
Diverse Partner Selection with Brood Recombination in Genetic

Programming

Muhammad Waqar Aslama,∗, Zhechen Zhub, Asoke Kumar Nandib,c

aDepartment of Computer Systems Engineering. Mirpur University of Science and Technology (MUST),
Mirpur-10250 (AJK), Pakistan.

bDepartment of Electronic & Computer Engineering. Brunel University, Uxbridge, Middlesex, UB8 3PH,
UK.

cDepartment of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, PO Box 35,
FI-40014, Finland.

Abstract

The ultimate goal of learning algorithms is to find the best solution from a search space

without testing each and every solution available in the search space. During the evolution

process new solutions (children) are produced from existing solutions (parents), where new

solutions are expected to be better than existing solutions. This paper presents a new

parent selection method for the crossover operation in genetic programming. The idea is

to promote crossover between two behaviourally (phenotype) diverse parents such that the

probability of children being better than their parents increases. The relative phenotype

strengths and weaknesses of pairs of parents are exploited to find out if their crossover is

beneficial or not (diverse partner selection (DPS)). Based on the probable improvement in

children compared to their parents, crossover is either allowed or disallowed. The parents

qualifying for crossover through this process are expected to produce much better children

and are allowed to produce more children than normal parents through brood recombination

(BR). BR helps to explore the search space around diverse parents much more efficiently.

Experimental results from different benchmarking problems demonstrate that the proposed

method (DPS with BR) improves the performance of genetic programming significantly.

Keywords: Genetic programming, diversity, partner selection, brood recombination

∗Corresponding Author. Tel: +92 5827 960037
Email addresses: waqar.cse@must.edu.pk (Muhammad Waqar Aslam), zhechen.zhu@brunel.ac.uk

Preprint submitted to Applied Soft Computing March 22, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362650653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

Genetic programming (GP) has gained much attention in recent years because of its

ability to produce human competitive solutions [1, 2, 3]. The flexibility in choosing various

parameters of the algorithm and the ability to produce human interpretable solutions have

made it superior to other learning algorithms and it has been applied quite frequently re-

cently for solving real world problems. In [5] Liang, Zhang and Brownie used GP in image

processing for figure ground segmentation. They demonstrated that GP based method was

very successful in automatic segmentation of a variety of images. Maua and Grbac [6] used

GP for software defect prediction for imbalanced datasets. Enrquez-Zrate et al. [7] used

GP for predicting fuel flow and exhaust gas temperature of a gas turbine. A combination

of GP and neuro-fuzzy methods was used for accurate prediction of suspended sediments

in [8]. In another research GP was used for automatic scheduling of parallel unrelated ma-

chines [9]. Despite numerous advantages offered by GP there are some inherent issues in GP

which limit its performance when applied to difficult tasks and there have been a variety of

techniques proposed to improve its efficiency and performance. Elola et al. [10] exploited

the predictive importance of intermediate solutions during a GP evolution and used it suc-

cessfully for improving convergence rate. Genetic Programming in combination with fuzzy

inference system was used for improving classification abilities of GP [11]. Ojha, Abraham

and Snasel used diversity index measure for maintaining diversity in a multi objective GP

and showed that it improved the efficiency of the proposed algorithm [13]. In [14], statistical

GP using correlation based crossover and mutation was used to explore the search space

more efficiently in less time. One of the main issues in GP is the premature convergence

towards local optimum. It is widely accepted that the main reason for such convergence is

the decrease in diversity in a fairly fit population of individuals as the population evolves.

Ursem showed that a diversity guided evolutionary algorithm saved substantial amount of

fitness evaluations and improved the performance remarkably [15]. Huang and Chen [16]

used diversity pooling scheme for improving the convergence rate and showed that their pro-

(Zhechen Zhu), asoke.nandi@brunel.ac.uk (Asoke Kumar Nandi)

2



posed method reduced premature convergence rate. Various diversity measures were tested

on standard problems for finding a relation between diversity and fitness in [17]. Important

diversity measures for improving the search process were identified in this research. A diver-

sity rewarding fitness function was used in [18] to avoid local optimum. Similar programs

were replaced with randomly generated ones in [19, 20] and it was shown that it minimised

the occurrence of premature convergence. Fitness and solution diversity was increased and

it was found that the high fitness solution were found more quickly in [21].

One of the main factors causing loss of diversity is the selection pressure imposed on the

algorithm [22]. A high selection pressure would quickly fill up the population with fitter

individuals because they have better chances of survival. These fitter individuals most likely

would be similar to each other either in their structure or behaviour, resulting in a loss of

diversity across the population. As a consequence, the algorithm may struggle to escape

from a local optimum. Diversity in any population will help to avoid such local optimum.

Maintaining diversity is particularly important if the fitness landscape have many peaks

and valleys resulting in many local optimums. In such a scenario, a more diverse population

will increase the likelihood of GP in finding the optimal peak or relocating individuals in

a dynamic landscape. However, despite such advantages, blind promotion of diversity may

result in a loss of information previously gathered by the algorithm.

In this paper pairwise diversity is used to promote crossover between two diverse individ-

uals. The method proposed in this study is a significant extension of the methods presented

in [23, 24]. In [23] Day and Nandi presented the idea of binary string representing strengths

and weaknesses of an individual. Using the binary strings of different individuals compara-

tive partner selection (CPS) was used to encourage crossover between two individuals having

high pairwise diversity. In one of our earlier research [24] we suggested an improvement in

CPS and used shared strengths of individuals in addition to high pairwise diversity while

selecting a right partner for crossover. In this study we demonstrate that just having a high

pairwise diversity or sharing same strengths may not necessarily lead to the the optimum

solution and within pairwise diversity we have introduced the concepts of good diversity and

bad diversity to find the preferred partners for crossover. The novel concept of good and bad

3



diversity helps to follow exploration and exploitation strategy, popular in machine learning

algorithms. The preferred partners found using the proposed method are allowed to pro-

duce more children through brood recombination. Brood recombination helps to explore the

search space close to diverse partners more efficiently which ultimately guides the process

towards the optimum solution.

The paper is organised as follows: the diversity measures and role of diversity in guiding

evolution is discussed in Section 2. Evaluation of binary string is discussed in Section 3.

The comparative partner selection technique and its flaws are discussed in Section 4. The

proposed method is discussed in Section 5. Experiments and results are discussed in Section

6, while conclusions are drawn in Section 7.

2. Genetic Programming and Diversity

In this section first we highlight different measures used in literature to calculate diversity

and then the promotion of diversity in finding the optimum solution is discussed.

2.1. Diversity Measures

Broadly, diversity represents the level and type of variety in a population of individuals.

This variety could be in the form of structure (genotype diversity) or behaviour (phenotype

diversity) of individuals. The genotype diversity measures the similarity between actual

structures of individuals. The most common method for measuring this diversity is the edit

distance which simply counts the number of node additions and deletions required to make

any two individuals identical and gives a general idea about structural resemblance of any

two individuals [25].

The phenotype diversity on the other hand represents the behaviour of individuals. The

most common method for evaluating this diversity is to find the distribution of fitness values

in a population [26]. In this method the fitness of an individual is calculated by dividing

its standard fitness by the number of individuals sharing similar fitness values. Mckay

introduced the idea of evaluating individual training cases for calculating fitness [27]. This

idea was later used in [23] to promote crossover between two diverse individuals.

4



Some other measures based on both genotype and phenotype or occasionally using the

combination of the two have also been proposed [28]. Ryan [29] presented the idea of

evolving two different populations together with different fitness criteria where crossover

was only allowed between two different populations. An increase in diversity with reduction

in code bloat was reported. Genetic lineage strategies have also been proposed [30, 31]

where parents for crossover are selected based on their genetic lineage to promote diversity.

Teller and Veloso proposed an internal reinforcement method for GP using neural learning

[32]. The neural learning was used to update specific parts of GP programs as a function

programs performance. Quang Uy et al. investigated the role of semantic locality of crossover

in GP [33]. They defined a semantic distance metric for defining new crossover operators to

improve semantic locality. They reported substantial advantage using semantic locality. Xie

and Zhang investigated the selection of optimal crossover point [34] and reported that good

crossover events have a strong preference for roots and bottoms of parent program trees.

Based on the above discussion it can be concluded that while various strategies have

been proposed for promoting diversity, none have been widely adopted. Each strategy

has its own advantages and disadvantages, and is suited for particular applications. The

genotype diversity has the advantage that it is quite objective and two solutions having

exactly same structure will have exactly same behaviour. This measure, however, does not

consider the behavioural differences of individuals and only implies that the actual structures

of individuals are not identical. While this method is widely adopted because of its simplicity,

any two individuals categorised as structurally unique by this method may behave similarly

because of the presence of introns and symmetric functions. On the other hand phenotype

diversity is more subjective and it is mainly calculated using fitness values. A phenotype

diversity based just on fitness does not give insight into actual behaviour of the population

for individual cases of a test problem. Two solutions performing well on two different cases

of the same problem will be categorised as similar.

Therefore, there is a need to find a measure which is inexpensive, informative and can

relate diversity to fitness improvement. In this study a phenotype based strategy for con-

trolling diversity and guiding the search towards the optimum solution is proposed.

5



2.2. Promotion of Diversity

Most diversity measures give an overall indication of diversity of a population but they

do not give any information about the quality of individuals present in the population. It

is possible to maintain a high level of diversity without getting any benefit in the quality

of individuals. Moreover, the level of diversity does not indicate whether a population

has suffered sub-optimal convergence or not, because diversity does not always promote

optimal convergence. While in some cases it has been shown that diversity avoids early

or premature convergence, it is not beneficial all the time and promoting it blindly can

degrade performance. For example, if the population is very close to the optimum solution,

maintaining diversity may slow down the rate of convergence.

A widely accepted dynamics for accurate search in most evolutionary methods is explo-

ration and exploitation. The same technique has been used in this study using pairwise

diversity. Initially a high value of diversity is maintained (exploration) called global search

where GP is allowed to find globally the individuals that perform well. As the population

becomes fitter and fitter, the level of diversity is decreased (exploitation) to do a local search.

During local search, small changes are made through crossover to do a more focused search

close to the optimum solution. Moreover, in the proposed method if there is no improve-

ment at exploitation stage, the probability of mutation is increased to avoid a possible local

optimum.

3. Binary String Fitness Characterisation

The idea of binary string fitness characterisation (BSFC) was introduced by Day and

Nandi [23] which describes the efficacy of an individual in solving a given problem. Generally,

a number of training cases are given to GP for finding the optimum individual which solves

the given problem. The performance of any GP produced individual for solving all training

cases is summed up in one parameter, the fitness function. A typical fitness function is

the sum of errors for all training cases. Representing the ability of individuals by just one

parameter is somewhat limiting as it does not give insight into response of individuals for

6



each training case. Two individuals solving different but the same number of training cases

will get the same overall fitness value and will be categorised as same. Although the fitness

value is important in guiding the search towards the optimum individual, the response of

individuals for each training case may help to explore the search space more efficiently.

In BSFC, the response of an individual for solving each training case is evaluated and a

binary string (bi) is created for each individual for storing that response. For logical problems

where the output is either one or zero and is generally already known, the assignment of bi

is straight forward. If an individual solves a particular training case it will get a ’1‘ in the

corresponding bi bit, otherwise ’0‘. A ’1‘ is considered as strength and a ’0‘ is considered as

weakness. An ideal or the optimum individual will have a binary string consisting solely of

’1‘s.

An example of a binary string for 3-bit parity problem in a sub-optimally converged run is

shown in Figure 1. On the left side of the figure are the training examples given to GP and on

the right side of the figure are the target values. The variables X1, X2 and X3 represent the

training examples. GP is asked to find an individual which can generate the target output

from training examples. In the middle of the figure (inside dotted rectangular box) is an

individual (tree) produced by GP to solve this problem in a sub-optimally converged run.

It is sub-optimal as the individual produced by GP does not solve the problem completely.

On the right side of the individual is the output produced by this individual which can be

used to fill up the binary string attached to this individual. The binary string is filled up

by comparing the output of the individual with target output.

The assignment of bi is not as straightforward for non-binary problems. In [23], a method

based on the average error for all training cases was proposed. If the error for a particular

training case was less than the average error for all training cases, a ’1‘ was placed in its

corresponding bit of bi otherwise ’0‘. For classification problems a method based on the

mean of output distribution was proposed in one of our earlier research [35]. Any input

example within a certain standard deviations of mean of corresponding output distribution

was considered as strength and an example away from the mean was considered as weakness.

7



0 0

0

0

0 1

1

11

1

11

1 1

111

0 0

0

0 0

0

0

1

1

1

1

0

0

0

0

AND

1

1

1

1

0

0

1

1

1

1

0

0

NOR

X1 X3 X1 X3

OR

OR

X2

Training Examples

GP Tree

Output of 

GP Tree

Binary String 

of GP Tree

Target Output

1

1

1

1

X1 X2 X3

Figure 1: An example of a GP Tree in a sub-optimally converged evolution for 3 bit parity problem.

4. Partner Selection for Crossover

Day and Nandi [23] used the binary string introduced in the previous section for partner

selection during crossover operation and named it as comparative partner selection (CPS).

In this section we outline the CPS method and discuss its limitations.

4.1. Comparative Partner Selection

In a standard genetic programming (SGP), the parents for crossover are chosen based

on their fitness values while in CPS the parents are chosen based on their relative strengths

and weaknesses. A crossover is encouraged if the two individual have strengths for differ-

ent training examples and a crossover is discouraged if the two individuals share similar

weaknesses. The idea behind this process is to reduce the phenotype variance and eradicate

population weaknesses. The initial selection of parents in CPS is similar to SGP (chosen

based on their fitness values); however in CPS, each pair of parents have to satisfy another

criterion for crossover to take place. This criterion is based on simple logical operations and

is used to encourage the crossover between two diverse (in terms of binary string) individ-

uals. A crossover between two individuals is encouraged if one individual shows strength

for an example for which the other individual shows weakness (XOR), while a crossover is

discouraged if two individuals share similar weaknesses (NOR). The binary string can be

used to calculate the probability of crossover (Pcps) between two individuals.

8



1p1 1 1 1 0 0

1 0 0 00

001

000

1 1 1 1

p2

p3

1 1

1

Pcps = 71.4%

Pcps = 66.7%

Figure 2: An example showing limitation of CPS.

Pcps(b1, b2) =

∑
XOR(b1, b2)∑

XOR(b1, b2) +
∑

NOR(b1, b2)
(1)

where Pcps is the probability of crossover, and b1 and b2 are the binary strings of two indi-

viduals. The probability of crossover will be high between two diverse (in terms of binary

string) individuals compared to similar individuals.

The full process of CPS can be described as follows. Two parents p1 and p2 are selected

based on their fitness values (individuals with higher fitness have more chances of being

selected). These two parents (p1 and p2) are arranged in a way that p1 is the fitter individual

of the two (unless both have the same fitness). The Pcps is calculated between these two

parents using equation (1). A random number is generated between 0 and 1 and if Pcps is

greater than that random number, crossover takes place otherwise not. If crossover takes

place then children might be added in new generation if they meet predefined selection

criteria. If crossover does not take place, parent p1 (the fitter individual) is kept and p2 (the

weaker/same strength) individual is dropped. A new second parent p2 is selected using the

same procedure and the above process is repeated to check if these two parents qualify for

crossover. If a suitable partner is not found after N/2 attempts (N is population size), p2

is chosen randomly ignoring CPS criterion. The CPS is penalised for not finding the right

partner by decreasing the crossover rate by 1/N and increasing the mutation rate by 1/N

to reintroduce diversity.

4.2. Limitations in Comparative Partner Selection

Despite the obvious improvement in performance reported in [23], there are some limi-

tations in CPS. This section highlights those limitations.

9



1. The aim of the CPS process is to reach the optimum solution through exploitation

of individual’s diversity but the way Pcps is calculated may actually not allow the process

to move towards the optimum solution. An example is given in Figure 2 to highlight this

limitation. Figure 2 shows the binary strings of three individuals. Suppose p1 is our primary

parent and it has to choose one of the other two parents (p2 or p3) for crossover. According to

CPS criterion, the probability of crossover between p1 and p2 is 71.4%, while the probability

of crossover between p1 and p3 is 66.7%. Let us first concentrate on crossover between p1

and p2, and see how much improvement this crossover can provide for evolution towards the

optimum solution. Individual p1 solves first six (left to right) training cases while individual

p2 solves only one. That means if a crossover between these two individuals takes place,

their children are supposed to solve at best six training cases. So although the two parents

are quite diverse, the children are less likely to have any improvement (bad diversity). In

other words during this crossover, p1 will share its strengths with p2 but in terms of evolution

towards the optimum solution, there is no benefit.

Now if a crossover takes place between p1 and p3, the example eight and six, which p1

and p3 were unable to solve respectively, might be solved by their children (good diversity).

Although p1 and p2 are more diverse (5 bits different) while p1 and p3 are less diverse (2

bits different), the diversity between p1 and p3 is more important. So a crossover between

p1 and p3 should have more probability if we want to evolve towards a better solution but

CPS suggests exactly opposite.

2. After calculating the probability of crossover between two individuals, a random

number is used to decide if they crossover or not. This may not be the best way to do it as

some individuals having high probability of crossover may not actually have crossover while

some individuals having low probability may qualify for crossover.

3. After two parents qualify for crossover satisfying CPS criterion, the following

actions are taken. A node is randomly chosen on each parent and sub-branches downward

from that node are swapped with each other. Since each parent can have many crossover

points, choosing only one crossover point may not beget potentially better children. As the

parents satisfying CPS criterion are expected to produce better children, search space close

10



XOR

1

1

1

1

1

0

0

NAND

X1 X3 X2 X3

AND

X1

Individual 1

1

1

1

X2

Individual 2

NAND

X1 X3

0 0

01

2

1

2

34

1

AND

NOT

3

XOR

0

1

Figure 3: Two individuals selected by CPS for crossover.

to these parents should be exploited more efficiently.

An example is given in Figure 3 to demonstrate this fact. Figure 3 shows two parents

selected for crossover through CPS process for 3-bit parity problem with their respective

binary strings. If we look at the binary strings of two parents, there are four examples at

which the strength of one parent coincides with weakness of other parent. According to

CPS, the children produced by the crossover of these two parents could have strengths for

these four examples. Let us suppose that a crossover takes place at node 3 of both parents.

There will be two children produced by this crossover. The children when evaluated for

3-bit parity training examples will have these binary strings 01001011 and 01100011. None

of these binary strings is better than parents’ binary strings and there is no improvement in

children compared to their parents. This shows us that a strength in one parent coinciding

with a weakness of other parent may not result in a strength in children. The reason is that

it is difficult to establish which part of an individual is responsible for certain strength and

weakness.

Suppose a crossover takes place at node 4 (individual 1) and node 3 (individual 2). The

binary strings of two children produced as a result of this crossover will be 01100011 and

11111111 respectively. This shows that this crossover produces a child which is the optimum

solution and completely solves the problem. This example clearly shows that choosing only

one point for crossover may ignore potentially good children. In this study we have used a

technique based on brood recombination to solve this issue.

11



5. The Proposed Method

This section explains our proposed method. The method not only addresses the lim-

itations in CPS method but also introduces some key parameters for guiding the search

efficiently towards the optimum solution.

5.1. Diverse Partner Selection

One of the main limitations of CPS is the uncontrolled promotion of diversity. One very

strong individual will be very diverse compared to very weak individual but a crossover

between them may not help to achieve the ultimate goal. In such a case, a strong individual

may share its strengths with a weak individual and a resulting child may not be any better.

This will not help the evolution towards the optimum solution.

In our proposed method, randomly selected parents (based on their fitness values) are

characterised using their binary strings. The better individual (in terms of binary string) is

named as recipient and the weaker individual is named as donor. The cases solved by the

donor (’1‘s) and not solved by the recipient (’0‘s) are the good elements and are the main

focus for promoting crossover in our method. It is expected that bringing in elements of

donor that could solve a case not solved by recipient would improve the fitness of the children.

Simple logical operations are used to determine how many ’1‘s of donor coincide with ’0‘s

of recipient. This number reflects the good diversity present between two parents and it is

used to estimate the improvement a donor can provide to a recipient. If the improvement is

significant, crossover takes place otherwise not. A question arises, how much improvement

is a significant improvement? This question will be addressed later when we define our

improvement parameters. The ’1‘s of a recipient coinciding with ’0‘s of a donor are used in

CPS but not in our method as they represent the bad diversity present between parents. It

is called bad diversity because recipient may share its strength with donor in this diversity

and the resultant children may not be any better. The proposed method is named as diverse

partner selection (DPS) and below are the steps of DPS.

Two parents are randomly selected based on their fitness values. They are named as

recipient and donor based on their binary strings. The parent having more ’1‘s is considered

12



as recipient and the other one as donor. The following equations are used to find out if the

two parents crossover. Let

Advantage =
∑

AND(NOT (b1), b2) (2)

where b1 is the binary string of recipient and b2 is the binary string of donor. The parameter

Advantage gives the number of cases solved by a donor which are not solved by a recipient.

Let

α =
Advantage∑
NOT (b1)

∗ 100% (3)

The parameter α shows the percentage of cases solved by a donor that are not solved by a

recipient. In other words it shows the possible improvement in the children of recipient and

donor compared to recipient. Let

β = (1−

∑
b1∑

(b1 +NOT (b1))
) ∗ 100% (4)

The parameter β shows the room for improvement in recipient in percentage. It is important

to note that the parameter α is calculated using only those bits for which recipient has ’0‘s

while the parameter β is calculated using all the bits of recipient. The values of parameters α

and β are used to decide whether the possible improvement in children of recipient and donor

is enough to have a crossover. Crossover between two parents is allowed only if α is greater

than β. The motivation behind this condition is to use exploration and exploitation strategy

which is very popular in machine learning field. The details about how this condition ensures

exploration and exploitation are given later in this section.

In practice two parents p1 and p2 are selected based on their fitness values, and the values

of α and β are calculated. If α is greater than β, crossover takes place, otherwise not. If

crossover does not take place, a new second parent p2 is selected without changing p1 and

the above procedure is repeated to find out if they can have a crossover. If a suitable p2

is not found after N/2 operations, crossover rate is decreased by 1/N and mutation rate is

13



increased by 1/N in the current generation (N is total population size). The crossover and

mutation rates return back to their initial values in the next generation.

At the start of evolution a one-bit improvement provided by donor will result in a slight

increase in α (because of abundance of zeros in recipient). As the population becomes fitter

and fitter, and moves towards the optimum solution, the number of ’1‘s in any recipient

will increase and even a single ’1‘ of donor coinciding with ’0‘ of recipient will result in

a significant increase in α. The trend in β is quite the opposite. Initially most of the

individuals will be weak which means a high β value and as the population becomes fitter

the β value will reduce.

Since at the start of evolution α will be low and β will be high, most individuals will

fail to satisfy DPS criterion resulting in an increase in mutation rate (exploration). As the

population becomes fitter, α will be high and β will be low which means more individuals

will satisfy DPS criterion (exploitation through BR). So the proposed method will be able to

maintain a high diversity at the start of evolution (through mutation) and more optimised

search will be conducted as the population moves towards the optimum solution (through

BR). However, if there is no improvement at exploitation stage, α will become low again

causing mutation rate to increase to avoid local optimum.

Let us use the example given in Figure 2 to elaborate further. Earlier we concluded that

the probability of crossover between parents p1 and p3 should be higher compared to parents

p1 and p2 but CPS suggested opposite. Let us see the probabilities of crossover in DPS. The

values of α and β for the parents p1 and p2 are 0% and 25% respectively, while the values

for the parents p1 and p3 are 50% and 25% respectively. So in DPS p1 and p2 do not qualify

for crossover, while p1 and p3 qualify for crossover which should guide the process towards

the optimum solution as discussed in Section 4.2.

5.2. Brood Recombination

We demonstrated using an example in limitation number 3 of CPS method (Figure 3)

that choosing only one point for crossover may neglect potentially good children. In this

study to give a fair chance to the parents selected through DPS process, they are allowed

14



Table 1: Parameters Used for the Experimental Work
Parameter Standard Value

Generations (for all prob-

lems)

100

Population Size
3-bit parity 100
5-bit parity 100
Multiplexer 100
Regression 200
Classification 50

Function Pool
3-bit parity {AND, OR, NAND, NOR}
5-bit parity {AND, OR, NAND, NOR,

XOR}
Multiplexer {AND, OR, NOT, IF}
Regression {+, -, x, sin, cos, *mylog}
Classification {+, -, x, reciprocal, negator,

abs, sqrt, sin, cos, tan, asin,

acos, tanh, *mylog}
Terminal Pool

3-bit parity {B1, B2, B3}
5-bit parity {B1, B2, B3, B4, B5}
Multiplexer {B1, B2,..., B11}
Regression X1
Classification Input features

Operators Crossover, Mutation
Operator Probabilities (60%, 40%)
Tree Generation Ramped half and half
Initial Maximum Depth 4
Maximum Depth 17
Selection Operator Roulette
Elitism half-elitism
*mylog is a protected loge(x) function which

ignores input if it is zero.

15



to produce more children than normal parents. Each pair of parents is allowed to have five

crossovers (producing ten children), each time with a different crossover point. The best two

children out of ten are selected while rest are discarded. This way the search space close

to DPS selected parents which are supposed to have the ability to produce much better

children is exploited more efficiently. This idea of allowing certain parents to produce more

children was first proposed by Tackett and is known as brood recombination [36].

So the proposed method have two major difference from the standard genetic program-

ming algorithm. First, parents are passed through the DPS process and second, the parents

satisfying the DPS criterion are given the facility of brood recombination.

6. Experiments and Results

Six benchmarking problems are considered in this study. These problems come from

three different problem domains: logical problems (3-bit parity, 5-bit parity, 11-bit multi-

plexer), regression problem (quartic polynomial), and classification problems (”ionosphere“

and ”spect heart“ data classification). The parameters used for all the problems are given

in Table 1. The fitness function used for logical and regression problems was the sum of

the errors, while the classification accuracy was used as fitness function for classification

problems. In order to see the effect of DPS and BR separately, five different kinds of GP

combinations/methods are used for experiments: the standard GP (SGP), CPS, DPS, CPS

with BR (CPS-BR), and DPS with BR (DPS-BR); in CPS-BR the parents satisfying CPS

criterion were given the facility of BR.

6.1. Parity Problems

Parity problems have often been used as benchmarking problems in GP [37]. These

problem can be divided as even parity or odd parity. For even parity problems, if there

are even number of ones in input training string, the output is one else zero. Similarly

for odd parity problems, if the number of ones in input string is odd, the output is one

otherwise zero. In this research, even parity problems are used. The function pool used

for the 3-bit and 5-bit problems are different. Since the 3-bit problem is simpler than the

16



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

Generations

F
it
n

e
s
s

 

 

SGP
CPS
DPS
CPS−BR
DPS−BR

Figure 4: Average fitness of best of generation for 100 runs for 3-bit parity problem.

5-bit, a simple function pool is used for this problem while a richer function pool is used for

5-bit problem. The parity problem is a highly non-linear problem in terms of searching its

solution as demonstrated in [38] and most hill climbing algorithms fail to find solution of

this problem consistently. The bi for the 3-bit parity problem will have 8 bits, while for the

5-bit parity problem it will be 32 bits long.

6.1.1. 3-bit parity

The experiment was performed using the parameters given in Table 1. Each experiment

for each GP method (SGP, CPS, DPS, CPS-BR, DPS-BR) was performed 100 times and

the performance was averaged over 100 runs. Since the fitness is the sum of errors, the

lower the fitness the better it is. Figure 4 shows the comparison between all the methods in

terms of fitness value averaged over 100 runs. The SGP performed the worst out of all the

methods followed by CPS. The performance of CPS-BR was almost similar to DPS for most

of the generations and there was not much difference in performance between the two. This

demonstrates the superiority of DPS as without BR it was able to achieve a performance

similar to CPS-BR. The DPS-BR outperformed all the other methods comprehensively by

a big margin. The average fitness values and standard deviations at 100th generation for

SGP, CPS, DPS, CPS-BR and DPS-BR were 0.58, 0.25, 0.09, 0.1, 0.0 and 0.62, 0.44, 0.31,

0.29, 0.0 respectively. The number of runs successful in finding the optimum solution were

49, 75, 90, 91, and 100 (out of 100) for SGP, CPS, DPS, CPS-BR and DPS-BR respectively.

17



0 10 20 30 40 50 60 70 80 90 100
28

30

32

34

36

38

Generations

N
u

m
b

e
r 

o
f 

O
p

e
ra

ti
o

n
s

 

 

Crossover
CPS 

Figure 5: Crossover and CPS comparison for sub-optimal runs.

These numbers clearly show that DPS-BR is more accurate and robust compared to all other

methods.

In any generation there would be a number of crossover operations between different

partners out of which some will satisfy CPS/DPS criterion and some will not. The purpose

of CPS/DPS criterion is to use the diversity in the population and ultimately to increase

the rate of optimal convergence. If a GP run is unsuccessful or converges sub-optimally that

should mean the diversity is low and should be reflected by number parents satisfying CPS

or DPS criterion. In order to find this out, a comparison between total crossover operations

and the crossover operations satisfying CPS/DPS criterion is given in Figure 5 and Figure

6. Figures show the total number of crossover operations and the operations satisfying

CPS/DPS criterion at each generation for sub-optimal runs.

Figure 5 shows that for CPS method, the number of parents satisfying CPS criterion

was very close to total crossover operations (i.e the diversity was high), although all these

runs resulted in sub-optimal convergence (not shown in Figure). This demonstrates that the

diversity measures used by CPS were not able to guide the process towards the optimum

solution despite the satisfaction of a lot of partners for CPS criterion. On the other hand, for

DPS for sub-optimal runs, the number of parents satisfying DPS criterion was low compared

to the total crossovers (Figure 6), which means the diversity was low for these runs. This

shows that the diversity measures used by DPS criterion correctly showed the lack of diversity

18



0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Generations

N
u

m
b

e
r 

o
f 

O
p

e
ra

ti
o

n
s

 

 

Crossover
DPS 

Figure 6: Crossover and DPS comparison for sub-optimal runs.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

Generation

F
it
n

e
s
s

 

 

SGP
CPS
DPS
CPS−BR
DPS−BR

Figure 7: Average fitness of best of generation for 100 runs for 5-bit parity problem.

for sub-optimal runs.

6.1.2. 5-bit parity

Similar experiments were conducted for the 5-bit parity problem using the parameters

given in Table 1. The fitness value averaged over 100 runs is shown in Figure 7. The average

fitness values and standard deviations at 100th generation for SGP, CPS, DPS, CPS-BR and

DPS-BR were 2.35, 1.50, 0.70, 0.68, 0.05 and 2.72, 2.10, 1.40, 1.38, 0.76 respectively. The

number of runs successful in finding the optimum solution were 44, 54, 74, 75, 84 (out of

100) for SGP, CPS, DPS, CPS-BR, and DPS-BR respectively. These results are consistent

with the 3-bit parity problem, and again SGP and CPS have the poorest performance. The

19



0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

Generations

F
it
n

e
s
s

 

 

SGP
CPS
DPS
CPS−BR
DPS−BR

Figure 8: Average fitness of best of generation for 100 runs for multiplexer problem.

performance of DPS and CPS-BR are again very similar while the performance of DPS-BR

is the best.

6.2. The Multiplexer Problem

The multiplexer problem has also been used as a benchmarking problem in the past [37].

It is an 11-bit problem, so the total number of input combinations are 2048. The function

pool and other parameters used are given in Table 1. The performance curves for this

problem are shown in Figure 8 which again shows the superiority of DPS-BR method. SGP

was not able to find any optimum solution in all 100 runs while CPS and DPS found 1 and

23 (out of 100) optimum solutions respectively. On the other hand CPS-BR and DPS-BR

found 71 and 80 optimum solutions respectively.

6.3. Quartic Polynomial Problem

It is a symbolic regression problem where GP tries to regress to a curve given by the

following equation.

f(x) = x4 + x3 + x2 + x (5)

where x is the input variable and f(x) is the target function. The number of training

cases used are 21 where the domain of x is from -1 to +1 with an increment of 0.1. The

binary string for this problem is calculated using average error technique proposed in [23].

20



0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

Generations

F
it
n

e
s
s

 

 

SGP
CPS
DPS
CPS−BR
DPS−BR

Figure 9: Average fitness of best of generation for 100 runs for quartic polynomial problem.

The results for this problem are shown in Figure 9. It is clear from the figure that the

performance of the proposed method is superior to other methods. The number of optimum

solutions found by SGP, CPS, DPS, CPS-BR, and DPS-BR were 78, 79, 83, 88 and 94 (out

of 100) respectively.

6.4. Classification Problems

The use of GP for classification problems is not new and it has been used for classification

in various domains in the past [39, 40, 41, 42]. Two classification datasets are used in this

study which are taken from UCI Machine Learning Repository [43]. The problems used

in this study are ”ionosphere“ and ”spect heart“, which belong to binary classification

problems. The classification accuracy used as fitness function is given below

Accuracy = 0.5 ∗ (Sensitivity + Specificity) (6)

where the sensitivity and specificity were calculated using the method given in [44] which

uses Gaussian distribution model to find the optimum threshold separating any two classes.

The binary string for classification problems has been evaluated using the method given in

an earlier study [35]. Any training sample gets a ’1‘ in the binary string if it is within half

the standard deviation of mean of its corresponding class distribution otherwise ’0‘. The

function pool used for classification problems is given in Table 1.

21



0 10 20 30 40 50 60 70 80 90 100
75

80

85

90

95

Generations

F
it
n

e
s
s

 

 

SGP
CPS
DPS
CPS−BR
DPS−BR

Figure 10: Average fitness of best of generation for 100 runs for ”ionosphere“ problem.

0 10 20 30 40 50 60 70 80 90 100
76

78

80

82

84

86

88

90

Generations

F
it
n

e
s
s

 

 

SGP
CPS
DPS
CPS−BR
DPS−BR

Figure 11: Average fitness of best of generation for 100 runs for ”spect heart“ problem.

6.4.1. ”Ionosphere“ data classification

This dataset contains 351 radar signals out of which 126 (35.8%) are good signals and

225 (64.2%) are bad signals. Since the dataset is imbalanced, it is divided into training and

test datasets such that balanced data is used for training to avoid evolution towards biased

classifiers. The number of training samples used were 92 for each class. The fitness curves for

this problem are shown in Figure 10. It is clear from the figure that DPS-BR outperforms the

other methods. The trend in performance is similar to benchmarking problems where SGP

has the worst performance followed by CPS, DPS, CPS-BR, and DPS-BR. The classification

accuracies for both training and test data along with standard deviations are given in Table

2, demonstrating the advantages of the proposed method for both training and test datasets.

22



Table 2: Classification Results

Dataset Method Training Testing

”Ionosphere“

SGP 91.5% ± 2.3 91.7% ± 3.9

CPS 91.6% ± 2.1 91.8% ± 3.1

DPS 92.6% ± 1.9 92.0% ± 3.1

CPS-BR 93.4% ± 1.9 92.3% ± 3.0

DPS-BR 94.4% ± 1.8 92.4% ± 3.0

”Spect Heart“

SGP 85.6% ± 2.6 72.9% ± 3.7

CPS 86.8% ± 2.5 74.0% ± 3.4

DPS 88.2% ± 2.3 74.3% ± 3.3

CPS-BR 88.8% ± 2.2 74.5% ± 3.3

DPS-BR 89.8% ± 2.0 74.9% ± 3.1

6.4.2. ”Spect heart“ data classification

There were 267 samples in this dataset out of which 55 (20.6%) samples are abnormal and

212 (79.4%) are normal. Again the dataset is divided to make the training data balanced.

The training samples used were 40 for each class. The fitness curves are given in Figure 11.

Again the proposed method performs better than the other methods and all the classification

results are consistent with previous results. The classification results for training and test

datasets are given in Table 2, indicating the superiority of the proposed method. The

classification accuracies for test dataset is low due to highly imbalanced nature of test

dataset.

Based on all the above discussions it can be concluded that the proposed method (DPS-

BR) performs better than all the other methods for a variety of problems. Experiments

reveal that the improvement shown by the proposed method is not limited to benchmarking

problems and it outperforms other methods for real world classification problems as well.

23



The DPS method uses simple logical operations for finding the probability of crossover

and its computational cost is similar to CPS. The BR method introduces some extra compu-

tation for both CPS and DPS but the performance of DPS-BR is much superior to CPS-BR

and the additional computations cost added by BR is outweighed by the significant increase

in performance. In fact, for benchmarking problems DPS-BR is much faster compared to

the other methods since it finds the optimum solution very quickly. It is on average 10 times

faster than SGP (based on average time taken to find the optimum solution). For classi-

fication problems as there is no optimum solution, the cost of DPS-BR is more than the

SGP, CPS, DPS, and is similar to CPS-BR. SGP is almost two times faster than DPS-BR

for classification problems. This additional cost of DPS-BR is not huge if we consider the

performance improvement shown by this method.

7. Conclusion

This study has proposed a novel method (DPS-BR) for promoting crossover between

behaviourally diverse individuals with the aim to guide evolution towards the optimum

solution. The pairwise diversity of parents is divided into good and bad diversity based on

its ability to improve the performance of children (DPS). The parents with good diversity are

allowed to produce more children to exploit the search space closer to them more efficiently

(BR). DPS exploits the good diversity present in the population during crossover operation

and increases the mutation rate if there is not enough good diversity across a population.

The method has built-in ability of exploration at the start of evolution and exploitation

at the end of evolution. Moreover, it can also switch from an exploitation stage to an

exploration stage if caught in a local optimum.

The proposed method when applied on benchmarking problems not only outperformed

other methods in terms of fitness value but also increased the probability of finding an

optimum solution significantly. The results were similar when the proposed method was

applied on real world classification problems where it showed better classification accuracy

compared to the other methods.

24



Acknowledgment

The authors thank the UCI Machine Learning Repository for the datasets. Zhechen

Zhu would like to thank the Department of Electronic and Computer Engineering, Brunel

University, for their financial support. Asoke Nandi would like to thank TEKES for the

award of the Finland Distinguished Professorship.

References

[1] J. R. Koza, Human-competitive machine invention by means of genetic programming, Artificial Intel-

ligence for Engineering Design, Analysis and Manufacturing 22 (3) (2008) 185–193.

[2] H. Iba, Y. Hasegawa, T. K. Paul, Applied Genetic Programming and Machine Learning, CRC Press,

Inc., 1st edn., 2009.

[3] R. Poli, W. B. Langdon, N. F. McPhee, A field guide to genetic programming, Lulu Enterprises, UK

Ltd, 2008.

[4] A. Safarzadeh, A. H. Zaji, H. Bonakdari, Comparative Assessment of the Hybrid Genetic AlgorithmAr-

tificial Neural Network and Genetic Programming Methods for the Prediction of Longitudinal Velocity

Field around a Single Straight Groyne, Applied Soft Computing 60 (2017) 213 – 228.

[5] Y. Liang, M. Zhang, W. N. Browne, Genetic programming for evolving figure-ground segmentors from

multiple features, Applied Soft Computing 51 (2017) 83 – 95.

[6] G. Maua, T. G. Grbac, Co-evolutionary multi-population genetic programming for classification in

software defect prediction: An empirical case study, Applied Soft Computing 55 (2017) 331 – 351.

[7] J. Enrquez-Zrate, L. Trujillo, S. de Lara, M. Castelli, E. Z-Flores, L. Muoz, A. Popovi?, Automatic

modeling of a gas turbine using genetic programming: An experimental study, Applied Soft Computing

50 (2017) 212 – 222.

[8] E. Shamaei, M. Kaedi, Suspended sediment concentration estimation by stacking the genetic program-

ming and neuro-fuzzy predictions, Applied Soft Computing 45 (2016) 187 – 196.

[9] M. Durasevic, D. Jakobovic, K. Knezevic, Adaptive scheduling on unrelated machines with genetic

programming, Applied Soft Computing 48 (2016) 419 – 430.

[10] A. Elola, J. D. Ser, M. N. Bilbao, C. Perfecto, E. Alexandre, S. Salcedo-Sanz, Hybridizing Cartesian

Genetic Programming and Harmony Search for adaptive feature construction in supervised learning

problems, Applied Soft Computing 52 (2017) 760 – 770.

[11] A. S. Koshiyama, M. M. Vellasco, R. Tanscheit, GPFIS-CLASS: A Genetic Fuzzy System based on

Genetic Programming for classification problems, Applied Soft Computing 37 (2015) 561 – 571.

25



[12] H. J. Escalante, M. Graff, A. Morales-Reyes, PGGP: Prototype Generation via Genetic Programming,

Applied Soft Computing 40 (2016) 569 – 580.

[13] V. K. Ojha, A. Abraham, V. Snel, Ensemble of heterogeneous flexible neural trees using multiobjective

genetic programming, Applied Soft Computing 52 (2017) 909 – 924.

[14] M. A. Haeri, M. M. Ebadzadeh, G. Folino, Statistical genetic programming for symbolic regression,

Applied Soft Computing 60 (2017) 447 – 469.

[15] R. K. Ursem, Diversity-Guided Evolutionary Algorithms, in: Proceedings of the Congress on Evolu-

tionary Computation, IEEE Press, 1633–1640, 2002.

[16] T. Y. Huang, Y. Y. Chen, Diversity-based selection pooling scheme in evolution strategies, in: Pro-

ceedings of the ACM symposium on Applied computing, 351–355, 2001.

[17] E. Burke, S. Gustafson, G. Kendall, Diversity in genetic programming: an analysis of measures and

correlation with fitness, IEEE Transactions on Evolutionary Computation 8 (1) (2004) 47–62.

[18] T. F. Bersano-Begey, Controlling Exploration, Diversity and Escaping Local Optima in GP: Adapting

Weights of Training Sets to Model Resource Consumption, in: Late Breaking Papers at the 1997

Genetic Programming Conference, 7–10, 1997.

[19] V. Ciesielski, D. Mawhinney, Prevention of early convergence in genetic programming by replacement

of similar programs, in: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 1, 67–72,

2002.

[20] D. Mawhinney, Preventing Early Convergence in Genetic Programming by Replacing Similar Programs,

in: Proceedings of the Congress On Evolutionary Computation, 67–72, 2000.

[21] G. Chen, C. P. Low, Z. Yang, Preserving and Exploiting Genetic Diversity in Evolutionary Programming

Algorithms, IEEE Transactions on Evolutionary Computation 13 (3) (2009) 661–673.

[22] H. Xie, M. Zhang, Parent Selection Pressure Auto-Tuning for Tournament Selection in Genetic Pro-

gramming, IEEE Transactions on Evolutionary Computation 17 (1) (2013) 1–19.

[23] P. Day, A. K. Nandi, Binary String Fitness Characterization and Comparative Partner Selection in

Genetic Programming, IEEE Transactions on Evolutionary Computation 12 (6) (2008) 724–735.

[24] M. W. Aslam, Z. Zhu, A. K. Nandi, Improved comparative partner selection with brood recombination

for genetic programming, in: IEEE International Workshop on Machine Learning for Signal Processing

(MLSP), IEEE, Southampton, UK, 2013.

[25] U. M. O’Reilly, Using a distance metric on genetic programs to understand genetic operators, in:

IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and

Simulation, vol. 5, 4092–4097, 1997.

[26] D. E. Goldberg, J. Richardson, Genetic algorithms with sharing for multimodal function optimization,

in: Proceedings of the Second International Conference on Genetic Algorithms and their application,

26



41–49, 1987.

[27] R. I. Mckay, Fitness sharing in genetic programming, in: Proceedings of the Genetic and Evolutionary

Computation Conference, Morgan Kaufmann, 10–12, 2000.

[28] J. Rosca, Entropy-Driven Adaptive Representation, in: Proceedings of the Workshop on Genetic Pro-

gramming: From Theory to Real-World Applications, Morgan Kaufmann, 23–32, 1995.

[29] C. Ryan, Advances in genetic programming, chap. Pygmies and civil servants, MIT Press, 243–263,

1994.

[30] E. K. Burke, S. Gustafson, G. Kendall, N. Krasnogor, Is increased diversity in genetic programming

beneficial? An analysis of the effects on performance, in: Proceedings of the 2003 Congress on Evolu-

tionary Computation, IEEE Press, 1398–1405, 2003.

[31] N. F. Mcphee, Analysis of Genetic Diversity Through Population History, in: Proceedings of the Genetic

and Evolutionary Computation Conference, Morgan Kaufmann, 1112–1120, 1999.

[32] A. Teller, M. Veloso, Internal reinforcement in a connectionist genetic programming approach, Artificial

Intelligence 120 (2) (2000) 165 – 198.

[33] N. Q. Uy, N. X. Hoai, M. O’Neill, R. McKay, D. N. Phong, On the roles of semantic locality of crossover

in genetic programming, Information Sciences 235 (0) (2013) 195 – 213.

[34] H. Xie, M. Zhang, Depth-control Strategies for Crossover in Tree-based Genetic Programming, Soft

Comput. 15 (9) (2011) 1865–1878.

[35] M. W. Aslam, A. K. Nandi, Detection of Diabetes using Genetic Programming, in: Proceedings of the

18th European Signal Processing Conference (EUSIPCO), 1184–1188, 2010.

[36] W. A. Tackett, Recombination, Selection and the Genetic Construction of Computer Programs., Ph.D.

thesis, University of Souithern California, Department of Electrical Engineering Systems, 1994.

[37] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection,

MIT Press., 1992.

[38] W. Banzhaf, P. Nordin, R. E. Keller, F. D. Francone, Genetic Programming : An Introduction, San

Mateo CA : Morgan Kaufmann, 1998.

[39] D. P. Muni, N. R. Pal, J. Das, A novel approach to design classifiers using genetic programming, IEEE

Transactions on Evolutionary Computation 8 (2) (2004) 183–196.

[40] P. Espejo, S. Ventura, F. Herrera, A Survey on the Application of Genetic Programming to Classifica-

tion, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 40 (2)

(2010) 121–144.

[41] M. W. Aslam, Z. Zhu, A. K. Nandi, Automatic Modulation Classification Using Combination of Genetic

Programming and KNN, IEEE Transactions on Wireless Communications 11 (8) (2012) 2742–2750.

[42] U. Bhowan, M. Johnston, M. Zhang, Developing New Fitness Functions in Genetic Programming for

27



Classification With Unbalanced Data, IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics 42 (2) (2012) 406–421.

[43] A. Frank, A. Asuncion, UCI Machine Learning Repository, 2010.

[44] M. Zhang, W. Smart, Using gaussian distribution to construct fitness functions in genetic programming

for multiclass object classification, Pattern Recognition Letters 27 (2006) 1266–1274.

28


