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Models of object recognition generally emphasize the
importance of luminance-defined shape. However, it is
still not fully understood how color signals combine with
luminance signals to affect object-related form
processing. This electroencephalographic study aimed to
examine the contribution of chromatic contrast by
assessing its effects on the time course of shape-related
processing. Participants classified Gaborized images of
object shapes, nonobject shapes, and patches of
pseudorandomly scattered Gabors. Stimuli excited (a)
the luminance (LþM) channel alone, (b) luminance and L-
M channels, or (c) luminance, L-M, and S-(LþM) channels
and were presented either at mean discrimination
threshold or at twice this mean threshold. As expected,
classification accuracy was comparable at threshold, as
were the attributes of the early, perceptual first negative
(N1) component of the event-related potential (ERP).
Differences emerged at suprathreshold: Objects defined
by the full combination of channels were associated with
the poorest performance and the lowest N1 amplitude.
Shape sensitivity was not consistently observed in the
N1 but was more evident in the late positive potential
(LPP), a cognitive ERP component. Both the N1 and the
LPP were affected by the amount and type of contrast in
the image. While the effects of luminance and L-M
contrast were similar, affecting the ERP selectively during
the N1 and LPP period, S-(LþM) contrast elicited a
sustained shift in amplitude. Our results demonstrate,
for the first time using a combination of behavioral as
well as early and late electrophysiological effects, that
shape classification is determined by both the chromatic
and the luminance content of the image.

Introduction

Acquiring knowledge about objects is essential for
adaptive behavior in everyday environments. Both

achromatic and chromatic information are relevant for
everyday vision, but their contributions to object
processing have traditionally been perceived as differ-
ent: Luminance is seen as more relevant for shape
processing, and color is seen as more relevant for
segmenting objects from their backgrounds (Tanaka,
Weiskopf, & Williams, 2001). This is reflected in
models of object recognition. For example, low-level
inputs that drive object processing in the model of
Sowden and Schyns (2006) stem from luminance-driven
spatial frequency channels. Further, in Bar’s (2003)
model of object recognition, the fast, top-down input
essential for constraining the processing in posterior
representational areas is driven by rapid projections of
low-spatial-frequency luminance information. At the
neuronal level, the tuning of luminance-driven spatial
frequency channels is affected by lateral inhibition
between neurons with spatially overlapping receptive
fields, which are tuned to different spatial frequency
and orientation bands (Greenlee & Magnussen, 1988;
Tolhurst, 1972). Lateral interactions also exist between
spatial frequency channels sensitive to different spatial
locations: Polat and Sagi (1993) found that foveal
target detection is affected by a narrow inhibitory
surround and a further, much larger facilitatory area.
In this way, neuronal sensitivity is fine tuned to spatial
variations of luminance contrast that define shape
across orientation and size. However, there is emerging
evidence that color signals can and do contribute to the
processing of object form. To a degree, color mecha-
nisms are also able to provide low-level information
that sustains object recognition, with spatial frequency
(Mullen & Losada, 1994, 1999) and orientation
(Webster, DeValois, & Switkes, 1990; Wuerger, Mor-
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gan, Westland, & Owens, 2000) channels that are not
vastly dissimilar to those driven by luminance infor-
mation. Anatomical and physiological investigations
found that a substantial amount of neurons in areas V1
and V2 of the cortex receives inputs from different
visual streams, indicating that the segregation of
luminance and color signals is not as normative as had
been previously thought (Levitt, Yoshioka, & Lund,
1994; Vidyasagar, Kulikowski, Lipnicki, & Dreher,
2002; for models, see Lund, Wu, Hadingham, & Levitt,
1995; Zhaoping, 2014; for comprehensive reviews, see
Kulikowski, 2003; Solomon & Lennie, 2007). Benefits
brought about by the availability of spatial information
from both luminance and color might be expected from
considerations of the complexities of our everyday
visual environments. Contributions of chromatic sig-
nals to form processing might be particularly salient
due to their independence from shadows and shading,
which are defined through changes in luminance only
(for a review, see Shevell & Kingdom, 2008). Indeed,
edge extraction from luminance and chromatic spa-
tially superimposed components within a set of natural
scene images showed that these signals provided
mutually independent information (Hansen & Gegen-
furtner, 2009). Jennings and Martinovic (2014) de-
scribed facilitatory interactions between L-M
chromatic and luminance signals in a task that required
discriminating familiar, nameable shapes (objects) from
novel, unnameable shapes (nonobjects). Chromatic
contrast benefitted discrimination by combining with
colocalized luminance contrast in a facilitatory fashion,
leading to reduced object–nonobject discrimination
thresholds.

The brief literature overview presented above raises
one important question: If chromatic signals do
combine with colocalized luminance signals to con-
tribute to form perception, at which stage of neural
processing does this occur? With its millisecond
resolution, electroencephalography (EEG) is a very
useful method for studying the time course of visual
processing. A specific sequence of event-related poten-
tial (ERP) components is typically observed in EEG
experiments that require classification of visual stimuli.
Some of the earlier components, such as the first
positive (P1) and first negative (N1) components, are
more perceptual in nature, while the components that
develop later in the time course reflect progressively
more cognitive processing. Traditionally, these com-
ponents are taken as dependent variables, and predic-
tions are then made about modulations that should
occur due to an early, perceptual, or late cognitive
contribution. P1 and N1 components are considered to
be early components, reflecting perceptual processes;
they are both contrast- and spatial frequency–depen-
dent and relatable to psychophysical threshold (Boon,
Suttle, & Dain, 2007; Souza, Gomes, Saito, da Silva, &

Silveira, 2007). Isoluminant stimuli do not elicit the
earliest P1 component of the visual ERP, but they do
elicit a prominent negative deflection that corresponds
in timing to the N1 component (Berninger, Arden,
Hogg, & Frumkes, 1989; Murray, Parry, Carden, &
Kulikowski, 1986). The shape of the ERP waveform is
determined not only by the spatial frequency and
chromoluminance content of the stimulus but also by
the regularity and duration of the stimulus presentation
(Kulikowski, 1977; Rabin, Switkes, Crognale, Schneck,
& Adams, 1994). In a study that used relatively long
stimulus presentations and variable intertrial intervals,
typical of object recognition ERP experiments, Marti-
novic, Mordal, and Wuerger (2011) found that the
amplitude of the N1 component correlated with
stimulus contrast. The N1 component is thus the
earliest locus of possible contributions of both color
and luminance to the ERP. Martinovic et al. (2011)
also observed object-sensitive modulations of the N1
only for images that contained luminance contrast in
addition to chromatic contrast. But the N1 is not
always sensitive to the presence of objects (e.g., Gruber
& Müller, 2005), implying that object-sensitive N1
effects are likely to be reliant on stimulus and task
characteristics. Object sensitivity is found much more
reliably in the late positive potential (LPP) component
of the ERP, known to be robustly modulated by
semantic content of stimuli (e.g., their familiarity and
nameability; Gruber & Müller, 2005; Martinovic,
Gruber, Ohla, & Muller, 2009).

In order to establish the way in which the time
course of object-related shape processing is influenced
by the presence of different contrast types in addition
to luminance, we conducted an ERP study. As in
Jennings and Martinovic (2014), our stimuli consisted
of Gaborized images of objects, nonobjects, and
pseudorandom patches. We used stimuli defined by
luminance alone as well as luminance colocalized with
an L-M chromatic signal and luminance colocalized
with both an L-M and an S-(LþM) chromatic signal.
Thus, all of our stimuli contained luminance contrast,
either on its own or in combination with chromatic
contrast. Comparisons between conditions that excite
different chromoluminant channels are complicated by
the necessity to establish a common contrast metric,
which is far from straightforward (for a discussion, see
Shevell & Kingdom, 2008). Most often, contrasts in
different channels are matched through multiples of
threshold. We opted to set our contrast levels on the
basis of object–nonobject discrimination thresholds
from Jennings and Martinovic (2014) since we intended
to use the same stimulus set. Contrasts were set at
threshold or suprathreshold (defined as twice thresh-
old). We intended to perform two types of analysis on
the EEG data: (a) a traditional ERP analysis, focused
on N1 and LPP components, to indicate the level at
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which differences emerge between our object, non-
object, and random patch stimuli and to assess whether
these differences are affected by the contrast content of
the stimuli, and (b) linear modeling of the EEG
waveforms in order to identify how three types of
contrast—luminance, L-M, and S-(LþM)—affect the
stages of processing reflected in the N1 and LPP
components. As mentioned earlier, Jennings and
Martinovic (2014) found that less luminance contrast
was required to reach threshold when it was combined
with L-M chromatic contrast. Therefore, our condi-
tions significantly differed in the amount of luminance,
L-M, and S-(LþM) contrast they contained, enabling
the modeling approach.

We expected to find performance and early, percep-
tual ERP components to be matched at threshold. At
suprathreshold, we predicted that gains in performance
should be matched by increases in both the N1 and
LPP amplitudes. We tested whether the N1 and the
LPP were sensitive to differences between the three
classes of stimulus images: (a) familiar, nameable
shapes (objects); (b) shapes that lack familiarity and
nameability (nonobjects); and (c) stimuli that lack
familiarity, nameability, and any clear shape (pseudo-
random patches). We expected to find such sensitivity,
assuming on the basis of Martinovic et al. (2011) that it
was driven mainly by the information derived from
luminance contrast. Models that assume that lumi-
nance is more relevant for object representation
processes would predict that any object-sensitive ERP
markers should be more pronounced for stimuli that
contain significantly more luminance. However, if this
is not the case, it would necessitate models of object
recognition to include a shape-processing stage at
which chromatic contrast combines with luminance
contrast (for a similar line of research with naturalistic
and natural images, see Groen, Ghebreab, Lamme, &
Scholte, 2012; Groen, Ghebreab, Prins, Lamme, &
Scholte, 2013). Finally, the linear modeling of the EEG
using contrast metrics would allow us to directly
examine the degree to which the ERP waveforms are
sensitive to each type of contrast: luminance, L-M, or
S-(LþM). In order for chromatic contrast to contribute
to perceptual and cognitive processing that is marked
by N1 and LPP components, it needs to have a
modulatory effect that is circumscribed to the time
windows of these components.

Materials and method

Participants

A total of 22 participants were recruited for the
study. Each participant reported normal or corrected-

to-normal visual acuity and had normal color vision as
assessed with the Cambridge Color Test (Regan,
Reffin, & Mollon, 1994). Three participants were
excluded due to inadequate behavioral performance,
defined as below-chance accuracy on any single
condition, and one participant was rejected due to more
than 40% trials with artifacts. Excluded participants
were replaced with new participants in order to
maintain counterbalancing of button-to-response allo-
cation (see Procedure). The final sample of 18
participants (12 females, six males) had a mean age of
25 6 3.9 years (M 6 SD; range: 19–35 years), and 16
were right handed. Participants were reimbursed for
their time. The study was approved by the ethics
committee of the School of Psychology, University of
Aberdeen and is in accordance with the ethical
principles stated in the Declaration of Helsinki.

Derrington Krauskopf Lennie color space

The Derrington Krauskopf Lennie (DKL) color
space (Derrington, Krauskopf, & Lennie, 1984) was
used to describe the chromatic properties of the
stimuli. Figure 1 shows a representation of the DKL
color space indicating the two chromatic mecha-
nisms—L-M and S-(LþM)—and the luminance
mechanism—LþM—along with a vector (P) defining a
particular chromaticity and luminance defined with a
radius r, chromatic angle /, and luminance elevation
h. The DKL space was implemented in the Color
Toolbox (CRS, Rochester, Kent, UK; Westland,
Ripamonti, & Cheung, 2012) using measurements of
monitor phosphors’ spectral power distributions
obtained with a SpectroCAL (CRS) and cone funda-
mentals (Stockman & Sharpe, 2000; Stockman,
Sharpe, & Fach, 1999). A uniform midgray back-
ground located at the adaptation point DKL(r, /, h)¼
(0, 0, 0) was used throughout the experiments; this
corresponded to CIE 1931 (x, y, Y)¼ (0.30, 0.32, 46.4),
where Y is in units of cd m�2.

Stimulus contrast settings

Three conditions were used in the study: The first
isolated the luminance contrast (LþM); the second
combined luminance and L-M contrasts; and the third
combined luminance, L-M, and S-(LþM) contrasts. As
explained in the Introduction, the choice of conditions
was based on object–nonobject discrimination results
of Jennings and Martinovic (2014). We selected those
combined conditions in which an interaction between
luminance and color was observed, such that less
luminance contrast was needed in the combined
condition to achieve threshold. On the other hand, the
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two conditions that combined color and luminance did
not differ significantly from each other in terms of L-M
and LþM signals at threshold, reflecting the fact that S-
(LþM) signals did not affect performance. Stimuli in
our study were presented either at mean object–
nonobject discrimination threshold or at twice the
threshold. This provides a range of luminance and
chromatic contrasts, allowing us to use linear modeling
of single-trial activity by contrast in LþM, L-M, and S-
(LþM) mechanisms.

Figure 2 summarizes the contrasts along with the
DKL parameters. Mechanism contrasts shown in
Figure 2 were derived from Michelson cone contrasts.
These were calculated according to Equation 1, where
Imax and Imin are the maxima and minima cone
excitations of the Gabors. Mechanism contrasts were
then computed for L-M, S-(LþM), and LþM.

CMichelson ¼
Imax � Imin

Imax þ Imin
ð1Þ

As mentioned earlier, it can be seen from Figure 2
that stimuli at threshold do not contain exactly the
same amount of luminance contrast. If the stimuli did
include the same amount of luminance, on the basis of

Jennings and Martinovic’s (2014) findings of facilita-
tions between L-M and LþM signals it would be
reasonable to expect improved performance for condi-
tions combining luminance with a nonnegligible
amount of L-M information. This would create a
problem for interpreting the results unequivocally in
relation to contrast type, as differences in ERPs could
also be ascribed to mismatched performance. An
alternative that would ensure matched performance
would have been to fix the luminance contrast at
threshold and to add chromatic contrast that is small
enough to not affect performance. This approach
would be suitable if our objective was to study contrast
summation without attempting to relate it to perfor-
mance on a shape classification task, as these chromatic
contrasts would not be contributing to performance in
any way. Differences in contrast-response functions
between luminance alone and luminance with color
would warrant a separate contrast-additivity study with
a much simpler stimulus and task (for some previous
work with EEG, see Rabin et al., 1994; Rudvin, 2005;
Rudvin & Valberg, 2005). Our shape discrimination
task would not be suited for this purpose, as L-M and
S-(LþM) isolating conditions require relatively high
levels of contrast at threshold (see figure 3 in Jennings
& Martinovic, 2014), making it impossible to stay
within the cathode ray tube (CRT) monitors gamut if
they were to be combined with any significant levels of
other contrast types.

Last, in order to understand the way in which we
matched stimulus contrast to account for performance,
it is important to note that thresholds in Jennings and
Martinovic (2014) were obtained using a two-interval
forced-choice task in which participants had to select
the interval that contained the object, with the other
interval containing the nonobject. Therefore, when we
say that stimuli were presented at object–nonobject

Figure 2. Contrasts for the three threshold and three

suprathreshold conditions as used in the experiment. Contrasts

are based on mean data of the main experiment in Jennings and

Martinovic (2014).

Figure 1. The DKL color space with three perpendicular axes

corresponding to the L-M, S-(LþM), and LþM mechanisms was

used to specify the chromatic and luminance conditions used in

this experiment and further defined in Figure 2. The

chromaticity and luminance at point P is described by DKL (r,

/DKL, hDKL)polar, where r is the three-dimensional Euclidean

distance from the center of the space located at (0, 0, 0), /DKL is

the chromatic angle, and hDKL is the luminance elevation. The

figure also provides an example Gabor patch on a gray

background for each of the three cardinal directions in DKL

space.
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discrimination threshold, this implies that performance
in discriminating these two categories of stimuli should
be matched at this level of contrast. However, it does
not necessarily mean that in a one-interval forced-
choice task similar accuracy rates will be obtained for
object and nonobject images since one-interval forced-
choice tasks are additionally prone to response biases.
For example, if there is an overall bias to classify an
image as a nonobject, this will lead to higher error rates
for objects than nonobjects and higher hit rates for
nonobjects than objects. In that case, if the hit rate for
objects is 41%, with 10% of nonobjects misclassified as
objects, the corresponding performance matches a d0 of
approximately 1 (thus 75% correct overall). With the
hit rate for nonobjects at 85% and 48% of objects
misclassified as objects, the corresponding d0 is again
approximately 1 (matching 75% correct overall). This
shows that discriminability can indeed be matched,
although hit rates and error rates for individual
stimulus classes differ. A similar approach to stimulus
contrast matching was used successfully in Martinovic
et al. (2011) and Kosilo et al. (2013). To further
quantify the relations between the three types of
stimuli, we performed an analysis of response patterns
(see Supplementary Material S2). These percentages
can be used to approximately assess the discriminability
between the different classes of stimuli, although when
performing these calculations it is important to account
for the fact that there are three possible responses
(object, nonobject, random). Considering that the
stimuli were matched in performance using the two-
interval forced-choice thresholds from Jennings and
Martinovic (2014) but that this does not necessarily
imply that the resulting performance will be 75% for
each of the three stimulus classes (especially the
random patches, which were added as a control
stimulus with no explicit contours), one could alterna-
tively apply the labels lower contrast match and higher
contrast match for our threshold and suprathreshold
conditions, respectively. We opt to use the terms
threshold and suprathreshold, as this reflects that the
contrasts were chosen not provisionally but rather on
the basis of experimental threshold data from Jennings
and Martinovic (2014).

Stimuli

The stimulus set from Jennings and Martinovic
(2014) was used (available for download at http://
homepages.abdn.ac.uk/j.martinovic/pages/dept/
project.htm). This is a set of 377 Gaborized nameable,
familiar objects and their unnameable, unfamiliar
nonobject counterparts, similar to the image library
provided by Sassi and colleagues (Sassi, Machilsen, &
Wagemans, 2012; Sassi, Vancleef, Machilsen, Panis, &

Wagemans, 2010). This stimulus set was supplemented
by 377 images with pseudorandomly scattered Gabor
patches, which unlike the nonobjects did not consist of
iso-oriented contours. All stimuli comprised a series of
center-symmetric 3-cpd Gabor patches. This spatial
frequency was chosen so that roughly equal contrast
dependence of orientation sensitivity across the mech-
anisms would be maintained based on available data
for L-M and luminance mechanisms (Wuerger &
Morgan, 1999). An additional benefit is that ampli-
tudes and latencies of S- and L-M–elicited visual
evoked potentials (VEPs) are roughly similar around 3
cpd (see figure 9 in Rabin et al., 1994). The creation of
the object–nonobject stimuli started by selection of
suitable line images of objects from various stimulus
sets (Alario & Ferrand, 1999; Bates et al., 2003; Hamm
& McMullen, 1998) and by the manual digital drawing
of additional line images of objects that were not
represented in those sets. The lines of these images were
replaced with a series of Gabor patches, with the
position of each Gabor patch predefined by hand in
order to ensure that shape-defining lines were main-
tained in the images. (For an algorithmic approach to
the same problem, see the Grouping Elements Ren-
dering Toolbox for Matlab [The Mathworks, Inc.,
Natick, MA; Demeyer & Machilsen, 2012].) The
corresponding nonobject images were created by using
image-editing software to distort the line images of the
objects until they became unrecognizable. The lines
were then replaced by Gabor patches, similarly to the
procedure described above. Figure 3 shows examples of
an object (a zebra; Figure 3a), a nonobject (Figure 3b),
and a random patch (Figure 3c). The process of
scrambling the object images into nonobject images
attempted to preserve some important attributes of the
initial object images, including the visual complexity of
the images as reflected in .jpeg file size (Szekely & Bates,
2000) and their aspect ratio. In the process of
transforming line drawings into Gaborized images, care
was taken to have some of the lines defined by Gabor
patches located near the fixation point (no farther than
approximately 18 away) in order to preclude the need
for eye movements to outer object edges in low-
contrast conditions close to threshold. Finally, the
nonobjects were also constrained to have a closed outer
contour in order to be consistent with that property of
objecthood and to prevent them from appearing as
random clusters of Gabor patches (which was the
added third stimulus class). These pseudorandom
clusters were created by scattering the same number of
elements that formed the matching object and non-
object pair over the approximate area that they
occupied as defined by an ellipse. The patches are
pseudorandom as the Gabors were not allowed to
overlap. A pilot naming test was conducted on the
stimuli in which participants had to decide whether a
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presented shape was an object or a nonobject and then,
if they classified the image as an object, provide a name
(see Jennings & Martinovic, 2014). The final piloted set
of object stimuli subtended a height and width of 2.98
6 1.08 and 6.78 6 1.18 (M 6 SD), respectively, while
the nonobject stimuli subtended a height and width of
2.88 6 0.88 and 7.68 6 0.98 (M 6 SD), respectively. For
more details on the Gabor properties and the attributes
of the stimulus set, see Jennings and Martinovic (2014).

Procedure

Participants were informed that their task was to
discriminate objects, nonobjects, and random images.
They were shown some examples of images and then
performed a practice block of 51 trials that contained a
subset of stimuli not used in the main experiment (17
stimuli per image class). The intention was to famil-
iarize them with the task. Participants repeated the
practice block if their performance was below 70%.
Usually, that criterion was reached after one repetition;
sometimes no repetitions were needed, and rarely
participants repeated the practice twice. The main
experiment consisted of a total of 1,080 trials distrib-
uted over ten 108-trial blocks. A trial started with a
variable period (500–700 ms) during which only the
fixation cross was displayed. After that the stimulus
was displayed for 1200 ms, followed by the fixation
cross only for a further 1000 ms. Participants
responded with a button press indicating whether the
presented stimulus was an object, a nonobject, or a
pseudorandom patch. Button-to-response allocation
was counterbalanced across participants. Participants

were instructed not to make eye movements or blink
during the display of a stimulus or the fixation cross
and to try to remain relaxed and refrain from making
body or head movements throughout the experiment.
At the end of each trial the fixation cross was replaced
with an ‘‘X’’ for 1000 ms; participants were instructed
to blink during this period if required. Figure 4 shows
the sequence of one trial.

Behavioral data analysis

Accuracies and reaction times (RT) between 300 and
2200 ms were analyzed. Percentage of correct responses
was computed for all conditions and subjected to
statistical analysis, but incorrect responses were also
taken into consideration in an additional analysis of
potential biases in response patterns. Median RTs for

Figure 3. Examples of stimulus types: (a) an object (a zebra), (b) a nonobject, and (c) a random patch. (d) A luminance-defined Gabor

patch. (e) A luminance- and L-M–modulated Gabor patch. (f) A luminance-, L-M–, and S-(LþM) (i.e., the full condition)–modulated

Gabor patch.

Figure 4. Trial outlook starting with a variable period of fixation

that preceded stimulus onset, followed by the stimulus

presentation, and ending in an additional fixation-only period

during which observers could still respond. Finally, the fixation

‘‘þ’’ changed to an ‘‘X’’ to indicate to the participant that they

could blink if required.
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correct items were computed for each participant.
Differences in accuracies and median RTs between the
conditions were analyzed with a repeated measures
analysis of variance (ANOVA) with the factors
contrast level (threshold, suprathreshold), contrast
combination (LþM isolating, LþM combined with L-
M, LþM combined with both L-M and S-[LþM]), and
stimulus type (object, nonobject, random patch).
Greenhouse–Geiser correction was used when neces-
sary. Post hoc tests were performed using Tukey’s
honestly significant difference (HSD) to follow up on
interactions and Bonferroni-corrected paired t tests to
further assess sources of main effects. The supra-
threshold data are presented in the Results, and a
comparison of these data with the threshold data is
presented as Supplementary Material S1. Biases in
response patterns are presented as Supplementary
Material S2.

EEG data acquisition and analysis

Continuous EEG was recorded from 128 locations
using active Ag–AgCl electrodes (Biosemi ActiveTwo
amplifier system, Biosemi, Amsterdam, the Nether-
lands). In the Biosemi system, the typically used ground
electrodes are replaced with two additional active
electrodes. These are the common mode sense (CMS)
electrode, which acts as a recording reference and the
driven right leg (DRL) electrode, which serves as the
ground. In the 128-electrode montage these two
electrodes are positioned in close proximity to the
electrode Cz (Metting Van Rijn, Peper, & Grimbergen,
1990, 1991). Vertical and horizontal electro-oculograms
were recorded in order to exclude trials with large eye
movements and blinks.

EEG data processing was performed using the
EEGlab toolbox (Delorme & Makeig, 2004) combined
with self-written procedures running under Matlab. The
EEG signal was sampled at a rate of 512 Hz, and epochs
lasting 2000 ms were extracted, starting from 500 ms
before stimulus onset and incorporating 1500 ms after
stimulus onset. All trials with incorrect responses were
excluded from the ERP analysis. Artifact removal was
performed using the FASTER toolbox (Nolan, Whelan,
& Reilly, 2010), followed up with a visual inspection
method. This left an average of 36 6 11 (M 6 SD) trials
per condition. Further analyses were performed using
the average reference. A 40-Hz low-pass filter was
applied to the data before ERP waveform analyses.
Signal-to-noise ratio (SNR) analysis was performed
using the approach recommended by Koenig and Melie-
Garcia (2010). This was done to assess whether adequate
SNR was reached in our experimental conditions, as
ERPs at thresholds may suffer from SNR problems due
to the low number of trials remaining in the analysis and

the relatively low amplitude of evoked responses at
relatively low contrast levels (Campbell & Maffei, 1970).
This may in turn impact the latencies and amplitudes of
ERP components. The latencies and amplitudes of the
N1 component and the amplitude of the LPP compo-
nent at suprathreshold contrast were analyzed with a
repeated measures ANOVA with factors the contrast
combination (LþM isolating, LþM combined with L-M,
LþM combined with both L-M and S-[LþM]) and
stimulus type (object, nonobject, random patch). As
with the behavioral data, an analysis with the additional
factor contrast level (threshold, suprathreshold) is
presented in Supplementary Material S1; the main
purpose of this analysis was to confirm that there are no
differences between the three contrast combinations at
threshold. The components were defined based on the
visual inspection of grand-mean waveforms separately
for the threshold and suprathreshold components as
they were expected to differ in latency (for a normative
study, see Porciatti & Sartucci, 1999). N1 at threshold
extended from 180 to 380 ms, while the suprathreshold
N1 extended from 150 to 270 ms. LPP at threshold was
analyzed in the range between 550 and 800 ms, while
suprathreshold LPP was analyzed between 500 and 750
ms. In line with previous literature, the N1 for a visual
evoked potential with a strong chromatic component
was expected to occur at central occipital sites (Porciatti
& Sartucci, 1999), while the LPP was expected to be
maximal at midline parietal sites (Gruber & Müller,
2005). Similarly to the timing of components, their
topographical locations were verified using grand-mean
plots. Greenhouse–Geiser correction was used when
necessary. Post hoc tests were performed using Tukey’s
HSD for more complex interactions, which involved
nine variables, and Bonferroni-corrected paired t tests
for main effects and less complex interactions, which
involved six variables. Ratios of suprathreshold:thres-
hold amplitudes were calculated using only those data
points with sufficient SNR. Linear modeling of the first
second of the EEG single-trial data was performed using
the LIMO EEG toolbox for Matlab (Pernet, Chauveau,
Gaspar, & Rousselet, 2011) in order to establish more
precisely the effect of contrast on the waveforms. For
this analysis, all artifact-free trials were included as per
the recommendations made by VanRullen (2011),
allowing us to encompass more broadly how the
waveforms were affected by contrast content. Linear
regression analysis was performed at each time point
and for each electrode based on three continuous
predictors: the amount of LþM, L-M, and S-(LþM)
contrast present in the stimulus on each trial. Following
the approach from Kovalenko, Chaumon, and Busch
(2012), we orthogonalized sequentially the three pa-
rameters (Gram-Schmidt orthogonalization method,
SPM8; http://www.fil.ion.ucl.ac.uk/spm/). The outcome
of sequential orthogonalization is that the variance that
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is explained by a parameter is discarded from subse-
quent ones. This decorrelates the three types of contrast
and allows us to attribute effects that can be explained
by more than one contrast type to just one of them.

Results

The experiment was conducted for stimuli presented
at threshold and suprathreshold (i.e., two times thresh-
old), as outlined in the Stimulus contrast settings section
and Figure 2. It was found that accuracies and ERP
amplitudes measured at threshold presentation levels
showed no differences between the different contrast
combinations employed; that is, at threshold the stimuli
were matched. We hence present here only the
suprathreshold data. The main differences between
ERPs at threshold and suprathreshold were (a) in terms
of their latency, which was faster at suprathreshold, and
(b) in terms of the increases in amplitude with increased
contrast, which were present for luminance alone and L-
M with luminance but absent for the full-contrast
combination. Detailed analyses and comparison of
threshold control data and suprathreshold data (both
behavioral and ERPs) are presented as Supplementary
Material S1, and an analysis of behavioral response
biases is presented as Supplementary Material S2.

Behavioral data

Due to the complexity of the behavioral data
analysis, which covers accuracies, RTs, and response
patterns, we first give an overview of the results and
then go into statistical detail. Figure 5 illustrates the
main findings; differences in accuracy and RTs exist
between the three contrast conditions. Overall, accu-
racy for a given stimulus type was equal for luminance
and L-M with luminance conditions and better than for
the full-information contrast combination. Responses
were fastest for random patches, followed by objects;
nonobjects elicited the slowest responses, with correct
responses being lowest for object stimuli. A correlation
analysis of accuracy–RT combinations revealed no
speed–accuracy tradeoffs (all ps . 0.05).

A 3 3 3 (contrast combination by stimulus type)
repeated measures ANOVA analysis of accuracies on
suprathreshold data revealed significant main effects
of contrast combination, F(2, 34) ¼ 12.90, p , 0.001,
gp

2 ¼ 0.43, and stimulus type, F(2, 34) ¼ 41.06, p ,
0.001, gp

2 ¼ 0.71. There was also a significant
interaction, F(4, 68) ¼ 3.63, p ¼ 0.01, gp

2 ¼ 0.18.
Post hoc (Tukey’s HSD) tests revealed that lumi-

nance-only objects were identified with the same
performance as L-M with luminance objects, while both

were more accurately identified than full-information
contrast condition objects. For nonobjects, there were
no significant differences between the three contrast
combinations. Finally, for random patch stimuli, again
both had equal performance when defined with lumi-
nance only or both L-M and luminance, and both were
more accurately identified than full-information contrast
condition random patches. Within each contrast com-
bination, objects were associated with poorer perfor-
mance than the other two stimulus types, whereas
performance between nonobjects and random patches
did not differ significantly.

In terms of RTs, there was a main effect of contrast
combination, F(2, 34) ¼ 69.09, p , 0.001, gp

2 ¼ 0.80,
and stimulus type, F(2, 34)¼ 39.25, p ¼ 0.001, gp

2 ¼
0.70. No significant interaction existed between these
levels, F(4, 68) ¼ 1.71, p ¼ 0.092.

Bonferroni-corrected t tests informed us that per-
formance was fastest for random patches, followed by
objects; nonobjects were responded to most slowly
overall (all ps , 0.001). Performance was equally fast
for luminance-defined and L-M with luminance–
defined objects (p¼ 0.18) and significantly slower for
the full-contrast combination (both ps , 0.001).

Figure 5. Correct responses (top row) and corresponding RTs

(bottom row) for each chromoluminance condition at both

threshold and suprathreshold. The stimulus types are color

coded: gray ¼ objects; green¼ nonobjects; purple ¼ random

patches. Error bars are 2 SE. The y-axis does not start at 0; the

dotted gray line in the top row indicates chance level (33%).
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Signal-to-noise ratios

The SNRs of the ERP waveforms at suprathreshold
level were assessed using the global field power
permutation test recommended by Koenig and Melie-
Garcia (2010). A repeated measures ANOVA revealed
no significant differences in time point of SNR
stabilization between the different stimulus types
(object, nonobject, random patch), F(2, 26)¼ 1.52, p¼
0.24. Also, no significant differences were found over
the three luminance and color conditions; F(2, 26)¼
0.62, p¼ 0.55; interaction: F(4, 52)¼ 0.59, p¼ 0.67. On
average, an adequate SNR was reached at the following
times (median 6 SE): objects, 124 6 26 ms; non-
objects, 125 6 21 ms; and random patches; 129 6 28
ms (these values are collapsed over contrast combina-
tions). For completeness the noncollapsed data are
depicted in Figure 6.

Threshold and suprathreshold differences in
ERP amplitudes and latencies

Detailed differences between threshold and supra-
threshold ERPs, in terms of both their amplitudes and
their latencies, are presented in Supplementary
Material S1. Here we give a broad overview of the main
contrast-related differences, which are depicted in
Figure 7. This figure collapses the data across different

stimulus types (object, nonobject, random) in order to
more clearly depict changes that arise due to the
twofold increase in contrast, from threshold to
suprathreshold, for each stimulated combination of
contrasts.

Latencies are slower for threshold stimuli and
somewhat slower for the full combination of con-
trasts. Ratios of suprathreshold:threshold amplitudes
within the N1 analysis windows were the following:
luminance only, 1.64 6 0.30; luminance and L-M,
1.69 6 0.14; luminance, L-M, and S-(LþM), 1.13 6
0.07 (M 6 SE). Ratios were calculated only from data
points with adequate SNR in order to reduce the
noisiness of the calculation. Although there is an
increase in amplitude for luminance alone and
luminance with L-M, this does not occur for the full-
contrast combination.

Event-related potentials: N1

The suprathreshold N1 waveform and topography
are depicted in Figure 8a, while the bar plot of its
amplitudes is presented in the top panel of Figure 9.
There was a main effect of contrast combination, F(2,

Figure 6. Box plots indicating the time at which the SNR

stabilized for all of the conditions at suprathreshold contrast

levels. The stimulus types are color coded: gray¼objects; green

¼ nonobjects; purple ¼ random patches. The first, second, and

third subcolumns represent luminance isolated, luminance

combined with L-M, and luminance combined with both L-M

and S-(LþM) signals, respectively. The lines represent the

median, the edges of boxes represent the 75th percentile, the

ends of lines represent the 95th percentile, and red crosses

represent outliers.

Figure 7. ERP at posterior sites (see N1 topography inset)

depicting data collapsed across stimulus class. The full lines

depict the three contrast combinations at threshold, while the

dotted lines depict them at suprathreshold. Topographies were

calculated after data in the N1 window (see Figure 8) were

collapsed across all conditions for threshold and suprathreshold

contrast levels. The electrodes that were used for data analysis

are indicated with thick black circles on the topography plots.
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34)¼ 30.09, p , 0.001, gp
2¼ 0.64, and a trend toward a

main effect of stimulus type, F(2, 34)¼ 3.11, p¼ 0.058,
gp

2¼ 0.16. A significant interaction existed between
these levels, F(4, 68), p ¼ 0.02, gp

2 ¼ 0.15.
Post hoc tests for the main effects indicated that the

full-contrast combination elicited the least activity
compared with both luminance only and L-M with
luminance (p , 0.05), with luminance only in turn
eliciting even less activity than the combined L-M with
luminance condition (p , 0.05). Post hoc tests for the
interaction (Tukey’s HSD) considered all possible
combinations, revealing a variety of differences. This
was to be expected given the large main effect of
contrast combination. But importantly, considering
differences between objects, nonobjects, and random
patches within each of the three contrast combinations,
it was found that the only significant difference between
stimulus types existed in the full-contrast combination.
Here objects were found to be significantly different
from nonobjects and random images (both ps , 0.05),
which in turn did not differ among each other (p .

0.05).

Event-related potentials: LPP

The LPP can be seen in Figure 8b, while the bar plot
of its amplitudes is presented in the bottom panel of
Figure 9. A 3 3 3 ANOVA (contrast combination by
stimulus type) was performed and revealed main
effects of both contrast combination, F(2, 34)¼ 12.77,
p , 0.001, gp

2¼ 0.43, and stimulus type, F(1.41, 23.93)
¼ 4.37, p¼ 0.036, gp

2¼ 0.20. No significant interaction
was discovered, F(2.68, 45.58) ¼ 0.88, p ¼ 0.45.

Considering the contrast combination, post hoc tests
revealed that the LPP had a lower amplitude for the
full-contrast combination compared with both the
luminance-only and the luminance combined with L-M
combinations (p ¼ 0.002 and p , 0.001, respectively),
which did not differ from each other (p ¼ 0.85).
Considering stimulus type, the LPP is higher for
random patches than for nonobjects (p¼ 0.015), but
there are no significant differences between objects and
random patches (p¼ 0.14) or objects and nonobjects (p
¼ 0.1).

Figure 8. (a) N1 component of the ERP. Waveforms at occipital sites and topographies during the N1 window (indicated by the gray

box) are depicted for suprathreshold stimuli. (b) LPP component of the ERP. Waveforms at parietal sites and topographies during the

LLP window (again indicated by the gray box) are depicted for suprathreshold stimuli. In both cases, topographies were calculated

after data were collapsed across all conditions. The electrodes that were used for data analysis are indicated with black circles on the

topography plots.
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Linear modeling of single-trial EEG by contrast
parameters

To assess effects of each contrast type—LþM, L-M,
or S-(LþM)—on the ERP waveforms, we also con-
ducted a single-trial linear regression analysis using the
approach described in Pernet et al. (2011). We
recursively orthogonalized the three contrast levels in
order to decorrelate them and then entered them
simultaneously into the general linear model. The
results of the analysis are presented in Figure 10 for
electrodes Oz, exemplifying the N1 component, and Pz,
exemplifying the LPP component. It can be seen that
all three types of contrast affect the waveforms. While
the effects of LþM and L-M contrasts are temporally
constrained to the windows of the N1 and LPP
components, the effects of S-(LþM) contrast are much
broader and less specific, and although the onset of
contrast modulation occurs at approximately the same
time as in the case of LþM and L-M, its influence on
amplitude extends in a sustained fashion throughout

the analyzed window and is not constrained to the
period of any specific component.

Discussion

This EEG study examined whether the presence of
chromatic contrast in luminance-defined images alters
both performance and neural activity during a shape
classification task. Participants classified Gaborized
images of objects, nonobjects, or random patch
textures defined by different combinations of lumi-
nance and chromatic signals and set to mean threshold
or suprathreshold contrast levels. The stimuli excited
the luminance channel in isolation, the luminance and
L-M channels, or the luminance and both the L-M and
S-(LþM) channels simultaneously. The goal was to
assess the effect of the presence of chromatic contrast
through behavioral data and EEG markers of percep-
tual and cognitive object-related processing (N1, LPP).
Classification accuracy for the three types of stimuli
was comparable across channel combinations at
threshold, confirming that the contrasts were at the
level that elicits matched performance. However, a
mismatch appeared at suprathreshold: Increases in
performance were less pronounced for objects defined
by the full combination of signals, resulting in their
poorer classification. The first ERP component reliably
observed in the waveforms was an N1 peaking 200 to
300 ms after stimulus onset. It occurred earlier and had
larger amplitude at suprathreshold for both luminance-
only and luminance combined with L-M conditions.
The full combination at suprathreshold elicited only a
shift in latency but produced the same amplitude as at
threshold. Some sensitivity to stimulus class was found
in both N1 and LPP, but it was driven mainly by
different processing of random patch stimuli, which
lacked contour-defined shape, with LPP showing a
stronger effect than the N1. Linear modeling of the
EEG revealed that while luminance and L-M contrasts
modulated EEG specifically within the time windows of
the perceptual and cognitive processing markers N1
and LPP, the S-(LþM) contrast had a more sustained,
temporally noncircumscribed effect on amplitude. The
transition to suprathreshold creates differences in
performance for the full-information stimuli, which
correspond to ERP findings of less amplitude gain for
the full combination of contrasts. We did not find any
significant differences between luminance only and
luminance with L-M, although the combination with L-
M contained much less luminance contrast. In fact,
luminance and L-M contrast contributed to the
amplitudes of the N1 and LPP in a roughly similar
fashion. Based on this, we conclude that L-M
chromatic contrast contributes to shape processing

Figure 9. Bar plot of ERP amplitudes. N1 is depicted in the top

panel, and LPP is depicted in the bottom panel. The stimulus

types are color coded: gray ¼ objects; green¼ nonobjects;

purple ¼ random patches. The contrast combinations are as

follows: left three bars¼ luminance only; middle three bars ¼
luminance and L-M; right three bars¼ luminance, L-M, and S-

(LþM). Error bars depict 6 2 SE.
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when joined with luminance contrast. Meanwhile, S-
(LþM) contrast does not provide a direct, facilitatory
input into these processes.

The waveforms we observed were characterized by
an absence of a P1-like positive deflection, with the first
component being a relatively large N1 akin to those
found in studies on chromatic VEPs (Crognale,
Switkes, & Adams, 1997; Murray et al., 1986; Rabin et
al., 1994). The absence of the P1 is likely due to the
relatively low level of luminance contrast in our stimuli
(for a similar finding, see Mathes & Fahle, 2007),
reflected in the late stabilization of SNR (on average
between 120 and 130 ms), which is after the standard
P1 window. Further, we observed differences between
contrast combinations when contrast level was doubled
for suprathreshold stimuli. While luminance alone and
combined with L-M signals produces relatively uniform
contrast-related N1 amplitude increases and perfor-
mance benefits at suprathreshold, the full-channel
stimulus that also contained S-(LþM) information was
not associated with an amplitude increase or an
equivalent performance benefit. Meanwhile, the latency
benefit from contrast increase was uniformly present
across all contrast combinations, although the N1
elicited by a full combination of contrasts did lag
behind the other two combinations. Linear modeling

demonstrated a more general effect of S-(LþM)
contrast on amplitude, which was not restricted to the
time window of the N1 and the LPP. We did not test S-
(LþM) and luminance combined or S-(LþM) and L-M
combined, so we cannot conclude whether the addition
of S-(LþM) signals selectively suppresses the gain of the
luminance mechanism, the gain of the L-M mechanism,
or whether it interacts with both LþM and L-M signals
in this fashion. An investigation of detection thresholds
for S-cone increments and decrements in the presence
of different types of noise masks found that while
luminance masks had a similar and weak effect on S
increments and decrements, chromatic masks revealed
asymmetries between them by exhibiting a stronger
masking effect on S increments, most likely due to
greater contrast gain control in the unipolar S
increment mechanism (Wang, Richters, & Eskew,
2014). Parametric mapping of contrast-response func-
tions for different combinations of luminance and
chromatic contrasts conducted across a range of spatial
frequencies would extend our understanding of chro-
matic mechanisms themselves as well as the way in
which they interact with luminance. Such experiments
should also attempt to model for possible contributions
of chromatic aberrations to these neural signals, as
Forte, Blessing, Buzas, and Martin (2006) demon-

Figure 10. Linear modeling of ERP waveforms by mechanism contrasts. The left panel depicts the modeling at electrode Oz,

representative of the N1 component, while the right panel depicts the modeling at electrode Pz, representative of the LPP

component. The blue lines reflect the effects of the model on the averaged waveform for each contrast type, with bootstrapped

confidence intervals shown in magenta lines. Straight red lines underneath each waveform indicate the period in which the modeled

effect was significant.
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strated that chromatic aberrations can produce neural
responses comparable in magnitude with those driven
by high-frequency luminance isolating stimuli.

Our study also aimed to assess whether object
sensitivity would be found. Martinovic et al. (2011)
used full-information or isoluminant stimuli in an
object discrimination task and concluded that object
sensitivity of the N1 is brought about by the addition
of an achromatic signal. However, the current
experiment did not find highly reliable and consistent
differences between objects and nonobjects in the
ERPs. The only object-sensitive effect in the N1 was
found for the full combination of contrasts. This is
surprising as luminance information is considered to
be the most relevant for object processing (e.g., Bar,
2003; Peterson & Gibson, 1994). The most parsimo-
nious explanation is that the full combination of
signals does not scale equally with the increase in
contrast for different stimulus classes (see Zele, Cao,
& Pokorny, 2007). If object stimuli scaled least
favorably of all, this would result in reduced
classification performance for objects, while the larger
N1 for objects could perhaps be explained through
increased difficulty for these stimuli. Still, it is difficult
to fathom that the addition of a relatively small
amount of S-(LþM) contrast can have such dramatic
effects both on performance and on the ERP markers
of visual processing, especially as the S-(LþM) signals
added to a mixture of L-M and LþM signals at
threshold were not found to influence performance in
the psychophysical study of Jennings and Martinovic
(2014).

Another difference in our findings compared with
those of Martinovic et al. (2011) is that they found
differences in both the N1 and the LPP amplitudes
elicited by line drawings of objects as opposed to
nonobjects, while in this study the most consistent,
general effect of shape-specific processing is driven by
a differential response for random patches (see Figure
8b). This is most likely due to differences in stimulus
material and the associated difficulties of item
classification. Line drawings and Gaborized images
are likely to engage different perceptual processes to
different degrees. For example, studies that compare
evoked potentials elicited by grayscale photographic-
quality images of objects and their phase-scrambled
versions find larger N1s for object images, arguing
that this is due to the fact that they engage figure–
background processes (Schendan & Lucia, 2010).
Gaborized stimuli engage midlevel processes to a
much higher level than line drawings as they require
some perceptual organization in order to be correctly
perceived. N1 seems to be particularly sensitive to
perceptual context in midlevel vision tasks (e.g.,
Machilsen, Novitskiy, Vancleef, & Wagemans, 2011).
While N1 showed a series of interactions between the

perceptual effects of contrast level, contrast combi-
nation, and stimulus type, LPP showed independent
effects of these factors (for more detail, see
Supplementary Material S1). We failed to replicate
previous findings of more positive late potentials for
nonobjects than for objects, which were again
obtained with line-drawing stimuli (e.g., Gruber &
Müller, 2005; Martinovic et al., 2009, 2011). However,
we did find increased positivity for random patches—
the stimulus class that lacked contour-defined shape.
It is likely that the lack of differences between
Gaborized objects and nonobjects was due to the fact
that they were very closely matched. This is supported
by relatively high error rates between these two
stimulus classes in this study (see Supplementary
Material S2), which are much higher than in any of the
previous studies. The LPP was also increased for
suprathreshold stimuli compared with threshold
stimuli and lower for a full combination of channels,
confirming its relation to successful discrimination of
contour-defined shapes from contourless patches.

In conclusion, our study provides further evidence
that signals from different channels interact in the
visual cortex during shape classification. L-M signals
are effectively combined with luminance signals at
both perceptual and cognitive stages of processing,
while S-(LþM) signals seem to play a different role.
Their presence results in a reduced performance
benefit at suprathreshold relative to other conditions,
and their effects on EEG amplitude are not circum-
scribed to the time windows of the perceptual N1 or
cognitive LPP components. These findings extend
psychophysical evidence that L-M contrast contrib-
utes to object shape processing provided by Jennings
and Martinovic (2014), demonstrating that these
contributions occur early in processing, in line with
contrast pooling studies by Groen et al. (2012, 2013).
The model of Sowden and Schyns (2006) would be
able to accommodate for these findings by including
signals derived from chromatic spatial frequency
channels (for a mathematical definition of these
channels, see Zhaoping, 2014). It is generally thought
that S-(LþM) contrast contributes largely to color
appearance and much less to spatial vision (e.g.,
Mollon, 1989), but we do find adverse effects on object
performance and ERP response amplitudes for su-
prathreshold stimuli that contain it. Future studies
will need to establish whether this is simply due to the
fact that their presence alters the slopes of related
psychometric functions or whether they play another
more general role in spatial vision, which would be a
very intriguing prospect.

Keywords: object representation, shape perception,
luminance, chromatic mechanisms, contrast, electroen-
cephalography
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