View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by Brunel University Research Archive

On the Effectiveness of Unit Tests in Test-driven Development

Ayse Tosun
Istanbul Technical University
Istanbul, Turkey
tosunay@itu.edu.tr

Burak Turhan
Brunel University London
Middlesex, UK
burak.turhan@brunel.ac.uk

ABSTRACT

Background: Writing unit tests is one of the primary activities
in test-driven development. Yet, the existing reviews report few
evidence supporting or refuting the effect of this development ap-
proach on test case quality. Lack of ability and skills of developers to
produce sufficiently good test cases are also reported as limitations
of applying test-driven development in industrial practice.

Objective: We investigate the impact of test-driven development
on the effectiveness of unit test cases compared to an incremental
test last development in an industrial context.

Method: We conducted an experiment in an industrial setting
with 24 professionals. Professionals followed the two development
approaches to implement the tasks. We measure unit test effec-
tiveness in terms of mutation score. We also measure branch and
method coverage of test suites to compare our results with the
literature.

Results: In terms of mutation score, we have found that the test
cases written for a test-driven development task have a higher
defect detection ability than test cases written for an incremental
test-last development task. Subjects wrote test cases that cover
more branches on a test-driven development task compared to the
other task. However, test cases written for an incremental test-last
development task cover more methods than those written for the
second task.

Conclusion: Our findings are different from previous studies
conducted at academic settings. Professionals were able to perform
more effective unit testing with test-driven development. Further-
more, we observe that the coverage measure preferred in academic
studies reveal different aspects of a development approach. Our
results need to be validated in larger industrial contexts.

KEYWORDS

Test-driven development, unit testing, mutation score, code cover-
age, empirical study

ACM Reference Format:
Ayse Tosun, Muzamil Ahmed, Burak Turhan, and Natalia Juristo. 2018. On
the Effectiveness of Unit Tests in Test-driven Development. In Proceedings of

ICSSP’18, May 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
International Conference on Software and System Processes (ICSSP’18), https://doi.org/
10.1145/3202710.3203153.

Muzamil Ahmed
University of Oulu
Oulu, Finland
muzamil_kpr@hotmail.com

Natalia Juristo
Universidad Politechnica de Madrid
Madrid, Spain
natalia@fi.upm.es

International Conference on Software and System Processes (ICSSP’18). ACM,
New York, NY, USA, Article 4, 10 pages. https://doi.org/10.1145/3202710.
3203153

1 INTRODUCTION

Test-driven Development (TDD) was introduced as a software de-
velopment practice in early 1960s during NASA’s Mercury project
[8]. It is popularized by Beck [7] as a way of managing fear (e.g.
progressing slowly due to unnecessary thinking on up-front design,
finishing higher complexity tasks at a single step) during program-
ming. TDD is proposed to be a suitable methodology for agile de-
velopment, as it encourages thinking on the functionality ahead of
writing the code, refactoring the code frequently and continuously
maintaining high code quality, and increasing the maintainability
and reliability of the code through running automated regression
test cases [7, 21]. For more than a decade, many empirical studies
have been conducted to examine the effects of TDD on different
project attributes. Most of the reported work on TDD studied its
effects on internal code quality, external code quality and developer
productivity [26, 30, 34, 41]. Literature reviews [30, 41] and meta-
analysis [34] report inconsistent results on the effects of TDD on
quality and productivity with respect to the study settings. Turhan
et al. [41] report that TDD has a mixed effect on internal quality,
positive effect on external quality, whereas it has an inconsistent
effect on productivity when all studies’ findings were aggregated.
When studies of high rigor, i.e., controlled experiments and pilot
studies designed with good constructs in medium to large scale
studies, were considered, the results on quality remains inconsis-
tent, whereas the results on productivity seems to be improving
with TDD. Munir et al. [30] similarly classified empirical studies on
TDD into four categories in terms of rigor and relevance. High rigor
and relevance studies report significant improvements in external
quality with a loss of productivity when TDD is applied. Rafique
and Misic [34], in their meta-analysis, report that TDD, in general,
has a positive effect on external quality, but little or no effect on
productivity.

Effects of TDD on other attributes have been studied less often
through experiments and case studies. Turhan et al. [41] reports 17
TDD trials that study the effect of this development approach on
test quality captured by test productivity, test density, test coverage
and test effort. Munir et al. [30] also reports the effects of TDD on
the effort/time spent for coding and testing, developer opinion (on
simplicity, ease of use, correctness), conformance to the rules of
TDD and robustness.

https://core.ac.uk/display/362650687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3202710.3203153
https://doi.org/10.1145/3202710.3203153
https://doi.org/10.1145/3202710.3203153
https://doi.org/10.1145/3202710.3203153

ICSSP’18, May 2018, Gothenburg, Sweden

Although TDD is still being investigated with more case studies
conducted with professionals (e.g. [27]) and controlled experiments
in academic settings (e.g. [18]), the industrial adoption of TDD has
not been completed yet [29]. Causevic et al. [10], in their literature
review, highlighted 18 factors that could limit the industrial adop-
tion of TDD. These 18 factors influence the way TDD is applied.
The limiting factors studied the most are increased development
time, insufficient TDD experience, lack of upfront design, domain
and tool specific issues, lack of skills in writing test cases, insuffi-
cient adherence to TDD protocol and legacy code [10]. The authors
suggest investigating those limiting factors in future studies, and
proposing guidance to overcome those for successful industrial
adoption of TDD.

During TDD practice, testing is expected to be improved with a
growing number of automated test cases [41]. Furthermore, quality
of these test cases could be higher since they are written at a finer
granularity level. Turhan et al. [41] state that the previous findings
also support this argument despite insufficient evidence to reach
a conclusion from industry. Madeyski [26] also highlights the im-
portance of unit tests’ effectiveness and thoroughness during TDD
practice in terms of fault detection, since the coding is mainly driven
by test cases during TDD, and effective and thorough test cases
lead to a higher quality software product. Therefore, the immediate
impact of TDD compared to a traditional test-last approach is ex-
pected to be on unit test cases. Considering the mentioned relation,
we found few empirical studies that investigate the effects of TDD
on unit test case effectiveness in terms of catching code defects
[11, 12, 26]. These three studies conducted in academic settings
report that there is minor or no difference between the effective-
ness of unit tests implemented in TDD and test-last development.
However, as highlighted in [41], there is a need to investigate the
phenomenon in industrial settings to generalize the results.

In this paper, we report our empirical analysis based on an in-
dustrial experiment on TDD conducted with 24 professionals at a
software organization. We analyse the effects of TDD on unit test
case effectiveness with respect to mutation score indicator. We also
measured the code coverage with respect to unit test cases, as all
the prior academic experiments [11, 12, 26] also assessed the test
effectiveness in terms of coverage. Our study further contributes
to the existing literature by assessing the same hypotheses with
professionals in an industrial setting.

2 RELATED WORK

In this section, we provide information about the objectives of unit
testing and report different attributes associated with unit test (case)
effectiveness from prior studies. We then present the experiment
details and conclusions from three prior academic experiments
[11, 12, 26] that investigated the effects of TDD on unit test cases.

2.1 Unit Testing

Hunt and Thomas [22] describe unit tests as a piece of code written
by developers with the intention of exercising/testing a specific
functionality on a small area of the code. Unit testing is an important
process in software development, as it helps to spot problematic
areas and reduce bugs in the source code [5]. Today, unit tests are
easily automated and the programming language of unit tests is

A. Tosun et al.

the same as that of production code [15]. These tests are put under
revision control and are an explicit part of the code.

Earlier software testing techniques focused on defining and
achieving higher level of code coverage (e.g. thorough testing) to
verify the program structure. Several metrics for identifying the
coverage criteria have been proposed, such as branch and state-
ment coverage [36]. Later, this trend has moved towards fault-based
testing techniques, also called mutation testing, which aims to test
specifications and functionalities of a program with more data [36].
Mutation score indicator was proposed and extensively explored to
analyse the fault detection effectiveness of test cases [31].

2.1.1 Unit test effectiveness. There are different views associ-
ated with a set of attributes proposed to measure the quality of unit
test cases in the literature [9]. Kaczanowski [25] discusses three
characteristics to measure test quality: Test smells, code coverage
and mutation score indicator. Causevic et al. [11, 12] in their exper-
iments also refer these as test quality attributes. A recent mapping
study summarizes different ways to assess the quality of test-code
among 28 primary studies [43]. Garousi et al. [43] highlights that
around half of primary studies investigated test smells, whereas
other studies used coverage as an indicator of test code/ assertions
quality. Some studies on test smells argue that these issues degrade
the quality of test code since test smells prevent the maintainability
of test codes written by the development teams [20, 35]. Madeyski
[26] on the other hand discusses the quality of test suite in terms
of their thoroughness and effectiveness: Coverage metrics are indi-
cators of test suite thoroughness, while mutation score indicator is
found to be effective at finding faults [26]. Similar views on code
coverage point out that high coverage do not necessarily indicate
that a test suite is effective at catching faults [23]. Mutation testing,
on the other hand, is related to test suite effectiveness in terms
of test suite’s ability to detect faults [4, 13, 24]. Following the ar-
gument by Madeyski [26], we also use mutation score indicator
as a measure of unit test effectiveness in this experiment. Below,
we summarize the literature on the three attributes (test smells,
code coverage metrics and mutation score indicator) and justify
our decision to choose mutation score indicator as the measure of
unit test effectiveness.

2.1.2 Test smells. Test smell is similar to the term “source code
smell” (when something does not look right in production code),
but it is not as standardized as source code smells [25]. We can use
static analysis tools (e.g. FindBugs [3]) for the test code as well; but
test code is much simpler than production code, which makes it
difficult to find any smells in the test code. The study by Deursen
et al. [15] is the first that describes 11 test smells: mystery guest,
resource optimization, test run war, general fixture, eager test, lazy
test, assertion roulette, indirect testing, for testers only, sensitive
equality and test code duplication. Deursen et al. [15] also state
that test code smells are different than production code smells. The
difference in source code and test code smells depends on how test
cases are implemented, organized, and how they interact with each
other. The authors in [15] further provide specific refactoring activ-
ities to avoid these test smells. Kaczanowski [25] also recommends
eliminating smells in both test and source codes by following the
best programming practices. Studies on test smells often propose
new test smell sub-categories such as general fixture and eager, and

On the Effectiveness of Unit Tests in Test-driven Development

methods to detect those (e.g. [20], [35]), or they study the impact
of test smells on maintenance activities (e.g. [32]). Rompaey et al.
[35] proposes a set of metrics to identify general fixture and eager
test smells, and suggest automating the detection of these smells
through the metrics.

Although the research on test smells have been increasing with
new tool and methods for detection and prevention, there is neither
a common understanding of test smells in the literature, nor a
specialized tool to identify specifically test smells. Furthermore,
test smells are often considered as indicators of test code quality
than a way to understand test suite effectiveness. For these reasons,
we do not use test smells as unit test effectiveness in this study.

2.1.3 Code coverage. Testing is useless if one fails to execute a
faulty element in the code [33]. To measure the quality of test cases,
code coverage is a commonly used measure. It indicates which
part of the production code (e.g. line, statements, and branches)
is exercised/ executed during testing. 100 percent line coverage
indicates that all lines of the code have been executed with the ex-
isting test suite. There are different ways to measure code coverage.
A literature review by Shahid, Ibrahim, and Naz [38] proposes 12
different granularities of measuring code coverage, some of which
are branch, instruction, line, cyclomatic complexity, instruction and
method coverage. According to an empirical study [19], the use of
coverage measures to determine the defect detection capability of a
test suite could be dependent on the context. In industrial environ-
ments, statement coverage is found as the most effective predictor
of test suite quality, although, branch coverage or some variants
of path coverage may be more useful in research contexts [19].
Another study by Tengeri et al. [39] argues that the correlation be-
tween high code coverage and defect detection effectiveness of test
suites is not always present or evident. Inozemtseva and Holmes
[23] report similar findings in which authors study whether the
statement, decision and modified condition coverage of test suites
are correlated with test suite effectiveness in terms of mutation
score. Results show that there is a low to moderate correlation
between test suite effectiveness and code coverage when the size
of test suite is controlled. Based on these recent studies, we also
argue that code coverage does not necessarily indicate effectiveness
of a test suite; rather it measures the thoroughness of a test suite
[26]. Therefore, we do not use coverage as our main measure for
test suite effectiveness in this experiment; but we refer to coverage
analysis for comparing our results with the previous findings.

2.1.4 Mutation score indicator. Mutation testing is a way to
measure the ability of a test case to catch defects in the code [31].
To verify how good a test suite is, multiple versions of the program
code, in which different types of defects are injected, can be created
[25]. According to PezzAl and Young [33], a mutant is a program
which is different from the original program at one syntactic item.
A mutation testing tool creates a mutant of the program by apply-
ing a mutation operator at a single location of the program [16].
After executing a test case, if a mutant can be distinguished from
the original program, it is said that test case kills the mutant. If the
mutant cannot be distinguished, it is called as an equivalent mutant
[16]. Mutation testing is used to check the fault detection effective-
ness of a given test suit. Mutation score indicator is calculated as
the percentage of faults (mutants) detected by the test suite [28].

ICSSP’18, May 2018, Gothenburg, Sweden

This score can be used to measure the effectiveness of a test set in
terms of its ability to catch faults [14, 24]. A higher mutation score
indicates higher effectiveness of test suite in detecting the faults. In
order to compute mutation score of a program, all test cases in that
program’s test suite should pass before execution of a mutation
tool.

According to [4], mutation operators generate mutants that are
similar to real faults found in the system although they might be
harder to detect than hand-seeded faults. Gopinath et al. [19] also
argues that, in terms of defect detection ability, mutation testing
could be considered as the most effective way to predict test suite ef-
fectiveness. Other coverage measures such as statement and branch
coverage could also be correlated with mutation detection capa-
bility although these findings are dependent on the selection of a
proper population of subjects and test suite. Following Gopinath
et al’s [19] claim that the development approach in which unit
tests are generated could likely affect the interpretation of unit
tests, we use mutation score indicator to measure the effectiveness
of unit tests written in the context of two different development
approaches.

2.2 Unit Test Effectiveness in TDD

There is some evidence suggesting that TDD improves test quality
[41]. However, most of the evidence comes from pilot studies, while
the majority of controlled experiments report no difference between
TDD and alternative treatments. There is also insufficient evidence
from TDD’s industrial use to reach a conclusion. Authors point out
that test case development is one of the primary activities of TDD,
and hence, they would have expected stronger results regarding this
approach’s effect on test quality [41]. Causevic et al. [10] also state
in their literature review that there is no explicit investigation of the
quality of test cases written by developers during TDD apart from
two studies. Those two studies that Causevic et al. [10] included
in their review, on the other hand, reported difficulties of applying
TDD when there is lack of ability and skills of the developer to
produce sufficiently good test cases.

A recent systematic literature review conducted by Munir et
al. [30] identifies patterns and themes used among the studies on
TDD. Munir et al. [30] did not mention any category related to
unit test effectiveness or any study on the impact of TDD on unit
test effectiveness. However, the authors list branch coverage metric
under internal code quality category, as it was previously used to
quantify internal code quality in a TDD study. Furthermore, a set
of metrics, such as the number of test case passed, total number
of assertions passed/failed, and total number of test cases written,
were discussed under the size and external quality categories [30].

We found one study (Madeyski [26]) with a focus on unit test
effectiveness of TDD. Madeyski [26] performed an experiment with
a group of master students in an academic setting. They used branch
coverage to evaluate the effects of test-first (TF) development on
unit test thoroughness, and mutation score to evaluate the effects
of TF on unit test effectiveness. The control treatment was test-
last development. Their experiments did not reveal any significant
differences in terms of branch coverage and mutation score of unit
test cases between the two treatments. Causevic et al. [11, 12] later
extended the experiment of Madeyski [26] in academia with master

ICSSP’18, May 2018, Gothenburg, Sweden

students. They conducted one experiment with 14 students, and
published results of this experiment in two studies [11, 12]. They
also found no difference in code coverage and mutation score of
unit test cases written during a test first and a test last approach.
The details of the experiments conducted by Madeyski [26] and
Causevic et al. [11, 12] are summarized in Table 1.

The dependent variables of these three studies, listed in Table 1,
are stated differently. Madeyski [26] define the dependent variable
as the unit test quality composed of unit test thoroughness and
effectiveness. Causevic et al. [11] refer to Madeyski’s work and state
that their study is in relation to the earlier experiment in terms of
its goal. Causevic et al. [12] later rephrased their dependent variable
to efficiency and effectiveness of test cases, although their overall
goal stays the same in both of their papers. In all three studies,
authors quantify unit test quality in terms of mutation score and
code coverage. Madeyski [26] used branch coverage to represent
unit test thoroughness. Causevic et al. [11, 12], on the other hand,
used statement coverage. The interpretation of both metrics was
also different by the two authors. Causevic et al. [11, 12] evaluate
both mutation score and statement coverage as internal quality
attributes of test cases. To evaluate the external quality of test
cases, the authors further defined an additional metric called defect
detection ability in [6], and total number of failing assertions in [7].

The independent variable in all the three studies, listed in Table 1,
was the development approach with two levels: Test-first (TF) and
Test-last (TL) programming. Note that TF is used to refer to TDD,
whereas TL is used to refer to traditional test-last development.
Madeyski [26] defines TL as an incremental development approach
as TF, but the only difference between the two is when and how
often subjects write unit tests during their practices. The author
explicitly mentioned that he taught both techniques to the students
prior to the experimentation. Causevic et al. [6, 7] state that par-
ticipants in the TF group were instructed to use TDD, but they did
not mention any training on TL. Experiments were conducted with
graduate (MSc level) students. It is important to mention that in
[11, 12], authors did not use statistical tests due to insufficient num-
bers of subjects, while Madeyski [26] used multivariate ANOVA
after confirming its assumptions on data hold true.

Our study is an extension of those three studies. We partially
share the research goal with Madeyski [26]: To evaluate unit test
case effectiveness of TDD compared to ITLD. To further confirm or
refute the previous findings on unit test thoroughness (as stated by
Madeyski [26]), we also measure code coverage of unit tests in terms
of method and branch coverage. We did not use statement coverage
as in Causevic et al. [11]; instead, we choose method coverage as
a complement to branch coverage. We believe that the change in
development approach (from ITLD to TDD) might lead to writing
fewer methods with more branches, whereas it may not affect the
statements covered by unit tests. During TDD, subjects need to
focus on writing tests associated with small pieces of functionality
and incrementing their code for each new, failed test case. This
approach does not require adding new methods for each failing test
case. Hence, it is a different practice than ITLD, in which subjects
complete their code for a small piece of functionality before testing,
and whenever a new piece of functionality is to be implemented
subjects tend to associate it with new methods.

A. Tosun et al.

Different than the studies in Table 1, we conduct an industrial
experiment with professionals located in three different sites of a
software organization. We believe our research fills a gap mentioned
in all prior studies that more experiments in different contexts (e.g.
industrial) is necessary to strengthen the existing findings, and to
establish evidence-based recommendations [26]. We also choose
two objects with similar complexity and compare unit test case
effectiveness of those objects implemented in a TDD and ITLD
fashion. The research in [11, 12] used EclEmma tool [1] for code
coverage analysis in their experiments. For mutation score indicator,
Judy [28] was used by all three studies. We also employed the same
toolset for extracting metrics data in order to keep the measurement
process consistent with the prior studies. Finally, we evaluate our
hypotheses using non-parametric statistical tests.

3 EXPERIMENTAL DESIGN

This study uses data from an experiment conducted with profession-
als to observe the effects of TDD on external quality and productiv-
ity [40]. The experimental setup is therefore identical to the original
experiment: the same group of professionals from a software or-
ganization, the same independent variables (TDD and ITLD), and
the same programming tasks. Different from [40], we define a new
research question to observe the effect of TDD on unit test effec-
tiveness, collect data for our new dependent variable in this study,
and extract new measures. In this section, we present the goal, its
corresponding research question and hypotheses, the variables and
the metrics of this study. The details of all the experimental setup
can be found in [40].

Research objectives

The goal of this study is to understand the effects of TDD on unit
test effectiveness. Hence, we formulate our research objective fol-
lowing the guidelines provided by [6]:

Analyze TDD

For the purpose of evaluating its effects

With respect to the effectiveness of unit tests
Compared with Incremental Test Last Development
From the point of view of professionals in industry.

Based on our research objective, we define our research question
as follows:
R.Q. “What is the effect of TDD on unit test effectiveness compared
to an incremental test last approach (ITLD)?”

Variables

The independent variable of our study is software development
technique, with two treatments: Incremental Test Last Develop-
ment (ITLD) and Test-Driven Development (TDD). We compare
TDD with a closely related process, which we call incremental
test-last development (ITLD). Both TDD and ITLD follow the same,
iterative steps except the order of the activities involved in each
increment. Both TDD and ITLD follow small steps, such as de-
composing the specification into small programming tasks, coding,
testing and refactoring. The difference is mainly in the sequencing
of coding and testing activities in each increment. TDD prescribes

On the Effectiveness of Unit Tests in Test-driven Development

ICSSP’18, May 2018, Gothenburg, Sweden

Table 1: Summary of Related Studies

Title [26] [11] [12] Our study

Goal Compare Test-First (TF) | Compare the quality of | Compare efficiency and | Analyze the effect of
vs. Test-Last (TL) pro- | test cases produced us- | effectiveness of the test- | TDD on unit test effec-
gramming with regard | ing test-first and test- | ing effort produced by | tiveness compared to an
to thoroughness and | last approaches test-first and test-last | incremental test last ap-
fault detection effective- developers. proach (ITLD)
ness of unit tests.

Independent Development approach: TF or TL TDD and ITLD

Variable

Metrics Branch coverage, Muta- | Defect detecting abil- | Total number of fail- | Mutation score
tion score ity, Statement coverage, | ing assertions, State-

Mutation score ment coverage, Muta-
tion score
Methodology Controlled experiment
Design One Factor Two Treatments Repeated measures de-
sign

Subjects 22 third and fourth-year 14 (software engineering master) students 24 professionals
graduate MSc software
engineering students

Objects Web-based paper sub- Bowling Score Keeper Bowling Score Keeper
mission and review sys- and Mars Rover API
tem

Results No significant differ- No difference Significant difference
ence

writing tests before writing production code for any piece of new
functionality [40]. ITLD prescribes writing production code first,
immediately followed by writing tests before moving on to a new,
small piece of functionality. We have chosen ITLD since this devel-
opment technique forces a control that involves testing, making
the comparison less biased and fairer [40].

The dependent variable of our study is unit test case effec-
tiveness. We prefer to use this term aAIJeffectivenessaAl rather
than unit test quality, since there are different attributes, e.g. inter-
nal, external as in [11], and test smells, coverage measures as in
[25], associated with test suite quality. However, unit test effective-
ness is often associated with mutation score in the literature (e.g.
[4, 14, 24, 26]). Therefore, we also choose mutation score indicator
as our metric. This metric is calculated based on the ratio between
total number of killed mutants by your test suite and total number
of non-equivalent mutations [28].

Hypotheses
Based on our research question, we define the null and alternative
hypotheses.

Hou(MS)Tpp = p(MS);rLp - There is no difference in the muta-
tion score (MS) of unit tests implemented by subjects during TDD
and ITLD.

Hip(MS)rpp # p(MS)rTLp - There is a significant difference in
the mutation score of unit tests implemented by subjects during
TDD and ITLD.

Design

We choose experimentation as our research methodology. Exper-
iments are usually performed in a laboratory environment that
provides maximum control [42]. In an experiment, the goal is to
manipulate one or more variables, while other variables are con-
trolled at a fixed level. The effects of this manipulation are measured
which later can be used to perform statistical analysis [42].

We performed an experiment in an industrial setting with pro-
fessionals. We choose one factor (software development technique)
with two treatments (TDD and ITLD) and follow a repeated mea-
sure design in our experiment [37]: The subjects of the experiment
were exposed to both treatments sequentially, and hence, each sub-
ject is matched with herself cancelling out her inherent variability
and increasing the power greatly [37]. We chose this design in the
experiment since the volunteers wanted to participate all events
(exercises and treatment tasks) and training. They did not prefer us
to group the subjects into two groups as in prior experiments in
Table 1. We reported the findings based on the two treatments in
this paper. More details on the schedule, training, execution of the
events and exercises are reported in [40].

Subjects

We conducted the experiment in three different sites of a large-scale
organization [40]. The company operates at multinational level and
provides security services and products to protect digital life of
consumers and business. In total, 24 participants volunteered for
the experiment at the chosen sites of company. These participants
were novice developers with no hands-on-practice on TDD before.

ICSSP’18, May 2018, Gothenburg, Sweden

The detailed demographics of the participants were provided in the
previous experiment report [40].

Objects

Participants were asked to implement two programming tasks (ob-
jects) which are matched with the two treatments of the experiment:
MarsRover API for ITLD treatment and Bowling Score Keeper for
TDD treatment. Participants have to work with Java classes, objects
and write Junit test cases to check the correctness of the output.
The details of the tasks were provided in the previous experiment
report [40].

Instrumentation

The participants used virtual machines during the experiment.
Supporting software i.e. operating system, java development kit
and tools required for development (i.e. eclipse) were pre-installed
on these virtual machines [40]. For this study, we use Judy and
EclEmma tools to collect mutation score and code coverage results
respectively. Judy: Judy is a mutation tool for Java source code
[28]. Judy supports 16 predefined mutation operators and works
on FAMTA Light algorithm to achieve high mutation performance
[28]. It generates mutants of the given software product at project
level and reports the percentage of mutants that are killed by the
associated test suite. EclEmma: It is a JaCoCo code coverage library
[2] based tool to calculate code coverage for Eclipse. It works on
Java byte code [1]. It provides code coverage analysis for instruc-
tion, line, branch, method, and cyclomatic complexity at class level.

Analysis procedure

Our analysis procedure starts with a comparison of descriptive
statistics; we compare mean, median, standard deviation, minimum
and maximum of mutation score values regarding the two treat-
ments. Then, we evaluate our results graphically with box plots.
Afterwards, we choose non-parametric statistical tests to check
whether the null hypotheses can be rejected. In this study, we eval-
uate our hypotheses using Wilcoxon rank sum statistical test with
a significance level of 0.05. We chose this test, since the mutation
score values extracted from the subjects’ test and source codes
do not follow a normal distribution. Wilcoxon rank sum test is a
non-parametric alternative to paired t-test [42]. When the design
of the experiment involves one factor, two treatments, and a paired
comparison between them, a Wilcoxon rank sum test can be used.

4 RESULTS

4.1 Dataset Reduction

We had 24 participants who attended our experiment [40]. Unfor-
tunately, due to compile time errors and runtime errors in three
participants ITLD task’s source codes, and lack of test code in one
participant’s ITLD task, we were not able to calculate metrics for
those participants. To avoid any false statistics, we removed those
participants’ data from our analysis. Furthermore, we could not
compute the mutation score for some participants’ data, since all ex-
isting unit test cases did not execute and pass. We fixed minor issues
(correction of method and constructor call) in eight participants’
test cases to pass those, and executed mutation score calculation

A. Tosun et al.

Table 2: Descriptive Statistics of Mutation Scores

#Participants Min. Median Mean Max. Var.

ITLD 13 2,0 62,0 54,7 83,0 27,9
TDD 18 6,0 84,0 70,6 93,0 284

Table 3: Descriptive Statistics of Mutation Scores for Pair-
wise Comparisons

#Participants Min. Median Mean Max. Var.

ITLD 10 17 67 57,5 83 26,17
TDD 10 56 87,5 83,5 93 10,69

tool (Judy) on participants’ source codes. The final number of imple-
mented tasks whose mutation score could be measured is presented
in the next subsection.

4.2 Descriptive Statistics

Table 2 presents the descriptive statistics of mutation score for the
tasks implemented in both treatments. We observe that subjects
wrote more effective unit tests in detecting faults (injected into the
source code) in TDD, i.e., 84% in median mutation score and 71%
in mean mutation score, compared to ITLD, i.e. 62% in median and
55% in mean. Table 3 shows that the number of participants are not
equal in both treatments due to the problems encountered on source
codes and test code execution. Therefore, the mutation score values
cannot be compared per subject. To make a paired comparison
between the mutation scores of different treatments, we chose the
participants whose mutation score could be measured in both ITLD
and TDD tasks and presented the descriptive statistics for those in
Table 3. We came up with 10 common participants’ data, for which
we could measure mutation score for both ITLD and TDD tasks.
We observe that, TDD scores better in terms of mutation score, i.e.
higher median and mean values, and lower standard deviation. This
indicates that the unit test cases written in TDD could be able to
detect more faults/defects than the unit test cases written in ITLD.
To support our claim, we conducted statistical tests on data and
reported our findings in the next subsection. The box plot in Figure
1 more clearly present that TDD has a higher mutation score than
ITLD. This box plot also shows a greater variability of mutation
scores in the ITLD task.

4.3 Hypothesis Testing

Wilcoxon rank sum test results between ITLD and TDD tasks on mu-
tation score show that there is a significant difference between
the effectiveness of unit tests measured in two treatments
(p — value = 0.04). Higher mutation score shows higher defect
detection ability, and hence in our study, test cases written in TDD
have more fault detection abilities than test cases written in ITLD.

5 INTERPRETATION

Our results differ from the prior studies [11, 12, 26]. This difference
can be a result of task assignment to the treatments. In the previous
three studies, authors divided the participants into equal groups and

On the Effectiveness of Unit Tests in Test-driven Development

Figure 1: Box plots for mutation score indicator in ITLD and
TDD

gfj

G0
L

40
|

20
L

TDD ITLD

assigned the same object for both the treatments (TDD and TLD).
On the other hand, in our experiment [40], we assigned different
objects for the treatments: Mars Rover for ITLD and Bowling Score
Keeper for TDD. Moreover, the same group of participants first
performed the task in ITLD and then the other task in TDD. In
terms of mutation score [11, 12], the previous results show higher
mutation scores in both treatments (on average 81,90% for TDD and
83,29% for TLD) compared to our study (on average 83.5% for TDD
and 57.5% for ITLD). Madeyski [26] was expecting a positive effect
of test first approach in mutation score indicator. He explained
that his study’s results are likely to be affected by the difficulty of
test-first technique and pre-existing difference in subjects. In our
experiment [40], we avoided the pre-existing difference in subjects
by generating a heterogeneous sample who applied both treatments
sequentially. We also avoided the difficulty of TDD by adding a
two-day training on TDD with hands-on exercises prior to the
experimentation [40].

5.1 Coverage Analysis for the Thoroughness of
Unit Tests

In addition to mutation score, earlier studies also measured code
coverage of unit tests between the two development approaches to
evaluate the thoroughness and effectiveness of unit tests [11, 12, 26].
To compare our study with these earlier studies, we also measured
code coverage and evaluated the differences in terms of branch
and method coverages of test suites implemented during TDD and
ITLD using non-parametric statistical tests. Branch coverage refers
to the conditional statements and the ratio of covered branches
in the conditions over the total number of branches in the source
code. Method coverage, on the other hand, refers to the execution
of non-abstract methods (contains at least one instruction) during
testing.

ICSSP’18, May 2018, Gothenburg, Sweden

We define the null hypotheses for the two coverage metrics to
evaluate TDD’s effect on unit test thoroughness:

Hopu(BRCOV)rpp = (BRCOV)[TLD - There is no difference in the
branch coverage (BRCov) between TDD and ITLD.
Hop(MTCOV)rpp = (MTCOV)rrLp - There is no difference in
the method coverage (MTCov) between TDD and ITLD.

Regarding code coverage, we applied Wilcoxon rank sum test at
project level data, by aggregating class level metrics into project
level. We chose this test because the data sample does not follow a
normal distribution. For instance, for branch coverage metric, we
calculated the mean, median, variance, minimum and maximum
of branch coverage values obtained from classes in each project
and created a new dataset. Then, we compared the median branch
coverage and method coverage between subjects using Wilcoxon
rank sum test.

The descriptive statistics of all coverage metrics calculated at
project level are presented in Table 4. In Table 4, we have two rows
for development methods (ITLD and TDD). Columns represent the
metrics, (BRCov = branches covered, MTCov = methods covered)
in percent.

From Table 4, we see that there are differences between ITLD and
TDD with respect to branch coverage. On average, 37% of branches
are covered by unit tests during ITLD, while 60% of branches are
covered during TDD. The differences are even higher in quantity
at median level. On the contrary, we can see more methods are
covered by unit tests during TDD.

Statistical tests reported in Table 5 show us that the development
approach does have an effect on code coverage of unit tests. The
results indicate that TDD has a positive effect on branch coverage.
The positive effects of TDD on branch coverage could be explained
with the inherent properties of TDD. In TDD, developers have to
write test cases first, and then implement the code that satisfies the
conditions of test cases. This practice would result in an increase
in the branch coverage of test cases. On the other hand, in ITLD,
developers write and focus on production code first, and accord-
ing to our observation, they may pay less attention to test case
implementation.

Test cases written in ITLD cover significantly more methods
than test cases written in TDD. This could possibly be related to
developers’ testing attitudes. While writing tests in ITLD, develop-
ers create unit test cases that check the functionality of functions
in the production code (usually implemented as methods in object-
oriented programing). Thus, we observe an increase in the method
coverage. On the other hand, in TDD developers pay more atten-
tion to writing test cases for user stories, rather than addressing
functions directly.

Our findings in this industrial setting are different from those
reported in the previous experiments. In terms of code coverage
Causevic et al. [11, 12] and Madeyski [26] compared only branch
coverage between test-last and test-first development in academic
experiments. Their findings did not reveal any difference in terms
of branch coverage. Causevic et al. [11, 12] also used additional
metric to evaluate test case quality by executing test cases of one
participant on other participants’ source code. They did not find
any distinction in test case quality of both TDD and TLD.

ICSSP’18, May 2018, Gothenburg, Sweden

Table 4: Descriptive Statistics for Code Coverage

BRCov MTCov

Mean 37,5 79,1

ITLD Me.dian 32,5 87,9

Variance 33,8 23,8

Min. 0 11,1

Max. 96,4 100

Mean 59,8 61,4

Median 89,2 70,7

TDD Variance 45,6 30,8
Min. 0 0

Max. 100 100

Table 5: Wilcoxon Test Results for Code Coverage

Metric p-value Hypothesis
Mediangrcowv 0,033 rejected
MedianpyTcow 0,045 rejected

5.2 Analysis on the Subjects’ Codes

To further understand the coverage results, we examined the source
codes of a sample of subjects. We selected four subjects based on the
code coverage values: The first subject has higher method coverage-
higher branch coverage, whereas the second subject has higher
method coverage-lower branch coverage. The third subject has
lower method coverage and higher branch coverage, and the fourth
has lower scores in both method and branch coverage.

After examining the source code of these subjects, we confirm
that in TDD, subjects seem to pay more attention to test differ-
ent branches compared to testing the whole functions/methods at
once. We found several methods in the subjects’ codes without any
test cases associated with them. However, those methods that are
associated with some unit tests are written to cover most of the
branches/paths in the methods. Our examinations on source codes
written during ITLD, on the other hand, show us that developers
were more focused on implementing a small functionality in a sin-
gle method, and hence, method coverage is higher in this approach.
We also found that most of the test cases were written to verify
happy/positive scenarios only. Developers pay less attention to
verify negative/false conditions that leads to fewer branch coverage
but higher method coverage.

6 THREATS TO VALIDITY

We consider threats to validity of results based on the checklist
presented in Wohlin et al. [42], some of those threats are listed
below.

Conclusion validity highlights those threats, which can direct to
have wrong conclusions about the relationship between treatments
and the results of the experiment [42]. Violated assumptions of
statistical tests are concerned with assumption for tests. To avoid
such threats, we used a non-parametric test, Wilcoxon rank sum test,
that does not force any distributional assumption on two samples.
Reliability of measure is another threat to validity of results [42].

A. Tosun et al.

To avoid this threat, we supported mutation score measure by
also examining code coverage to answer our research question.
Reliability of treatment implementation indicates the risk of having
different implementations by different participant or in different
occasions [42]. We avoided this risk by providing standardized
implementation environments to all participants.

Internal validity concerns the results observed in the study and
the true causes of those results. For example, results might be related
to the independent variables or due to the fact that some other
factors are involved [26]. Results are highly fragile to maturation
validity threat. The knowledge of testing in ITLD, and repeated
testing in TDD can cause this threat, as the subjects knew about
the test, they could behave differently each time [42]. We avoided
this threat by hiding the effectiveness and thoroughness of the
tests written on the first day to the participants. The subjects were
in a training during both ITLD and TDD [40] and they had to
write coding and testing in different orders in the two treatments.
Therefore, we believe this threat did not exist in this experiment.

Validity threat of selection might exist in this experiment as the
subject volunteered to attend the training and experimentation,
and according to Wohlin et al. [42], volunteers are more suited for
a new task as they are generally more motivated, compared to a
whole population. Unfortunately, in an industrial setting, it was not
possible to create a random sample for such an experimentation
and we had to prioritize the managers’ requests while forming the
participants.

The tasks specified in this experiment were considered as similar
complexity by the subjects [40], and we also analyzed the size
and complexity of both tasks’ implementations in terms of code
metrics and number of assertions written per task. We are still
conducting additional analysis regarding this, and we believe that
although the two tasks share similar complexity, there might be
other intrinsic factors affecting the way the subjects implement
these tasks. Nevertheless, more analysis is needed to finalize our
claims by comparing different tasks.

Construct validity is about the relationship of theory or concept
and the results of the experiment, as described by Madeyski [26], to
which extent the measure reflects the theory or concept correctly.
Experiments can be misleading if we use a single type of observation
or measure [42]. We could avoid this measurement bias by using
multiple measures for unit test effectiveness. The existing studies
[4, 13, 23, 24] point out that unit test effectiveness is more associated
with mutation score indicator compared to coverage. Therefore, we
used mutation score as our construct. To avoid potential threats to
the construct validity (measurement bias), we also analyzed code
coverage of unit tests implemented by practitioners.

We minimized another risk to the conclusion validity by hid-
ing information about our hypotheses from the subjects of the
experiment. Fear of being evaluated can cause threat of “evalua-
tion apprehension”, which can motivate participant to forge the
results of experiment [42]. We clearly mentioned that during this
experiment subjects would not be evaluated on the basis of their
performance in TDD and ITLD. We also measured the process con-
formance of subjects during the experiments through a set of tools,
and hence, we made sure that subjects followed TDD and ITLD as
much as possible. The detailed findings on process conformance
were further discussed in [17].

On the Effectiveness of Unit Tests in Test-driven Development

External validity highlights the concerns which can limit the
capacity of generalization of study findings, from a sample popula-
tion to larger population [42]. Our empirical analyses conceptually
replicated earlier studies conducted in academia, and therefore we
assessed the generalizability of findings in industry. Furthermore,
the sample population attended our training consisted of junior to
senior programmers in a large software organization with no prior
hands-on TDD practice [40]. Therefore our study findings could
also generalized to such population.

7 CONCLUSIONS

In this study, we analyse the impact of TDD approach on the unit
test effectiveness in terms of tests’ faulty detection capabilities
(mutation score) and thoroughness of tests (code coverage) in the
context of an industrial experiment. Using the same context and
experimental setup of a prior industry experiment [40], we have
defined new research questions and hypotheses, new measures and
analysis models to analyse a different phenomenon stated by earlier
academic experiments [11, 12, 26]. Our results contradict with these
academic experiments in terms of mutation score. We have found
that TDD improves the mutation score of unit tests compared to
ITLD. We have also found that different coverage values depict
different scenarios: TDD helps the subjects write refined test cases
that cover more branches, whereas ITLD triggers writing unit tests
that cover more methods in the source code. So depending on the
coverage metric, the results reveal different conclusions.

As a future work, we would like to validate these findings in a
larger context with more participants. We also plan to analyse the
type of unit tests (happy versus sad paths) and their relations with
the development approaches.

ACKNOWLEDGMENTS

This work has partially been supported by Istanbul Technical Uni-
versity Scientific Research Projects (MGA-2017-40712), and the
Academy of Finland (Decision No. 278354).

REFERENCES

[1] 2014. EclEmma - Java Code Coverage for Eclipse. http://www.eclemma.org/
[2] 2014. JaCoCo - Coverage Counter. http://www.eclemma.org/jacoco/trunk/doc/
counters.html

2015. FindBugs Eclipse Plugin.
findbugs-eclipse-plugin

[4] J.H. Andrews, L.C. Briand, and Y. Labiche. 2005. Is mutation an appropriate tool
for testing experiments?. In 27th International Conference on Software Engineering
(ICSE). 4024AS411.

[5] M.F. Aniche, G.A. Oliva, and M. A. Gerosa. 2013. What Do the Asserts in a
Unit Test Tell Us about Code Quality? A Study on Open Source and Industrial
Projects. In 17th European Conference on Software Maintenance and Reengineering.
111-120.

[6] V.R. Basili. 1992. Software modeling and measurement: the Goal/ Question/ Metric
paradigm. Technical Report. University of Maryland at College Park.

[7] K. Beck. 2002. Test Driven Development: By Example. Addison Wesley, Longman.

[8] T.Bhat and N. Nagappan. 2006. Evaluating the Efficacy of Test-Driven Develop-
mentaAf: Industrial Case Studies. In 2006 ACM/IEEE international symposium on
Empirical software engineering (ISESE "06). 356-363.

[9] David Bowes, Tracy Hall, Jean Petri¢, Thomas Shippey, and Burak Turhan. 2017.
How Good Are My Tests?. In Proceedings of the 8th Workshop on Emerging Trends
in Software Metrics (WETSoM ’17). IEEE Press, Piscataway, NJ, USA, 9-14. https:
//doi.org/10.1109/WETSoM.2017..2

[10] A. Causevic, D. Sundmark, and S. Punnekkat. 2011. Factors Limiting Industrial
Adoption of Test Driven Development: A Systematic Review. In 4th IEEE Interna-
tional Conference on Software Testing, Verification and Validation. 3374A$346.

3

https://marketplace.eclipse.org/content/

(1]

(12]

[13

[14]

(15]

[16

=
=

=
)

[20

[21

[22

[23

S
=)

~
=

[28

[29

[30

[31

[32

(33]

&
=)

ICSSP’18, May 2018, Gothenburg, Sweden

A. Causevic, D. Sundmark, and S. Punnekkat. 2012. Quality of testing in test driven
development. In Eighth International Conference on the Quality of Information
and Communications Technology (QUATIC). 2664AS271.

A. Causevic, D. Sundmark, and S. Punnekkat. 2012. Test case quality in test
driven development: A study design and a pilot experiment. In 16th Interna-
tional Conference on Evaluation & Assessment in Software Engineering (EASE).
2234A$227.

MickaAnl Delahaye and Lydie du Bousquet. 2013. A Comparison of Mutation
Analysis Tools for Java. In Proceedings of the International Symposium on the
Physical and Failure Analysis of Integrated Circuits, IPFA. 187-195.

M. E. Delamaro and J. Offutt. 2014. Assessing the Influence of Multiple Test Case
Selection on Mutation Experiments. In IEEE Seventh International Conference on
Software Testing, Verification and Validation Workshops. 171-175.

A. Van Deursen, L. Moonen, A. Van Den Bergh, and G. Kok. 2001. Refactoring
Test Code. In 2nd International Conference on Extreme Programming and Flexible
Processes (XP). 92-95.

P.G. Frankl, SN. Weiss, and C. Hu. 1997. All-uses vs mutation testing: An
experimental comparison of effectiveness. Journal of Systems and Software 38, 3
(1997), 235aA8253.

D. Fucci, H. Erdogmus, B. Turhan, M. Oivo, and N. Juristo. 2017. A Dissection of
the Test-Driven Development Process: Does It Really Matter to Test-First or to
Test-Last? IEEE Transactions on Software Engineering 43, 7 (July 2017), 597-614.
https://doi.org/10.1109/TSE.2016.2616877

D. Fucci and B. Turhan. 2013. On the role of tests in test-driven development: a
differentiated and partial replication. Empirical Software Engineering 19, 2 (2013),
1aAS26.

R. Gopinath, C. Jensen, and A Groce. 2014. Code coverage for suite evaluation
by developers. In 36th International Conference on Software Engineering (ICSE).
724AS82.

M. Greiler, A. van Deursen, and M. A. Storey. 2013. Automated Detection of
Test Fixture Strategies and Smells. In 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation. 322-331. https://doi.org/10.1109/
ICST.2013.45

L. Huang and M. Holcombe. 2009. Empirical investigation towards the effective-
ness of Test First programming. Information and Software Technology 51, 1 (2009),
1824AS194.

A. Hunt and D. Thomas. 2003. Pragmatic Unit Testing in Java with Junit (1st
edition ed.). The Pragmatic Programmers.

Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated
with Test Suite Effectiveness. In Proceedings of the 36th International Conference
on Software Engineering (ICSE 2014). ACM, New York, NY, USA, 435-445. https:
//doi.org/10.1145/2568225.2568271

Y. Jia and M. Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (Sept 2011),
649-678. https://doi.org/10.1109/TSE.2010.62

T. Kaczanowski. 2012. Practical Unit Testing with TestNG and Mockito (1st edition
ed.). Eigenverl. des Verf.

L. Madeyski. 2010. The impact of Test-First programming on branch coverage and
mutation score indicator of unit tests: An experiment. Information and Software
Technology 52, 2 (2010), 1694AS184.

L. Madeyski and M. Kawalerowicz. 2013. Continuous test-driven development:
A novel agile software development practice and supporting tool. In 8th Inter-
national Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE). 260-267.

L. Madeyski and N. Radyk. 2010. Judy 4AS a mutation testing tool for Java. IET
Software 4, 1 (2010), 32.

Ayse Tosun Misirli, Hakan Erdogmus, Natalia Juristo, and Oscar Dieste. 2014.
Topic Selection in Industry Experiments. In Proceedings of the 2Nd International
Workshop on Conducting Empirical Studies in Industry (CESI 2014). ACM, 25-30.
https://doi.org/10.1145/2593690.2593691

Hussan Munir, Misagh Moayyed, and Kai Petersen. 2014. Considering Rigor and
Relevance when Evaluating Test Driven Development: A Systematic Review. Inf.
Softw. Technol. 56, 4 (April 2014), 375-394. https://doi.org/10.1016/j.infsof.2014.
01.002

A. Jefferson Offutt and Ronald H. Untch. 2001. Mutation Testing for the New
Century. Kluwer Academic Publishers, Norwell, MA, USA, Chapter Mutation
2000: Uniting the Orthogonal, 34-44. http://dl.acm.org/citation.cfm?id=571305.
571314

Rocco Oliveto, Andrea De Lucia, Abdallah Qusef, David Binkley, and Gabriele
Bavota. 2012. An Empirical Analysis of the Distribution of Unit Test Smells and
Their Impact on Software Maintenance. In Proceedings of the 2012 IEEE Interna-
tional Conference on Software Maintenance (ICSM) (ICSM ’12). IEEE Computer So-
ciety, Washington, DC, USA, 56-65. https://doi.org/10.1109/ICSM.2012.6405253
Mauro Pezzé and Michal Young. 2007. Software Testing and Analysis: Process,
Principles and Techniques. Wiley.

Yahya Rafique and Vojislav B. Misic. 2013. The Effects of Test-Driven Develop-
ment on External Quality and Productivity: A Meta-Analysis. IEEE Transactions

http://www.eclemma.org/
http://www.eclemma.org/jacoco/trunk/doc/counters.html
http://www.eclemma.org/jacoco/trunk/doc/counters.html
https://marketplace.eclipse.org/content/findbugs-eclipse-plugin
https://marketplace.eclipse.org/content/findbugs-eclipse-plugin
https://doi.org/10.1109/WETSoM.2017..2
https://doi.org/10.1109/WETSoM.2017..2
https://doi.org/10.1109/TSE.2016.2616877
https://doi.org/10.1109/ICST.2013.45
https://doi.org/10.1109/ICST.2013.45
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/2593690.2593691
https://doi.org/10.1016/j.infsof.2014.01.002
https://doi.org/10.1016/j.infsof.2014.01.002
http://dl.acm.org/citation.cfm?id=571305.571314
http://dl.acm.org/citation.cfm?id=571305.571314
https://doi.org/10.1109/ICSM.2012.6405253

ICSSP’18, May 2018, Gothenburg, Sweden

[35]

[36]

[37]

[38]

[39]

[40]

(41

[42

[43]

on Software Engineering 39, 6 (2013), 835-856. https://doi.org/10.1109/TSE.2012.28
B. Van Rompaey, B. Du Bois, S. Demeyer, and M. Rieger. 2007. On The Detection
of Test Smells: A Metrics-Based Approach for General Fixture and Eager Test.
IEEE Transactions on Software Engineering 33, 12 (Dec 2007), 800-817. https:
//doi.org/10.1109/TSE.2007.70745

M. Roper. 1994. Software testing. McGraw-Hill Ryerson, Limited. https://books.
google.com.tr/books?id=m6xQAAAAMAA]J

W. R. Shadish, T. D. Cook, and Donald T. Campbell. 2001. Experimental and
Quasi-Experimental Designs for Generalized Causal Inference (2 ed.). Houghton
Mifflin.

Dr Muhammad Shahid, Suhaimi Ibrahim, and Mohd Mahrin. 2011. A Study on Test
Coverage in Software Testing, In International Conference on Telecommunication
Technology and Applications. International Conference on Telecommunication
Technology and Applications.

D. Tengeri, L. VidAacs, AA. BeszAldes, J. JAasz, G. Balogh, B. Vancsics, and
T. GyimAsthy. 2016. Relating Code Coverage, Mutation Score and Test Suite
Reducibility to Defect Density. In 2016 IEEE Ninth International Conference on
Software Testing, Verification and Validation Workshops (ICSTW). 174-179. https:
//doi.org/10.1109/ICSTW.2016.25

Ayse Tosun, Oscar Dieste, Davide Fucci, Sira Vegas, Burak Turhan, Hakan Er-
dogmus, Adrian Santos, Markku Oivo, Kimmo Toro, Janne Jarvinen, and Natalia
Juristo. 2016. An industry experiment on the effects of test-driven development
on external quality and productivity. Empirical Software Engineering (2016).
published online.

Burak Turhan, Lucas Layman, Madeline Diep, Forest Shull, and Hakan Erdogmus.
2010. How Effective is Test Driven Development? OAC4AZReilly Press, Chapter
Making Software: What Really Works, and Why We Believe It.

Claes Wohlin, Per Runeson, Martin HACA(ist, Magnus C. Ohlsson, and BjACAtrn
Regnell. 2000. Experimentation in Software Engineering. Springer.

Vahid Garousi YusifoA§lu, Yasaman Amannejad, and Aysu Betin Can. 2015.
Software test-code engineering: A systematic mapping. Information and Software
Technology 58 (2015), 123 - 147. https://doi.org/10.1016/j.infsof.2014.06.009

A. Tosun et al.

https://doi.org/10.1109/TSE.2012.28
https://doi.org/10.1109/TSE.2007.70745
https://doi.org/10.1109/TSE.2007.70745
https://books.google.com.tr/books?id=m6xQAAAAMAAJ
https://books.google.com.tr/books?id=m6xQAAAAMAAJ
https://doi.org/10.1109/ICSTW.2016.25
https://doi.org/10.1109/ICSTW.2016.25
https://doi.org/10.1016/j.infsof.2014.06.009

	Abstract
	1 Introduction
	2 Related Work
	2.1 Unit Testing
	2.2 Unit Test Effectiveness in TDD

	3 Experimental Design
	4 Results
	4.1 Dataset Reduction
	4.2 Descriptive Statistics
	4.3 Hypothesis Testing

	5 Interpretation
	5.1 Coverage Analysis for the Thoroughness of Unit Tests
	5.2 Analysis on the Subjects' Codes

	6 Threats to Validity
	7 Conclusions
	Acknowledgments
	References

