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A direct asymptotic integration of the full three-
dimensional problem of elasticity is employed to
derive a consistent governing equation for a beam
with the rectangular cross section. The governing
equation is consistent in the sense that it has
the same long-wave low-frequency behaviour as
the exact solution of the original three-dimensional
problem. Performance of the new beam equation is
illustrated by comparing its predictions against the
results of direct finite-element computations. Limiting
behaviours for beams with large (and small) aspect
ratios, which can be established using classical plate
theories, are recovered from the new governing
equation to illustrate its consistency and also to
illustrate the importance of using plate theories
with the correctly refined boundary conditions. The
implications for the correct choice of the shear
correction factor in Timoshenko’s beam theory are also
discussed.

1. Introduction
The classical Euler–Bernoulli equation can be interpreted
in two ways. On the one hand, it can be understood
as an approximate equation that broadly reproduces
behaviour of thin beams at sufficiently low frequencies.
This interpretation is valid and, in fact, this is how the
Euler–Bernoulli equation is most commonly introduced,
typically justified by ad hoc strength of materials
style arguments. On the other hand, another, more
mathematically precise definition is also possible. One
can start with a full three-dimensional boundary value
problem for a prism composed of an elastic material and
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consider a long-wave low-frequency asymptotic expansion under the assumptions that frequencies
of interest are low and characteristic dimensions of the cross section are negligible in relation
to the wavelength of interest. It can be shown that the Euler–Bernoulli equation recovers the
leading-order term of this expansion. In this sense, the classical theory is precisely defined and
fully mathematically consistent. This also suggests that further terms in the same asymptotic
expansion can be considered to, hopefully, construct more precise, yet still asymptotically
consistent approximations to the full three-dimensional solution. This is precisely the topic of
our discussion.

It may seem surprising that higher-order equations for a beam can still warrant an
investigation. After all, more geometrically complex objects, such as plates and shells, have well-
developed higher-order theories (e.g. [1–4]). The explanation is that cross-sectional problems
for both plates and shells are always one-dimensional and typically possess simple analytical
solutions, whereas cross-sectional problems for beams are necessarily two-dimensional, which
makes their solution substantially harder. It is also worth noting that deriving new higher-
order equations is not the goal in itself; instead, one can use them to construct higher-order
asymptotic solutions for much harder boundary value problems, e.g. vibration of elliptic
plates [5] or scattering of acoustic waves by an immersed shell [6] or solution of initial-value
problems [7].

The most popular refined beam equation was obtained by Timoshenko [8] (see recent review
[9]). It is derived using several ad hoc assumptions and, as a result, does not generally predict
the correct higher-order asymptotic behaviour of the beam. It features two vibration modes, a
lower (fundamental) mode that describes bending, as well as a higher mode that bears only
superficial similarity to the true three-dimensional solution, see [10]. Nevertheless, predictions by
Timoshenko’s governing equation can be made partly consistent because the equation features an
imprecisely defined constant κ , usually called the shear correction factor. It turns out that κ can be
chosen in such way that the fundamental mode of Timoshenko’s theory matches the appropriate
expansion of the corresponding exact three-dimensional solution, see [11].

Berdichevskii & Kvashnina [12] were apparently the first who attempted to construct a
more consistent equivalent of Timoshenko’s equation using the variational asymptotic method.
Unfortunately, when specialized to the case of rectangular beams, their equation appears to
contain an erroneous coefficient, this will be further discussed in §7. The methodology of
Berdichevskii and Kvashnina was generalized in [13–15], focusing mainly on derivations of the
approximations of the potential energy.

The goal of this paper is to present the derivation of a truly asymptotically consistent
higher-order theory for rectangular beams. Our derivation is based upon the direct asymptotic
integration of the exact three-dimensional problem of elasticity. This method has been originally
developed by Goldenveizer, see e.g. [16], as well as more recent paper [3]. Such an approach
allows one to construct internally consistent higher-order approximations for the stress and strain
fields across the cross section. This makes our approach largely similar to [17], in which a more
general problem for a beam composed of an anisotropic elastic material has been considered.
The main difference is that the coefficients of beam equation in [17] were obtained by solving a
cross section problem numerically, whereas we construct a governing equation with fully explicit
analytical expressions for all coefficients.

The restriction to the rectangular cross section enables us to obtain a fully analytical description
of the simplest non-trivial configuration of the beam, the classical benchmark problem that
we believe is still not resolved in the literature conclusively. We validate new beam equation
by showing that the dispersion curves by our theory faithfully reproduce the long-wave low-
frequency behaviour of the exact dispersion curves computed using the SAFE method for several
aspect ratios of the beam. The choice of rectangular cross section also allows us to provide an
analytical validation of the results. Specifically, motion of rectangular beams with large or small
aspect ratios can be described by the classical plate theories: the out-of-plane bending mode can be
reproduced as symmetric fundamental mode of a Kirchhoff plate strip and the in-plane bending
mode can be reproduced by studying antisymmetric fundamental mode of a plate strip in the
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state of plane stress. The Kirchhoff plate strip limit is particularly interesting, because we show
that the use of refined boundary conditions for the plate theory by Kolos [18] allows to reproduce
the correct asymptotic behaviour of even a moderately thick flat beam.

It is instructive to compare the predictions by our equation to the response of Timoshenko’s
beam equation. We do this by matching the relevant dispersion curves; this allows us to propose a
new expression for the shear correction factor κ . In his papers, Timoshenko used constant (cross-
section-independent) values of κ , see [8,19]; the most commonly cited reference [20] provides
values of κ for a number of canonical cross sections that also depend on the Poisson ratio ν.
However, the coefficients given in [20] are known to be asymptotically inconsistent, at least for
circular and rectangular cross sections, see [11]. A particular expression of κ , first obtained in [21],
was independently confirmed in [22–25]. The expression for value of κ for rectangular beams
obtained in this paper confirms the consistency of the coefficient proposed in [21]. In addition,
we demonstrate that a number of other definitions of shear correction factor given in the recent
literature do not lead to a consistent form of Timoshenko’s equation.

2. Governing equations
Consider an infinite rectangular beam composed of a homogeneous isotropic elastic material.
Motions of isotropic media are governed by the equations of three-dimensional elasticity

τij,j = ρüi, τij = E
1 + ν

(
νεkkδij

1 − 2ν
+ εij

)
, εij = 1

2
(ui,j + uj,i), (2.1)

where τij = τij(x, t) is the stress tensor, ui = ui(x, t) the displacement vector, ρ the mass density per
unit volume, E the Young modulus and ν the Poisson ratio. Comma subscripts in (2.1) indicate
differentiation with respect to implied spatial coordinates; henceforth we will also use comma
subscripts to denote differentiation with respect to explicitly shown non-dimensional spatial
coordinates and time. Also assumed specifically in (2.1) are the summation over repeated suffices
and overdots denoting differentiation with respect to time t.

We place the origin of the Cartesian coordinate system at the symmetry axis of the beam and
direct axis Ox1 along the symmetry axis. The beam cross section is the rectangle {(x2, x3) : −h2 ≤
x2 ≤ h2, −h3 ≤ x3 ≤ h3} (figure 1). The boundary conditions on the free faces of the beam may then
be written as

τ2i = 0 (i = 1, 2, 3) at x2 = ±h2

and τ3i = 0 (i = 1, 2, 3) at x3 = ±h3.
(2.2)

Our primary interest is with the propagation of long waves, i.e. waves whose wavelength l is
much greater than a characteristic dimension of the cross section h.1 This suggests introducing
a natural small parameter ε = h/l and re-scaling the problem in terms of the following non-
dimensional coordinates:

x1 = lξ , x2 = εlη, x3 = εlζ , t = ε−1lτ√
E/ρ

. (2.3)

An additional assumption that the beam bends along the axis Ox3 prompts an appropriate re-
scaling for the displacement and stress components:

u1 = εlu, u2 = ε2lv, u3 = lw,

τ11 = εEσ11, τ33 = ε3Eσ33,

τ1i = ε2Eσ1i, τ2i = ε3Eσ2i (i = 2, 3).

(2.4)

The introduction of scalings (2.4) can be partly motivated by referring to the classical Euler–
Bernoulli theory and also by the asymptotic analysis of the exact dispersion relations for similar

1A possible way to introduce h could be to define it as h = 1
2 (h2 + h3) or, alternatively, as h = max(h2, h3). In our derivations,

we implicitly assume that h2 and h3 are of the same asymptotic order; however, the resulting expansions remain valid if one
of them is substantially smaller than the other.
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Figure 1. The dimensional and non-dimensional coordinate systems for the considered problem.

problems (e.g. for the bending of a circular beam). Here, for the sake of brevity, we introduce the
ansatz constructively and prove its consistency a posteriori, by observing that the proposed form
of the asymptotic series satisfies appropriate equations and boundary conditions at all orders.

In terms of the newly introduced non-dimensional quantities, we can re-write governing
equations (2.1) in the following form:

σ11,ξ + σ12,η + σ13,ζ = ε2u,ττ ,

σ21,ξ + σ22,η + σ23,ζ = ε2v,ττ ,

σ31,ξ + σ32,η + σ33,ζ = w,ττ ,

(2.5)

and

ε2(1 + ν)(1 − 2ν)σ11 = ε2(1 − ν)u,ξ + ε2νv,η + νw,ζ ,

ε4(1 + ν)(1 − 2ν)σ22 = ε2νu,ξ + ε2(1 − ν)v,η + νw,ζ ,

ε4(1 + ν)(1 − 2ν)σ33 = ε2νu,ξ + ε2νv,η + (1 − ν)w,ζ ,

2ε2(1 + ν)σ12 = u,η + ε2v,ξ ,

2ε2(1 + ν)σ13 = u,ζ + w,ξ ,

and 2ε4(1 + ν)σ23 = ε2v,ζ + w,η.

(2.6)

Boundary conditions (2.2) can also be appropriately re-formulated as

σ2i = 0 (i = 1, 2, 3) at η = ±a

and σ3i = 0 (i = 1, 2, 3) at ζ = ±b,
(2.7)

where a = h2/h and b = h3/h.
The solution f = {u, v, w, σij} of the boundary value problem (2.5)–(2.7) is now sought in form

of the following asymptotic ansatz:

f (ξ , η, ζ , τ ) = f (0) + ε2f (2) + ε4f (4) + · · · , (2.8)

where f (k) = f (k)(ξ , η, ζ , τ ) and

f (k)(ξ , η, ζ , τ ) =
∑

m
f̃ (k)
m (ξ , τ )F(k)

m (η, ζ ). (2.9)
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3. The leading-order theory
The leading-order displacements are governed by the leading-order terms of governing
equations (2.6). The relevant equations can be obtained by substituting expansion (2.8) into
equations (2.6) and neglecting all terms that are of O(ε2) (and smaller), which yields

w(0)
,ζ = 0, u(0)

,η = 0, u(0)
,ζ + w(0)

,ξ = 0, w(0)
,η = 0. (3.1)

The appropriate solution is given by

w(0) = w̃0, u(0) = −w̃′
0ζ , (3.2)

where w̃0 = w̃0(ξ , τ ) and a dash denotes differentiation with respect to ξ .
The governing equations for the next-order displacements and remaining leading-order

quantities have the form

σ
(0)
11,ξ + σ

(0)
12,η + σ

(0)
13,ζ = 0, (3.3)

σ
(0)
21,ξ + σ

(0)
22,η + σ

(0)
23,ζ = 0, (3.4)

σ
(0)
31,ξ + σ

(0)
32,η + σ

(0)
33,ζ = w̃,ττ , (3.5)

and

(1 + ν)(1 − 2ν)σ (0)
11 = (1 − ν)u(0)

,ξ + νv
(0)
,η + νw(2)

,ζ , (3.6)

0 = νu(0)
,ξ + (1 − ν)v(0)

,η + νw(2)
,ζ , (3.7)

0 = νu(0)
,ξ + νv

(0)
,η + (1 − ν)w(2)

,ζ , (3.8)

2(1 + ν)σ (0)
12 = u(2)

,η + v
(0)
,ξ , (3.9)

2(1 + ν)σ (0)
13 = u(2)

,ζ + w(2)
,ξ , (3.10)

0 = v
(0)
,ζ + w(2)

,η . (3.11)

Using the leading-order solution (3.2) and taking into account the (anti-) symmetry of the problem
allow one to integrate governing equations (3.7), (3.8) and (3.11) with the following result:

v(0) = νw̃′′
0ηζ , w(2) = 1

2 νw̃′′
0(ζ 2 − η2) + w̃2, (3.12)

where w̃2 = w̃2(ξ , τ ). Governing equation (3.6) then gives

σ
(0)
11 = −w̃′′

0ζ . (3.13)

Function w̃0 underlying the leading-order solution still has not been specified. It can be
determined by multiplying equation (3.3) by ζ and integrating over the cross section represented
by rectangular region R, where

R = {(η, ζ )| − a ≤ η ≤ a, −b ≤ ζ ≤ b}. (3.14)

In the view of the boundary conditions at η = ±a and ζ = ±b, this yields

∫∫
R

∂σ
(0)
13

∂ξ
dη dζ = −4

3
ab3w̃′′′

0 . (3.15)

Similar integration of (3.5) over R gives then the equation for w̃0

1
3

b2 ∂4w̃0

∂ξ4 + ∂2w̃0

∂τ 2 = 0, (3.16)
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which can be recognized as the classical Euler–Bernoulli equation for a rectangular beam. Indeed,
given that w̃0 ∼ w = u3/l, we can formulate the dimensional equivalent of equation (3.16) as

Eh2
3

3ρ

∂4u3

∂x4
1

+ ∂2u3

∂t2 = 0. (3.17)

Keeping in mind that the second moment for rectangular cross section Ix2 = 2h2(2h3)3/12 and
the cross-sectional area A = 4h2h3, the coefficient in front of the fourth-order term can now be
recognized as the usual constant EIx2/ρA.

To obtain an expression for u(2), we first express σ
(0)
12 and σ

(0)
13 from equations (3.9) and (3.10),

and then substitute the resulting expressions into (3.3) and boundary conditions σ
(0)
12 |η=±a = 0

and σ
(0)
13 |ζ=±b = 0. As a result of these manipulations, we are led to the following boundary value

problem:

u(2)
,ηη + u(2)

,ζ ζ = 2w̃′′′
0 ζ ,

(3.18)

u(2)
,η |η=±a = ∓νw̃′′′

0 aζ , u(2)
,ζ |ζ=±b = 1

2 νw̃′′′
0 (η2 − b2) − w̃′

2.

We are seeking the solution of problem (3.18) in the form

u(2) = w̃′′′
0 U(2)(η, ζ ) − w̃′

2ζ . (3.19)

It is easy to verify that if one takes

U(2) = 1
6 (2 − ν)ζ 3 − b2ζ + 1

2 νζη2 + Ψ (η, ζ ), (3.20)

then the problem (3.18) is reduced to the boundary value problem

Ψ,ηη + Ψ,ζ ζ = 0, (3.21)

Ψ,η|η=±a = ∓2νaζ , Ψ,ζ |ζ=±b = 0.

The solution of (3.21) is given by

Ψ = 32νab2

π3

∞∑
n=1

Cn sin
(

(2n − 1)π
2b

ζ

)
cosh

(
(2n − 1)π

2b
η

)
, (3.22)

within which

Cn = (−1)n

(2n − 1)3 csch
(

(2n − 1)πa
2b

)
. (3.23)

As a result, we have

σ
(0)
12 = w̃′′′

0
2(1 + ν)

[Ψ,η + 2νηζ ] and σ
(0)
13 = w̃′′′

0
2(1 + ν)

[Ψ,ζ + ζ 2 − b2]. (3.24)

It can be readily verified that substitution of (3.24)2 into (3.5) and integration over the cross
section R once again gives us equation (3.16) that governs w̃0. Therefore, we have now satisfied
all of the O(ε2) equations (3.3)–(3.11). To obtain a non-trivial correction term(s) for the governing
equation (3.16), we now have to proceed to the next asymptotic order.

4. The higher-order theory
The consideration of O(ε4) terms after substituting asymptotic ansatz (2.8) into equations (2.5)
and (2.6) results in the following system of governing equations:

σ
(2)
11,ξ + σ

(2)
12,η + σ

(2)
13,ζ = u(0)

,ττ , (4.1)

σ
(2)
31,ξ + σ

(2)
32,η + σ

(2)
33,ζ = w(2)

,ττ (4.2)



7

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180001

...................................................

and

(1 + ν)(1 − 2ν)σ (2)
11 = (1 − ν)u(2)

,ξ + νv
(2)
,η + νw(4)

,ζ , (4.3)

(1 + ν)(1 − 2ν)σ (0)
22 = νu(2)

,ξ + (1 − ν)v(2)
,η + νw(4)

,ζ , (4.4)

(1 + ν)(1 − 2ν)σ (0)
33 = νu(2)

,ξ + νv
(2)
,η + (1 − ν)w(4)

,ζ (4.5)

(note that we omitted here the equations that will not be required for deriving the refined
governing equation for w̃).

We begin solving system (4.1)–(4.5) by integrating equation (4.2) over the cross section R. If
conditions on free faces are taken into account, we obtain∫∫

R
σ

(2)
13,ξ dη dζ =

∫∫
R

w(2)
,ττ dη dζ . (4.6)

As the next step, we multiply equation (4.1) by ζ and integrate over the cross section to determine
that ∫∫

R
σ

(2)
13 dη dζ =

∫∫
R

ζ (σ (2)
11,ξ − u(0)

,ττ ) dη dζ . (4.7)

The stress component σ
(2)
11 on the right-hand side can be expressed using equations (4.3)–(4.5) in

the form
σ

(2)
11 = ν(σ (0)

22 + σ
(0)
33 ) + u(2)

,ξ , (4.8)

and substituted back into the right-hand side of (4.7). In addition, by multiplying equations (3.4),
(3.5) and (3.5) by ηζ , 1

2 η2 and 1
2 ζ 2, respectively, and integrating the obtained equations over the

cross-section, we obtain the following identities:
∫∫

R
ζσ

(0)
22 dη dζ =

∫∫
R

ηζσ
(0)
12,ξ dη dζ −

∫∫
R

ησ
(0)
23 dη dζ , (4.9)

∫∫
R

ησ
(0)
23 dη dζ = −

∫∫
R

1
2
η2(w̃0,ττ − σ

(0)
13,ξ ) dη dζ (4.10)

and
∫∫

R
ζσ

(0)
33 dη dζ = −

∫∫
R

1
2
ζ 2(w̃0,ττ − σ

(0)
13,ξ ) dη dζ . (4.11)

By combining these results together, one arrives at the equality
∫∫

R
ζσ

(2)
11 dη dζ =

∫∫
R

{
ν

[
ηζσ

(0)
12,ξ + 1

2
(η2 − ζ 2)(w̃0,ττ − σ

(0)
13,ξ )

]
+ ζu(2)

,ξ

}
dη dζ . (4.12)

In view of the specific structure of expressions for σ
(k)
ij , see (2.8) and (2.9), we differentiate

equation (4.12) with respect to ξ and substitute the result into the right-hand side of equation (4.7).
Then we differentiate equation (4.7) with respect to ξ and substitute the result into the left-hand
side of (4.6). The resulting expression for (4.6) is given by

∫∫
R

{
∂6w̃0

∂ξ6 Φ(η, ζ ) + ∂4w̃0

∂ξ2∂τ 2 [νη2 + (1 − ν)ζ 2] − ∂4w̃2

∂ξ4 ζ 2 − ∂2w̃2

∂τ 2

}
dη dζ = 0, (4.13)

in which

Φ(η, ζ ) = ζΨ + ν

4(1 + ν)

{
2ηζ

∂Ψ

∂η
+ (ζ 2 − η2)

∂Ψ

∂ζ

+(6ν + 1)η2ζ 2 + (4 + 5ν − 2ν2)
3ν

ζ 4 − (4 + 5ν)
ν

b2ζ 2 + b2η2

}
. (4.14)

The integral within equation (4.13) can be computed explicitly, yielding the governing equation
for w̃2 in the form

b2

3
∂4w̃2

∂ξ4 + ∂2w̃2

∂τ 2 + k22
∂4w̃0

∂ξ2∂τ 2 + k60
∂6w̃0

∂ξ6 = 0, (4.15)
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with the coefficients

k22 = −b2

3
[1 − ν + νq2]

and k60 = b4

45(1 + ν)
[12 + 27ν + 3ν2 − 5q2ν(1 + 3ν) + 15ν2qS(q)],

(4.16)

defined using

q = a
b

≡ h2

h3
and S(q) = 384

π5

∞∑
n=1

coth(qπ (2n − 1)/2)
(2n − 1)5 . (4.17)

Keeping in mind the form of the original asymptotic expansion (2.8) and, specifically, the fact
that w̃ = w̃0 + ε2w̃2 + O(ε4), we can combine equations (3.16) and (4.15) into

b2

3
∂4w̃
∂ξ4 + ∂2w̃

∂τ 2 + ε2

[
k22

∂4w̃
∂ξ2∂τ 2 + k60

∂6w̃
∂ξ6

]
= 0, (4.18)

which can be re-written in an asymptotically equivalent form

b2

3
∂4w̃
∂ξ4 + ∂2w̃

∂τ 2 − ε2k0(ν, q)
b2

3
∂4w̃

∂ξ2∂τ 2 = 0, (4.19)

where

k0(ν, q) = 1
5(1 + ν)

[17 + 27ν − 2ν2 − 10ν2q2 + 15ν2qS(q)]. (4.20)

Equation (4.19) can also be re-scaled back to the dimensional form, yielding

Eh2
3

3ρ

∂4u3

∂x4
1

+ ∂2u3

∂t2 − 1
3

h2
3k0(ν, q)

∂4u3

∂x2
1∂t2

= 0. (4.21)

This equation, together with the expression for a non-dimensional coefficient k0(ν, q), constitute
the main result of this paper. We will now turn to the assessment of the qualitative and
quantitative behaviour of the newly derived beam equation.

5. Numerical examples
Before we discuss the numerical performance of the beam equation (4.21), it is worth making
few remarks about practical computation of the function S(q) used to define k0(ν, q), see (4.17)2.
First, given a fixed q, the infinite series within (4.17)2 is absolutely convergent and converges very
rapidly. The first two terms of the series already provide relative errors below 0.1%; the first three
terms result in relative errors below 0.01%. An asymptotic expansion for q 	 1 has the form

S(q) = 4
5q

+ 2
3

q − 2
15

q3 + · · · . (5.1)

A useful representation of (4.17)2 for q 
 1 can be formulated by using the fact that coth x = 1 +
2/(e2x − 1); the results outlined in appendix A, especially equation (A 4), indicate that

S(q) = 372
π5 ζ (5) + 768

π5

∞∑
n=1

1
(2n − 1)5

1
eπq(2n−1) − 1

, (5.2)

where ζ (x) is the Riemann zeta function and ζ (5) ≈ 1.0369278.
We can now turn our attention to assessing how well the new equation reproduces the

dynamics of rectangular beams. This can be done by comparing the dispersion curves of
the beam modelled by the full three-dimensional theory with the dispersion curves predicted by
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Figure 2. Non-dimensional phase velocity v/
√
E/ρ as the function of non-dimensional wave number kh2 for a rectangular

beam 2 × 1 withν = 0.3. For the lower bendingmode q= 2, for the upper bendingmode q= 1/2. (a) The dispersion curves
obtained using the SAFE method. The shaded area, also shown zoomed as (b), presents a comparison between two bending
modes (solid lines) and their approximations using the Euler–Bernoulli theory and asymptotic equation (4.21) (dotted anddash-
dotted lines, respectively).

the one-dimensional model. The dispersion is characterized by looking at plane wave solutions
of the form

ui(x, t) = Ui(x2, x3) exp( ik(x1 − vt)), i = 1, 2, 3, (5.3)

where k is the wavenumber and v the phase velocity. A closed-form analytical expression for the
dispersion relation describing v = v(k) is not available, so the dispersion is usually studied using
numerical methods (e.g. [26,27]). We computed numerical solutions of the relevant dispersion
relation using the semi-analytical finite-element (SAFE) method, which is a technique that
involves the analytic separation of the axial variable followed by the finite-element solution
of the suitably parametrized cross-sectional problem (e.g. [28–30] and references therein). All
finite-element computations in this paper were performed using the COMSOL Multiphysics 5.1.

The first numerical example that we considered concerns a rectangular beam with cross section
2 × 1. The dispersion curves for the beam are shown in figure 2a. Our particular interest is in the
long-wave behaviour of two lowest (bending) modes. Both of the relevant curves are shown in
the shaded area of the graph and, also, presented magnified in figure 2b. Finite-element solutions
(the solid curves) are shown together with predictions of the Euler–Bernoulli beam theory (dotted
lines), as well as predictions of the new asymptotic equation (4.21) (dash-dotted curves). More
specifically, the relevant dispersion relations can be obtained by inserting (5.3) into equation (4.21)
and re-arranging the result as

v2

E/ρ
= Ix2 k2/A

1 + k0(ν, q)Ix2 k2/A
= Ix2 k2

A

(
1 − k0(ν, q)

Ix2 k2

A
+ O

(
I2
x2

k4

A2

))
, (5.4)

where Ix2 = 2h2(2h3)3/12 and A = 4h2h3, just like we mentioned in §3. The dispersion relation for
the Euler–Bernoulli theory is obtained when the O(Ix2 k2/A) term is omitted on the right-hand
side; the dispersion relation for the new beam equation must include this term. Equation (5.4)
approximates a single (lower) dispersion curve that corresponds to bending in the plane Ox1x3.
The bending in the plane Ox1x2 can be described by replacing Ix2 and q in equation (5.4) by Ix3 =
(2h2)32h3/12 and 1/q, respectively, see the upper dispersion curve in figure 2b. The improved
accuracy of the new equation compared to the accuracy of the classical Euler–Bernoulli equation
is evident; the classical theory overestimates the phase velocity, just as expected.
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Figure 3. Non-dimensional phase velocity v/
√
E/ρ as the function of non-dimensional wave number kh2 for a rectangular

beam 20 × 1 with ν = 0.3. For the lower bending mode q= 20, for the upper bending mode q= 1/20. (a) The dispersion
curves obtained using the SAFE method. The shaded area, also shown zoomed as (b), presents a comparison between two
bendingmodes (solid lines) and their approximations using the Euler–Bernoulli theory and asymptotic equation (4.21) (dotted
and dash-dotted lines, respectively). A twisting mode is also shown.

Equation (5.4) predicts no dispersion when k0(ν, q) = 0; of course, this actually means that
dispersion in this case would be governed by the next O(I2

x2
k4/A2) term. For example, in a

rectangular beam with the cross section 6.2916 × 1 made of a steel with ν = 0.3, the correction term
in equation (4.21) vanishes, so one expects to see a substantial improvement in the performance
of the Euler–Bernoulli theory for the lower bending mode. For even larger aspect ratios, k0(ν, q)
becomes negative; it does not quite mean the change of the type of dispersion, that e.g. happens
for shallow water waves, but it does mean that velocities predicted by the Euler–Bernoulli theory
may actually underestimate the true phase velocity of the lower bending mode at low frequencies.
This is contrary to the common intuition suggesting that the Euler–Bernoulli theory overestimates
the phase velocity in a beam.

In order to illustrate this situation, we also computed dispersion curves for the somewhat
extreme case of a beam with cross section 20 × 1 (figure 3a). Similar to the previous example,
we focused on the long-wave low-frequency modes, i.e. modes within the shaded area of the
graph that is also presented magnified in figure 3b. The improved approximation accuracy for the
upper bending mode, for which q = 1/20, is easy to assess from the figure. Phase velocity of the
lower bending mode, for which q = 20, is so low that all three curves—the numerical dispersion
curve, as well as its Euler–Bernoulli approximation and prediction by equation (4.21)—overlap
and appear indistinguishable. This is why a separate figure 4 presents numerically computed
relative approximation errors for both (a) lower and (b) upper bending modes. The relative error
of the Euler–Bernoulli theory for lower mode barely exceeds 1%, which explains our observations
(figure 4a). The relative error of the Euler–Bernoulli theory for the higher bending mode is
significantly larger (figure 4b). In both cases, the relative errors of the new bending equation (4.21)
are one to two orders of magnitude smaller than relative errors of the classical theory.

As we assumed the Poisson ratio ν = 0.3 and since for lower bending mode q = 20, the
correction coefficient k0(0.3, 20) ≈ −46.315 < 0. Therefore, just as we indicated earlier, for lower
bending mode in flat plate-like beams the Euler–Bernoulli theory tends to underestimate the
phase velocity (this is related to, but is not the same thing as the negative values for Timishenko’s
shear correction factor, which will be discussed in §7). Of course, proper modelling of bending
waves in such a structure is likely to also require properly accounting for twisting motions of
a beam (figure 3b). Therefore, in situations featuring low-frequency propagation/interaction of
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Figure 4. Relative approximation errors for long-wave low-frequency phase velocity of the bending modes in a rectangular
beam 20 × 1 with ν = 0.3. (a) The lower frequency (plate strip) bending mode. (b) The higher frequency in-plane (plane
stress) bending mode.

several bending modes of flat beams, one would probably benefit more from using a plate theory
instead of a single mode beam equation such as (4.21).

6. The limiting case of thin flat beams
Let us designate thin, flat flexural elements of rectangular cross section and small (or large) width
to thickness aspect ratio as simply thin flat beams. Such beams, e.g. the beam with aspect ratio
20 × 1 that we studied in §5, are special in that they can be meaningfully modelled using thin plate
approximations. It can be gathered from figure 3b that long-wave response of a thin flat beam is
dominated by three modes: two bending modes (in-plane and out-of-plane), as well as a twisting
mode. Typical beam deformations that correspond to these modes are schematically illustrated
in figure 5. The twisting mode shown in figure 5c is distinct from the bending modes in that it
is not a low-frequency mode; its long-wave limit corresponds to a relatively low, yet non-zero
frequency. This frequency would be a natural limit for the applicability of beam equation (4.21)
for thin flat beams. We are not going to otherwise study the twisting mode and leave its analysis
to a separate publication.

The lower bending mode (figure 5a) corresponds to the asymptotic limit when q ≡ h2/h3 
 1.
The infinite sum on the right-hand side of equation (5.2) is exponentially small in this case; hence,
S(∞) = 372ζ (5)/π5 ≈ 1.2604978 and

k0(ν, q) = − ν2

1 + ν
(2q2 − 3qS(∞)) + O(1), q 
 1. (6.1)

This expansion shows that for all sufficiently flat beams the Euler–Bernoulli theory will
underestimate the true phase velocity of plane waves, just as we observed previously for the
rectangular beam 20 × 1.

The correctness of expansion (6.1) can be confirmed using a classical Kirchhoff plate theory. A
thin flat beam can be thought of as a plate strip of width 2h2 and thickness 2h3; beam bending
mode would correspond to the fundamental symmetric mode of the strip. Motion of the plate
strip of thickness 2h3 is governed by the equation

2Eh3
3

3(1 − ν2)

(
∂4u3

∂x4
1

+ 2
∂4u3

∂x2
1∂x2

2
+ ∂4u3

∂x4
2

)
+ 2ρh3

∂2u3

∂t2 = 0. (6.2)
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(b)(a) (c)

Figure 5. Three modes that dominate a long-wave response of a flat beam: (a) a lower (out-of-plane) bending mode, (b) a
higher (in-plane) bending mode and (c) a twisting mode.

The boundary conditions that ensure that strip edges are stress-free can be written in the form

∂2u3

∂x2
2

+ ν
∂2u3

∂x2
1

+ Kh3(1 − ν)
∂3u3

∂x2
1∂x2

= 0 (6.3)

and
∂3u3

∂x3
2

− (2 − ν)
∂3u3

∂x2
1∂x2

= 0, (6.4)

where x2 = ±h2. These conditions are unusual due to the presence of O(h3) term in (6.3), which
represents a first non-trivial correction to the classical Kirchhoff boundary conditions by Kolos
[18]. Without this correction term, the classical leading-order theory of plate bending would only
be able to capture the leading-order behaviour of expansion (6.1); with the correction term added
we expect to recover (6.1) fully. Indeed, Kolos [18, eqn (2.13)] showed that the constant K is defined
as

K = 384
π5

∞∑
n=1

1
(2n − 1)5 . (6.5)

That is, in our notation K ≡ S(∞), which immediately suggests the potential relevance of the
correction term.

Solutions of the form

u3 = (U(1)
3 cosh(α1kh2) + U(2)

3 cosh(α2kh2)) exp( ik(x1 − vt)), (6.6)

satisfy governing equation (6.2) as long as

α2
1,2 = 1 ±

√
3(1 − ν2)

kh3

v√
E/ρ

. (6.7)

Substitution into boundary conditions (6.3) and (6.4) shows that non-trivial solutions of form (6.6)
only exist when the following secular equation is satisfied:

g(α1, α2, ν)C1S2 − g(α2, α1, ν)S1C2 + kh3K(1 − ν)α1α2(α2
1 − α2

2)S1S2 = 0, (6.8)

within which
Si = sinh(αikh2), Ci = cosh(αikh2) (6.9)

and
g(αi, αj, ν) = αj(α

2
i − ν)(α2

j + ν − 2), i �= j, i, j = 1, 2. (6.10)

If K was equal to zero, equation (6.8) would reduce to the dispersion relation first obtained and
analysed by Konenkov [31]. As is, this secular equation represents a generalization of Konenkov’s
result to the case of non-vanishing ratios h3/h2.



13

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180001

...................................................

Although (6.8) cannot, in general, be solved analytically, formal asymptotic expansions are
possible and expansion in the long-wave low-frequency limit has the following form:

v2

E/ρ
= Ix2 k2

A

(
1 + ν2(2q2 − 3Kq)

1 + ν

Ix2 k2

A
+ O

(
I2
x2

k4

A2

))
, (6.11)

which in view of equations (5.4) and (6.5) is clearly equivalent to (6.1). This serves to confirm the
validity of (5.4), at least in the asymptotic sense for q 
 1, and, simultaneously, this serves as a
non-trivial confirmation of the correctness of the boundary layer adjustment term by Kolos [18]
for the free boundary conditions in the Kirchhoff theory.

The higher bending mode, sketched in figure 5b, is associated with the values of parameter
q ≡ h2/h3 	 1. A mode like this can also be extrapolated by using a plate theory; however, the
bending deformation in this case would be confined to a plane and, therefore, would require an
application of the plane stress theory. Timoshenko [19] and Stephen [11] considered this limiting
behaviour and obtained, in different notations, the following expansion for the phase velocity:

v2

E/ρ
= Ix2 k2

A

(
1 −

(
2ν + 17

5

)
Ix2 k2

A
+ O

(
I2
x2

k4

A2

))
. (6.12)

For our new beam bending equation, this corresponds to the limit when q ≡ h2/h3 	 1; hence, in
view of expansion (5.1), we can say that

k0(ν, q) = 2ν + 17
5

− 2ν2

5(1 + ν)
q4 + · · · , q 	 1. (6.13)

A quick glance at dispersion relation (5.4) now confirms that Stephen’s expansion (6.12) gives the
correct leading-order behaviour for the dispersion coefficient k0(ν, q) when q 	 1.

It would be interesting to explore whether a refined plane stress theory would be sufficient to
also recover the O(q4) correction term in (6.13). The relevant higher-order equations are available
in [4] and the appropriately refined boundary conditions are described in [18]. However, this
discussion would take us too far outside of the scope of this paper.

7. Shear correction factor
In derivation of his beam equation, Timoshenko relied upon two key constitutive assumptions:

M = −EIx2

∂φ

∂x1
and Q = κμA

(
∂w
∂x1

− φ

)
, (7.1)

where M is the bending moment, φ the angle characterizing rotation of a cross-sectional element,
Q the shearing force, A the cross-sectional area and μ = E/2(1 + ν) the shear modulus, see [8].
Assumption (7.1)1 encapsulates the same leading-order relationship between bending moment
M and the radius of curvature (∂φ/∂x1)−1 as in the Euler–Bernoulli theory. Assumption (7.1)2 that
relates shearing force at the cross section to transverse shear strain at the centroidal axis is unique
to Timoshenko’s theory. The proportionality constant κ—‘the shear correction factor’—had to be
formally introduced to bring into accord the relationship that was known to Timoshenko to be
approximate at best. The associated beam equation, unsurprisingly, also depends on κ :

EIx2

∂4w

∂x4
1

+ ρA
∂2w
∂t2 − ρIx2

(
1 + E

κμ

)
∂4w

∂x2
1∂t2

+ ρ2Ix2

κμ

∂4w
∂t4 = 0, (7.2)

(see [9]). It is important to stress that, even though equation (7.2) contains higher-order terms
compared to the Euler–Bernoulli equation, the associated higher-order corrections are not
necessarily consistent with the appropriately truncated expressions from the three-dimensional
theory. This happens because the underlying assumptions (7.1) are not accurate to the same
order of truncation, see [9] and also discussions of similar issues in refined theories of plates
and shells in [3,32]. More specifically, even if the constitutive relation for shearing force (7.1)2 is
made asymptotically consistent, the recovery of the appropriately refined displacement and stress
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fields would also require a higher-order generalization of the constitutive relation for bending
moment (7.1)1 as well as appropriate refinements to the transverse inertia. This can be deduced
from asymptotic formulae in § 4, see also [3,32] and references therein for more details. As a result,
even with the presence of ‘tuning’ parameter κ , one does not expect to be able to recover correct
asymptotic behaviour of every aspect of the resulting theory. In fact, later in this section, we will
demonstrate how the choice of κ that increases only the numerical accuracy of equation (7.1)2 is
resulting in inconsistent governing equation (7.2).

A sizeable body of the literature sprung up from attempts to either formulate a consistent
method to derive κ or to justify a particular expression for it. Timoshenko himself used several
cross-section-independent constant values [8,19]; a surprisingly influential paper by Cowper [20]
used a series of approximations to arrive at a general expression for κ that was then specialized
to a number of canonical cross sections; for rectangular beams, it gives

κC = 10(1 + ν)
12 + 11ν

. (7.3)

Stephen [11] used several long-wave low-frequency expansions (including (6.12)) to show that
Cowper’s expressions cannot be consistent, at least for circular and rectangular cross sections.

The same idea can also be applied to our beam equation (4.21) to derive an asymptotically
consistent expression for the Timoshenko shear correction factor. The appropriate dispersion
relation can be obtained by substituting plane wave solution (5.3) into (7.2) and expanding the
result for small values of Ix2 k2/A. This procedure yields the following approximate dispersion
relation:

v2

E/ρ
= Ix2 k2

A

(
1 −

(
1 + E

κμ

)
Ix2 k2

A
+ O

(
I2
x2

k4

A2

))
. (7.4)

A direct comparison of expansions (7.4) and (5.4) indicates that Timoshenko’s equation will be
asymptotically equivalent to beam equation (4.21) as long as

κNPK = 2(1 + ν)
k0(ν, q) − 1

= 5(1 + ν)2

6 + 11ν − ν2 − 5ν2q2 + 2880ν2q
π5

∑∞
n=1

coth(qπ 2n−1
2 )

(2n−1)5

, (7.5)

which appears to be a new expression for the Timoshenko shear correction factor. This expression
can be compared with other expressions for κ in the literature. Stephen & Levinson [21, eqn (54b)]
published an ad hoc derivation that led to the following expression:

κSL = 5(1 + ν)2

6 + 11ν + ν2
(

5 − q4 + 90q5

π5

∑∞
n=1

tanh(πn/q)
n5

) , (7.6)

which, although appears different to (7.5), is equivalent to (7.5), see the demonstration in
appendix A. The same expression for κ was confirmed by Stephen [22, eqn (31)] and, in a
somewhat different form, by Hutchinson [23, eqn (47)], see the discussion in [24]. In addition,
a direct perturbation in powers of thickness variable was developed by Chan et al. [25], which
also confirmed the correctness of (7.6). Based on these comments, we conclude that κNPK = κSL
and that equations (7.5) and (7.6) are equivalent and asymptotically correct forms for the shear
correction factor for a rectangular Timoshenko beam.

The infinite series used in equations (7.5) and (7.6) will have to be truncated for numerical
computations. If these series are truncated after the same number of terms, equation (7.5) provides
a more precise answer for q � 1 and equation (7.6) provides a more precise answer for q � 1.
However, the precision of (7.6) with truncated series quickly deteriorates for larger values of q,
whereas the precision of (7.5) with truncated series stays approximately uniform for all values of
q (e.g. the first 10 terms in the series are typically sufficient to obtain five significant digits of κ).
Thus, equation (7.5) can be recommended as more universal expression for computing κ .

Berdichevskii & Kvashnina made a similar comparison of their asymptotic beam theory [12,
eqn (3.2)] with the Timoshenko equation. This led them to derive a general expression for κ valid
for sufficiently symmetric cross sections, see [12, eqn (8.6)]. Their resulting coefficient for circular
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Figure 6. The shear correction factor κ for rectangular beams when the Poisson ratio ν = 0.3. Parameter q is the aspect ratio
of the cross section rectangle.

cross sections [12, eqn (8.7)] matches the coefficient derived from three-dimensional theory by
Stephen [11] and since then confirmed by a number of other researchers. At the same time, their
coefficient for rectangular cross sections [12, eqn (8.9)]:

κBK = 1
191ν2+594ν+324

270(1+ν)2 + ν2

(1+ν)2

(
5

54q4 + 6q
π5

∑∞
n=1

tanh(πn/q)
n5

) , (7.7)

despite certain similarities, is not equivalent to (7.5) or (7.6) and, therefore, appears to be in error.
Substantial research effort has been spent trying to evaluate the value of κ that would render

approximate formula (7.1)2 numerically exact for rectangular beams. The earliest relevant result
in the literature was obtained by Eliseev [33, eqn (33)]; it can be re-written in our notation as:

κE = (1 + ν)2

6
5 (1 + 2ν + 2ν2) − 576ν2q

π5

∑∞
n=1

coth(qπ 2n−1
2 )

(2n−1)5 + ν2q2
. (7.8)

Fully equivalent, although very different-looking, shear correction factors were obtained by
Renton [34, just above eqn (27)]:

κR = 1
6
5 + ( ν

1+ν
)2 ∑∞

m=0
∑∞

n=1
36q4

π6(2m+1)2n2(4n2+(2m+1)2q2)

, (7.9)

and by Yu & Hodges [14, eqn (68)1]:

κYH = 1

6
5 + q4

(
ν

1+ν

)2 ( 1
5 − 18q

π5

∑∞
n=1

tanh(πn/q)
n5

) . (7.10)

The equivalence of expressions (7.8)–(7.10) can be easily demonstrated using the identities
described in appendix A, so κE = κR = κYH.

Despite some superficial similarities between the expressions for κNPK = κSL and expressions
for κE = κR = κYH, it is important to stress that they are very different functions of the beam
aspect ratio q and the Poisson ratio ν. Figure 6 illustrates this point for the Poisson ratio ν = 0.3.
It is immediately obvious that expressions κE = κR = κYH do not result in the correct limiting
behaviour for q 	 1, just like κC did not. The definition of κ that leads to the asymptotically
consistent governing equation is actually discontinuous when k0(ν, q) = 1, see (7.5); when ν = 0.3
this happens for q ≈ 5.5671. The asymptotically correct value of κ for even flatter beams is
negative, which suggests anti-spring relationship between shearing force and transverse shear
strain. The physical meaning of equation (7.1)2 for negative or discontinuous values of κ is
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Table 1. Specific values of the shear correction factor for ν = 0.3.

q κC κE = κR = κYH κNPK = κSL κFEM

1/20 0.8497 0.8333 0.8667 0.87
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1/2 0.8497 0.8329 0.8671 0.87
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.8497 0.7844 0.9267 0.93
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 0.8497 0.04866 −0.05495 −0.055
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dubious; however, rather than casting the doubt on definitions of κNPK = κSL, this simply reflects
the fact that (7.1)2 is not a consistent statement from the point of view of long-wave low-frequency
asymptotics.

In fact, it is possible to estimate the ‘true’ value of κ from the dispersion curves obtained using
the finite-element method. Indeed, we expect that Timoshenko’s dispersion relation (7.4) must
provide a fair approximation of the exact dispersion curves for sufficiently small wavenumbers.
Therefore, the difference between the phase velocity of Euler–Bernoulli beam vEB = √

E/ρIx2 k2/A
and the phase velocity resulting from the full three-dimensional theory vFEM must be equal,
to the leading order, to the higher-order correction term in equation (7.4). A simple algebraic
manipulation can then be used to show that

κFEM ≈ 2(1 + ν)(
2 vEB−vFEM√

E/ρ(Ix2 k2/A)3 − 1
) . (7.11)

This identity is, of course, approximate, but it becomes more and more accurate as Ix2 k2/A → 0.
Thus, the long-wave limit of (7.11) can be used to estimate the values of κ that correspond to
the considered dispersion curve. We applied the described procedure to all four bending mode
dispersion curves discussed in §5 and obtained estimates for the shear correction factor. These
estimates are denoted as κFEM in figure 6 and they can also be seen tabulated in table 1. Also
included in table 1 are the values of the shear correction factor that are obtained from the
expressions discussed in this section. From these results, it is abundantly clear that only the
definitions of κNPK = κSL are truly consistent with the results of finite-element simulations.

8. Summary
An asymptotic beam equation constructed in this paper can be used to describe the long-wave
low-frequency behaviour of both bending modes of a rectangular beam without making any
assumptions about aspect ratio of the beam. If we assume that h2 ≥ h3 or, equivalently, that
q ≡ h2/h3 ≥ 1, then the lower bending mode of the beam is governed by

EIx2

ρA
∂4w

∂x4
1

+ ∂2w
∂t2 − k0(ν, q)

Ix2

A
∂4w

∂x2
1∂t2

= 0. (8.1)

in which Ix2 = 2h2(2h3)3/12, A = 4h2h3 and the non-dimensional coefficient k0(ν, q) is defined by
equations (4.20) and (4.17)2. The governing equation for higher bending mode can be obtained by
replacing Ix2 and q with Ix3 = (2h2)32h3/12 and 1/q, respectively.

We used a variety of tests to demonstrate the asymptotic consistency of the newly derived
equation. Specifically, we correctly recovered the asymptotic behaviour in the limit of thin flat
beams modelled by a strip of Kirchhoff plate. Very remarkably, when using the classical plate
theory with the Kirchhoff boundary conditions refined by Kolos [18], the first two terms of the
corresponding dispersion relation were shown to fully match the dispersion relation for the new
beam theory. This appears to be the first non-trivial confirmation of the correctness of Kolos’
result. We also showed that the new equation correctly reproduces the limiting case of narrow
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beams, which can be obtained by analysing a strip problem for a thin plate in the state of plane
stress.

A comparison with the recent literature on the Timoshenko shear correction factor κ was also
made. A new asymptotically consistent expression for κ was obtained in the following form:

κ = 5(1 + ν)2

6 + 11ν − ν2 − 5ν2q2 + 2880ν2q
π5

∑∞
n=1

coth(qπ 2n−1
2 )

(2n−1)5

. (8.2)

We showed that equation (8.2), although apparently new, is equivalent to the expressions for
κ previously derived in [21–23,25], see also discussion [24]. Given the substantial differences
between the methods used to obtain these expressions, our study may serve as a confirmation
of the asymptotic consistency of the previously reported results.

The relative simplicity of rectangular cross section allowed us to obtain a number of
explicit analytical results for rectangular beams and cross-verify predictions that resulted from
considering distinct asymptotic limiting processes. The case of more general beam cross sections
will necessarily be less explicit and will become the subject of a separate treatment. However, the
main benefit of the asymptotically consistent beam theory, such as the one derived in this paper,
is the possibility of extending our results to finite beams. Such an extension must necessarily
involve an appropriate refinement of the end boundary conditions [35]. There exists a substantial
body of research on refinements of edge boundary conditions for plate theories (e.g. [36–38] and
references therein). We are hoping to address the sparsity of similar results for higher-order beam
theories in our future work.
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Appendix A. Demonstration of equivalence of (7.5) and (7.6)
The shear correction factors (7.5) and (7.6) feature infinite sums that must be expressed in terms
of each other if we are to compare them. The necessary result can be established by using the
following series for hyperbolic functions [39, 1.421.2 and 1.421.4]:

coth πx = 1
πx

+ 2x
π

∞∑
k=1

1
x2 + k2 (A 1)

and

tanh
πx
2

= 4x
π

∞∑
k=1

1
(2k − 1)2 + x2 . (A 2)

We will also need several identities related to the Riemann zeta function. First, we note that for
s > 1

ζ (s) =
∞∑

k=1

1
ks =

∞∑
k=1

[
1

(2k − 1)s + 1
2sks

]
=

∞∑
k=1

1
(2k − 1)s + ζ (s)

2s , (A 3)

see [39, Sect. 9.52, 9.54]. Consequently,
∑∞

k=1 2s/(2k − 1)s = (2s − 1)ζ (s), and since ζ (6) = π6/945
we can conclude that ∞∑

k=1

26

(2k − 1)6 = π6

15
. (A 4)

Similarly, it is easy to see that for s > 1 and r > 1

∞∑
n=1

∞∑
k=1

1
ns

2r

(2k − 1)r = (2r − 1)ζ (s)ζ (r); (A 5)
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hence, because ζ (2) = π2/6 and ζ (4) = π4/90,

∞∑
n=1

∞∑
k=1

1
n2

24

(2k − 1)4 = π6

36
and

∞∑
n=1

∞∑
k=1

1
n4

22

(2k − 1)2 = π6

180
. (A 6)

Identities (A 4) and (A 6) can also be computed directly using a computer algebra system such as
Waterloo Maple. With all these equations in mind, one can construct the following sequence of
transformations:

25q
∞∑

k=1

coth(π (2k − 1)q/2)
(2k − 1)5

(A 1)= 1
π

∞∑
k=1

26

(2k − 1)6

[
1 + 2(2k − 1)2

∞∑
n=1

1
(2k − 1)2 + (2n/q)2

]

(A 4)= π5

15
+ 27

π

∞∑
n=1

∞∑
k=1

1
(2k − 1)4

1
(2k − 1)2 + (2n/q)2

= π5

15
+ 27

π

∞∑
n=1

∞∑
k=1

[
(2n/q)−2

(2k − 1)4 − (2n/q)−4

(2k − 1)2 + (2n/q)−4

(2k − 1)2 + (2n/q)2

]

(A 6)= π5

15
+ π5q2

18
− π5q4

90
+ 23q4

π

∞∑
n=1

1
n4

∞∑
k=1

1
(2k − 1)2 + (2n/q)2

(A 2)= π5

90
(6 + 5q2 − q4) + q5

∞∑
n=1

tanh(πn/q)
n5 . (A 7)

In the view of identity (A 7), the equivalence of expressions (7.5) and (7.6) can now be established
by elementary algebraic manipulations.
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