peculiar aspects of the response related to the non-flat R-curve are

explained and discussed. 

Finally, in Section 6 conclusions are drawn, first in terms of di-

rect impact on real-life engineering applications and then in terms

of fundamental novelties presented in this work. 

2. Relationships between G c , J c and �

In this section we will first review some fundamental concepts

underpinning the theories of linear elastic and nonlinear inelastic

fracture mechanics. For the latter, we will focus on the important

case in which the mechanical response can be effectively mod-

elled by assuming that rate-independent damage (with no plastic-
ty) occurs within a negligibly thin planar interface, whereas the

ehaviour of the remaining parts of the structure is well approxi-

ated by linear elastic behaviour. 

Let us consider the case of a specimen that can be effec-

ively modelled as a 2D solid, in quasi-static isothermal conditions,

inned in two points, subject to a monotonically increasing pre-

cribed (opening) displacement, v , on one of its pinned ends as

hown in Fig. 1 . Furthermore, an initial flat crack of length a 0 , is

ssumed to be present, which is in a plane of geometric, material

nd loading symmetry of the body so that crack propagation, once

tarted, continues in mode I. 

Although, for the sake of simplicity, the treatment in this sec-

ion considers a prescribed displacement, the results are indeed

alid for any type of prescribed kinematics on some part of the

ody, including in particular the case of prescribed rotations, that

ill be considered in Section 3 . 

.1. Derivation of LEFM Griffith’s criterion from the first principle of 

hermodynamics 

For the developments presented later in Sections 2.2 –2.4 it is

seful to show how Griffith’s crack propagation criterion can be

erived from the first principle of thermodynamics. 

If material behaviour is linear elastic everywhere (except at the

rack tip, as discussed below) the total potential energy can be ex-

ressed as a function � of the prescribed displacement, v , and the

rack length, a , which are both functions of time t . Hence, as a

unction of time, the total potential energy can be expressed as

he compound function 

ˆ (t) = �(a (t ) , v (t )) . (1)

The rate of change of ˆ � must be equal to the mechanical power
˙ 
 transmitted to the solid minus the power dissipated 

˙ D : 

˙ ˆ = 

˙ W − ˙ D , (2)

here the dot represents the derivative with respect to t . Denoting

y F the reaction force where v is prescribed, ˙ W is given by 

˙ 
 = F ˙ v . (3)

Differentiating (1) and replacing in (2) , using (3) one has 

˙ ˆ = 

∂�

∂v 
˙ v + 

∂�

∂a 
˙ a = F ˙ v − ˙ D . (4)

However, since 

∂�

∂v 
= F , (5)

his leads to 

∂�

∂a 
˙ a = − ˙ D . (6)

Introducing the critical energy release rate, G c , by setting 

˙ 
 > 0 ⇒ G c = 

˙ D 

, (7)

b ̇ a 
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Fig. 2. Linear elastic interface behaviour (a) linear elastic law (no material failure 

explicitly included) and (b) the associated structural response; equivalent CZM law 

for (c) an undamaged point and (d) a damaged one. 
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nd replacing into (6) , Griffth’s criterion for crack propagation in

uasi-static conditions is obtained: 

˙ 
 > 0 ⇒ −1 

b 

∂�

∂a 
= G c . (8)

By expressing the total dissipation as a function 

ˆ D of the crack

ength a , so that D(t) = 

ˆ D (a (t)) , one has 

˙ 
 > 0 ⇒ G c = 

˙ D 

b ̇ a 
= 

1 

b 

d ̂

 D 

d a 
, (9)

hich emphasises the physical meaning of G c as the energy dissi-

ated per unit of new crack area formed. 

Classic fracture mechanics can also be formulated within the

heory of thermodynamics with internal variables by interpreting

he crack length, a , as an internal variable, so that �( a ( t ), v ( t )) rep-

esents the free energy of the system at time t . In this way, Eq.

2) can be written in the form of Clausius–Duhem inequality: 

˙ 
 = 

˙ W − ˙ ˆ � = 

(
F − ∂�

∂v 

)
˙ v − ∂�

∂a 
˙ a ≥ 0 for any ˙ v and 

˙ a (10) 

Using standard thermodynamic arguments ( Lemaitre and

haboche, 1990 ), Eq. (5) is then obtained. Furthermore, −∂ �/∂ a is
ow the thermodynamic variable that is work-conjugate to a . Since

 �/ ∂ a ≤ 0, it must also be ˙ a ≥ 0 for the dissipated power, ˙ D , to be

on-negative. Introducing the energy release rate, G : 

 = −1 

b 

∂�

∂a 
(whether or not ˙ a > 0 ), (11) 

he evolution of a , i.e. crack propagation, is governed by the Kuhn–

ucker conditions: 

(G − G c ) ≤ 0 

˙ a ≥ 0 (G − G c ) ̇ a = 0 . (12)

.2. Linear elastic interface 

Let us consider the case in which the interface behaviour is

odelled with the linear elastic CZM of Fig. 2 (a), where the slope

f the traction-separation law is denoted by k . The classical stress

ingularity at the crack tip of LEFM is obtained in the limit for
 → ∞ . However, the equations in Section 2.1 are also valid for fi-

ite positive values of k . Note that in Fig. 2 (a) no material failure

s explicitly included in the material constitutive law. 

A graphical representation of the power balance written in Eq.

2) is shown in Fig. 2 (b) in terms of energy values and their in-

rements when the crack propagates from the initial position a 0 
o the new position a 0 + �a . Point A in the figure corresponds to

he displacement and force, v A and F A , at which the crack starts

ropagating. Since the response in the arms and on the interface

s linear elastic up to this point, the potential energy �A stored in

he body with initial crack a 0 is represented by the area OAA’O.

ssume that, at point A the crack propagates by �a , accompanied

y an increase in the displacement from v A to v B and a decrease

n the force from F A to F B . The total potential energy �B at point

 is represented by the area OBB’O. The work done by the ex-

ernal force, �W , is equal to the area A’ABB’A’. Since �A + �W 

s the area OABB’O, the area OABO, shaded in grey in Fig. 2 (b), is

A − �B + �W, which represents the dissipated energy within the

rocess, �D. Thus, the power balance (2) can be now written in

erms of finite energy values as 

B − �A = �W − �D. (13) 

The only part where this energy is dissipated is the interface

here the crack propagates, i.e. at the crack tip. In this respect it

s important to underline that, both in linear and nonlinear frac-

ure mechanics, no material failure is included in the material con-

titutive law (see Fig. 2 (a)). On the other hand, crack propagation

ffectively im plies material failure at the crack tip, with associated

issipation. In the case of the linear elastic interface considered in

his section, when the crack propagates the stress at the crack tip

rops down to zero from a value σ max . Therefore, as long as δ < δc ,

o energy is dissipated ( Fig. 2 (c)). When δ = δc , the work of sepa-

ation, �, is instantaneously dissipated ( Fig. 2 (d)). 

Therefore, in the finite propagation of the crack from a to

 + �a, the energy dissipated is equal to � times the new crack

urface formed. From point A to point B , the new crack surface

ormed is b �a and it results: 

D = � b�a. (14) 

Dividing by b �a , taking the limit for �a → 0, and comparing

ith (9) one then obtains 

 c = 

1 

b 

d ̂

 D 

d a 
= �. (15) 

Hence, when (before failure) the interface behaviour is linear

lastic, the use of Griffith’s LEFM crack propagation criterion, ex-

ressed in Eqs. (11) and (12) , is equivalent to modelling the inter-

ace with the linear elastic CZM with brittle failure of Fig. 2 (c and

). 

.3. Extension to the case of nonlinear potential-based constitutive 

aw 

Let us now consider the extension of the derivations in

he previous section to what is normally called nonlinear frac-

ure mechanics, or often ‘elasto-plastic fracture mechanics’ be-

ause initially the theory was developed for elasto-plastic prob-

ems ( Anderson, 1995 ). It is well known that, within this

heory, the elasto-plastic behaviour is approximated by path-

ndependent laws, based on so-called ‘deformation theory of plas-

icity’ ( Rice, 1968b ). Likewise, if damage occurs instead of or in ad-

ition to plasticity, a path-independent law is used, too. Normally

hese laws can be considered as nonlinear elastic, but in this case

e will consider laws which are indeed derived from a potential,

s in elasticity, but also contain a softening part, in which mate-

ial stability is lost. As material stability is typically considered a
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Fig. 3. Nonlinear potential-based interface behaviour: (a) potential-based traction- 

separation law (no material failure explicitly included) and (b) the associated struc- 

tural response; equivalent CZM law for (c) an undamaged point and (d) a fully dam- 

aged one. 
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requirement for the behaviour to be called elastic, we will refer to

this type of material behaviour as ‘nonlinear potential-based’. 

In particular, for the problems of interest in this article, let us

consider the case in which the crack propagation process is mod-

elled using the CZM of Fig. 3 (a). In this model, once the max-

imum stress σ max at the interface material is reached, softening

starts occurring. However, (nonlinear) ‘path-independent’ response

is assumed here so that, if the relative displacement at some point

starts decreasing instead of continuously increasing, the curve fol-

lowed during loading is followed back (as indicated by the arrows

in Fig. 3 (a)). Note also that in Fig. 3 (a) no failure is explicitly in-

cluded in the material law. 

Again, the state of the system is univocally defined by the pre-

scribed displacement and the crack length, so that the total poten-

tial energy can again be written as a function of v and a . Therefore,

all the equations in Sections 2.1 and 2.2 still apply here, but we

will now use subscript NL (referring to ‘nonlinear’) to the energy

quantities, and therefore use symbols �NL , W NL , G c,NL and D NL to

distinguish them from their counterparts in the LEFM case. There-

fore, the energy balance written in rate form becomes 

˙ ˆ �NL = 

˙ W NL − ˙ D NL , (16)

and, following the arguments in Section 2.1 , we still have 

˙ a > 0 ⇒ −1 

b 

∂�NL 

∂a 
= G c,NL = 

1 

b 

d ̂

 D NL 

d a 
. (17)

Furthermore, Eq. (5) now becomes 

∂�NL 

∂v 
= F . (18)

Also in this case, dissipation only occurs at the crack tip. Based

on the same arguments made in Section 2.2 , if the crack propa-

gates when the relative displacement at the crack tip reaches the

critical value δc in Fig. 3 (a), then G c,NL = �, where � = σmax δc / 2 .

Vice versa, if G c,NL = � in Eq. (17) , then the crack propagates when

δ = δc at the interface. 

Therefore, the use of crack propagation criterion (17) is equiv-

alent to modelling the interface with the CZM of Fig. 3 (c and d)

and the the crack propagation criterion in quasi-static conditions
ecomes 

˙ 
 > 0 ⇒ −1 

b 

∂�NL 

∂a 
= �. (19)

For this reason, in the future we will always use � instead of

 c,NL . 

Once again, no failure is explicitly included in the material

aw in Fig. 3 (a), according to which, in theory, even when δ > δc ,

pon reversal of δ the bilinear curve would be followed again. But

his never happens because when δ = δc crack propagation occurs.

herefore, in the equivalent CZM, if δ < δc then the loading curve

s followed upon reversal of δ ( Fig. 3 (c)), but if δ ≥ δc , then upon

eversal of δ the traction remains zero ( Fig. 3 (d)). In this respect,

or simplicity, we will still refer to the CZM of Fig. 3 (c-d) as poten-

ial based, with the understood meaning that the law is potential

ased only until δ<δc . 

emark 2.1. In the literature, the nonlinear energy release rate is

ften called J , and its critical value leading to crack propagation,

 c . This is because Rice (1968a) demonstrated that the J integral is

qual to the nonlinear energy release rate: 

 = 

∫ 
�

(
w n x − t · ∂u 

∂x 

)
d s = −1 

b 

∂�NL 

∂a 
, (20)

here d s is a length increment along the chosen contour �, t and

 are the tractions and displacements on �, n x is the x compo-

ent of the outward normal unit vector to �, x is the direction of

rack propagation and w is the specific strain energy governing the

onstitutive law inside the chosen contour at all material points.

ccording to this results, we should write 

 c = �. (21)

However, to the best of the authors’ knowledge, it has never

een emphasised that Rice’s proof of Eq. (20) is based on the as-

umption that the material is homogeneous. This is because only

hen the material is homogeneous the following relationships

sed in Rice’s proof holds true: 

∂w 

∂x 
= 

∂w 

∂ ε 

· ∂ ε 

∂x 
= σ( ε ) · ∂ ε 

∂x 
(22)

here, σ and ε denote stress and strain tensors. When the mate-

ial is non-homogeneous, w is a function of x not only through ε ,
ut also because of the variability of material properties along x .

n other words, instead of writing w = w ( ε (x )) one should write

 = w (x, ε (x )) , which invalidates (22) , so that (20) is not valid ei-

her. 

Obviously, in our case, the same argument can be made on

he interface modelled with a CZM, in which the strain tensor ε
hould be replaced with the mode-I relative displacement, δ, and

he stress tensor with the normal interface stress , σ . Therefore,

or a non-homogeneous interface where the CZM parameters vary

long x , generally one has 

∂w 

∂x 
� = σ (δ) 

∂δ

∂x 
. (23)

As a result, although the nonlinear critical energy release rate

s always equal to �, it is only equal to J c if the material within

he chosen contour around the crack tip can be assumed ho-

ogeneous. We will see in the numerical results presented in

ection 4.4 that, for the case of a non-flat R curve simulated via

 CZM with variable material properties along x , J c � = �. 

Furthermore, because of (23) , for a non-homogeneous interface

ne also has in general that 

 � = 

∫ δCT 

0 

σ (δCT ) d δCT , (24)

here δCT is the opening displacement at the crack tip. Therefore,

n this case the CZM traction-separation law cannot be determined
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Fig. 4. Linear elastic CZM with progressive failure: traction separation law for (a) 

a partially damaged point and (b) a fully damaged point, and (c) the associated 

structural response. (For interpretation of the references to colour in this figure, the 

reader is referred to the web version of this article.) 
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s the derivative of the J integral with respect to the opening at

he crack tip. This will also be shown in our numerical results in

ection 4.4 . �

emark 2.2. As a second important remark, Rice’s finding that “in

nfinitesimal (or rate with respect to geometrical size) form, the

nergy variation depends only on the strain energy of the mate-

ial removed” (see page 209 of the seminal work by Rice, 1968a )

s here obtained without his long mathematical derivation based

n the J integral, which in Remark 2.1 we have actually shown to

e valid only for homogeneous materials. When the CZMs of ei-

her Fig. 2 (a) or Fig. 3 (a) are used, the “strain energy removed”

s indeed equal to the associated work of separation, �. In fact,

ith our derivation the fact that the nonlinear energy release rate

s equal to � is an immediate result, valid indeed also for a non-

omogeneous interface. �

All the other aspects of the discussion in the previous section

emain almost unaltered from a conceptual point of view, includ-

ng the balance of energy written in terms of finite increments

hrough the graphical representation shown in Fig. 3 (b), except

hat the shapes of the relevant areas representing work, stored and

issipated energies change, which is important for the derivation

f the novel results in the next section. For example at point A,

he potential energy �NL, A is given by the area OAA’O, where now

A is a curve, and is equal to the external work done (note that a

rst part of the curve OA is a straight line until the stress at the

nitial crack tip reaches σ max ). If at point B, when the crack has

ropagated by an increment �a , the prescribed displacement is re-

uced down to zero, the curve BO is followed (downward). If the

rescribed displacement is increased again, the curve OB would be

ollowed again (upward). Therefore, at point B, the potential energy

NL, B is the area OBB’O, where again OB is a curve. If the incre-

ent of external work (area A’ABB’A’) is then added to �NL, A and

NL, B is subtracted, the dissipation �D NL , when the crack prop-

gates from the initial length a 0 to the new one a 0 + �a, is now

he area shaded in grey and delimi ted by the two curved lines. 

.4. Extension to the case of linear elastic behaviour with progressive 

ailure 

Let us consider the same body studied previously, in which the

nterface is modelled with the CZM shown in Fig. 4 (a) where the
ehaviour is linear elastic up to the relative separation δ0 and

he maximum traction σ max , so that in this part σ = kδ, with

 = σmax /δ0 . For δ > δ0 , softening accompanied by damage dissi-

ation and finally total debonding at the point where σ = 0 and

= δc occur. As long as δ < δ0 , all the work done to separate the

nterface remains stored as elastic energy. Once δ > δ0 , damage dis-

ipation takes place, so that, if there were unloading, the secant

traight-line to the origin would be followed, which shows that the

nergy represented by the triangle 0120, shaded in grey, has been

issipated. The remaining elastic energy is represented by the tri-

ngle 0240, which is hatched. When point 3 is reached, the total

nergy dissipated is equal to the area under the traction separation

urve, �, as shown in Fig. 4 (b). 

The traction-separation law can be written in the classical

amage-mechanics form: 

= (1 − D ) k δ, (25)

here the damage variable, D , is a function of the position x on

he interface ( D = D (x ) ). At each point, for a monotonically increas-

ng δ, D = 0 for δ ≤ δ0 , D = 1 for δ ≥ δc and on the softening line

 δ0 < δ < δc ) D increases from 0 to 1. 

For the monotonically increasing prescribed displacement con-

idered here, points of the interface sufficiently close to the initial

rack tip will experience a monotonically increasing relative dis-

lacement, δ. From a certain distance from the initial crack tip,

nterface points will first experience negative values of ˙ δ, leading

o compressive interface stresses, until a maximum compressive

tress is reached. After that, the relative displacements increase

gain, become positive and continue increasing monotonically. We

ake the widely adopted assumption that during the initial com-

ressive phase no damage occurs so that, when the stress becomes

ensile, the traction-separation law followed is the same as for the

ZM of Fig. 3 (c and d), because in both cases no displacement re-

ersal occurs from the softening branch of the law. Therefore, the

tructural response under monotonically increasing prescribed dis-

lacement, v , (no reversal) is the same if either the CZM of Fig. 3 (c

nd d) (nonlinear potential-based) or that of 4 (a) are used. 

Here it is extremely important to notice that new damage dissi-

ation occurs only ahead of the crack tip on the part of the inter-

ace where δ ∈ ( δ0 , δc ), as already clarified from Fig. 4 (a). There-

ore, the body with an initial crack a 0 needs the external work

epresented by the area OAA’O (where OA is a curve) in the load–

isplacement plot of Fig. 4 (c) to reach the force F A and the dis-

lacement v A , which is the point at which δ reaches δc at the ini-

ial crack tip, so that for further increase of the prescribed dis-

lacement the crack starts propagating. During this process, the

aterial on the interface is initially acting as linear elastic, after

hich softening accompanied by damage occurs as the separation

f some points at the interface becomes δ ∈ ( δ0 , δc ). If the direction

f the prescribed displacement, v , were reversed from point A, the

traight line AO would be followed in Fig. 4 (c). This means that the

riangle OAA’O represents the part of the external work stored as

lastic energy, which in this case is the total potential energy �A ,

hereas the part OAO (where OA is a curve and AO a straight line)

s energy dissipated due to damage at the interface ahead of the

rack tip, and will be here denoted by �D, A . 

The external work, area OAA’O, with OA a curve, would be equal

o �NL,A for the body with nonlinear potential-based behaviour

onsidered in the previous section. It follows that 

NL,A = �A + �D,A . (26) 

As soon as at the crack tip δ = δc , the crack will start propa-

ating if the prescribed displacement is further increased to values

reater than v A . In particular, when the prescribed displacement is

 > v , the crack length will become a + �a, while the force de-
B A 0 
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creases from F A to F B . The total external work done at that point is

represented by the area OABB’O (where OAB is a curve). 

If the body were unloaded from B, the straight line BO would

be followed. This means that the potential energy stored at point

B, �B , is the area of the triangle OBB’O. The unloaded body from

point B would not be the same as one with an initial crack equal

to a 0 + �a, because the latter would have no damage developed

ahead of the crack tip. 

If the behaviour were nonlinear potential-based ( Fig. 3 ), we

have seen in Section 2.3 that the curve BO would be followed dur-

ing unloading. In the present model with progressive failure, this

would be equivalent to regaining the energy dissipated ahead of

the crack tip (but not the energy previously dissipated behind the

crack tip, on the newly formed crack surface of area b �a ). In other

words, the area OBO (where OB is a curve and BO is a straight

line), shaded in yellow in Fig. 4 (c), represents the energy dissipated

ahead of the crack tip at point B when the linear elastic CZM with

progressive failure is used ( Fig. 4 (a and b)), and is therefore de-

noted by �D,B . 

As already noted in Section 2.3 , the area OBB’O (where OB is a

curve) is equal to �NL,B . Ultimately, there follows 

�NL,B = �B + �D,B , (27)

or in general, at all times during crack propagation: 

�NL = � + �D , (28)

where, as discussed above, �D is the energy dissipated ahead of

the crack tip. 

We noted that �NL is a function of v and a . Although this

means that � + �D is a function of v and a , too, it is not obvi-

ous that the same applies to � and �D separately. This is because

the state of the interface with progressive damage is not defined

by v and a only. Instead, in the most general case, it is defined

by v and the damage variables D ( x ) at each point x of the inter-

face. On the other hand, we are considering cases in which the

prescribed displacement is applied monotonically and we compute

� by considering the secant unloading straight line to the origin

in the load–displacement curve, and calculating the area of the tri-

angle between this line and the horizontal axis of the plot. This

is equivalent to assuming that, for any v and for any a > a 0 , � is

computed as follows: (i) a monotonically increasing displacement

is prescribed until the crack length increases from a 0 to a ; (ii) the

damage is calculated at each point x of the interface and is denoted

by D a ( x ); (iii) the prescribed displacement is then changed to reach

the given value v , while the interface behaviour is assumed to be

linear elastic with stiffness equal to (1 − D a (x )) k at each point x of

the interface. In this way, the damage profile is itself a function of

a , and therefore � is again a function of v and a . 

As a result, �D is a function of v and a at most, too. However,

�D only depends on a . This is because, for fixed a , � is computed

assuming linear elastic behaviour (with reduced stiffness at some

points for a > a 0 ) and, therefore, ∂ �/∂ v = F . Comparing with Eq.

(18) , we have 

∂�

∂v 
= 

∂�NL 

∂v 
= F . (29)

From Eq. (28) we then get 

∂�D 

∂v 
= 

∂�NL 

∂v 
− ∂�

∂v 
= 0 , (30)

which means that �D is only a function of a . Ultimately, replacing

Eq. (28) in Eq. (19) , and because �D only depends on a , we have

˙ a > 0 ⇒ � = −1 

b 

∂�

∂a 
− 1 

b 

d�D 

d a 
. (31)

If, during crack propagation, we can compute ∂ �/ ∂ a and we

continue defining G c as the total potential energy released per unit
ew crack area formed during crack propagation: 

˙ 
 > 0 ⇒ −1 

b 

∂�

∂a 
= G c , (32)

e then find: 

˙ 
 > 0 ⇒ � = G c − 1 

b 

d�D 

d a 
. (33)

For the case of an homogeneous material J c = � and the follow-

ng relationship is found between the critical J integral value and

he critical energy release rate G c : 

 c = G c − 1 

b 

d�D 

d a 
. (34)

The above results show that the difference between G c and �,

nd between G c and J c for a homogeneous interface, is not to be at-

ributed to the size of the cohesive zone, but to the variation of the

mount of energy already dissipated ahead of the crack tip during

rack propagation. In other words, if the profile of the specific en-

rgy dissipated ahead of the crack tip remains unaltered during

rack propagation, and therefore translates in a steady-state fash-

on together with the crack tip, then � = G c . 

In the following sections we will show that such a steady-state

rocess is actually found for a DCB with prescribed rotations, mod-

lled with a CZM with linear elastic damage and progressive fail-

re, so that an exact data-reduction scheme based on LEFM pro-

ides a value of G c equal to �. For the case of a homogeneous in-

erface, we will therefore find that G c = J c , so that the use of LEFM

r the J integral provides exactly the same result. 

An even more important result is that, for the much more

idely used case of a DCB loaded with a prescribed cross-head dis-

lacement, although the profile of the specific dissipation ahead of

he crack tip does not advance in steady-state, d �D /d a is normally

mall with respect to �, even when the size of the cohesive-zone

s extremely large. In fact, we will show in Sections 4 and 5 that,

or the case of a flat R-curve, d �D /d a is indeed extremely small

nd negligible in most engineering applications. For the case of a

ignificantly rising R-curve, results in Section 4.4 will show that

he discrepancy between G c and � can be still quite limited. 

Data-reduction schemes based on LEFM effectively assume that

he fracture resistance is given by G c . Therefore, the practical impli-

ation of the theoretical result summarised in Eq. (33) is very im-

ortant, because this equation shows that G c can indeed be very

lose to �. In turn, this means that LEFM-based methods can be

xtremely effective, as long as G c itself can be computed with suf-

cient accuracy. 

In Section 3 we will present a rigorous analysis which shows

hat G c can indeed be estimated with very good accuracy for typ-

cal DCB specimens without the need for measuring the crack

ength during an experiment, and also that such accuracy can be

 priori estimated. In this way, in Sections 2 and 3 we provide

 sound theoretical foundation for a data-reduction scheme for a

CB loaded with forces which is very accurate and much simpler,

nd therefore much more practical and convenient, than those in

he current standards. 

emark 2.3. Although we have considered CZMs with a bi-linear

raction-separation law, it is worth noting that all our results ob-

ained in Section 2 are valid also when a different shape of the

raction-separation law is used, as long as the unloading response

f the CZM is linear. 

. Determination of G c and J c for a DCB specimen 

Let us consider a DCB specimen tested in mode I where either

isplacement or rotation is prescribed at the loaded ends of the

rms, as shown in Fig. 5 (a) and (b), respectively. We are assuming
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Fig. 5. 2D DCB model, showing prescribed (a) cross-head displacement v and (b) 

rotations θ . 
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hat the loading speed is sufficiently low to make inertia effects

nd temperature variations negligible. The length, width and depth

f each arm are denoted by L, b and h , respectively, with h 
 L . 

The cross-head displacement opening v is prescribed and

onotonically increasing upwards, as shown in Fig. 5 (a). Further-

ore, rotations, θ , of the end sections are prescribed equal and op-

osite, each one again monotonically increasing in absolute value,

nd θ is positive if counter-clockwise (see Fig. 5 (b)). An initial

rack is present with length a 0 , measured from the line of applica-

ion of the forces. It is convenient to consider the general case in

hich both v and θ can be prescribed at the same time, as a func-

ion of time t , although in practical experimental tests only one

f them is prescribed. In fact, the case in which v is prescribed is

y far the most frequent and the only one considered in industrial

tandards. The self-weight of the DCB is not considered not only

or simplicity, but also because its contribution is effectively negli-

ible in most cases of practical interest. 

Rate-dependent effects may be important in some applications.

owever, we will not take them into account because it is typi-

al in practical engineering applications to ignore them when the

racture resistance is determined for a certain applied loading rate,

nd then to evaluate their importance, if any, by performing tests

t different loading speed. 

Assuming constant width, b , symmetry justifies the use of a

D solid continuum model, but, because h 
 L , beam theories are

ufficiently effective and widely used. Therefore, we will assume

he DCB is a 2D body undergoing an isothermal, quasi-static,

ate-independent deformation process. We will also assume that

trains, displacements and rotations are sufficiently small so that a

eometrically linear model is sufficiently effective. It was shown in

kec and Jeleni ́c (2017) that this is a valid assumption because dif-

erences between using a geometrically linear or nonlinear formu-

ation become noticeable only when displacements and rotations

f the specimen are relatively large compared to the specimen di-

ensions. 

As we already mentioned, in experimental testing either v only

r θ only is typically prescribed. For each separate case, because

he behaviour is linear elastic with damage, using geometrically

inear beam theories, the total potential energy is given by 

v (v , a ) = 

F v 
2 

or �θ (θ, a ) = M θ, (35)

here F = F (v , a ) and M = M(θ, a ) are the reaction force and mo-

ent. 

Thus, for these two types of experiments, expressions from Eq.

35) provide the total potential energy for any value of a , whose

artial derivative with respect to a would provide G c . These values

f G c will be equal to � only when the second term on the right-
and side of Eq. (33) is zero, which is the case if the propagation

f the specific-dissipation profile ahead of the crack tip is steady-

tate. 

In this section we analyse two cases: DCB with prescribed

isplacements (non-steady-state crack propagation) and DCB with

rescribed rotations (steady-state crack propagation). 

.1. DCB with prescribed displacement 

Let us first consider the case where the displacement is pre-

cribed, so that we use formula (35) 1 for �v . In order to take the

erivative with respect to a, �v has to be expressed in terms of a .

s mentioned in the introduction, F, v and a can be related using

ormulae from simple beam theories, but we have to be aware that

he crack length in these formulae is not the actual crack length a ,

ut an equivalent crack length, which will either be denoted by

 eq , to refer to the general case, or by a eqE or a eqT to specify that

he Euler–Bernoulli or Timoshenko beam theory is considered, re-

pectively. 

The difference between the actual and the equivalent crack

ength is due to the fact that, regardless of the beam theory used,

he deflection formulae are based on the assumption that the arms

f the DCB are perfectly clamped at the crack tip. Instead, the

ross sections at the crack tip are normally characterised by both

 displacement and a rotation as a result of the deformation of

he interface and of the beam in front of the crack tip. Therefore,

he equivalent crack length is defined as the length that the crack

hould have to make the formulae correct if the arms were really

lamped at the crack tip, for given values of F and v . 

Thus, for Euler–Bernoulli beam theory a eqE is defined by 

 = 2 

F a 3 eqE 

3 EI 
⇒ a eqE = 

3 

√ 

3 v EI 

2 F 
, (36)

here E is the effective Young’s modulus and I = bh 3 / 12 is the sec-

nd moment of area of each DCB arm. For Timoshenko beam the-

ry a eqT is defined by 

 = 2 

(
F a 3 eqT 

3 EI 
+ 

F a eqT 

μA s 

)
⇒ a eqT = 

3 
√ 

B 

2 − 3 
√ 

12 C 1 
3 
√ 

18 B 

, (37)

here μ is the shear modulus, A s = A k s ( A = bh is the area of the

ross-section of DCB arms and k s is the shear correction coeffi-

ient) and 

 = 

√ 

12 C 3 
1 

+ 81 C 2 
2 

+ 9 C 2 , C 1 = 

3 EI 

μA s 
, C 2 = 

3 EI v 
2 F 

= a 3 eqE . 

(38) 

Letting μA s → ∞ leads to C 1 = 0 , B = 18 C 2 and a eqT = 

3 
√ 

C 2 =
 eqE , which is the expected result. 

Because of the crack tip displacement and rotation, the total po-

ential energy �v cannot be expressed in terms of the actual crack

ength, but only in terms of the equivalent crack lengths depending

n the beam theory used, i.e. 

v (v , a ) = �E 
v (v , a eqE (a )) , or �v (v , a ) = �T 

v (v , a eqT (a )) . 

(39) 

It follows that during crack propagation (i.e. ˙ a > 0 , see Eq.

32) ): 

 c = −1 

b 

∂�v 

∂a 
= −1 

b 

∂�E 
v 

∂a eqE 

d a eqE 

d a 
= −1 

b 

∂�T 
v 

∂a eqT 

d a eqT 

d a 
. (40)

Note that, although we will not emphasise it each time for the

ake of simplicity, all the following expressions for G c are derived

nder the assumption that ˙ a > 0 . Thus, these expressions are valid
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only if the values of v and F are obtained (measured) during crack

propagation. Substituting F in (35) using (36) gives 

�E 
v = 

3 EI v 2 

4 a 3 
eqE 

, (41)

which substituted in Eq. (40) results in 

G c = 

9 EI v 2 

4 b a 4 
eqE 

d a eqE 

d a 
= G 

E 
c 

d a eqE 

d a 
, (42)

where G 

E 
c denotes the value of G c which would be obtained for

d a eqE / d a = 1 . 

In a similar fashion, for Timoshenko beam theory, substituting

F in (35) using (37) gives 

�T 
v = 

v 2 

4 

3 EI μA s 

μA s a 3 eqT 
+ 3 EI a eqT 

, (43)

and then 

G c = 

v 2 

4 b 

9 E I μA s (E I + μA s a 
2 
eqT ) 

(μA s a 3 eqT 
+ 3 EI a eqT ) 2 

d a eqT 

d a 
= G 

T 
c 

d a eqT 

d a 
, (44)

where G 

T 
c denotes the value of G c which would be obtained for

d a eqT / d a = 1 . 

Using Eqs. (36) and (37) , G 

E 
c and G 

T 
c can also be expressed in

terms of F and a eqE or a eqT as 

G 

E 
c = 

F 2 a 2 eqE 

bEI 
and G 

T 
c = 

F 2 

b 

(
a 2 eqT 

EI 
+ 

1 

μA s 

)
. (45)

Similar expressions for G c can be found in the literature and

standards, but in those expressions a is used instead of a eq . 

Remark 3.1. Overlooking the difference between a and a eq can

lead to substantial errors in computing G c (note that a eq in Eq.

(45) is squared). Furthermore, in the general case d a eqE /d a � = 1 and

d a eqT /d a � = 1, and thus G 

E 
c � = G c and G 

T 
c � = G c . In Section 4 , for a typ-

ical problem we will show how big exactly the error in computing

G c is when in formula (45) a is used instead of a eqE or a eqT . �

In formulae (45) , a eqE and a eqT can be expressed in terms of F

and v from Eqs. (36) and (37) , respectively. For example, replacing

(36) 2 into (45) 1 gives 

G 

E 
c = 

3 

√ 

9 F 4 v 2 
4 b 3 EI 

. (46)

The expression for G 

T 
c is more convoluted if given explicitly in

terms of F and v . It follows from 

G 

T 
c = 

F 2 

b 

(
a 2 eqT (v , F ) 

EI 
+ 

1 

μA s 

)
, (47)

where a eqT ( v, F ) is given by (37) 2 and (38) . 

An expression for G c analogous to Eq. (46) has been already re-

ported in the literature ( Biel and Stigh, 2007; Alfano et al., 2011 ),

but in that approach, although it is not stated, it is effectively, and

incorrectly, assumed that a = a eqE . This is because the derivative

of �v is taken with respect to a eq instead of a . The same argu-

ment applies to expression (47) for G 

T 
c although, to the best of

authors’ knowledge, only numerical methods for determining a eqT 

were suggested ( Lopes et al., 2016 ), and the derivative d a eqT /d a was

again not taken into account. 

The main advantage of formulae (46) and (47) is that they do

not require the measurement of the actual crack length a , which

excludes one main source of errors in the determination of G c . In-

stead, v and F can be measured quite accurately and easily using

standard tensile-testing machines. 

On the other hand, formulae (46) and (47) provide an approx-

imation of the exact value of G c , which is only obtained if the
alue of G 

E 
c or G 

T 
c are multiplied by the derivatives of a eqE or a eqT 

ith respect to a , as shown in Eqs. (42) and (44) . Therefore, in

ections 4 and 5 , in order to better analyse the accuracy of formu-

ae (46) and (47) for G 

E 
c and G 

T 
c , we also compute the values of

hese derivatives for different problems. To compute such deriva-

ives, we obviously need the value of a , which would have to be

easured in a real experiment. This is one of the reasons why in

ections 4 and 5 ‘virtual experiments’, rather than real ones, are

erformed. 

We will also show that, independently from the beam the-

ry used, the same value G c is obtained when the corresponding

erivative is taken into account, which is in accordance with Eq.

40) . 

.2. DCB with prescribed rotations 

Now we examine the case where, instead of a displacement,

qual and opposite rotations θ are applied on the end sections of

he DCB arms as shown in Fig. 5 (b) ( Sørensen and Jacobsen, 2003;

ice, 1968b; Freiman et al., 1973; Sørensen et al., 1996; Lindhagen

nd Berglund, 20 0 0; Sørensen, 20 02 ). In order to prescribe a de-

ired rotation, it is necessary to apply a concentrated moment M

t the same point. This means that the DCB arms will be in pure

ending and if we assume that they act like cantilever beams we

an use the simple beam formula: 

= 

M a eq 

EI 
, (48)

here a eq is the same for Euler–Bernoulli and Timoshenko beam

heories since in pure bending there are no shear strains. Using

his formula and expression (35) 2 for �θ we obtain 

θ (θ , a ) = �θ (θ, a eq (a )) = 

θ2 EI 

a eq 
, (49)

nd then write 

 c = −1 

b 

∂�θ

∂a 
= −1 

b 

∂ �θ

∂a eq 

d a eq 

d a 
= 

θ2 EI 

b a 2 eq 

d a eq 

d a 
. (50)

Substituting θ from Eq. (48) gives 

 c = 

M 

2 

b EI 

d a eq 

d a 
. (51)

Note that, in accordance with Eq. (32) , in Eq. (50) it is assumed

hat ˙ a > 0 , which means that Eq. (51) is valid only if the value

f M is obtained (measured) during crack propagation. However,

nly the moment at the crack tip (which is equal to M , whereas

he value of the shear force is zero) is responsible for opening the

rack and making it propagate. This means that for any crack tip

osition a the crack will propagate when a certain critical value of

 is reached. Thus, as long as the crack tip is sufficiently far away

rom the end of the DCB specimen, constant boundary conditions

t the crack tip for any position of the crack will result in a steady-

tate crack propagation, where a eq = a + c, with c a constant. In

urn, this results in d a eq / d a = 1 . From Eq. (51) it then follows that

 c = 

M 

2 

b EI 
, (52)

or any position of the crack tip. 

Furthermore, the steady-state nature of the crack propagation,

hich will be confirmed by the numerical results reported in

ection 4 , also means that the profile of the specific dissipation

n front of the crack tip translates together with the crack tip. This

eans that d�D / d a = 0 in Eq. (33) so that G c = � exactly. There-

ore, formula (52) can be successfully used to determine the cohe-

ive law of the adhesive. However, in terms of standard procedures
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Table 1 

Geometric data used in the virtual experiments in Section 4 . 

L h b a 0 
[mm] [mm] [mm] [mm] 

200 6 25 30 

Table 2 

Material data used in the virtual experiments in Section 4 . 

E ν k s � σ max δc δ0 

[GPa] [-] [-] [N/mm] [MPa] [mm] [mm] 

70 1/3 5/6 1 {7.5, 15, 30, 60, 120} 2 �/ σ max 0.01 δc 
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or determining G c , performing experiments by prescribing the dis-

lacement is still considerably simpler and, as we will show in the

ollowing sections, it can give efficient and accurate estimation of

 c without the need for the measurement of the crack length. 

.3. Characterisation of fracture resistance based on the J integral 

As discussed in Section 2.3 , based on Eq. (21) , it has been ar-

ued by many authors that the critical value of the J integral, J c ,

rovides the most accurate prediction of �, although we explained

n the same section why this is actually true only if the material is

omogeneous. 

Based on Euler–Bernoulli beam theory, for a DCB with pre-

cribed displacements, J c is given by the formula equivalent to

he one provided by Paris and Paris (1988) and Olsson and

tigh (1989) , and will be denoted by J E c : 

 

E 
c = −2 F θv 

b 
, (53) 

here θ v is the rotation of the cross section at the point of the ap-

lication of the force F , whereas F and v are those measured dur-

ng crack propagation. Also, note that the minus sign is the result

f the sign convention used for the rotations in Fig. 5 (b). 

An analogous formula, again for the case of prescribed displace-

ents but based on Timoshenko beam theory, is not available in

he literature, to the best of the authors’ knowledge, but it can be

erived as shown in Appendix A . Denoting this value as J T c we ob-

ain 

 

T 
c = 

F 2 

b 

(
1 

μA s 
− 2 θv 

F 

)
. (54) 

In case of prescribed rotations, the expression of J c ( Rice, 1968b )

s the same for both beam theories and equal to the expression of

 c in Eq. (52) . 

When the traction separation law is constant along the inter-

ace, the same formulae as (53) and (54) can be derived by di-

ectly calculating � via the solution of the differential equations

f the DCB undergoing crack propagation. For Euler–Bernoulli the-

ry, this was proved by Olsson and Stigh (1989) . For Timoshenko

heory and a DCB with both prescribed displacement and rotations,

he derivation is provided in Appendix B . 

It is worth underlining that both formulae (53) and (54) require

he measurement of the end rotations of specimens. This makes

hem impractical, which is also why this paper focuses more on

he computation of G c rather than J c . 

. Accuracy of LEFM-based formulae, influence of interface 

uctility and comparison with standards 

In this section, using the data from virtual experiments, we will

how how accurate Formulae (46), (47) and (52) for G 

E 
c , G 

T 
c and

 c , respectively, are in predicting the area � under the traction-

eparation curve of the CZM used. Additionally, we will numer-

cally compute the values of the derivatives d a eq /d a for Euler–

ernoulli and Timoshenko beam theories, also to verify that the

ame value of G c is obtained for both beam theories once these

erivatives are taken into account using Eqs. (42) and (44) , in ac-

ordance with Eq. (40) . 

.1. Virtual experiments considered and details of the FE simulations 

The input data, which includes v, θ and a , as well as F for a

CB with prescribed displacement ( Fig. 5 (a)) and M for the one

ith prescribed rotations (Fig. 5 (b)), is not actually measured from

eal experiments, but created by conducting accurate FE simula-

ions. Because the DCB test is symmetric with respect to the inter-

ace mid-plane, only the upper half of the specimen is modelled. 
The bi-linear CZM with progressive failure shown in Fig. 4 (a and

), in which unloading occurs according to the secant line to the

rigin, is used as the constitutive model for the interface elements

sed on the DCB interface. The material and geometric data used

n the virtual experiment is presented in Tables 1 and 2 and cor-

espond to a typical adhesive joint between two aluminium com-

onents. Since the objective here is to assess how the ductility of

he adhesive influences the range of validity of LEFM for problems

ith large cohesive zones ahead of the crack tip, different simu-

ations have been conducted varying σ max with the set of values

hown in Table 2 . Further analyses with other types of materials

i.e. steel and CFRP), dimensions and adhesives will be presented

n Section 5 . 

A total number of 20 0 0 2-node Timoshenko beam elements are

istributed evenly over the upper half of the DCB, meaning that

he element length is 0.1 mm. Such a fine mesh is used to elim-

nate, or at least minimise, the influence of discretisation-caused

purious oscillations on the results ( Alfano and Crisfield, 2001;

kec et al., 2015 ). A 4-node interface element is attached to every

eam FE from x = a 0 to x = L making a total of 1700 interface ele-

ents. Beam FEs are integrated using the one-point Gauss quadra-

ure, while the interface elements are integrated using the 3-point

impson’s rule. 

Displacement control is used with a total prescribed displace-

ent of 10 mm, subdivided into 100 equal increments. Newton–

aphson solution procedure was used with a tight numerical tol-

rance to assess convergence. 

emark 4.1. The analysis can be easily performed using geomet-

ically nonlinear beam finite elements based on Reissner’s beam

heory ( Škec and Jeleni ́c, 2017 ), which is needed in cases when dis-

lacements and rotations of DCB arms are not small. However, the

bserved influence of geometrical nonlinearity for the range of dis-

lacements and rotations in the present analyses was found to be

egligible and the use of Timoshenko beam FEs is therefore justi-

ed. 

emark 4.2. It is very important to note that the use of 2D ge-

metrically linear Timoshenko finite elements is the most appro-

riate choice for a proper comparison of the data-reduction meth-

ds investigated in this work. This is because all these methods

re based either on Euler–Bernoulli or Timoshenko beam theories,

nd always in the geometrically linear case. Therefore, any more

ophisticated model for the virtual experiments, e.g. higher or-

er beam theories and/or 2D or even 3D models, would introduce

ome discrepancies for all the methods studied. Such discrepancies

ould actually be extremely small because 2D beam theories have

een proved to be very effective, which is the reason why they

re used in standards. On the other hand, these small discrepan-

ies would still make the comparison less clear. For example, for

 flat R-curve J T c would not exactly be equal to �. Moreover, an-

lytical solution for Euler–Bernoulli DCB with progressive damage

 Dimitri et al., 2017 ) could be used for virtual experiments, but in
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Fig. 6. Values of (a) G E c / � and (b) d a eqE /d a for different values of σ max 
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that case the influence of shear deformability of the arms could

not be appreciated in the analysis. 

4.2. DCB with prescribed displacement 

Figs. 6 –9 report the results obtained when the DCB is loaded

with a prescribed displacement, v . 

In Fig. 6 , G 

E 
c and the corresponding derivative d a eqE /d a are

shown against the crack length, a , where G 

E 
c is recovered from

the numerical results for F and v using (46) , while d a eqE /d a is

computed numerically from (36) upon detecting the actual crack

length a for every considered pair ( F, v ). Oscillations which appear

in Fig. 6 for σmax = 120 MPa are a numerical artefact caused by the

discretisation in the numerical model and can be eliminated by us-

ing an even finer FE mesh ( Alfano and Crisfield, 2001; Škec et al.,

2015 ). The case with oscillations, unlike all the others, also showed

some minor convergence problems of the nonlinear solution pro-

cedure (the displacement increment needed to be reduced by 50%

on two occasions). 

If by a i we denote the actual crack length obtained from a vir-

tual measurement i ( i = 1 , 2 , . . . , n, where n is the total number of

virtual measurements during crack propagation), we can compute

a eq,i from v i and F i . The derivative d a eqE /d a , corresponding to the

virtual measurement i , is computed using a 5-point central dif-

ference formula accounting for variable distance between points

( Holoborodko, 2017 ), whose general expression is 

d a eq 

d a 

∣∣∣∣
a = a i 

≈
(N−1) / 2 ∑ 

j=1 

c j 
a eq,i + j − a eq,i − j 

a i + j − a i − j 

2 j, (55)

where N is the number of points used. In our case, N = 5 , j = 1 , 2 ,

c 1 = 1 / 4 and c 2 = 1 / 8 ( Holoborodko, 2017 ). From this formula it is

clear why the derivative could not be calculated for the first two

and the last two recorded values of the crack propagation. 

Fig. 6 shows that the higher σ max and the longer the crack has

propagated, the better G 

E 
c approximates � and the closer to unity

d a eqE /d a is. We clearly see that d a eqE /d a < 1 for short cracks and

low σ max values, but it converges to 1 for with larger cracks and

higher values of σ max . Furthermore, after few millimetres of crack

propagation from the initial position, the influence of the deriva-

tive is less than 2% even for the minimum considered value of

σ max , equal to 7.5 MPa. For larger values of σ max , the influence

quickly falls below 1%. 
Unlike Euler–Bernoulli beam theory, from Fig. 7 we can see that

 

T 
c and d a eqT /d a , computed from (47) and numerically from (37) ,

o not converge to � as σ max → ∞ . The explanation for this lies in

he fact that, when Timoshenko beam theory is used (which it is

n our numerical model), due to shear deformability, even an in-

nitely rigid and brittle interface cannot prevent rotations at the

rack tip to occur. Thus, assuming that the arms of a Timoshenko

CB are clamped at the crack tip (which is done in the derivation

f the formula for G 

T 
c ) is not equivalent to letting σ max → ∞ at the

nterface in our numerical model. In Appendix C we explain the

esults shown in Fig. 7 and derive exact formulae for the limit val-

es of G 

T 
c / � and d a eqT /d a obtained when σ max → ∞ and denoted

y σmax = ∞ in Fig. 7 . 

In accordance with Eqs. (42) and (44) , the same value of G c 

ust be obtained independently of the beam theory used, i.e. it

ust be 

 

E 
c 

d a eqE 

d a 
= G 

T 
c 

d a eqT 

d a 
= G c (56)

Values of G c obtained using different beam theories are pre-

ented for different values of σ max in Fig. 8 (a). For σmax = 7 . 5 MPa,

he dashed green line is obtained by multiplying G 

E 
c by d a eqE /d a ,

hile the green circular markers are obtained by multiplying G 

T 
c 

y d a eqT /d a . The results clearly overlap and the same happens for

ll other values of σ max , although it is not reported for the sake of

larity. Furthermore, from Fig. 8 (a) it can be clearly seen that G c is

pproaching � as the value of σ max increases. In accordance with

q. (33) , the difference between G c and � is to be attributed to the

act that, for a DCB with prescribed displacement, the crack prop-

gation process is not steady-state, as shown later below in Fig.

 and therefore d�D / d a � = 0 . On the other hand, the fact that such

ifference is mostly less or far less than 1% is because the process

s actually very close to steady-state. Furthermore, the longer the

rack propagation, the closer to being steady-state the process is. 

Interestingly enough, we can notice that formulae for G 

E 
c and

 

T 
c give a better approximation of � than the exact formula for

 c , which includes the derivative d a eq /d a . This is because, for both

eam theories, not taking into account the derivative d a eq /d a in

xpressions for G 

E 
c and G 

T 
c somehow partially compensates the dis-

repancy between G c and � due to the process not being steady-

tate. In any case, these results, which cover a wide range of adhe-

ive behaviour (from extremely brittle to extremely ductile), sug-

est that formulae (46) and (47) for G 

E 
c and G 

T 
c , which do not re-

uire the mesurement of the crack length, can be used as very



L. Škec et al. / International Journal of Solids and Structures 144–145 (2018) 100–122 111 

Fig. 7. Values of (a) G T c / � and (b) d a eqT /d a for different values of σ max 

Fig. 8. Values of: (a) G c / � for different values of σ max and (b) different fracture resistance parameters normalised with respect to � obtained for σmax = 7 . 5 MPa. (For 

interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 
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imple, accurate and practical data reduction schemes. This find-

ng is further confirmed by the numerical results presented in

ection 5 , where predictions given by these formulae are compared

o those provided by the data-reduction schemes used in BS ISO

5217:20 09 (20 09) for DCB specimens with different material and

eometric properties taken from real experimental data reported

n the literature. 

In Fig. 8 (b) we have compared the values of G 

E 
c , G 

T 
c and G c 

or the most ductile case ( σmax = 7 . 5 MPa) with the values for J c 
ccording to Eqs. (53) and (54) , as well as with the definitions for

 c and � as given in Eqs. (8) and (19) . For the latter, partial deriva-

ives have been approximated by finite differences, i.e. 

 c ≈ G 

�
c = −1 

b 

��

�a 
and � ≈ �� = −1 

b 

��NL 

�a 
, (57) 

here � and �NL are calculated according to Fig. 4 and the dis-

ussion in Section 2.4 using the F − v data obtained from our nu-

erical model. Notice that, to compute � for any crack length a

sing Eq. (57) 2 , an undamaged specimen with initial crack length

 + �a is required. Therefore, the calculation is restarted with the

ncreased initial crack length each time the crack has propagated
y an amount �a . In Fig. 8 (b) only the first ten values for �� are

hown, which is enough to show that the approximation for ��

n Eq. (57) 2 is indeed very accurate. However, determining G c and

using Eq. (57) requires the measurement of crack length, which

akes them less practical in real-life applications. 

As expected, results obtained using Eq. (57) perfectly match the

alues of G c and J T c obtained using formulae (56) and (54) . As al-

eady mentioned, formulae for G 

E 
c and G 

T 
c provide values very close

o �. When shear strains are neglected in Eq. (54) , formula (53) for

 

E 
c fails to give the exact area under the traction-separation law of

he CZM used. In this example, even for the extremely ductile case,

he accuracy of the formula for G 

T 
c is comparable to that of the for-

ula for J E c based on Euler–Bernoulli beam theory, which is often

ecommended in the literature as a J-integral solution when LEFM

s not valid ( Biel and Stigh, 20 07; 20 08; Zhu et al., 2009; Banea

t al., 2010 ). However, for higher values of μA s , G 

T 
c would approach

 

E 
c , while J E c would approach J T c and � in Fig. 8 (b). 

emark 4.3. Notice that in Fig. 8 (b) J T c = �, whereas J E c � = �, be-

ause the values of F and v used to compute the relevant curves
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Fig. 9. Plots of (a) L CZ for various values of σ max and (b) interface traction distribution for three different crack positions for σmax = 7 . 5 MPa. 
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are those obtained in the virtual experiment, in which Timoshenko

beam theory was used. �

We define the cohesive-zone length, L CZ , as the distance be-

tween the crack tip (the point separating the fully damaged from

the partially damaged zone, where σ = 0 ) and the point on the in-

terface where σ = σmax . That is the zone of damage dissipation at

the interface, whereas moving to the right from the peak tensile

stress at the interface (where δ = δ0 ) we enter the linear elastic

zone where tensile stresses reduce as δ approaches zero. In this

zone, proceeding further on in the rightward direction, at some

point where δ = 0 the interface stresses change from tensile to

compressive. According to our CZM, however, no damage can oc-

cur in compression. 

In Fig. 9 (a) the decrease in L CZ with crack propagation is shown

for different values of σ max , whereas in Fig. 9 (b) the interface trac-

tion distribution corresponding to three different crack positions is

shown for the most ductile case σmax = 7 . 5 MPa. In the latter fig-

ure, the traction profile is shown with respect to the distance from

the crack tip, x − a, to better appreciate how such profile changes

with crack propagation. 

From Fig. 9 it can be appreciated that both L CZ and the traction

profile are not constant with crack propagation, but their change

is relatively very small. This is the case also for very ductile in-

terfaces, i.e. for the smaller values of σ max , for which the L CZ are

quite significant compared to the specimen dimensions. This in-

dicates that, for all these cases, even for large values of L CZ , the

process is not exactly steady state but extremely close to being so.

The results presented confirm one of the fundamental results

of this paper, expressed by Eq. (33) : the accuracy of LEFM in pre-

dicting � does not depend on the size of the area of nonlinearity

around the crack tip (i.e. L CZ ), but on how close the process is to

steady-state, that is how close to zero is d �D /d a in (33) . 

This conclusion will be fully confirmed by the results presented

in next section, for a DCB with prescribed rotations, in which crack

propagation is indeed steady-state. 

4.3. DCB with prescribed rotations 

In this section, for the same set of parameters (see Tables 1 and

2 ), the results of virtual experiments are reported and discussed

for the case in which the same DCB is loaded with prescribed ro-
ations, as shown in Fig. 5 (b). Denoting by v θ the cross-head dis-

lacement due to a prescribed rotation θ , Fig. 10 (a) shows that

he applied moment M remains constant during crack propagation

fter reaching a certain critical value. This is perfectly in accor-

ance with Eqs. (52) and (B.13) where it is obvious that the critical

alue of energy release rate G c , which is equal to �, is obtained

hen moment M = (� b EI) 1 / 2 is reached. In our case that value

s M = 28062 . 43 Nmm. 

Fig. 10 (b) clearly shows that for each value of σ max , the cohe-

ive zone length L CZ does not change during crack propagation, i.e.

he process is steady-state. If we compare Figs. 10 (b) and 9 (a) we

an see that, for each value of σ max , L CZ for the case of DCB with

rescribed displacements approaches the values obtained for the

ame DCB with prescribed rotations as the crack propagates. 

As expected, the values for G c obtained from (52) for differ-

nt σ max , that is for any length of the cohesive zone, all match

, which on an extremely small scale can be seen in Fig. 11 (a).

scillations are again numerical artefacts dependent on the value

f σ max . In Fig. 11 (b) we see that the derivative d a eq /d a (where

 eq = θ EI/M) also oscillates around the value of 1, but these results

ontain the additional error due to the 5-point numerical central

ifferentiation used. 

It is also useful to compare the cohesive-zone lengths for the

onsidered values of σ max with the length of one interface or beam

lement in our numerical model which is 0.1 mm. Even for the

ost brittle case L CZ is approximately 30 times larger than the

lement length, so that the oscillation magnitude caused by the

iscretisation in the numerical solution is extremely small (see

ig. 11 ). 

.4. Rising R-curve 

A variable fracture resistance (R-curve) could be due to a non-

omogeneous interface. However, in most cases, and in particular

hen the fracture resistance is increasing with the crack advance,

he R-curve is the result of progressive build-up of the actual dis-

ipative phenomena at the microscale ( Anderson, 1995 ). Neverthe-

ess, the experimental characterisation of the fracture resistance

n these cases is still typically obtained through the simple mea-

urement of the R-curve, which implies lumping all the dissipative

echanisms into one single value of the energy. With this spirit, it
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Fig. 10. DCB with prescribed rotations: (a) M − v θ and (b) L CZ − a plots for various values of σ max . 

Fig. 11. DCB with prescribed rotations: (a) G c / � and (b) d a eq /d a for different values of σ max . 
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Table 3 

Interface properties for the three cases with a rising R-curve. 

�0 �∞ σ∞ δ∞ c 

[N/mm] [N/mm] [MPa] [mm] [mm] 

0.5 1.0 30 1/15 20 

t  

c  

f  

e  

σ
i

 

w  

δ
 

t  

p  

(  

f  

i  
akes sense that a numerical analysis based on a CZM considers

ariable input properties for the CZM to reproduce the R-curve. 

Therefore, in this section we will address the case in which the

raction-separation law is not the same along the interface. In par-

icular, we will assume that the area under the curve, �, is increas-

ng when moving away from the crack tip, starting from a value

0 at the crack tip and asymptotically reaching a final value, �∞ 

,

ccording to the following relationship, which is shown as a solid

lack line in Figs. 12 –14 : 

(x ) = α(x ) �∞ 

, (58)

here the scaling factor α is given by 

(x ) = 

�0 

�∞ 

+ 

(
1 − �0 

�∞ 

)(
1 − e −

x −a 0 
c 

)
, (59)

n which c is a ‘decay length’ and a 0 the initial crack length. 

At all interface points a bi-linear CZM with the traction-

eparation law in Fig. 4 is again considered, but either one of

max and δc or both of them are assumed to vary along the

nterface. In particular, denoting by σ∞ 

and δ∞ 

= 2 �∞ 

/σ∞ 

the

alues of σ max and δc corresponding to �∞ 

, we consider three

ases, denoted as Cases A, B and C: in Case A, σ max is kept con-

tant, equal to σ∞ 

, and δc is scaled and therefore is taken equal
o δc (x ) = 2 �(x ) /σ∞ 

= α(x ) δ∞ 

; in Case B, both σ max and δc in-

rease along x , scaled with respect to σ∞ 

and δ∞ 

by the same

actor, which is therefore 
√ 

α(x ) ; in Case C, δc is kept constant,

qual to δ∞ 

, and σ max is scaled and therefore is taken equal to

max (x ) = 2 �(x ) /δ∞ 

= α(x ) σ∞ 

. It is also assumed that δ0 = 0 . 01 δc 

n all cases. 

The values of �0 , �∞ 

, σ∞ 

, δ∞ 

and c are given in Table 3 ,

hereas Table 4 provides a summary of the variations of σ max and

c for the three cases. 

Figs. 12 –14 show the predicted values of the fracture resis-

ance using the methods and formulae discussed in Section 3 , com-

ared to the values obtained using corrected beam theory (CBT)

 BS ISO 25217:20 09, 20 09 ), G 

CBT 
c , and to the input value of the

racture resistance, �. CBT is added to this comparison because

t appears to be the most reliable method available in the stan-
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Fig. 12. Fracture resistance predictions for Case A: (a) actual values and (b) normalised values. 

Fig. 13. Fracture resistance predictions for Case B: (a) actual values and (b) normalised values. 

Table 4 

Variations of σ max and δc along the interface for the three differ- 

ent cases of a rising R-curve. 

σ max ( x ) δc ( x ) 

Case A σ∞ α( x ) δ∞ 
Case B 

√ 

α(x ) σ∞ 
√ 

α(x ) δ∞ 
Case C α( x ) σ∞ δ∞ 
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dards ( ASTM D5528, 2013 ), as will be confirmed by our results

in Section 5 . To compute G 

CBT 
c , Eq. (60) 2 is used, where the crack

length correction � is obtained as explained in BS ISO 25217:2009

(2009) . The curve for G 

E 
c is not reported but it is at all points

within less than 1% of the one obtained for G 

T 
c . 

On the right-hand side of each figure the same predictions at

each point x normalised with respect to �( x ) are reported to bet-

ter appreciate the discrepancy. Note that, predictions for G c start

from values of x greater than a , because they require the use of
0 
he derivative d a eq /d a , which is computed by finite differences and

nly when the crack has started propagating. 

At any point x of the interface, all methods predict a value of

he fracture resistance which is less close to the input value �( x )

f compared with the predictions given in the case of a flat R-

urve. This can be expected for the accurate value of the critical

nergy release rate, G c , that is the value that is obtained by tak-

ng into account the derivative d a eq /d a via either Eq. (42) or Eq.

44) (which again give the same value). The reason is that, because

f the increase of �( x ) as the crack propagates along the interface,

he term d �D /d a in Eq. (33) is positive. This results in a discrep-

ncy between G c and � that is between 10% and 15% at the start

f the crack propagation, and quickly decreases to values less than

%. The biggest discrepancy is for Case A, which is in fact the least

uctile, and the lowest discrepancy is for Case C, which is the most

uctile. 

It is interesting to observe that the effect of the derivative

 a eq /d a is much higher for Cases A and C than for Case B, which
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Fig. 14. Fracture resistance predictions for Case C: (a) actual values and (b) normalised values. 

Table 5 

Percentage discrepancy between −(1 /b) (�NL (a 0 + �a ) − �NL (a 0 )) and the integral of � between the 

same limits, for �a = 1 mm and for two values of the prescribed displacement increments, �v . 

�v [mm] Case A Case B Case C 

0.1 1.18% −1.78% −1.24% 

0.01 −0.01% −0.01% −0.01% 
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xplains the larger difference between G 

T 
c (and G 

E 
c , not reported)

nd G c for Cases A and C with respect to the discrepancy in

ase B. This can be explained because the length of the cohesive

one, L CZ , can be approximately taken to be proportional to �/σ 2 
max 

 Turon et al., 2007 ), which in Case B would lead to a constant value

f L CZ . Clearly, this is an approximation because we have seen that

he process is not steady-state and L CZ still varies, but its variation

s very limited as in the case of a flat R-curve. In turn, this makes

he derivative d a eq /d a of the same order of magnitude as for the

ase of a flat R-curve, which is very small. 

The predictions of G 

T 
c and J T c appear all very close to each other.

n fact, their maximum difference is of the order of 1–2%, for the

hortest crack lengths, which is very close to that found for the

ase of a flat R-curve. Because the total discrepancy with respect

o � is larger here than in the case of a flat R-curve (e.g. Fig. 8 ),

ne can appreciate from Figs. 12 –14 that the predictions provided

y G 

T 
c and J T c are effectively the same, which is a very important

esult form an engineering point of view. 

The discrepancy between J T c and � can be explained be-

ause the interface is not homogeneous. Therefore, as discussed in

ection 2.3 (see Remark 2.1 ), this results in J c � = �. 

CBT provides predictions of the fracture resistance which are

lose to those given by G 

T 
c and J T c , although for cases A and C, for

ncreasing crack lengths, G 

CBT 
c does not tend to �, whereas G 

T 
c and

 

T 
c do. The values of the correction � determined in the CBT are

qual to 8.25, 9.00 and 10.26 mm, for Cases A, B and C. 

Although here J T c is not equal to the so-called nonlinear energy

elease rate, given by −(1 /b) ∂ �NL /∂ a, the latter is still equal to

he work of separation, �, in accordance with Eq. (19) . Because of

he variation of � with x and the numerical noise occurring with

ery small crack advances �a , Eq. (19) is here validated by numer-

cally computing the change, −(1 /b) (�NL (a 0 + �a ) − �NL (a 0 )) ,

rom the FE solution, and comparing it with the integral of func-

ion � of Eq. (58) for the same region. The discrepancy in percent-
 c  
ge is reported in Table 5 for �a = 1 mm and for two different

alues of the constant prescribed displacement increments. For the

ore refined time-discretisation it is clear that the error becomes

egligible. 

The effect of the non-homogeneity of the interface is also that

he derivative of the J integral with respect to the crack-tip open-

ng, δCT does not provide the traction-separation law, which makes

his identification method not strictly valid. This is shown numeri-

ally in Fig. 15 . In particular, Fig. 15 (d) shows that, in the case of a

at R-curve, namely with � = �∞ 

, σmax = σ∞ 

and δc = δ∞ 

for all

 , the numerically computed value of d J T c / d δCT is exactly equal to

he stress σ . 

emark 4.4. Considering the effect that different ways to vary

max and δc have on the results presented in this section, it is rea-

onable to deduce that the whole shape of the traction-separation

aw can influence the accuracy of the predictions. Therefore, the

umerical results presented here are very useful to support some

f the theoretical results obtained in Sections 2 and 3, but they

annot be considered as a comprehensive analysis of the case

here a significant R-curve is found from experimental testing. 

On the other hand, from the results presented in this section

ne can already conclude that J-integral predictions, which require

he difficult measurement of rotations, are not more accurate than

he formulae for G 

E 
c or G 

T 
c , which are based on LEFM and do not

equire the measurement of the crack length (unlike CBT) or rota-

ions. 

It is also worth noting that the results have been presented

ere in the form of curves showing the fracture resistance against

nterface position, x , where x is effectively the crack length. The

atter is not to be measured to obtain G 

E 
c or G 

T 
c , so the actual calcu-

ation of G 

E 
c or G 

T 
c can only be made against a eq . However, in most

ractical situations, knowledge of the fracture resistance at a spe-

ific point of the interface is not really needed, whereas the actual
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Fig. 15. Comparison between the interface stress and d J T c / d δCT for (a) Case A, (b) Case B, (c) Case C and (d) for the case of a flat R-curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

C  

B  

s  

m  

o  

w  

p  

l  

1  

s  

i  

B  

fi  

m  

L  

t  

m  

s  

(  

b  
initiation and the so-called ‘steady-state’ (i.e. asymptotic) values of

the fracture resistance are important. 

5. Comparison of LEFM and formulae for G c used in standards 

on real experiments 

To perform the DCB virtual experiments in the previous sec-

tions we have used realistic material and geometrical properties

for the DCB arms and the adhesive, for a number of values of σ max 

and with � = 1 N/mm kept constant. We have shown that for the

cases analysed, the input value of � can be accurately predicted

using the analytical formulae based on LEFM. In this section we

will additionally demonstrate that G 

E 
c and G 

T 
c provide very accu-

rate predictions of � for a wide range of specimen dimensions and

materials as well as for adhesives with different values of �. Fur-

thermore, we will show that this accuracy is normally comparable

or even higher than that provided by the methods used in BS ISO

25217:20 09 (20 09) . 

Three different examples are used, all based on experimen-

tal measurements from the literature. The first example is the
FRP DCB delamination test studied by Blackman et al. (2003a) .

y using a FE model, they have fitted the experimental mea-

urements with a cubic polynomial σ − δ CZM law and deter-

ined the values � = 0 . 257 N/mm and σmax = 50 MPa. The sec-

nd example is a DCB made of aluminium adherents and bonded

ith the epoxy adhesive Hysol ® 9466, and is taken from the

aper by Alfano et al. (2011) , where a trapezoidal constitutive

aw was used in the CZM and values � = 2 . 7 N/mm and σmax =
4 MPa were determined again by fitting the experimental mea-

urements. Although in our model a bi-linear constitutive law

s used for the CZM, using the CZM parameters determined in

lackman et al. (2003a) and Alfano et al. (2011) can be justi-

ed, especially in the crack propagation phase where � is the

ost important CZM parameter. The last example, presented by

opes et al. (2016) , is a DCB made of steel adherends bonded with

he epoxy adhesive Hysol ® 7752, which has not involved any nu-

erical modelling and the value of G c has been obtained using

imple analytical formulae. The compliance-based beam method

CBBM), introduced in the same paper, has been taken to give the

est prediction of G c = 4 . 5 N/mm, which is adopted as � in our
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Table 6 

Data used in the set of virtual experiments based on real ones. 

Experiment Adherends Adhesive L h b a 0 E � σ max FEs 

[mm] [mm] [mm] [mm] [GPa] [N/mm] [MPa] per arm 

1 CFRP Hysol ® 9309 110 1.55 24 22 137 0.257 50 2200 

2 Aluminium AA6060-TA16 Hysol ® 9466 200 15 25 30 65.7 2.7 14 20 0 0 

3 Steel C45E Sikaforce ® 7752 300 12.7 25 55 204 4.5 15 30 0 0 

Fig. 16. Values of (a) L CZ and (b) d a eq /d a (both for EBT and TBT) for three different real DCB experiments. 
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ducing the discrepancy in the early phase of crack propagation. 
umerical model. We additionally determined the value σmax =
5 MPa by fitting the experimental F − v curve. All the relevant

ata used in this set of virtual experiments is presented in Table 6 .

In the bi-linear CZM used in the present analysis, δc = 2�/σmax 

nd δ0 = 0 . 01 δc for all adhesives. The virtual experiments are

erformed by prescribing the displacement, v , up to the maxi-

um values, which approximately correspond to those reported in

lackman et al. (2003b) , Alfano et al. (2011) and Lopes et al. (2016) .

These case studies cover a wide range of adhesive behaviours,

rom extremely brittle, to extremely ductile. This can be seen in

ig. 16 (a), where for Experiment 1 the length of cohesive zone

 CZ ≈ 1 mm, while for the other two examples we have cohesive-

one lengths which are definitively large compared to the speci-

en dimensions. The derivatives d a eq /d a for Euler–Bernoulli (EBT,

 eq = a eqE ) and Timoshenko (TBT, a eq = a eqT ) beam theory are

hown in Fig. 16 (b), which again demonstrates that crack propa-

ation is not steady-state. 

In Figs. 17 –19 , the accuracy of the various data reduction

chemes in predicting the input value � used in our numerical

odel is shown. Since for each experiment we have a different

alue of �, values of G c obtained using different approaches are

ormalised with respect to the corresponding value of �. 

On the left-hand side of Figs. 17 –19 , the fracture resistance

etermined with the data reduction schemes used in BS ISO

5217:20 09 (20 09) are compared. They are namely simple beam

heory (SBT), corrected beam theory (CBT) and experimental com-

liance method (ECM) and they evaluate G c according to the fol-

owing expressions: 

 

SBT 
c = 

4 F 2 

Eb 2 

(
3 a 2 

h 

3 
+ 

1 

h 

)
, G 

CBT 
c = 

3 F v 
2 b(a + �) 

, G 

ECM 

c = n 

F v 
2 ba 

. 

(60) 

Note that the expression for G 

SBT 
c can be obtained from Eq.

47) by assuming that the material of the arms is isotropic with

= 1 / 3 , k s = 2 / 3 , and, more importantly, by incorrectly assuming
hat a is equal to a eqT . The term � in expression for G 

CBT 
c repre-

ents a crack length correction which is obtained graphically from

he log a − log C 1 / 3 plot, where C = v /F is the measured compli-

nce. Factor n in expression for G 

ECM 

c is the slope of the linear fit

f the log a − log C data and is also obtained graphically. Note that

ll the methods from this standard require the measurement of the

rack length a . More details about these methods can be found in

S ISO 25217:2009 (2009) . 

Among the considered standards, CBT proves to be the most ac-

urate data reduction scheme, ECM does not provide satisfactory

ccuracy, while SBT gives substantial errors. On the other hand, on

heir right-hand sides, Figs. 17 –19 show that G 

E 
c , G 

T 
c and G c predict

he values of fracture resistance that have either similar or better

ccuracy than those given by CBT. Since to compute the derivative

n formulae (42) or (44) for G c , the crack length measurement is

equired, we do not consider these data-reduction formulae for G c 

o be practical enough. On the other hand, formulae (45) for G 

E 
c 

nd G 

T 
c , which do not require crack length measurement, provide

xtremely accurate predictions of � in all the cases considered,

ven for extremely ductile cases (see Fig. 19 (b)). In Figs. 18 and

9 we show that these formulae can indeed be more accurate even

han CBT, which requires measurement of the crack length. The

nly exception is the CFRP DCB delamination test (Experiment 1),

or which the response is almost brittle and, as shown in Fig. 17 (b),

 

T 
c gives a slightly worse prediction than the other methods. This is

owever expected since in Section 4.2 we have already explained

hy G 

T 
c does not converge to � for brittle CZMs ( σ max → ∞ ). 

emark 5.1. Because of the rapidly decreasing discrepancy be-

ween G 

E 
c or G 

T 
c and � with increasing crack propagation, numeri-

al analyses similar to ones presented in this article could be con-

ucted for a wider range of cases of industrial interest to identify

ptimal dimensions of the specimen ( h and L ) and of the initial

rack length, a 0 , which, for given adhesive and bulk material, give

he best estimation of � using formulae (45) for G 

E 
c or G 

T 
c , by re-
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Fig. 17. Normalised values of (a) G SBT 
c , G CBT 

c and G ECM 
c , and (b) G CBT 

c , G E c , G 
T 
c and G c for a CFRP DCB ( Blackman et al., 2003a ). 

Fig. 18. Normalised values of (a) G SBT 
c , G CBT 

c and G ECM 
c , and (b) G CBT 

c , G E c , G 
T 
c and G c for a DCB with aluminium arms and epoxy adhesive ( Alfano et al., 2011 ). 

Fig. 19. Normalised values of (a) G SBT 
c , G CBT 

c and G ECM 
c , and (b) G CBT 

c , G E c , G 
T 
c and G c for a DCB with steel arms and epoxy adhesive ( Lopes et al., 2016 ). 
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. Conclusions 

In this paper, we have reviewed and partly revised fundamental

oncepts of fracture mechanics, we have provided new and more

igorous theoretical derivations of formulae proposed in the lit-

rature for the experimental determination of fracture resistance

ithout measuring the crack length and we have reported and dis-

ussed extensive numerical analyses to support our theoretical ar-

uments. The focus has been the characterisation of the fracture

esistance of thin quasi-brittle interfaces undergoing damage and

ailure in mode I, between two parts of a body that behave elasti-

ally, which is the typical case considered when characterising the

racture resistance of adhesive joints or the delamination resistance

f FRP laminates. 

The results obtained can be more clearly summarised by sepa-

ating them into one set of conclusions with immediate and signif-

cant practical relevance for engineers in the industry and a second

et, with the conceptual novelties contributed and the open issues

hich remain to be addressed or are indeed raised by this work. 

.1. Summary of results of practical interest for engineers 

The following conclusions can be drawn and recommendations

ade based on the results obtained: 

• The DCB with prescribed displacements is the recommended

test to be conducted, because not only are specimens easily

prepared, fixtures straightforward and a conventional testing

machine needed, but also because very accurate predictions

of the work of separation, �, can be obtained with formula

(46) for G 

E 
c and (47) for G 

T 
c , both based on LEFM, which do not

require the measurement of the crack length or of the end ro-

tations. Formula (46) for G 

E 
c has the advantage of not requiring

the measurement of the shear modulus. 

• For significantly rising R-curves, the results presented indicate

that G 

E 
c and G 

T 
c provide as accurate predictions of the frac-

ture resistance as the most accurate data-reduction scheme cur-

rently recommended in the standards. 

• CBT, which is the most accurate method in the current stan-

dards, has the advantage that material and geometrical prop-

erties are not needed. However, the uncertainty related to the

measurement of the crack length are much higher than that

those associated with the measurement of the geometrical di-

mensions. As for the material properties, the effective Young’s

modulus is required for the computation of G 

E 
c and G 

T 
c , and can

indeed vary with respect to the uniaxial modulus because of

constraints on the anticlastic bending. However, this effect can

be taken into account by one-off analyses for different cross

section dimensions and rig fixtures, which could be incorpo-

rated in a new standard. Furthermore, these analyses could be

avoided or at least complemented with ‘post-mortem’ 3-point

bending tests made on the two arms of the DCB specimens (i.e.

once they have been separated from each other). 

.2. Summary of results in terms of fundamental concepts 

We have shown that the widely accepted principle that LEFM

annot be used in presence of large areas of nonlinearity is not

enerally true. For the problems addressed in this article, which

re mode-I debonding of adhesive joints or delamination of com-

osites, this means that even in presence of a large cohesive zone,

he critical energy release rate, G c , determined using LEFM-based

ethods, is extremely close to the work of separation, �, required

o separate two infinitesimal areas of the interface, that is the area

nder the traction-separation law if a CZM is used. 
Therefore, the difference between G c and � does not depend on

he size of the cohesive zone, as mostly stated in the literature so

ar, but it depends on the extent by which the dissipation process

oes not advance in a steady-state fashion. 

Indeed, when the profile of the specific dissipation in front of

he crack tip advances in a steady-state way, like in the case of

 DCB with prescribed rotations with constant properties on the

nterface, there is no difference between G c and �. 

For a DCB with prescribed forces, the process is not steady-state

ut it is very close to being so, at least in the case of a flat R-curve,

.e. when the fracture resistance does not change with crack prop-

gation. This explains the great accuracy of LEFM-based methods

n predicting � also in presence of large cohesive zones. 

In case of a flat R-curve, � turns out to be equal to the critical

 integral, J c . Therefore, in this case our analysis provides a clear

elationship between G c and J c , shedding light on a long debate

bout which one of these two parameters should be used to char-

cterise fracture resistance. 

For a non-flat R-curve, the fracture resistance is found to vary

typically increase) with the advance of crack propagation. Unless

he actual dissipation phenomena leading to such R-curve are sep-

rately modelled, a non-flat R-curve is effectively equivalent to

ave non-homogeneous interface with � varying in the direction

f crack propagation. In such case, we have shown that J c � = �,

hich has never been pointed out in the literature. This also im-

lies that the derivative of the J integral with respect to the crack-

ip displacement does not provide the exact traction-separation

aw, although it is still a useful approximation of it that also gives

nsight into the shape of the law. 

In order to determine G c , we have shown that the methods so

ar proposed that do not require the measurement of the crack

ength did not take into account the conceptual difference between

he so-called equivalent length, a eq , and the actual crack length, a .

he expression for G c used in these methods should be multiplied

y the derivative d a eq /d a , whose knowledge however would again

equire the measurement of the crack length. 

On the other hand, we have shown in our numerical results, for

 wide range of cases of practical interest, that d a eq /d a is indeed

ery small for a flat R-curve in a DCB tested with prescribed forces,

gain because the process is close to being steady-state. For this

eason, the values predicted by these methods, denoted by G 

E 
c and

 

T 
c , when the Euler–Bernoulli or Timoshenko theories are used, re-

pectively, are extremely close to G c . For a significantly rising R-

urve, the difference between G c and G 

E 
c or G 

T 
c can be not negligi-

le for short crack lengths but it becomes negligible for sufficiently

arge crack lengths. 

.3. Future work 

Although in this paper we have studied problems covering a

ide range of cases of engineering interest, more numerical work

nd possibly the creation of a database of numerical results can be

ery helpful to provide even more robust estimates of the accuracy

f all methods investigated in this paper. It will also be very use-

ul to accompany this benchmarking exercise with a wide range of

xperimental tests, possibly within the context of a round robin, to

ppreciate how much measurement errors and scatter of material

nd geometrical properties contribute to the discrepancies in addi-

ion to those considered in this paper, which are only due to the

ctual data-reduction scheme used. 

upplementary data 

Supplementary material related to this article can be found on-

ine at http://dx.doi.org/10.17633/rd.brunel.6194483 . 

http://dx.doi.org/10.17633/rd.brunel.6194483
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Appendix A. Derivation of a closed-form expression for J T c 

The J integral of Eq. (20) is here given by: 

J = 

∫ 
�

(
w n x − t y 

∂u y 

∂x 

)
d s (A.1)

because t x = 0 . Considering the contour � (line ABCDEG ) shown in

Fig. A1 , the only part of � where both w and n x are not zero are

the two straight lines AB and EG , where for the case of Timoshenko

beam theory the strain energy is only due to the shear stresses and

strains, which are to be assumed constant and equal to F / A and

F /( μ A s ), respectively. So it results: ∫ 
�

w n x d s = 

∫ B 

A 

F 2 

2 μ A s A 

d y + 

∫ G 

E 

F 2 

2 μA s A 

d y 

= 2 

∫ −h 

0 

F 2 

2 μA s A 

d y = 

F 2 

b μA s A 

∫ −h 

0 

b d y = − F 2 

b μA s 

(A.2)

For the second term of the integral, the reaction forces where

displacements are prescribed are approximated here as concen-

trated forces, which means that the tractions t y can be considered

applied on infinitesimal areas where ∂ u y / ∂ x is constant (and can

be taken out of the integral in (A.1) . As we have denoted by θ v 

the rotation of the top arm where the displacement is prescribed,

assumed positive if anti-clockwise, one has: 

Top: 
∂u y 

∂x 
= θv − F 

μ A s 
Bottom: 

∂u y 

∂x 
= −θv + 

F 

μ A s 
(A.3)

Since ∂ u y / ∂ x can be taken out of the integral, whereas t y is positive

on the top and negative on the bottom, one has 

∫ 
�

t y 
∂u y 

∂x 
d s = 2 

(
θv − F 

μ A s 

)
1 

b 

∫ 
�∗

top 

t y b d s = 

2 

b 

(
F θv − F 2 

μ A s 

)

(A.4)

where �∗
top is the infinitesimal area on the top where tractions are

applied. 

Replacing Eqs. (A .2) and (A .4) into Eq. (A .1) , one finally obtains:

J = 

F 2 

b 

(
1 

μ A s 
− 2 θv 

F 

)
(A.5)

which has been denoted by J T c in Eq. (54) to indicate that it is de-

rived according to Timoshenko beam theory and because in that

equation the critical value of the J integral is considered, i.e. dur-

ing crack propagation. 
Fig. A1. J-integral contour � used to determine J T c . 

∫

 

 

s

M  
ppendix B. Determination of � for a DCB specimen via 

olution of beam differential equations 

For a DCB with prescribed displacement or rotations, using sim-

le beam theories we can find exact analytical formulae for the

ork of separation, �, i.e. the area under the traction-separation

aw of the CZM, assuming that the interface properties, including

, are constant along the interface. A similar approach was pro-

osed in Olsson and Stigh (1989) for Euler–Bernoulli beam theory.

ere we also derive the expressions for Timoshenko beam theory

or a DCB with either displacement or rotations prescribed. 

Let us consider a Timoshenko beam representing the upper arm

f a DCB with interface tractions σ ( x ) as shown in Fig. B1 . 

We note that the origin of the coordinate system is located at

he crack tip, which is the point where the relative displacement

(0) = δc . Due to symmetry, δ(x ) = 2 u y (x ) , where u y ( x ) is the dis-

lacement of the upper layer in the y -direction. The distribution of

nterface tractions over the beam length, σ ( x ), will depend on the

hape of the traction-separation law, σ ( δ), and on the boundary

onditions, i.e. whether we apply force, F , or moment, M , at x = −a .

n Fig. B1 we consider a general case, where the relationship σ ( δ)

oes not need to be defined a priori , so that this proof is valid for

ny type of CZM. The segment of the DCB arm that is completely

eparated does not enter the observed domain ( x ∈ [0, ∞ )), but is

aken into account by the boundary conditions at x = 0 . 

According to Timoshenko beam theory, we have 

 I u 

IV 
y (x ) + 

E I 

μA s 
q ′′ (x ) = q (x ) , (B.1)

here distributed load q ( x ) according to Fig. B1 can be written as

 (x ) = −σ (x ) b and the derivatives are total derivatives with re-

pect to x . 

By multiplying the entire equation by u ′ y (x ) and integrating

ver x from 0 to ∞ , we obtain 

I 

∫ ∞ 

0 

u 

IV 
y (x ) u 

′ 
y (x )d x + 

EI 

μA s 

∫ ∞ 

0 

q ′′ (x ) u 

′ 
y (x )d x 

= −b 

∫ ∞ 

0 

σ (x ) u 

′ 
y (x )d x. (B.2)

Solving the integral on the right-hand side, 

 ∞ 

0 

σ (x ) u 

′ 
y (x )d x = −

∫ δc / 2 

0 

σ (u y )d u y = −1 

2 

�, 

ives the work of separation �. To solve the integrals on the left-

and side we integrate by parts and using relations 

 (x ) = T ′ (x ) , (B.3)

 (x ) = M 

′ (x ) = EI ϕ 

′′ (x ) = E I u 

′′′ 
y (x ) + 

E I 

μA s 
q ′ (x ) , (B.4)

here T (x ) , M (x ) and ϕ( x ) are the cross-sectional shear force,

ending moment and rotation functions, we obtain 

 ∞ 

0 

u 

IV 
y (x ) u 

′ 
y (x )d x = 

[ 
u 

′ 
y (x ) u 

′′′ 
y (x ) − 1 

2 

u 

′′ 
y (x ) 2 

] ∞ 

0 
, 

∫ ∞ 

0 

q ′′ (x ) u 

′ 
y (x )d x = 

[ 
u 

′ 
y (x ) q ′ (x ) − q (x ) u 

′′ 
y (x ) + 

1 

2 EI 
T (x ) 2 

− 1 

2 μA s 
q (x ) 2 

] ∞ 

0 

. (B.5)

Expressions (B.5) are then substituted in Eq. (B.2) which, after

ubstituting q ′ ( x ) from (B.4) and q ( x ) from 

 (x ) = E I u 

′′ 
y (x ) + 

E I 

μA s 
q (x ) , (B.6)
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Fig. B1. Analytical model for a DCB: (a) Timoshenko beam representing the upper arm with interface tractions and (b) traction-separation law at the interface. 
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implifies to 

ϕ(x ) T (x ) − T (x ) 2 

2 μA s 
− M (x ) 2 

2 EI 

]∞ 

0 

= 

b 

2 

�. (B.7) 

From Eq. (B.7) , � can be determined for different boundary

onditions at the crack tip ( x = 0 ) and at the end of the speci-

en ( x = ∞ ). We will assume that at x = ∞ all the quantities ( ϕ( x ),

 (x ) and M (x ) ) are zero and thus only the lower boundary ( x = 0 )

ill contribute to the solution of (B.7) . 

For a DCB with prescribed displacements, the boundary condi-

ions at the crack tip read 

 (0) = δc / 2 ; ϕ(0) = θc ; M (0) = F · a ; T (0) = F ; (B.8) 

here by θ c we denote the cross-sectional rotation of the arm at

he crack tip. Applying the boundary conditions (B.8) –(B.7) gives 

= 

F 2 a 2 

bEI 
+ 

F 2 

bμA s 
− 2 F θc 

b 
, (B.9) 

here the first term is the typical solution from LEFM where

otation of the crack tip is not taken into account, the second

erm represents the contribution of the shear strains and the

hird term is the influence of the rotation at the crack tip. Since

or an Euler–Bernoulli or Timoshenko cantilever beam θv = θc −
 a 2 / (2 EI) , where θ v is the rotation of the cross section at the point

f the application of the force F , the final result (B.9) can be also

ritten as 

= 

F 2 

b 

(
1 

μA s 
− 2 θv 

F 

)
. (B.10) 

Note that this expression is equivalent to Eq. (A.5) for J T c which

emonstrates that in case of a homogeneous interface J T c = �. If

he shear strains are neglected we obtain the expression 

= −2 F θv 

b 
(B.11) 

hich is the same expression as J E c in Eq. (53) and has been re-

orted by a number of authors in the literature ( Paris and Paris,

988; Högberg et al., 2007; Biel and Stigh, 2008; Zhu et al., 2009 ).

The boundary conditions for a DCB with prescribed rotations

ead 

 (0) = δc / 2 ; ϕ(0) = θc ; M (0) = M; T (0) = 0 ; (B.12) 

hich applied to Eq. (B.7) give 

= 

M 

2 

bEI 
. (B.13) 

This expression confirms once again that LEFM definition for G c 

see Eq. (52) ) is equivalent to � for any length of cohesive zone as

ong as crack propagation is steady state. Again, expression (B.13) is

n accordance with the J-integral solution proposed in the litera-

ure ( Rice, 1968b; Suo et al., 1992; Sørensen et al., 1996; Lindhagen

nd Berglund, 20 0 0 ). 
It is worth remembering that formulae (B.10), (B.11) and

B.13) have been obtained for the case of a homogeneous interface, 

n which the traction-separation law is the same for each point

f the interface. If the traction-separation law changes along the

nterface, these formulae cease to be valid, regardless of whether

hey are obtained through the procedure reported here or by com-

uting the J integral. Numerical results confirming this theoretical

nding are reported in Section 4.4 . 

ppendix C. Limit values for G 

T 
c and d a eqT /d a in the case of a 

rittle crack ( σmax = ∞ ) 

By combining expressions (36) and (37) , after solving a cubic

quation, we can express a eqT in terms of a eqE as 

 eqT = 

3 
√ 

χ − η 3 

√ 

1 

χ
, (C.1) 

here 

= 

a 3 eqE 

2 

+ 

√ 

a 6 
eqE 

4 

+ η3 (C.2) 

nd η = EI/μA s . It can be easily shown that as μA s → ∞ , in the

imit η = 0 , χ = a 3 
eqE 

and a eqT = a eqE . By combining Eq. (45) we can

btain 

G 

T 
c 

G 

E 
c 

= 

a 2 eqT + η

a 2 
eqE 

, (C.3) 

hich using (C.1) becomes 

G 

T 
c 

G 

E 
c 

= 

χ
2 
3 − η + η2 χ− 2 

3 

a 2 
eqE 

. (C.4) 

As expected, η = 0 in Eq. (C.4) returns G 

T 
c = G 

E 
c . Finally, from Eq.

C.1) we can obtain 

d a eqT 

d a eqE 

= 

χ− 2 
3 

3 

(
1 + η χ− 2 

3 

)
d χ

d a eqE 

, (C.5) 

here 

d χ

d a eqE 

= 

3 

2 

a 2 eqE 

⎛ 

⎝ 1 + 

a 3 eqE √ 

a 6 
eqE 

+ 4 η3 

⎞ 

⎠ . (C.6) 

Again, we can show that for η = 0 , d χ/ d a eqE = 3 a 2 
eqE 

and

 a eqT / d a eqE = 1 . 

As already mentioned, in the case of infinitely stiff interface

 

E 
c = � and a = a eqE and thus expressions (C.4) and (C.5) can be

sed to define limit values for G 

T 
c / � and d a eqT /d a when σmax = ∞ .

hese limit values are presented graphically in Fig. 7 . 
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