
Towards Micro Service Architecture Recovery: An Empirical Study

Nuha Alshuqayran
Computing Engineering and Mathematics

University of Brighton
Brighton, UK

Email: n.alshuqayran@brighton.ac.uk

Nour Ali
Computer Science Department

Brunel University London
Uxbridge, UK

Email: Nour.Ali@brunel.ac.uk

Roger Evans
Computing Engineering and Mathematics

University of Brighton
Brighton, UK

Email: r.p.evans@brighton.ac.uk

Abstract—Micro service architectures are rapidly establish-
ing themselves in the software industry as a more efficient
and effective substitute for monolithic applications. In a micro
service architecture, the application is broken down into many
small elements called micro services. These are managed in
a distributed way and typically involve several development
teams. In such an environment, an architectural model can get
lost along the way, making it difficult to perform many down-
stream software engineering tasks, such as migration, audit,
integration or impact analysis. To address this problem, we are
developing support for Micro Service Architecture Recovery
(MiSAR) using a Model Driven Engineering approach. In this
paper, we describe an empirical study which aims to identify
the core elements of our approach, by undertaking manual
analysis on 8 micro service-based open source projects. From
this analysis, we define a metamodel for micro service-based
architectures and a set of mapping rules which map between
the software and the metamodel. The resulting metamodel and
mapping rules provide a solid foundation for any micro service
architecture recovery approach and hence are a key first step
towards managing the architectural integrity of micro service-
based applications.

Keywords-micro service architecture, model driven engi-
neering, software architecture, software architecture recovery,
reverse engineering;

I. INTRODUCTION

In the dynamic environment of today’s world, software
applications need to keep up with the fast pace of devel-
opment and be as agile as possible. Applications need to
accommodate ever-changing business needs and a diverse
range of clients, such as desktop and mobile browsers and
native mobile applications, as well as third parties through
APIs. It is very difficult to fulfill these requirements by using
monolithic applications. This has led to an architectural shift
from a monolithic to a “micro service” architectural style [1].

The Micro Service Architecture (MSA) style is emerging
as a new way to structure applications. The key characteris-
tics of MSA are that it is modular and distributed [2]. MSA
has evolved from the traditional service oriented architec-
tural style and it is now being deployed to provide cohesive
business functions. In order to deploy such cohesiveness
within a business organization, the system is divided into
small services and as Fowler and Lewis comment [3], this
allows fragmentation to become a dominant architectural

style.
Generally, with the sophistication and complexities of

such evolving and dynamic systems, the architectural model
can get lost/drift along the way, as micro service identities
and dependencies become less precise. The lack of a clear
architectural model makes it difficult to perform many
downstream software engineering tasks, such as migration,
audit, integration or impact analysis. A possible solution to
this problem is to allow software developers and maintainers
to conduct architecture recovery, a technique which has been
widely supported in object-oriented systems [4], [5], but to
date has not been explored for micro service-based systems.

To address this, we are developing an approach called
Micro Service Architecture Recovery (MiSAR) that uses a
Model Driven Engineering (MDE) [6] approach to generate
architectural models of micro service-based systems. Two
key components of MiSAR are a metamodel, which abstracts
the concepts of a micro service architecture in a technology
independent way, and mapping rules, which map an im-
plemented micro service-based system into an architectural
model which instantiates the metamodel.

In this paper, we present a study which allows us to define
MiSAR’s metamodel and mapping rules based on empirical
data. The study involves a systematic analysis of 8 micro
service applications. The analysis is conducted in two stages:
in the first stage we analysed one system, identified code
elements and created architectural abstractions. This allowed
us to have an initial version of the metamodel and mapping
rules. In the second stage, we refined the metamodel and
mapping rules by validating them on 7 additional systems.

This paper is organized as follows: section 2 motivates
our approach; section 3 describes the design of our study;
section 4 and 5 present and discuss the results; section 6
notes threats to the validity of our study; section 7 discusses
related work; finally, section 8 highlights our conclusions.

II. MISAR MOTIVATION AND OVERVIEW

A. Problem and motivation

There are a variety of benefits associated with the uti-
lization of the MSA style. MSA has increasingly been
considered more beneficial than traditional layered archi-
tectural software systems [3]. Several of its core benefits

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362650631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


are: agility, reliability, resilience, scalability, developer pro-
ductivity, maintainability, separation of concerns and overall
ease of deployment [7]. However, micro service architectures
introduce a level of complexity into applications. MSA is
very dynamic, each micro service is fine-grained and runs
independently of others in its own container, resulting in a
highly distributed system with many dependencies.

Keeping control of the overall architecture during MSA
system development can be very difficult, especially when
MSA is designed, developed and deployed by different
stakeholders with different disciplines. Moreover, developers
tend to follow evolutionary design strategies, making it
very hard to manage architectural constraints that may be
put in place by different architects at different times. The
effect is that the architecture of an implemented system has
typically diverged significantly from any documented model,
and often fails to meet prescribed architectural constraints. A
possible solution to this problem would be to recover the ac-
tual architectural structure of an implemented system, to help
development teams comprehend the structure, connections
and dependencies of their applications. However, previous
support for architecture recovery processes has focused
mainly on object-oriented systems with diverse language
subsets [8]. Little research has been conducted regarding
architecture recovery for MSA systems, as reported in a
recent mapping study of this area [9].

The motivation of this study is to provide architectural
recovery support for this emerging architectural style. This
requires understanding and defining various concepts and
elements that form an MSA model, and determining a
repeatable method to map between the source code of a
micro service implementation and an architectural model
of that implementation. To achieve this, we have decided
to take a MDE approach to formalize and implement the
models and mappings.

B. The Micro Service Architecture Recovery approach

The complexity of the micro service architectural style
makes the task of understanding its many artifacts very
difficult, as applications consist of many small components,
interfaces and dependencies. The ideal way to comprehend
the complexities is to model the artifacts themselves as
accurately as possible. MDE achieves this by adopting a
bottom-up model-driven transformation process for recovery
of the architecture. We believe that this approach is partic-
ularly suited to the distributed, fine-grained nature of MSA
systems. In addition, one of its competitive advantages is
that modeling occurs at multiple abstraction levels, which
could help elucidate a model-driven transformation for a
more holistic approach to architecture.

This study focuses on the MDE’s Platform Independent
Model (PIM) alongside the Platform Specific Model (PSM)
abstraction level in relation to the modeling of micro service
architecture platforms. These models are critical in order to

Figure 1. The MiSAR approach

better understand the core of reverse engineering, where the
PIM supports the architectural model recovered and the PSM
supports the technology of the implemented micro service
system. The MiSAR process is based on the transformation
from PSM to PIM as shown in Figure 1. This implementa-
tion pathway has a process that includes code, XML files,
schema, run-times, etc. that are converted into PIM. This is
achieved by providing mapping rules to derive these models.

The PIM level describes micro service models which are
independent of the execution platform and of the technology
being used. The PSM level describes micro service platform
models as executable artifacts, combining the PIM with
additional features of a specific platform. Platform specific
models in micro services can be conceptualized into two
areas: the runtime platform and the development technol-
ogy. The runtime model provides information to understand
the connectivity and orchestration. Micro services can be
packaged into runnable images which can be Docker based
containers or an open VM format. The other area is the
development technology or frameworks which are used to
accelerate the development of micro services. There are
configurable frameworks such as Spring Boot which provide
many design pattern implementations to make micro service
development rapid for a developer. For instance, a Docker
file, a pom.xml and a bootstap.yml at PSM Level are used to
represent a micro service concept at PIM level as in Figure 2.

Our approach aims to recover the architecture of micro
service based systems. In order to do this, it has to include
a metamodel and mapping rules that support the recovery
process. By following the MDE approach, we aim to make
these artifacts reusable, so that even though our own focus
is on reverse engineering, these artifacts can also be used in
other forward engineering architectural approaches, such as
code generation.

III. STUDY DESIGN

A. Study aim and research questions

The aim of this study is to develop MiSAR from empirical
data. To achieve this, we have defined three research ques-



Figure 2. Representation of micro service concept at PSM and PIM layers

Figure 3. Selected systems for analysis

tions which the study needs to address (see Table I). This
can be successfully achieved by defining the metamodel and
mapping rules, which correspond to the artifacts of the MDE
approach (RQ1, RQ2). As we are reverse engineering from
a software system, we need to classify the kind of software
analysis to be conducted for extracting the micro service
architecture as either static or dynamic analysis (RQ3).

B. Selecting the case studies to study

We selected open source projects from the Github reposi-
tory1 that followed the micro service architecture. We started
by performing a search on the repository facility using
the terms “micro service”, “micro service”, “micro-service”
and “micro service architecture”. Furthermore, we applied
specific criteria to support project relevance as stated in
Table II. In this study, we limited our study to 8 systems
(case study 1 [10], case study 2[11], case study 3 [12], case
study 4 [13], case study 5 [14] , case study 6 [15], case
study 7 [16] and case study 8 [17], as described in Figure 3.

1https://github.com/

Figure 4. Micro service architecture recovery steps

C. Research design

As the objective of our study is architecture recovery,
our study is designed as a manual architecture recovery
process. We have customized the process presented in [18],
which includes two main phases: Recovery Design (RD)
and Recovery Execution (RE) as depicted in Figure 4.
Typically, the two phases are iterative and incremental. The
first phase attempts to plan the recovery by defining the
architectural concepts along with the mapping rules. In the
second phase, we execute the plan for validation purposes,
apply the metamodel and mapping rules defined in the first
phase to create architectural models. The outcome of the
validation may lead us to repeat the steps, by refining the
metamodel and mapping rules, and re-validating.

Within the RD phase, our study analysed case study 1.
This case study was chosen due to the availability of its
architecture documentation and supporting diagrams with
illustrations, which can be used to compare the results of
this phase with the documentation. Case studies 2 to 8 were
used in the second phase. The steps taken in each phase are
described in the following sections.

1) Phase 1: Recovery design: During recovery design
we determine the micro service architectural concepts that
build the system, and identify mapping rules from the code
to the concepts. These steps are separated into the following:

Step 1 – Data extraction and gathering: It is important
to gather the required data from artifacts of the software
system for recovery of the micro service architecture. Data
from artifacts includes the source code, configuration files,
descriptive files etc. which are then collected and stored
within a data repository.

Technique. We have extracted data from the following
source files:

• Docker files: text documents that contain command
lines to assemble an image in order to run a container
and/or a service.

https://github.com/


Table I
THE RESEARCH QUESTIONS AND THEIR MOTIVATIONS

Number Research Question Motivation

1 What are the micro service architectural elements/concepts that are
identified from the source code?

The aim is to identify the concepts and elements needed to build
a metamodel and specific-purpose abstraction of the micro service
based system.

2 What are the mapping rules between the source code of micro service
implementations and the architectural model?

The aim is to develop mapping rules that derive a target model
from the source model

3 What kind of software analysis is needed to capture the micro service
architecture ?

The aim is to evaluate and assess the need of static and dynamic
analysis in the process of system recovery within the micro service
framework.

Table II
THE SELECTION CRITERIA

Criteria

Inclusion

• Projects that are only developed in Java.
• Projects which demonstrate the usage of the Micro

Service Architectural Style. (by asking developers
and reviewing documentation)

• Projects that have Spring Boot and/or Spring Cloud
OSS framework

• Projects that have Docker Technology.

Exclusion

• Projects that use two or less Spring Cloud compo-
nents. A project that uses few Spring Cloud libraries
decreases the probability of the project being a
micro service

• Project/repositories under the Spring Cloud GitHub
repository because they are framework projects not
micro service applications.

• Docker Compose files: for defining and running multi-
container Docker applications.

• Java source code.
• Maven POM.XML file: An XML file that contains

information used by Maven to build the project.
• YAML files used for configuration files.
• Documentation and Tools Support.

Output. The outcome of this stage is a repository which
contains data of the source files.

Step 2 – Data classification and analysis: Different kind
of analysis, static and dynamic, contribute different kinds of
information to the data flow.

Technique. Static analysis is performed by observing only
the artifacts of the system. To extract a static view of the
system, we used a reverse engineering tool: Enterprise archi-
tect2. This tool is applied to the Java source code to generate
UML class diagrams. Dynamic analysis is performed by
observing the system during execution and aims to extract
information from running code. We have implemented and
enabled the Zipkin3 server with our open source projects4,
then used the Zipkin tool to trace communication between
micro services, so that we were able to build a call graph

2http://www.sparxsystems.com.au/products/ea/
3https://zipkin.io/
4https://github.com/nuha77/piggymetric-with-Zipkin

from one micro service to another. Zipkin captured all the
calls and dependencies between different micro services as
shown in Figure 5 for Case Study 1. TCPDump provided us
with low level TCP protocol connectivity and communica-
tion which provided information about the latencies between
different components of the system. Since the system was
deployed using Docker container, the Sysdig tool was used
to obtain performance diagnostics at the container level
which provided information about the ports, IP addresses of
containers, and connectivity between different containers.

Output.The outcome of this stage is a fusion of extracted
information from both static and dynamic analysis.

Figure 5. Dynamic analysis by using Zipkin

Step 3 – Determine architectural concepts: We
have used both bottom-up (code→model) and top-down
(model→code) techniques to understand and determine the
micro service architectural concepts. The mechanism used
for the bottom-up technique is to initially analyze the source
code and configuration files. The concepts are discovered af-
ter abstracting and evaluating their relevance to architectural
elements. The top-down technique focused on using micro
service patterns [19] which allowed us to identify several
concepts and supported the definition of the underlying
features and behaviour of micro service-based systems.

Output. The outcome of this stage is a conceptual map
which contains the identified concepts from both techniques
that are relevant to our analysis, as depicted in Figure 6.

Step 4 – Define micro service architectural concerns:
Concerns are common characteristics of micro services in an

http://www.sparxsystems.com.au/products/ea/
https://zipkin.io/
https://github.com/nuha77/piggymetric-with-Zipkin


Figure 6. Micro service conceptual map

Figure 7. Micro-service architecture concerns

architecture, which can be commonly implemented across
multiple micro services. These can be related to making
micro service fault tolerant, ease their deployment and
discovery. The focus of the study will be the most common
technical concerns which are presented in Figure 7, whereas
non-technical concerns such as organization structure, cul-
ture and so on are excluded.

Technique. Several concerns appeared in Step 3 as shown
in our conceptual map. As concerns are difficult to identify
from the code, we used the literature as in [20] to review
the most common ones that have to be considered in micro
service systems. We then identify the technologies that are
commonly used to implement these concerns in a Spring
Cloud OSS-based micro services environment. Recovering
these technologies can help determine whether a given
micro service implements specific concerns. This will help
in identifying and building the relations between various
platform services and the functional or business services in
the platform independent model.

Output. The outcome of this stage is a list of concerns
to be taken into account in the micro service architecture.

Step 5 – Clustering and integration: After identifying the
various common architectural concepts in micro services, we
clustered them together based on high level related concerns
that we have identified.

Technique. Our technique represents the concepts as meta
classes by grouping related architectural concepts together

in one cluster based on their micro service concerns. An
association in the metamodel is added for Meta classes that
are related. Finally, we integrate and abstract the concepts
and their relationships.

Output. The outcome of this stage is a metamodel for
micro service architectures.

Step 6 – Define mapping rules:
Technique. To define the mapping rules we manually in-
spected and examined the system by analyzing source files
available in the project directory. Then, for each concept in
the metamodel, we used the extracted files of that concept
and analysed them to define the mapping rules which map
architecture concepts with implementation artifacts. The
mapping rule extraction process was performed at two analy-
sis levels: micro service system level and micro service level.
The micro service system level involves analyzing docker-
compose.yml file, and project build files generated either
by the Maven build tool (e.g. pom.xml), or by Gradle (e.g.
settings.gradle). The micro service level involves analyzing
the Maven build file, the source code and Docker file.
Information collected for each mapping rule included the
input artifact being studied (e.g. container orchestration file,
application build file, source code file etc.), and then map-
ping architecture concepts (e.g. micro service, dependency,
service discovery, API gateway etc.) onto implementation
artifacts. Mapping rules were then classified and grouped
based on the output architectural element they mapped to.

Output. The outcome of this stage is a set of mapping
rules for each concept in the metamodel.

2) Phase 2: Recovery execution and validation: we
conduct a validation for the results obtained from the RD
phase, using case studies 2 to 8.

Refinement of artifacts: The metamodel and mapping
rules obtained in the RD phase are applied and validated
against the seven case studies for enhancement and valida-
tion purposes.

Technique. We analyzed the 7 system implementations
manually and applied the mapping rules and metamodel.
Based on the success of this analysis, we amended and
enhanced the mapping rules and architectural elements.

Output. The outcome of this stage is an updated MiSAR
repository with mapping rules and metamodel.

IV. RESULTS

This section presents the resulting metamodel and map-
ping rules after our analysis.

RQ1: Micro service metamodel. Regarding RQ1, there
are various architectural elements which are fundamental to
any system. Therefore, they appear across all the selected
case studies. Figure 8 shows the architectural concepts we
have discovered, and the case studies (indicated in numbers)
where we have identified them from. We can also observe
that various architectural elements appear only in few cases
due to various contextual demands of the projects. We have



Figure 8. Architectural concepts, counts and system references

analyzed the context of these cases and determined the need
for these elements to be used by the designer of the system.

We can observe that containerization appears across all the
projects. This is due to the fact that our initial selection crite-
ria for the case studies included the usage of Docker. Docker
is fundamentally a containerization technology, hence all
the case studies in Figure 3 use containerization as an
architectural element. Docker is the most commonly used
containerization technology hence most micro services use
Docker as the container image format of choice.

Configuration is also a fundamental architectural element
which happened to have been used across all case studies
except case study 2 and 4. This is probably due to the
size of the project. It contains few micro services and the
project’s objective is a proof-of-concept for micro service
development

API gateway is present in most projects, suggesting that
the use of API gateways is very common in micro services.
This is due to the fact that API gateway allows architects to
configure cross functional elements such as security, logging
and authorization. This relieves individual services to handle
these architectural elements within their code.

Registry and discovery were discovered in most projects.
However, each project uses different technologies to imple-
ment this concept. For example, 5 case studies used Netflix
Eureka, while Consul was used in 2 studies(4 and 5). Again,
as with the configuration element, due to the small size of
system 2, registry and discovery are not used.

As shown in Figure 8, we find that some concepts are
essential in micro service architecture, and are found in all
systems, while others are not. Based on these counts, we
have defined the metamodel shown in Figure 9. For instance,
Containerization, Microservice, Service Interface and End-
point are found in all analyzed systems so when defining
our metamodel we would represent this with mandatory
associations: one-to-one or one-to-many multiplicities. For
example, one micro service should run independently in one
container and have at least one communication endpoint.

Figure 9. Micro service architecture metamodel at PIM-level

However, Security was implemented in only three systems,
even though it is an essential concern of a micro service
system, and so its association is not mandatory.

We can also notice from Figure 8 that most metamodel
elements were discovered in Phase 1, as case study 1 was
used in this phase. The metamodel was refined in Phase 2
with a new element cache store, which was discovered in
case study 3.

In the following, we provide a description of the concepts
of our metamodel:

Micro service architecture is the logical repository of
micro services. It contains one or many micro service
instances along with the components implementing them.
Micro service is the central and main building block of our
metamodel and it is generally a software application that
offers a complete independent service. In a micro service
architecture, there might be multiple instances of the same
micro service type as well as different types depending
on the domain of a micro service system. Micro services
are broadly classified into: Functional micro service type,
which realizes the system’s business capabilities as well as
a set of Infrastructure micro service types, which provide
various back-end support to the operation of micro services.
Infrastructure micro service types include API Gateway,
Configuration, Discovery and Registry, Security, Log
Analysis, Monitoring and Tracing. As stated in Figure 9,
every micro service in a micro service architecture has to
be configurable, discoverable and able to communicate its
health.



Although implementation of micro services differs, every
micro service instance is defined by at least one Service
Interface. The Service Interface identifies what Service
Operations can be called by remote services and how.
Unless the micro service instance is stateless, one Service
Operation can preserve the micro service’s local state in one
Data Store. A Cache Store element, on the other hand,
preserves response data of remote micro services that were
requested previously in order to decrease number of future
requests. This element contributes to improve the response
time of the micro service especially if the data at the remote
micro service does not change often.

The deployment concern of the micro service architecture
model is represented by Ambient and Containerization
elements. They describe in which architectural context the
micro services are to be deployed. Ambient is the boundary
of a micro service [21]. A container is a kind of ambient.
Each micro service instance will be running in exactly one
container. A container is an execution environment used to
isolate each micro service within one virtual machine lever-
aging the host’s hardware and operating system capabilities
while enabling each micro service to appear as a completely
stand-alone software artifact that is running externally [22].

The Dependency element describes the communication
between one consumer micro service and one provider
micro service by which the consumer service leverages
the information and functionality of the provider service.
One micro service (whether it is consumer or provider)
can have Dependency instances. This communication takes
place as one consumer’s Service Operation invokes one
provider’s Service Operation per one Dependency instance.
It occurs either in synchronous request-based manner or
in asynchronous message-based manner. The asynchronous
fashion of service-to-service communication occurs when
the provider service publishes messages at one or many
channels in an Asynchronous Message Bus and the con-
sumer service listens to provider’s incoming messages on
the same channels. A Dependency can occur between two
different instances of Functional micro services, two differ-
ent instances of Infrastructural micro service or between an
instance of Infrastructural micro service and another instance
of Infrastructural micro service.

In such an environment that is rich in communication
taking place among multiple instances of micro services,
resilience and load balancing requirements are necessary
to maintain a healthy execution environment for micro
services. Resilience is represented by the Circuit Breaker
element which fails fast requests to misbehaving micro
services. Each Service Operation can be monitored by one
Circuit Breaker. The Load Balancer element distributes all
requests of a Micro service instance over available instances
of another Micro service type. The aim of load balancing
is to achieve parallel execution and hence a faster response
time for accomplishing a service. Like Circuit Breaker,

Load Balancer is optional for any Micro service instance
such that one Micro service instance may use at most one
Load Balancer.

RQ2: Mapping Rules. Regarding RQ2, Figure 10 shows
the number of related mapping rules per architectural con-
cept. Several architectural concepts have several mapping
rules because several technologies are used to implement
the same concept. The Data Store concept, for instance,
was implemented differently as MongoDB in case study 1
and 2, as PostgreSQL in case study 3, and as HSQLDB
in case study 4. On the other hand the Container concept
was always implemented as Docker and the micro service
concept as a Spring Boot application. The effect of this was
noticeable in the recovery process where concepts with a
standard implementation were faster to recover.

Figure 10. Number of mapping rules per concept

211 mapping rules were identified from the source files.
In the RD stage where Case Study 1 was used, we identified
82 rules. In the RE stage, we identified 129 new rules and
we refined 10 rules, which were identified in the RD. For
example, a total of 11 rules are defined for the API Gateway
concept as shown in Table III. Table IV shows all mapping
rules for Containerization concept.

As we can see from Table III and Table IV, the mapping
rules map between source files and architectural elements
(or PIM concepts). There are two types of mapping rules,
one type is the PIM Concept Identification Rule which
identifies the implementation of corresponding architecture
element type, i.e. at PIM Concept (Source). The other type
is the PIM Dependency Identification Rule which indicates
the association between two PIM concepts, source and
destination. For example in Table III all mapping rules but
the fourth are considered as PIM Concept Identification Rule
since they map to a PIM Concept (source). On the other
hand, the fourth mapping rule identifies a dependency from
one Micro service PIM concept, i.e. source, to another API
Gateway PIM concept, i.e. destination.

RQ3: Kinds of system analysis. Mapping rules related



Table III
MAPPING RULES TO IDENTIFY API GATEWAY

Source File
(Artifact Type)

PIM Concept
(Source)

PIM Concept
(Destination) Mapping rules

Container
Build File API Gateway 1.implementation of Apache HTTP gateway server is indicated by command: FROM

ubuntu:16.04 and RUN apt-get install -y -qq apache2.

Build File API Gateway 2.implementation of Spring Cloud Netflix Zuul gateway server is indicated by node:
<artifactId>spring-cloud-starter-zuul</artifactId>.

Build File API Gateway 3.implementation of Spring Cloud Netflix Sidecar API gateway server is indicated by
<artifactId>spring-cloud-netflix-sidecar</artifactId> entry

Configurations
File Microservice API Gateway 4.microservice that is routed by Spring Cloud Zuul API gateway is indicated by

zuul.routes.[microservice-name].path entry.
Configurations
File API Gateway 5.implementation of Spring Cloud Netflix Zuul gateway server is indicated by zuul.routes.

entry.
Configurations
File API Gateway 6.implementation of Spring Cloud Sidecar API gateway server is indicated by

sidecar.port:[port-number] entry.
Configurations
File API Gateway 7.implementation of Spring Cloud Netflix Zuul gateway server is indicated by zuul.host.entry.

Configurations
File API Gateway 8.implementation of Spring Cloud Netflix Zuul gateway server is indicated by zuul.prefix.

entry.
Configurations
File API Gateway 9.implementation of Spring Cloud Netflix Zuul gateway server is indicated by

zuul.ignoredServices. entry.
Configurations
File API Gateway 10.implementation of Spring Cloud Netflix Zuul gateway server is indicated by @EnableZu-

ulProxy or @EnableSidecar class-level annotation in its Spring Boot Application class.
Configurations
File API Gateway 11.implementation of Spring Cloud Netflix Sidecar gateway server is indicated by @En-

ableSidecar class-level annotation in its Spring Boot Application class.

Table IV
MAPPING RULES TO IDENTIFY CONTAINERIZATION

Source File
(Artifact Type)

PIM Concept
(Source)

PIM Concept
(Destination) Mapping rules

Container
Build File Microservice Container 1.Each microservice application has one Dockerfile container image build file under its root

directory.
Container
Orchestration
File

Microservice Container 2.microservice container is indicated by either one node under services node or by first-level
node with image:[microservice-folder-name] or build:[microservice-folder-name] properties.

to all architecture concepts in our proposed metamodel were
extracted using static analysis, but that was mainly possible
due to the presence of a container orchestration file (docker-
compose.yml). Without it, dynamic analysis would have
been required in order to inspect the execution context of
the micro service architecture including integration of non-
JVM applications and external backing services needed at
runtime. These aspects cannot be checked statically as they
are sometimes wrapped in Spring annotations and default
configurations. Several mapping rules could be identified by
using both static and dynamic analysis. For example, we
can identify the port of a micro service using the docker-
compose.yml and/or the Dockerfile and at the same time,
we can confirm this by running software like TCPDump or
trace the requests that the service sends/receives at runtime.
Figure 11 shows extracted information using static analysis
and dynamic analysis.

V. DISCUSSION

The study we conducted followed a manual recovery
process as described in subsection III-C. Initially, we wanted
to follow the same steps as the one described in [18].
This kind of process starts by defining the architectural

Figure 11. Static/Dynamic system analysis

concepts, abstractions and concerns that could be recovered.
Usually, these are known beforehand, and architects extract
and classify system data to map them to these architectural
concepts. However, we noticed that when we started this
process that there is no standard metamodel for the micro



service architecture. Therefore, we opted to extract the data
of the system and analyse it first and then abstract the result
into architectural concepts. For the architectural concerns of
micro services, there are standard ones.

From the results of our study, we can notice that from
the RD stage where Case Study 1 was used, we identified
all architectural concepts but One and for the mapping rules
we identified 82 rules. In the RE stage, we identified 129
new rules and we refined 10 rules, which were identified in
the RD. We did notice that the refinement of the mapping
rules became less needed, as we validated them with new
case studies.

It is clear that the mappings between many architectural
elements (PIM) and software elements (PSM) are not 1-1,
that is many mapping rules have to be applied to map one
concept. For example, 38 mapping rules have to be used
to generate the data store architectural concept as shown
in Figure 10. Many of these new mapping rules were not
related to new concepts but to the fact that for the same
architectural concepts, different technologies can be used.
This makes the implementation of these mappings more
complicated, and any future MiSAR tool should be able to
identify and analyse a range of different technologies.

Most of our mappings use static code analysis. We also
observed that the model recovered from these rules can
be validated if a dynamic analysis is performed at system
runtime. This is an important finding, as it can demonstrate
that many parts of the micro service architectures can
be recovered statitically, which is much easier than using
dynamic analysis.

VI. THREATS TO VALIDITY

Internal threats of validity concern factors that impact
the integrity of the study results. As a new alternative su-
perceding the monolithic application, one of the drawbacks
of the micro service architecture approach is that it is still
developing. Hence there is a lack of consensus within the
industry on what this architecture is and how it can be imple-
mented. The present study was based on systems considered
to represent basic and best practices, but micro service
patterns are still evolving [19]. In addition, although the
study results have been validated by eight case studies, the
mapping rules are not yet complete and more mapping rules
could be identified by analyzing more projects. Furthermore,
empirical reliability, which refers to the consistency of data
capture and interpretation, is relevant to this type of study
as data extracted and analysed is qualitative and can be
interpreted differently. To minimize this, the analysis was all
conducted by the first author researcher and samples were
reviewed by second author. When disagreements happened,
the third co-author was available to help resolve them.

Threats to external validity concerning this study are
related to the generalization of results. Our metamodel is
independent of technology and can be applied in different

technologies. However, our study was only limited to analyse
Java systems using the Spring Cloud framework. Further
evaluation on various projects utilizing different program-
ming languages and frameworks will be important to asses
the generality of our model.

VII. RELATED WORK

The popularity and success of architecture recovery solu-
tions in extracting architectural information is commendably
strong with a very rich debate nurturing strong academic
research [23]. Nonetheless, there is a dearth of available
research analysing the architecture recovery within the micro
services area. This awareness became apparent from two
recent literature surveys, [24], which reported that “in the
literature area only little work on reverse engineering and
architecture recovery in micro service architecture had been
described”, and [9] which concluded that “little published
work is available on reverse engineering”.

To the best of our knowledge the only study found in the
literature that tackles architecture recovery in micro services
is MicroART [25]. MicroART is the first prototype of an
architecture recovery tool for micro service-based systems.
It recovers the architecture at two distinct phases: physical
and logical architecture recovery. The Logical architecture
recovery is performed by allowing the user to interact
and refine the physical architecture automatically recovered.
Similarly to our approach, it uses Model Driven Engineering
principles [26]. Our approach as presented in this paper has
been developed based on a manual recovery of a set of micro
service systems. The metamodel of MicroART presented in
[26] is simpler than MiSAR, covering fewer architectural
concepts and concerns. Also, the MicroART metamodel
is concerned with the development teams, whereas ours
focuses on the micro service system.

Another related work is the one presented in [27]. Even
though this work focuses on the service oriented architec-
ture rather than the micro service architecture, there are
many similarities in the MDE approach undertaken. Their
approach is similar to MiSAR as it focuses on service
level components rather than class level of software de-
sign. However, their reverse engineering method focuses
on understanding the problem domain rather than focusing
specifically on the implementation pathway.

VIII. CONCLUSIONS

This paper presents the metamodel and mapping rules of
the MiSAR approach, which are artifacts that are used to
recover architectures of micro service systems. To be able
to define these MDE artifacts, we designed and conducted a
study which included a manual and iterative recovery pro-
cess. We believe that by conducting our study, our approach
has considered the key architectural concepts encountered in
micro service systems and their mapping rules.



Our empirical study will feed into further research to
support and provide practitioners and researchers with uni-
fied approaches, terminologies, mechanisms, methodologies
and processes of performing architecture recovery in micro
service architecture. Moreover, we have generated a solid
conceptual framework to help compare case studies, as well
as specific concepts and mapping rules which can act as
a catalyst for tool developers to create reverse engineering
tools.

REFERENCES

[1] M. Rahman and J. Gao, “A reusable automated acceptance
testing architecture for microservices in behavior-driven de-
velopment,” in Service-Oriented System Engineering (SOSE),
2015 IEEE Symposium on. IEEE, 2015, pp. 321–325.

[2] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina, “Microservices:
yesterday, today, and tomorrow,” in Present and Ulterior
Software Engineering. Springer, 2017, pp. 195–216.

[3] M. Fowler and J. Lewis, “Microservices,” ThoughtWorks.
http://martinfowler.com/articles/microservices.html [last ac-
cessed on February 17, 2017], 2014.

[4] N. Ali, J. Rosik, and J. Buckley, “Characterizing real-time
reflexion-based architecture recovery: an in-vivo multi-case
study,” in Proceedings of the 8th international ACM SIGSOFT
conference on Quality of Software Architectures. ACM,
2012, pp. 23–32.

[5] J. Buckley, N. Ali, M. English, J. Rosik, and S. Herold,
“Real-time reflexion modelling in architecture reconciliation:
A multi case study,” Information and Software Technology,
vol. 61, pp. 107–123, 2015.

[6] A. Sadovykh, C. Hahn, D. Panfilenko, O. Shafiq, and
A. Limyr, “Soa and sha tools developed in shape project,”
in Fifth European Conference on Model-Driven Architecture
Foundations and Applications, 2009, p. 58.

[7] S. Daya, N. Van Duy, K. Eati, C. M. Ferreira, D. Glozic,
V. Gucer, M. Gupta, S. Joshi, V. Lampkin, M. Martins et al.,
Microservices from Theory to Practice: Creating Applications
in IBM Bluemix Using the Microservices Approach. IBM
Redbooks, 2016.

[8] T. Richner and S. Ducasse, “Recovering high-level views of
object-oriented applications from static and dynamic informa-
tion,” in Software Maintenance, 1999.(ICSM’99) Proceedings.
IEEE International Conference on. IEEE, 1999, pp. 13–22.

[9] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping
study in microservice architecture,” in Service-Oriented Com-
puting and Applications (SOCA), 2016 IEEE 9th International
Conference on. IEEE, 2016, pp. 44–51.

[10] A. Lukyanchikov, “Microservice architecture with spring
boot, spring cloud and docker,” https://github.com/sqshq/
PiggyMetrics, March 2015 – 2017.

[11] I. 3Pillar Global, “3pillar global,” https://github.com/
3PillarGlobal/microservice-blog/tree/part4/step3, March
2018.

[12] J. Carnell, “Pillarglobal,” https://github.com/carnellj/
spmia-chapter10, May 2017.

[13] E. Wolff, “Microservice consul sampler,” https://github.com/
ewolff/microservice-consul, January 2018.

[14] M. Zhang, “spring-cloud-consul-example,” https://github.
com/yidongnan/spring-cloud-consul-example, January 2018.

[15] ——, “spring-cloud-netflix-example,” https://github.com/
yidongnan/spring-cloud-netflix-example, January 2018.

[16] D. Steiman, “Spring cloud microservices and
integrating sidecar applications,” https://github.com/xetys/
microservices-sidecar-example, January 2018.

[17] C. Enterprise, “blog-microservices,” https://github.com/
callistaenterprise/blog-microservices, January 2018.

[18] A. Van Deursen, C. Hofmeister, R. Koschke, L. Moonen,
and C. Riva, “Symphony: View-driven software architec-
ture reconstruction,” in Software Architecture, 2004. WICSA
2004. Proceedings. Fourth Working IEEE/IFIP Conference
on. IEEE, 2004, pp. 122–132.

[19] C. Richardson, “Microservice architecture,” http:
//microservices.io/patterns/microservices.html, 2017.

[20] B. Ibryam, “Spring cloud for microservices,”
https://developers.redhat.com/blog/2016/12/09/
spring-cloud-for-microservices-compared-to-kubernetes/,
December 2016.

[21] S. Hassan, N. Ali, and R. Bahsoon, “Microservice ambients:
An architectural meta-modelling approach for microservice
granularity,” in Software Architecture (ICSA), 2017 IEEE
International Conference on. IEEE, 2017, pp. 1–10.

[22] S. J. Vaughan-Nichols, “What is docker and why
is it so darn popular?” http://www.zdnet.com/article/
what-is-docker-and-why-is-it-so-darn-popular/, May 2017.

[23] D. Pollet, S. Ducasse, L. Poyet, I. Alloui, S. Cimpan, and
H. Verjus, “Towards a process-oriented software architec-
ture reconstruction taxonomy,” in Software Maintenance and
Reengineering, 2007. CSMR’07. 11th European Conference
on. IEEE, 2007, pp. 137–148.

[24] P. Di Francesco, I. Malavolta, and P. Lago, “Research on
architecting microservices: Trends, focus, and potential for
industrial adoption,” in Software Architecture (ICSA), 2017
IEEE International Conference on. IEEE, 2017, pp. 21–30.

[25] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta,
L. Iovino, and A. Di Salle, “Microart: A software architecture
recovery tool for maintaining microservice-based systems,”
in IEEE International Conference on Software Architecture
(ICSA), 2017.

[26] ——, “Towards recovering the software architecture of
microservice-based systems,” in Software Architecture Work-
shops (ICSAW), 2017 IEEE International Conference on.
IEEE, 2017, pp. 46–53.

[27] R. Akkiraju, T. Mitra, and U. Thulasiram, “Reverse engi-
neering platform independent models from business software
applications,” in Reverse Engineering-Recent Advances and
Applications. InTech, 2012.

https://github.com/sqshq/PiggyMetrics
https://github.com/sqshq/PiggyMetrics
https://github.com/3PillarGlobal/microservice-blog/tree/part4/step3
https://github.com/3PillarGlobal/microservice-blog/tree/part4/step3
https://github.com/carnellj/spmia-chapter10
https://github.com/carnellj/spmia-chapter10
https://github.com/ewolff/microservice-consul
https://github.com/ewolff/microservice-consul
https://github.com/yidongnan/spring-cloud-consul-example
https://github.com/yidongnan/spring-cloud-consul-example
https://github.com/yidongnan/spring-cloud-netflix-example
https://github.com/yidongnan/spring-cloud-netflix-example
https://github.com/xetys/microservices-sidecar-example
https://github.com/xetys/microservices-sidecar-example
https://github.com/callistaenterprise/blog-microservices
https://github.com/callistaenterprise/blog-microservices
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
https://developers.redhat.com/blog/2016/12/09/spring-cloud-for-microservices-compared-to-kubernetes/
https://developers.redhat.com/blog/2016/12/09/spring-cloud-for-microservices-compared-to-kubernetes/
http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/

	Introduction
	MiSAR motivation and overview 
	Problem and motivation
	The Micro Service Architecture Recovery approach

	Study design
	Study aim and research questions
	Selecting the case studies to study
	Research design
	 Phase 1: Recovery design
	 Phase 2: Recovery execution and validation


	 Results
	 Discussion
	Threats to validity
	Related work
	Conclusions
	References

