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ABSTRACT 

 
An experimental investigation of flow boiling heat transfer in a copper multi-microchannel heat sink with a 

hydraulic diameter of 0.46 mm is described in this paper. The heat sink consisted of 25 rectangular 

microchannels, which were 0.7 mm wide, 0.35 mm deep and 25 mm long. The separating wall thickness 

between the channels was 0.1 mm and the width of the heat sink was 20 mm giving a base area of 500 mm
2
. 

HFE-7100 was chosen as the test fluid due to its environmentally friendly nature and high dielectric strength. It 

was also considered a suitable choice for cooling electronic components that require working surface 

temperature between 80 °C to 125 °C. A high-speed, high-resolution camera was used to capture the flow 

patterns during the experiments. All experiments were performed at a system pressure of 1 bar, inlet sub-cooling 

temperature of 5 K, mass flux ranging from 50 to 250 kg/m
2
 s and a heat flux range of 43.96−335.29 kW/m

2
. 

Four flow patterns were observed namely bubbly, slug, churn and annular flow. It was found that the local heat 

transfer coefficient increases with increasing heat flux and decreases slightly with increasing vapour quality, 

while there is a negligible effect of mass flux. The experimental results were compared with a number of 

existing heat transfer correlations that were proposed for macro and micro scale with some correlations showing 

good agreement. Similar comparisons with pressure drop correlations were also included. 
 

KEY WORDS: Flow boiling, Flow patterns, Heat transfer coefficient, Pressure drop, Horizontal microchannel, 

Correlations. 

 

 

1. INTRODUCTION 
 

The rapid evolution of semiconductor technology led to a continuous demand on miniaturization and 

improvements of the performance of electronic devices. This means that high thermal power is generated 

from a small footprint area and thus the thermal management process in these devices is a big challenge. For 

example, Kadam and Kumar [1] mentioned that the heat flux in high power integrated circuits (ICs) and laser 

mirror could reach 1 MW/m
2
, while it exceeds 10 MW/m

2
 in the avionics and Very Large Scale Integrated 

Circuits (VLSIC). Karayiannis and Mahmoud [2] reported that, the average heat flux could reach 2 MW/m
2 

in high performance computers and 4.5 MW/m
2 

 in desktop computers by 2026, while the heat flux in 

insulated gate bipolar transistor modules could be in the range 10−50 MW/m
2
. Bachmann and Bar-Cohen [3] 

stated that the hot spots can be 6−10 times the chip average power, hence they can range between 12−20 

MW/m
2
 and 27−45 MW/m

2 
in high performance computers and desktop computers, respectively [2]. As a 

result, several cooling techniques were investigated by many researchers with the aim of expanding the 

currently possible cooling capacity to meet the aforementioned high heat flux values. These techniques 

include heat pipes, single-phase liquid cooling, thermoelectric modules, immersion liquid cooling, vapour 
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compression refrigeration cycles and direct-liquid spray cooling. However, these techniques have technical 

limitations and an effective cooling technique is still required. Two-phase flow boiling in micro passages, as 

part of an integrated pump-driven system, is considered one of the most promising cooling solutions that can 

dissipate high heat fluxes. This technique is still not commercialized possibly due to the lack of 

understanding of several fundamental aspects such as the dominant heat transfer mechanism(s) [4-9], flow 

instability and its effect on heat transfer rates [10-11], the complex effect of parameters such as channel 

aspect ratio, surface characteristics, length of channels [12-14] on flow patterns and heat transfer rates and 

predictive correlations for pressure drop and heat transfer rates. 

This study aims to investigate experimentally flow boiling heat transfer of HFE-7100 in a rectangular multi-

microchannel heat sink. Twenty five microchannels with a hydraulic diameter of 0.46 mm were 

manufactured using a CNC machine. All experiments were conducted at a system pressure of 1 bar, sub-

cooling temperature near 5 K, five different mass fluxes ranging from 50 to 250 kg/m
2
 s and a heat flux 

range of 43.96−335.29 kW/m
2
. Flow visualization was carried out using a high-resolution, high-speed 

camera integrated with a microscope, in order to capture the features of flow patterns during the experiments. 

The experimental results were used to evaluate some existing pressure drop and heat transfer correlations. 

 

 

2. EXPERIMENTAL SYSTEM 

 
The description of the experimental facility was presented in detail in Al-Zaidi et al. [15]. It consists of a 

liquid reservoir, sub-cooler, micro-gear pump, two Coriolis flow meters, pre-heater, test section, high-speed 

camera with a microscope and chiller system, and is shown in Fig. 1. A Phantom high-speed high-resolution 

camera with a frame rate of 1000 fps at 512×512 pixel resolution was mounted on a microscope fitted with 

LED lighting system. This visualization system was used to observe and record the flow patterns in the 

channels. All the measuring instruments, such as thermocouples, pressure transducers and flow meters, were 

connected to the National Instruments Data Acquisition System (DAQ). This data logger has a frequency of 

1 kHz, i.e. it can record 1000 data per second. A computer with LabVIEW software was used to record all 

the measured data from the rig. The data were taken for 2 minutes, after steady state condition was reached, 

i.e. overall stability of the mass flux, pressures and temperatures, and the average value was used in all 

calculations. Fig. 2(a) shows the main parts of the test section, which consists of a cover plate, housing, heat 

sink block, cartridge heaters and bottom plate. The cover plate was made of a transparent polycarbonate, 

while a Polytetrafluoroethylene block was used to fabricate the housing and the bottom plate. The heat sink 

block was made of oxygen-free copper with height, width and length of 94.5, 26 and 51 mm, respectively. 

Twenty five microchannels were manufactured using a high-precision milling machine (Kern HSPC-2216). 

These channels were 0.7 mm wide, 0.35 mm deep and 25 mm long as shown in Fig. 2(b) with an average 

surface roughness of 0.304 µm. Zygo NewView 5000 surface profiler was used to measure this surface 

roughness. Twelve K-type thermocouples, with a calibration uncertainty of ±0.038−0.12K, were inserted into 

the heat sink block to measure the temperature distribution in the vertical direction (five thermocouples) and 

along the channels (four thermocouples distributed in two rows; two per row) as seen in Fig. 2(b). The 

thermocouples distribution formed a cross shape such that one thermocouple was common at the intersection 

point between the vertical and horizontal directions. Note that three thermocouples were inserted to a 

distance of 3 mm in the other side of the heat sink and are not shown in Fig. 2(b). These set of six 

thermocouples were used to assess the temperature distribution in the transverse direction. In Fig. 2(b), the 

two horizontal rows of thermocouples were used to make sure that there is minimum axial heat conduction in 

the heating block and the heat flows in the vertical direction, i.e. 1D heat conduction. Two T-type 

thermocouples were inserted into the inlet and outlet plena to measure the fluid temperature, with a 

calibration uncertainty of ±0.024K. Two pressure transducers and one differential pressure transducer were 

connected between the inlet/outlet plenum to measure the inlet/outlet pressure and the total pressure drop 

along the channels. 
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3. DATA REDUCTION 
 

The experimental single-phase fanning friction factor is calculated from Eq. (1). 

                                                                                                                                    (1) 
where , , ,  and  are the channel pressure drop, hydraulic diameter, channel length, liquid 

specific volume and channel mass flux, respectively. The hydraulic diameter is given by Eq. (2), while the 

channel pressure drop is found from Eq. (3). 

                                                                                                                         (2) 

                                                                                                      (3) 
where , , , , ,  and  are the channel height, channel width, the total 

measured pressure drop along the channel, the pressure drop due to the change in flow direction by 90° in the 

inlet plenum, the sudden contraction pressure drop at the channel inlet, the sudden expansion pressure drop 

at the channel outlet and the pressure drop due to the change in flow direction by 90° in the outlet plenum, 

respectively. The value of each component is found from a procedure that was described in [16]. The local 

single-phase and two-phase heat transfer coefficient is calculated from Eq. (4) and (5), respectively. 

                                                                                                (4) 

                                                                                                        (5) 

where , , , ,  and  are the base heat flux, the fin width, the local fluid temperature, 

local internal surface temperature, local saturation temperature and fin efficiency, respectively. The base heat 

flux and the local internal surface temperature can be found from Eq. (6) and (7), respectively. The local 

saturation temperature is found from the corresponding local pressure in the saturated zone with the 

assumption that the pressure drop varies linearly. 

                                                                                                                                                 (6) 

                                                                                                                                (7) 

where is the thermal conductivity of copper and  is the local thermocouple temperature. The 

vertical distance between the last thermocouple and the channel bottom, Y is 4.15 mm. The length of the 

single-phase region is found from Eq. (8). 

                                                                                                                                   (8) 

Fig. 1 Schematic diagram of the 

experimental facility. 
Fig. 2 Test section (a) exploded drawing (b) 

heat sink dimensions, in mm. 

A A

(b) (a) 
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where ,  and ,  are the mass flow rate, specific heat capacity, inlet fluid temperature and the base 

width, respectively. The local saturation temperature of the fluid at the end of the subcooled zone  

is found from the local saturated pressure at subcooled zone  that is calculated as follows. 

                                                                                                                          (9) 

where  is the inlet pressure. The experimental uncertainty values were calculated using the method given in 

[17]. All two-phase flow experiments were conducted at inlet sub-cooling temperature near 5 K and system 

pressure of 1 bar. The maximum uncertainty value for the friction factor, average Nusselt number, heat flux, 

mass flux, vapour quality and heat transfer coefficient are 2.05%, 6.47%, 6.88%, 0.64%, 10.2% and 13.48%, 

respectively. 

 

 

4. RESULTS AND DISCUSSION 
 

4.1 Single phase validation 
Single-phase experiments were performed before conducting two-phase experiments to validate the 

experimental rig. Fig. 3 shows the experimental fanning friction factor versus Reynolds number, while the 

average Nusselt number versus Reynolds number was plotted in Fig. 4. The experimental results were 

compared with some existing correlations [18-21]. The figures indicate that, there is a good agreement 

between the experimental friction factor and the correlation by Shah and London [18] for fully developed 

flow and between the average Nusselt number and the equations proposed by [19] and [21] for developing 

laminar flow in a single channel, which confirms the system validation. 

                     
 

 

 

4.2 Flow boiling patterns 
The flow patterns presented in this paper were visualized at the heat sink centre near the channel inlet, near 

the middle and near the outlet. In this study, four flow patterns were observed, namely; bubbly, slug, churn 

and annular flow, see Fig. 5 and 6. As shown in Fig. 5(a), nucleation occurs at the channel corners. This was 

also found by [22-24]. Bubbly flow was observed near the inlet and is characterized by several small bubbles 

with size smaller than the channel width. Slug flow was observed near the middle with the features of a long 

cylindrical bubble followed by small bubbles, see Fig. 5(b). Annular flow is observed near the outlet and is 

characterized by a vapour core surrounded by a liquid film, see Fig. 5(c). When the heat flux was increased 

slightly to 63.087 kW/m
2
, churn flow regime was observed near the middle with the characteristics of local 

distortions near the merging location of the elongated bubbles, see Fig. 6. Because this regime occurs over a 

narrow range of experimental conditions, it may be considered as a transition regime between slug and 

annular flow. 

                                                             
 

 

 

(a) Bubbly flow 

(Channel inlet) 

(b) Slug flow 

(Channel middle) 

(c) Annular flow 

(Channel outlet) 
(Channel middle) 

Fig. 3 Experimental Fanning friction factor 

versus Reynolds number. 
Fig. 4 Average Nusselt number versus 

Reynolds number. 

Fig. 5 Observed flow patterns at a heat flux of 51.078 kW/m
2
 

and mass flux of 50 kg/m
2
 s. 

Fig. 6 Churn flow at a heat flux of 63.087 

kW/m
2
 and mass flux of 50 kg/m

2
 s. 
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4.3 Two-phase heat transfer 

Fig. 7 illustrates the effect of heat flux on the local heat transfer coefficient at a mass flux of 250 kg/m
2
 s. 

This figure shows that, when the heat flux increased, the local heat transfer coefficient also increased, which 

agrees with [24-28]. This figure was divided into two regions with respect to vapour quality; namely low and 

intermediate/high quality regions, in order to clarify the effect of heat flux. In the low quality region (x<0.1), 

the flow pattern was bubbly flow and the increase in the heat transfer coefficient with heat flux could be due 

to an increase in the bubble generation frequency. In the intermediate/high quality region (x>0.1) where the 

flow pattern was slug or annular flow, the increase in the heat transfer coefficient with heat flux could be due 

to the increase in the liquid film evaporation rate. 

 
Fig. 7 Effect of heat flux at a mass flux of 250 kg/m

2
 s, (B) bubbly (S) slug (C) churn (A) annular. 

 

Fig. 7 shows the trend of the local heat transfer coefficient versus the local vapour quality at each heat flux. 

It can be seen that, at a given heat flux and low qualities (x<0.1) where the flow pattern was bubbly, the local 

heat transfer coefficient reached a peak value. This could be due to the evaporation process in the liquid 

micro layer underneath the nucleating bubbles. At high qualities (x>0.1), the local heat transfer coefficient 

decreased with increasing local vapour quality. Similar trend, decreasing heat transfer coefficient with 

increasing vapour quality, was also found by [6,29,30]. This reduction could be due to an increase in the wall 

superheat in the axial direction towards the channel exit. At a given heat flux, the local surface temperature 

increased towards the channel exit due to partial dry out and hence the wall superheat increased; higher 

surface-to-saturation temperature difference. This led to lower heat transfer coefficient. 

Five different mass fluxes were tested ranging from 50 to 250 kg/m
2
 s as illustrated in Fig. 8 in order to study 

the effect of mass flux. It seems that, there is no clear effect of mass flux on the local heat transfer coefficient 

in the range studied. This negligible effect was also reported in several past studies such as [26,31-34]. 

 
Fig. 8 Effect of mass flux at a heat flux of 100 kW/m

2
. 

 

The above results showed that the local heat transfer coefficient increases with heat flux and decreases with 

increasing local quality, while there is a negligible effect of mass flux. The main objective of this paper is to 

design a multi-microchannel heat sink that can be used for cooling electronic components. A small-scale 

thermal management system using a liquid pump cycle is proposed for this heat sink. In order to reduce the 

energy consumption by the pump, reduce the overall size and the system maintenance, the system pressure 

was kept near atmospheric pressure and low flow rates were tested, i.e. low Reynolds number. HFE-7100 

was chosen as a working fluid due to its high dielectric strength and low global warming potential. The wall 
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temperature was maintained under 80 °C, while 335.29 kW/m
2
 was dissipated from a base area of 500 mm

2
 

corresponding the hot chip area. The inlet sub-cooling temperature was controlled near 5 K and the 

maximum measured total pressure drop was 4 kPa. The measured energy consumption by the micro-gear 

pump at the highest heat flux value (335.29kW/m
2
) was 14.25 W which means low pumping power.  It is 

worth mentioning that, if the coefficient of performance (COP) is calculated, the value will be 11.8, which is 

much higher than miniature vapour compression systems, see [35]. Local heat transfer coefficient as high as 

12,710 W/m
2
 K was reached at a flow rate of 0.067 L/min. Although moderate heat fluxes were dissipated, it 

is possible to use flow boiling in micro passages for cooling electronics at very low flow rates and system 

pressure near one bar. The effect of channel aspect ratio is now to be examined to help design microchannels 

that can dissipate higher heat flux at these low pressure and low flow rate conditions. 

 

4.4 Evaluation of existing correlations 
Six existing heat transfer correlations [25,38-42] were evaluated as shown in Fig. 9. Eq. (10) and (11) were 

used to evaluate these existing correlations as follows: 

                                                                                                                                          (10) 

                                                                                                                     (11) 

where Ɵ, MAE and N are the percentage of data points predicted within ±30% error bands, the mean absolute 

error and the number of data points, respectively. Since the present heat sink is partly heated, i.e. channels 

are heated from three sides, a correction factor was used, see Eq. (12). This procedure was also adopted by 

[6,36,37]. 

                                                                                                                                        (12) 

where  is the two-phase heat transfer coefficient obtained from the correlation.  and  are Nusselt 

numbers for thermally developed laminar flow with three-sides and four-sides heated, respectively and are 

calculated from Eq. (13) and (14), [18]. 

                                                        (13) 

                                               (14) 

The value Ɵ of and MAE for each of the comparison are included in Fig. 9. Lazarek and Black [25] and Kim 

and Mudawar [38] resulted in low Ɵ values and relatively high MAE values of 36.01% and 40.5%, 

respectively. The comparisons with the other correlations were reasonable and similar with a MAE value 

ranging within 14% and 21% and relatively high Ɵ values. 

Fig. 10 depicts a comparison with some existing two-phase pressure drop correlations. This comparison 

shows that the correlation by Mishima and Hibiki [43] predicted the data very well with a MAE of 18.16%, 

while the correlations by Qu and Mudawar [44] and Li and Wu [45] predicted the results with less accuracy 

with a MAE of 36.5% and 93.95%, respectively. 

 

 

Fig. 9 Comparison with existing heat transfer correlations for macro/microchannel. 
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Fig. 10 Comparison with existing two-phase pressure drop correlations. 

 

5. CONCLUSIONS 

Flow visualization, heat transfer and pressure drop experiments were performed in multi-microchannels with 

a hydraulic diameter of 0.46 mm. HFE-7100 was tested at inlet sub-cooling of 5 K, system pressure of 1 bar, 

heat flux of 43.96−335.29 kW/m
2
 and mass flux of 50−250 kg/m

2 
s. The main conclusions are: 

1. Bubbly, slug, churn and annular flow were observed. 

2. The local heat transfer coefficient increases with heat flux and decreases with increasing local vapour 

quality, while there is no clear effect of mass flux in the range studied and with this fluid. 

3. The heat transfer correlations by Li and Jia [41] and Shah [42] predicted the results well with a MAE of 

13.84% and 18.74%, respectively. The correlations by Liu and Winterton [39] and Mahmoud and 

Karayiannis [40] also gave very reasonable predictions. 

4. The pressure drop correlation by Mishima and Hibiki [43] predicted the results with a MAE of 18.16%. 

5. In this study, a base heat flux as high as 335.29 kW/m
2
 was dissipated from a base area of 500 mm

2
. The 

working surface temperature was kept under 80 °C at a system pressure near the atmospheric pressure. 

The maximum measured total pressure drop was 4 kPa with a flow rate of 0.067 L/min. This means low 

pumping power, approximately 14 W, needed to deliver such vales. As shown in this study, it is possible 

to use flow boiling in micro passages for cooling electronics at very low flow rates and system pressure 

near one bar. Further studies are underway to increase the upper limit of heat flux by varying the channel 

aspect ratio and modifying the channel surface micro structure. 
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