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Abstract 

The aim of this experiment was to quantify physiological and perceptual responses to exercise 

with and without restrictive heat loss attire in hot and temperate conditions.  

 

Ten moderately-trained individuals (mass; 69.44±7.50 kg, body fat; 19.7±7.6%) cycled for 30-

mins (15-mins at 2 W.kg-1 then 15-mins at 1 W.kg-1) under four experimental conditions; 

temperate (TEMP, 22°C/45%), hot (HOT, 45°C/20%) and, temperate (TEMPSUIT, 22°C/45%) 

and hot (HOTSUIT, 45°C/20%) whilst wearing an upper-body “sauna suit”.  

 

Core temperature changes were higher (P<0.05) in TEMPSUIT (+1.7±0.4°C.hr-1), HOT 

(+1.9±0.5°C.hr-1) and HOTSUIT (+2.3±0.5°C.hr-1) than TEMP (+1.3±0.3°C.hr-1). Skin 

temperature was higher (P<0.05) in HOT (36.53±0.93°C) and HOTSUIT (37.68±0.68°C) than 

TEMP (33.50±1.77°C) and TEMPSUIT (33.41±0.70°C). Sweat rate was greater (P<0.05) in 

TEMPSUIT (0.89±0.24 L.hr-1), HOT (1.14±0.48 L.hr-1) and HOTSUIT (1.51±0.52 L.hr-1) than TEMP 

(0.56±0.27 L.hr-1). Peak heart rate was higher (P<0.05) in TEMPSUIT (155±23 b.min-1), HOT 

(163±18 b.min-1) and HOTSUIT (171±18 b.min-1) than TEMP (151±20 b.min-1). Thermal 

sensation and perceived exertion were greater (P<0.05) in TEMPSUIT (5.8±0.5 and 14±1), HOT 

(6.4±0.5 and 15±1) and HOTSUIT (7.1±0.5 and 16±1) than TEMP (5.3±0.5 and 14±1).  

 

Exercising in an upper-body sauna suit within temperate conditions induces a greater 

physiological strain and evokes larger sweat losses compared to exercising in the same 

conditions, without restricting heat loss. In hot conditions, wearing a sauna suit increases 

physiological and perceptual strain further, which may accelerate the stimuli for heat 

adaptation and improve HA efficiency. 

 

Key words 

Sauna suit, heat stress, thermoregulation, physiological strain, heat acclimation, training, 

restrictive heat loss, exercise.  



Introduction 

Heat acclimation (HA) is an intervention undertaken for athletic (Racinais et al. 2015; Casadio 

et al. 2016) and occupational purposes (Sawka et al. 2011; Yamazaki 2013), completed in the 

days or weeks prior to competition or undertaking physical work in heat stress. HA improves 

the capacity of an individual to dissipate heat via augmented sweating (Patterson et al. 2004), 

increases the capacity for heat storage by reducing body temperature (Buono et al. 1998), 

and reduces the negative thermal sensations (Gibson et al. 2015b). The benefits of HA include 

enhanced endurance performance (Lorenzo et al. 2010; James et al., 2016), improved thermal 

comfort (Sunderland et al. 2008; Willmott et al., 2017) and a reduction in the likelihood of heat 

illness (Yamazaki 2012; Amorim et al. 2015). The HA phenotype is induced across numerous 

integrated physiological systems, such as cardiovascular (Periard et al. 2016), neuromuscular 

(Racinais et al. 2017), and at a cellular/molecular level (Horowitz 2014), which occurs following 

repeated exposures to potentiating stimuli for adaptation (e.g. core temperature ≥38.5°C [Fox 

et al. 1963], increased skin temperature [Regan et al. 1996] and elevated sweat rates [Buono 

et al. 2009]).  

 

Whilst notable experimental work has highlighted the benefits of utilising passive HA (e.g. 

resting in hot-dry or hot-humid conditions) (Armstrong and Kenney 1993; Racinais et al. 2016; 

Pallubinsky et al. 2017), or by implementing thermal exposures, such as hot water immersion 

(HWI) (Zurawlew et al. 2015; Ruddock et al. 2016), or sauna post-exercise (Scoon et al. 2007), 

the most common and potentially most potent HA methods require exercise-heat stress 

(Racinais et al. 2015). A variety of HA protocols have been published ranging in durations of 

4-20 days, utilising prolonged exposures (30-120-mins) typically in hot-dry or hot-humid 

conditions (~40°C, 40% relative humidity [RH]) (Tyler et al. 2016). Accordingly, two 

fundamental criteria are required during HA to stress the body, which is achieved by raising 

and sustaining an elevated core (Tre) and skin temperature (Tskin), and promoting profuse 

sweating, which concomitantly provide a multitude of prominent physiological and perceptual 

adaptations (Sawka et al., 2011). 

 

Most HA interventions are completed within controlled environmental chambers, however, the 

duration of HA training, allied with logistical and financial issues, may limit the prescription of 

current laboratory HA protocols (Casadio et al. 2016) and disrupt training quality prior to 

competition. These are likely reasons for only 15% of athletes undertaking a recognised HA 

intervention prior to the IAAF World Championships, in spite of hot climates being forecast 

(Periard et al. 2017). A proposed method for inducing (should access to an environmental 

chamber not be possible), or enhancing the efficiency (by accelerating the attainment of 

necessary physiological stimuli for adaptation) of HA is the wearing of clothing/garments which 

restrict heat loss during exercise (Dawson 1994). Wearing garments that inhibit evaporative 

heat loss such as vinyl suits, or by overdressing in regular clothing, attenuates the rate of heat 

dissipation in temperate training environments (Dawson, 1994; Steele et al., 2015; Van der 

Velde et al., 2016; Stevens et al., 2017). Inhibited heat loss results in a greater rate of heat 

storage during exercise and ultimately, elevations in physiological strain (Steele et al. 2015). 

The elevation in Tre is a key stimuli for increasing Tskin and sweat output, with associated 

elevations in skin blood flow reducing blood pressure, elevating cardiovascular strain (e.g. 

heart rate), the initiation of cellular signalling and inducing thermal discomfort (Taylor, 2014). 

Greater physiological strain theoretically provides the necessary mechanisms to induce heat 

adaptation and may present an alternative strategy to be undertaken during normal training 

as opposed to that within simulated hot environments (e.g. within a chamber) or additional 



sessions (e.g. post-exercise HWI). Furthermore, the use of restrictive heat loss attire during 

typical HA within environmental chambers may provide an ergogenic benefit without the 

necessity of increasing exercise intensity, time and, or volume during important training 

periods (e.g. tapering), although investigation is required.  

 

The primary aims of this experiment were to determine whether the wearing of an upper-body 

sauna suit during exercise in temperate conditions (22°C, 45% RH) would; 1) increase key 

potentiating stimuli for heat adaptation in comparison to exercising in regular clothing, and 2) 

whether these increases in temperate conditions were equivalent to exercise performed in a 

hot-dry environment replicating typical HA conditions (40°C, 20% RH). This study also aimed 

to 3) determine whether wearing an upper-body sauna suit in hot-dry conditions would 

enhance key potentiating stimuli required during heat acclimation. It was hypothesised that 

wearing a sauna suit in temperate conditions would elicit physiological strain equivalent to 

exercising in regular clothing in hot conditions, and that wearing the vinyl suit in hot conditions 

would provide a more rapid attainment of the necessary physiological strain to induce heat 

adaptation.  

 

Methods  

Participants  

Ten moderately trained participants (6 males and 4 females; mean ± standard deviation [SD] 

age: 25 ± 3 years, mass: 69.44 ± 7.50 kg, stature: 175 ± 9 cm, body surface area 1.84 ± 0.13 

m2, and body fat: 19.7 ± 7.6%) volunteered, after providing written informed consent. 

Participants had not exercised in hot conditions (>25°C) for >3 months, nor were they regular 

sauna, steam or hot bath users. Each participant abstained from strenuous exercise, caffeine 

and alcohol 24-hrs prior to each session. Food intake was restricted 2-hrs prior to exercise, 

normal diets were maintained throughout the study. Participants arrived euhydrated, as 

indicated by urine osmolality (Uosm) <700mOsm·kg−1 and specific gravity (Usg) <1.020 (Sawka 

et al. 2007). All female participants were taking oral contraceptive pills, beginning 

experimentation on day 2 of the pill phase, which occurred during the early-follicular phase 

(e.g. 3–5 days after the onset of menstruation) of their self-reported menstrual cycle, as 

verified by a questionnaire (Mee et al. 2015, 2017). The study was conducted in accordance 

with the Institution’s ethics and governance committee, and Declaration of Helsinki (2013). 

Exercise was terminated if Tre ≥39.7°C (zero incidence).  

 

Experimental design 

A randomised, repeated-measures design was adopted, with each participant visiting the 

laboratory on four occasions, 72-hrs apart to minimise any acclimation effect from repeated 

heat exposures. During each visit, following instrumentation and 15-mins passive rest in 

temperate laboratory conditions, participants cycled for 30-mins, replicating the onset of a 

typical isothermic HA protocol (Gibson et al. 2016), within four conditions; temperate (TEMP: 

22°C, 45% RH), temperate whilst wearing an upper-body sauna suit (TEMPSUIT: 22°C, 45% 

RH), hot (HOT: 45°C, 20% RH) and hot whilst wearing an upper-body sauna suit (HOTSUIT: 

45°C, 20% RH). In addition to shorts, socks and shoes (plus sports bra for females), only an 

upper-body suit was worn to mitigate against excessive heat gain, whilst still ensuring that 

sites for maximal relative sweating and thus evaporation, remained restricted (i.e. back, 

forearm, axilla, chest, abdomen and buttocks) (Taylor et al. 2013).  

 

Exercise protocol 



Each trial was completed inside a controlled environmental chamber, (WatFlow, TISS, 

Hampshire, UK). Participants cycled (Monark, 620 Ergomedic, Vansbro, Sweden) at a power 

output prescribed relative to body mass (2 W.kg-1 for 15-mins, then 1 W.kg-1 for the following 

15-mins [Gibson et al. 2016]), as opposed to intensities relative to maximal oxygen uptake 

(V̇O2max), thus removing the requirement to undertake a V̇O2max test. During the TEMPSUIT and 

HOTSUIT trials, each participant wore a commercially available, upper-body vinyl sauna suit 

(Everlast, London, UK), to restrict evaporative heat loss throughout the 30-mins of exercise. 

Fluid ingestion was not permitted during the trials. Physiological and perceptual measures 

were recorded every 5-mins during the exercise protocol. 

 

Physiological measures 

On the first visit, skinfold thickness was calculated using calipers (Harpenden, Burgess Hill, 

UK) and a four site skin fold calculation (Durnin and Womersley 1974), later body fat (%) was 

calculated from body density (Siri 1956). Stature and nude body mass (NBM) were measured 

using a stadiometer (Detecto Scale Company, Missouri, USA) and weighing scales (Adam 

Equipment Inc., Connecticut, USA [to the nearest 0.01 kg [±0.2%]]), respectively, with these 

data used to estimate body surface area (BSA) (Du Bois and Du Bois 1916).  

 

Hydration status was measured prior to each experimental session using a Pocket Pal-Osmo 

meter (Uosm: Vitech Scientific Ltd., West Sussex, UK) and light refractometer (Usg: Atago Co., 

Tokyo, Japan). Tre was continuously monitored using a single-use probe (Henleys Medical, 

Hertfordshire, UK) self-inserted 10 cm past the anal sphincter. Tskin was measured using 

telemetry thermistors (U-Type and Gen II transmitter, Eltek, UK) attached to the right-hand 

side of the body at the pectoralis major muscle belly (Tchest), lateral head of triceps brachii 

(Tarm), rectus femoris muscle belly (Tthigh) and lateral head of the gastrocnemius (Tcalf). Mean 

Tskin (Ramanathan 1964) and Tre:Tskin gradient were retrospectively calculated (Cuddy et al. 

2014). Heart rate (HR) was continuously monitored using a Polar 810i strap (Polar, Electro 

Oy, Kempele, Finland). Sweat rate was estimated by the difference in towel-dried NBM pre 

and post-exercise, corrected for time, urine output (zero incidence), but not metabolic or 

respiration losses, which were assumed negligible and similar between trials (Dion et al. 

2013).  

 

Perceptual measures 

Ratings of perceived exertion (RPE [Borg 1982]) from 6 (no exertion) to 20 (maximal exertion), 

thermal comfort (TC [Zhang et al. 2004]) from 0 (comfortable) to 4 (very uncomfortable), and 

thermal sensation scale (TSS [Toner et al. 1986]) from 0 (unbearably cold) to 8 (unbearably 

hot), were assessed every 5-mins during exercise.  

 

Statistical analyses  

Data are reported as mean ± SD, and were assessed for normality and sphericity prior to 

further statistical analyses (SPSS, IBM version 22.0). Baseline measures of NBM, Uosm and 

Usg and calculated sweat rate during each trial were analysed using a 1-way ANOVA. 

Individual sites of peak Tchest, Tarm, Tthigh and Tcalf were also analsyed using a 1-way ANOVA 

between the four experimental conditions (TEMP, TEMPSUIT, HOT, HOTSUIT) as participants 

only wore an upper-body sauna suit covering only 60% of BSA. All other dependent variables 

were analysed using a 2-way repeated-measures ANOVA between the four experimental 

conditions (TEMP, TEMPSUIT, HOT, HOTSUIT) and seven time points (0-mins, 5-mins, 10-mins, 

15-mins, 20-mins, 25-mins, 30-mins), with Bonferroni correction applied during post-hoc 



analysis. Whilst a 3-way ANOVA separating environmental conditions (TEMP and HOT) and 

clothing (suit and no suit) would theoretically present an additional level of analysis, this would 

not permit all comparisons (i.e. between HOT and TEMPSUIT), thus it was not utilised. This 

statistical approach also befits the research question whereby each experimental condition 

may be a strategy in its own right. Statistical significance was accepted as P<0.05. Effect sizes 

were estimated and meaningful differences evaluated for peak data using Cohen’s d, with 

interpretation of data as; small = 0.2, moderate = 0.5, and large = 0.8 (Cohen, 1988). A-priori 

interpretation boundaries for meaningful physiological changes (Δ) were; ΔTre >0.20°C, ΔHR 

>5 b.min-1 and Δsweat rate >0.20 L.h-1, and >1 in scale scores for perceptual measures 

(Willmott et al., 2017). Pearson’s product moment correlation coefficients were used to identify 

relationships between trials for peak physiological and perceptual measures. 

 

Results 

The physiological and perceptual measures during each trial are displayed within Table 1, 

whereas the differences between trials and their associated effect size are displayed within 

Table 2. Prior to commencing testing, no differences (P>0.05) were observed between 

conditions for Uosm (F=0.3), Usg (F=0.7) or NBM (F=0.6) (Table 1). 

 

**Insert Table 1 near here please** 

 

Physiological measures 

Tre demonstrated a difference between conditions (F=14.5, P<0.001) and over time (F=146.5, 

P<0.001). Observation of an interaction effect (F=13.1, P<0.001) and post-hoc analyses 

identified that from 20-mins onwards HOTSUIT was greater than TEMP and TEMPSUIT, and from 

25-mins onwards HOTSUIT was greater than TEMP, TEMPSUIT and HOT. HOT was also greater 

than TEMP from 25-mins onwards. No difference was observed between TEMPSUIT and HOT 

at any time (P>0.05).  

 

Tskin demonstrated a difference between conditions (F=36.6, P<0.001) and over time (F=93.4, 

P<0.001). Observation of an interaction effect (F=11.6, P<0.001) and post-hoc analyses 

identified that from 5-mins onwards HOT and HOTSUIT were greater than TEMP and TEMPSUIT. 

From 15-mins onwards, HOTSUIT was also greater than HOT. Peak Tchest (F=41.7, P<0.001), 

Tarm (F=7.3, P<0.001), Tthigh (F=15.3, P<0.001) and Tcalf (F=60.3, P<0.001) differed between 

conditions. Post-hoc analyses identified a higher (P<0.05) Tchest in; HOTSUIT compared to 

TEMP, TEMPSUIT and HOT, in HOT compared to TEMP, and, in TEMPSUIT compared to TEMP. 

Tarm was higher in HOT and HOTSUIT compared to TEMP. No differences (P>0.05) were 

observed between TEMPSUIT and HOT for Tchest or Tarm. Tthigh and Tcalf were higher (P>0.05) in 

HOT and HOTSUIT compared to TEMP and TEMPSUIT.  

 

The Tre:Tskin gradient demonstrated a difference between conditions (F=72.6, P<0.001) and 

over time (F=76.0, P<0.001). Observation of an interaction effect (F=13.9, P<0.001) and post-

hoc analyses observed that from 5-mins onwards HOT and HOTSUIT were greater than TEMP 

and TEMPSUIT. From 25-mins onwards HOTSUIT was also greater than HOT. At 30-mins, HOT 

and HOTSUIT were no longer different.  

 

HR demonstrated a difference between conditions (F=19.5, P<0.001) and over time (F=491.2, 

P<0.001). Observation of an interaction effect (F=11.7, P<0.001) and post-hoc analyses 

identified that from 5-mins onwards HOTSUIT was greater than TEMPSUIT and from 10-mins 



onwards HOTSUIT was greater than TEMP and TEMPSUIT. From 20-mins onwards HOT was 

greater than TEMPSUIT and at 30-mins HOTSUIT was greater than HOT. 

 

Sweat rate demonstrated a difference between conditions (F=10.3, P<0.001). A greater 

(P<0.05) sweat rate was observed within TEMPSUIT, HOT and HOTSUIT compared to TEMP. 

 

**Insert Table 2 near here please** 

 

**Insert Figure 1 near here please** 

 

Perceptual measures 

RPE demonstrated a difference between conditions (F=17.9, P<0.001) and over time (F=93.4, 

P<0.001). Observation of an interaction effect (F=11.6, P<0.001) and post-hoc analyses 

identified that from 5-mins onwards HOTSUIT was greater than TEMP. From 15-mins HOT was 

also greater than TEMP. No difference was observed between TEMP and TEMPSUIT, or 

TEMPSUIT and HOT. 

 

TSS demonstrated a difference between conditions (F=53.9, P<0.001) and over time 

(F=105.0, P<0.001). Observation of an interaction effect (F=11.9, P<0.001) and post-hoc 

analyses identified that from 5-mins onwards HOT and HOTSUIT were greater than TEMP and 

TEMPSUIT. TEMPSUIT was greater than TEMP from 10-mins onwards, and from 20-mins 

HOTSUIT was greater than HOT. At 30-mins, TEMP and TEMPSUIT were not different. 

 

TC demonstrated a difference between conditions (F=10.4, P<0.001) and over time (F=43.1, 

P<0.001). Observation of an interaction effect (F=7.0, P<0.001) and post-hoc analyses 

identified that from 20-mins HOTSUIT was greater than TEMP and TEMPSUIT and from 25-mins 

HOTSUIT was greater than TEMP, TEMPSUIT and HOT.  

 

**Insert Figure 2 near here please** 

 

Mean and individual data for ∆Tre, end Tskin, peak HR and sweat rate for each condition are 

displayed within Figure 3. 

 

**Insert Figure 3 near here please** 

 

Discussion 

Overview  

A raised and maintained Tre, Tskin and an increased sweat rate have been identified as the 

primary stimuli for inducing heat adaptation (Fox et al. 1963; Sawka et al. 2011). Our data 

highlights that, when commencing equivalent exercise from a similar fluid balance (Uosm, Usg 

and NBM) and physiological state (Tre, Tskin and HR), wearing an upper-body vinyl ‘sauna’ suit 

can increase the magnitude of change in an individual’s Tre and resultant sweat rate (Table 1, 

Figure 1 and 3). The increased Tre is greater than that during temperate exercise and is similar 

to that observed within hot conditions. Furthermore, the increase in physiological strain is 

enhanced by combining hot conditions and a vinyl suit, purporting a potential for increased 

efficiency during HA without the requirement to increase exercise intensity nor volume to 

achieve the same physiological strain.  

 



A primary aim of this experiment was to determine whether wearing an upper-body vinyl suit 

in temperate conditions would elicit equivalent physiological responses to potentiate heat 

adaptation as training in a hot environment. Whilst there were no differences (P>0.05) 

between TEMPSUIT and HOT for peak Tre, HR or sweat rate (Table 2), it is clear the HOT trial 

provided a larger physiological strain than temperate exercise without restricted heat loss 

(TEMP) (Figure 1 and 3). Further, no perceptual differences (P>0.05) were observed between 

TEMPSUIT and HOT for RPE or TC, with the only differences being Tskin, Tre:Tskin gradient and 

TSS (P<0.05 [Table 1 and 2]). The elevated Tskin between TEMPSUIT and HOT (~3°C) likely 

reflected the higher ambient air temperature in the chamber, compared to the air temperature 

in the microclimate under the suit (Mee et al. 2018), which only covered the upper-body (~60% 

of the BSA). Whilst much of the body was insulated by the upper-body sauna suit, the legs 

still represent ~40% of the BSA (Ramanathan, 1964; Cross et al. 2008) with an approximate 

1.0 mg.cm-2.min-1 cutaneous water loss potential (Taylor et al. 2013), which may have limited 

the benefit of TEMPSUIT. The elevation in TSS between TEMPSUIT and HOT (~0.5 A.U.) is likely 

a result of the difference in Tskin (Gagge et al. 1969).  

 

In a similar experiment, eight trained athletes ran at 50% of their V̇O2max in hot conditions 

(40°C, 30% RH) in normal clothing for training, and in cool conditions (15°C, 50% RH) whilst 

wearing excess clothing (Steele et al. 2015). Both approaches increased physiological strain 

index ([PSI] +5.8 and +4.5, respectively), though mean PSI was higher in hot conditions 

compared with overdressing in cool conditions (6.0 ± 1.0 vs. 5.2 ± 1.1, respectively). 

Unfortunately, based upon available data it is not possible to determine whether Tre or HR 

were lower or whether one measurement had a greater influence on the calculation of PSI. 

Nonetheless, these exploratory data are supportive of our HOT vs. TEMPSUIT comparison, with 

the authors suggesting that by adequately overdressing, athletes may be able to mimic heat 

stress and potentially obtain the benefits of heat adaptation in a cooler environment (Steele et 

al. 2015). In line with the present experiment, recent data have reported the effects of wearing 

additional clothing (shorts, top, winter cycle jacket and gloves) vs. regular clothing (shorts and 

top only), with a greater increase in physiological strain when completing an 80-mins 

standardised cycling training session outdoors in temperate conditions (~17°C, ~82% RH) 

(Stevens et al. 2017). In spite of differences in training session duration which likely explain 

the magnitude of difference (∆Tre) in comparison to our data, Stevens et al. (2017) noted a 

similar pattern of physiological differences to that of our comparisons between TEMP and 

TEMPSUIT with elevated mean Tre (theirs +0.4°C, ours +0.2°C) and sweat rate (both ~+0.3 L.hr-

1) alongside similar magnitudes of HR increase (theirs +3 b.min-1, ours +4 b.min-1), albeit 

without statistical difference in our data (Table 2). These exploratory data point to a potential 

benefit of “overdressing” and restricting heat loss, to elicit greater potentiating physiological 

stimuli, which may promote heat adaptation via attenuating evaporative cooling (Figure 3). 

Consequently, it is proposed that training in an upper-body sauna suit within temperate 

conditions (TEMPSUIT) confers a larger physiological strain compared to training without a 

sauna suit (TEMP). Furthermore, TEMPSUIT elicits similar increases in Tre, HR and sweat rate 

to that of training without a sauna suit in hot conditions (HOT). 

 

Previous acute HA experiments utilising cycle ergometry in conditions of ~40°C and 50% RH 

have identified that workloads of a comparable nature to this experiment (e.g. ~1.4-2.0 W.kg-

1) elicit rates of heat storage, that increase Tre by 1.0-1.9°C.hr-1 in a range of participants 

including trained athletes and recreationally active individuals, and both males (Gibson et al. 

2015b; Willmott et al. 2016, 2017; James et al. 2016) and females (Mee et al. 2015, 2016). 



These data, which are similar to the current experiment (Table 1 and 2, Figure 1 and 3) give 

confidence that “overdressing” by utilising upper-body vinyl suits, or perhaps additional layers 

of regular clothing can elicit comparable physiological responses to experiments where heat 

adaptation has occurred. Additionally, the participants only wore an upper-body sauna suit; 

both alterations may have lessened the effectiveness of the TEMPSUIT in comparison to the 

HOT trial. Whilst the influence of restricted heat loss clothing during exercise in occupational 

contexts have been described (Aoyagi et al. 1995; McLellan and Aoyagi 1996), the use of 

sauna suits during training for performance has been less robustly investigated. Emerging 

data has reported the benefit of wearing a sauna suit during a 6-week training programme in 

temperate conditions (30-min sessions, 5 days per week) (Van der Velde et al. 2016). 

Physiological adaptations included; reductions in resting HR (-4 b.min-1), systolic (-2 mmHg) 

and diastolic blood pressure (-3 mmHg), and, an improved anaerobic threshold (+5.6% of 

V̇O2max) and V̇O2max (+4.3 mL.kg-1.min-1) (Van der Velde et al. 2016). These enhancements 

appear congruous with the magnitudes of adaptation associated with HA (Tyler et al. 2016), 

albeit they were achieved over a considerably longer period than most HA protocols and did 

not include a comparable control group. Nonetheless, it might be proposed that the same dose 

of HA over more frequent (daily or twice-daily), longer exposures (~90-mins) condensed into 

a shorter training period (7-14 days) and increasing the surface area of restricted heat loss 

(i.e. full-body sauna suit) would be effective at inducing the HA phenotype and thus requires 

further investigation. Likewise, the potential to shorten or complete training sessions across 

different locations will allow team/groups or individuals to implement heat alleviating strategies 

(e.g. HA), when previously restricted to attend warm-weather training camps or use heat 

chambers, due to logistical or monetary limitations. 

 

A further aim of this study was to identify whether wearing an upper-body vinyl suit would 

enhance key potentiating stimuli in hot-dry conditions replicating a traditional HA session. As 

evidenced by the significantly greater physiological (Figure 1 and 3) and perceptual (Figure 2) 

responses to HOTSUIT (Table 2), and proposed by others, wearing additional clothing appears 

to be a potential viable strategy which may be utilised throughout training to enhance heat 

tolerance (Dawson 1994), in addition to the previously identified benefit as a priming stimuli 

for sweat adaptations (Mee et al. 2017). Therefore, restricting heat loss during HA may present 

a more efficient method for attaining sufficient physiological stimuli, without increasing 

absolute exercise intensity. Further, although speculative, wearing sauna suits may offer 

supplementary perceptual, sudomotor and circulatory (e.g. skin blood flow) adaptations, 

imposed by the benefits of hot-wet conditions (Shvartz et al., 1979; Regan et al., 1996), which 

are recommended at the latter stages of HA (Periard et al., 2015; Racinais et al., 2015). This 

may support individuals exercising in either hot-wet or hot-dry conditions (Eichna et al., 1945; 

Fox et al., 1967), however, despite the benefits of superior sweat loss capacity, an earlier 

onset of dehydration and cardiovascular strain may occur (González-Alonso et al., 1998), 

especially if evaporative requirement is inhibited (Gagnon et al., 2013), thus hydration 

guidelines must be followed (Maughan and Shirreffs, 2008). It is also acknowledged that a 

possible time-lag using rectal thermometry may have reduced the differences between the 

∆Tre across conditions, as opposed to using a more responsive index of core temperature (e.g. 

oesophageal [Mündel et al., 2016]).  

 

Practical application and future direction 

Our data indicate that clothing which restricts sweat evaporation may be worn during exercise 

to enhance heat adaptation stimuli, however further work is required to elucidate the full 



potential of this method in both acute and chronic interventions using intensities and durations 

of exercise consistent with existing heat acclimation protocols. This may demonstrate its 

efficacy across exercise modalities (e.g. running/walking, rowing and cycling), both indoors 

and outdoors for athletic or occupational populations (e.g. firefighters and military), and for 

those individuals for whom heat tolerance is compromised (e.g. elderly or clinical populations), 

but access to heat training facilities is limited. Additional research is required to determine 

whether repeated restriction of evaporation via excessive/specific clothing can induce the HA 

phenotype to the same extent as a traditional chamber based protocol. Given the problems 

with accessing chamber facilities for large cohorts (e.g. team-sports, occupational or military 

personnel), the opportunity to overdress and train in temperate conditions to induce heat 

adaptation prior to competing in a warmer climate is appealing, although, we highlight the 

need for monitoring body temperature and hydration status, whilst also calculating fluid loss 

and individualising rehydration strategies for individuals adopting this technique. 

 

Refinements to the exercise protocol (i.e. increased exercise intensity) and increasing the area 

of restricted heat loss (i.e. full-body sauna suit) may provide equivalent responses to 

exercising in hot conditions. Restricting whole-body water loss using a full-body sauna suit, 

the subsequent evaporation from limbs undergoing mechanical work and elevated self-

generated air flow (Deren et al. 2014) may facilitate faster increases in Tre, helping to expedite 

HA. A further practical advancement would be to determine whether wearing restrictive 

clothing expedites HA when exercising at higher intensities, and therefore greater heat 

production, than those implemented in the present study is undertaken. Finally, sauna suits 

may assist in storing the heat generated from exercise, helping to maintain a higher body 

temperature. If these garments can expedite the time to achieving  an elevated body 

temperature, this may reduce the amount of physical work that must be completed in each 

training session to achieve recommended guidelines for the maintenance of an elevated Tre 

(i.e. >38.5°C [Taylor, 2014; Gibson et al. 2015]). Previously, another ‘passive’ technique of 

HWI post-exercise, has been shown to be effective method of raising and maintaining Tre, to 

elicit heat adaptation (Zurawlew et al. 2015). Therefore, for those undertaking HA, 

overdressing will help to quickly raise body temperature and we highlight the potential to follow 

physical exertion with HWI to minimise the exercise requirement of HA, although further 

research is required to support this. 

 

Conclusion 

Exercising within temperate conditions whilst wearing an upper-body sauna suit induces a 

greater physiological strain (i.e. core temperature) and evokes a larger sweat loss in 

comparison to exercising without a sauna suit in the same conditions. In hot conditions, 

wearing a sauna suit further enhances physiological and perceptual strain. Wearing a full-body 

sauna suit during repeated training in temperate conditions may be a viable alternative to HA 

undertaken in environmental chambers, when a greater exercise intensity is used, with further 

research warranted. The use of a sauna suit during exercise in a hot environment may 

accelerate the attainment of important potentiating stimuli for heat adaptation and reduce the 

physical work, making HA more efficient.  
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Figure legends 

 

Figure 1. Mean physiological measurements, core temperature (Top), skin temperature 

(Middle) and heart rate (Bottom) during 30-mins of exercise in TEMP, TEMPSUIT, HOT and 

HOTSUIT conditions. SD has been removed for clarity. Letters indicate statistical difference 

(P<0.05) whereby; a: TEMP vs. TEMPSUIT, b: TEMP vs. HOT, c: TEMP vs. HOTSUIT, d: TEMP, 

TEMPSUIT vs. HOT, HOTSUIT, e: TEMP, TEMPSUIT vs. HOTSUIT, f: TEMP, TEMPSUIT, HOT vs. 

HOTSUIT, g: TEMPSUIT vs. HOTSUIT, h: HOT vs. HOTSUIT. 

 

Figure 2. Mean perceptual measurements, rating of perceived exertion (Top), thermal 

sensation (Middle) and thermal comfort (Bottom) during 30-mins of exercise in TEMP, 

TEMPSUIT, HOT and HOTSUIT conditions. SD has been removed for clarity. Letters indicate 

statistical difference (P<0.05) whereby; a: TEMP vs. TEMPSUIT, b: TEMP vs. HOT, c: TEMP 

vs. HOTSUIT, d: TEMP, TEMPSUIT vs. HOT, HOTSUIT, e: TEMP, TEMPSUIT vs. HOTSUIT, f: TEMP, 

TEMPSUIT, HOT vs. HOTSUIT, g: HOT vs. HOTSUIT. 

 

Figure 3. Mean ± SD (black marker and line) and individual responses (grey marker and lines) 

to TEMP, TEMPSUIT, HOT and HOTSUIT conditions at the end of exercise for ∆ core temperature 

(1), end skin temperature (2), peak heart rate (3) and sweat rate (4). Letters indicate statistical 

difference (P<0.05) whereby; a: vs. TEMP, b: vs. TEMPSUIT, c: vs. HOT, d: vs. HOTSUIT. 
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Table 1. Mean ± SD physiological and perceptual measures during each trial. 

 TEMP TEMPSUIT HOT HOTSUIT 

Rest measures 

Tre (°C) 37.20 ± 0.36 37.17 ± 0.35 37.21 ± 0.42 37.18 ± 0.41 

Tskin (°C) 30.72 ± 1.44 29.99 ± 0.54 29.42 ± 0.90 30.32 ± 0.82 

HR (b.min-1) 70 ± 9 69 ± 12 71 ± 16 70 ± 11 

NBM (kg) 69.45 ± 7.47 69.61 ± 7.50 69.28 ± 7.70 69.43 ± 7.40 

Uosm (mOsm·kg-1) 350 ± 178 365 ± 197 371 ± 215 354 ± 197 

Usg 1.011 ± 0.002 1.014 ± 0.005 1.012 ± 0.003 1.010 ± 0.004 

Exercise measures 

Peak Tre (°C) 37.84 ± 0.34bcd 38.02 ± 0.32ad 38.11 ± 0.31ad 38.33 ± 0.32abc 

∆Tre (°C.hr-1) 1.3 ± 0.3bcd 1.7 ± 0.4ad 1.9 ± 0.5ad 2.3 ± 0.5abc 

Peak Tskin (°C) 33.06 ± 0.97cd 33.41 ± 0.70cd 36.53 ± 0.93abd 37.68 ± 0.68abc 

Mean Tre:Tsk (°C) 5.3 ± 1.9cd 5.5 ± 0.5cd 2.8 ± 1.1ab 1.7 ± 0.8ab 

Peak HR (b.min-1) 151 ± 20 cd 155 ± 23d 163 ± 18ad 171 ± 18abc 

Sweat rate (L.hr-1) 0.56 ± 0.27bcd 0.89 ± 0.24ad 1.14 ± 0.48ad 1.51 ± 0.52abc 

Peak RPE 14 ± 1cd 14 ± 1d 15 ± 1a 16 ± 1ab 

Peak TSS 5.3 ± 0.5cd 5.8 ± 0.5cd 6.4 ± 0.5abd 7.1 ± 0.5abc 

Peak TC 1 ± 1 2 ± 1 2 ± 1 3 ± 1abc 

Note; a difference vs. TEMP (P<0.05), b difference vs. TEMPSUIT (P<0.05), c difference vs. HOT 

(P<0.05), d difference vs. HOTSUIT (P<0.05) 



Table 2. Mean ± SD differences between trials (effect size and correlation coefficient).  

 
TEMP 

vs.  

TEMPSUIT 

TEMP 
vs. 

HOT 

TEMP 
vs. 

HOTSUIT 

TEMPSUIT  

vs. 
HOT 

TEMPSUIT  
vs. 

HOTSUIT 

HOT 
vs. 

HOTSUIT 

Peak Tre (°C) 0.18 ± 0.11* 
(d = 0.5, r = 0.95) 

0.27 ± 0.13*† 
(d = 0.8, r = 0.93) 

0.50 ± 0.09*† 
(d = 1.5, r = 0.97) 

0.09 ± 0.19 
(d = 0.3, r = 0.84) 

0.31 ± 0.14*† 
(d = 1.0, r = 0.92) 

0.23 ± 0.11*† 
(d = 0.7, r = 0.95) 

∆Tre (°C.hr-1) 0.41 ± 0.27*† 
(d = 0.4, r = 0.75) 

0.53 ± 0.36*† 
(d = 1.5, r = 0.69) 

1.02 ± 0.39*† 
(d = 2.5, r = 0.73) 

0.12 ± 0.39 
(d = 0.4, r = 0.63) 

0.61 ± 0.36*† 
(d = 1.3, r = 0.77) 

0.49 ± 0.25*† 
(d = 0.8, r = 0.90) 

Peak Tskin (°C) 0.31 ± 1.06 
(d = 0.4, r = 0.26) 

3.44 ± 1.22 
(d = 3.7, r = 0.22) 

4.58 ± 1.25* 
(d = 5.6, r = 0.12) 

3.13± 0.84 
(d = 3.8, r = 0.53) 

4.27 ± 0.90* 
(d = 6.2, r = 0.40) 

1.14 ± 0.78* 
(d = 1.4, r = 0.66) 

Mean Tre:Tsk (°C) 0.14 ± 0.99 
(d = 0.2, r = 0.81) 

2.80 ± 1.11 
(d = 1.7, r = 0.61) 

3.92 ± 1.41* 
(d = 2.7, r = 0.20) 

2.66 ± 0.84* 
(d = 3.4, r = 0.68) 

3.77 ± 0.86* 
(d = 5.8, r = 0.18) 

1.11 ± 0.82 
(d = 1.2, r = 0.68) 

Peak HR (b.min-1) 4 ± 8 
(d = 0.2, r = 0.94) 

12 ± 12† 
(d = 0.6, r = 0.83) 

20 ± 11*† 
(d = 1.1, r = 0.84) 

8 ± 17† 
(d = 0.4, r = 0.71) 

16 ± 14*† 
(d = 0.8, r = 0.80) 

8 ± 9*† 
(d = 0.4, r = 0.90) 

Sweat rate (L.hr-1) 0.33 ± 0.27*† 
(d = 1.2, r = 0.46) 

0.58 ± 0.43*† 
(d = 1.3, r = 0.47) 

0.95 ± 0.51*† 
(d = 2.3, r = 0.32) 

0.26 ± 0.31† 
(d = 0.6, r = 0.86) 

0.62 ± 0.37*† 
(d = 1.7, r = 0.80) 

0.37 ± 0.37*† 
(d = 0.8, r = 0.76) 

Peak RPE 1 ± 1† 
(d = 0.0, r = 0.84) 

1 ± 1† 
(d = 0.0, r = 0.57) 

2 ± 1*† 
(d = 2.0, r = 0.80) 

1 ± 2† 
(d = 1.0, r = 0.15) 

1 ± 1*† 
(d = 2.0, r = 0.53) 

1 ± 1† 
(d = 1.0, r = 0.75) 

Peak TSS 0.5 ± 0.5 
(d = 1.0, r = 0.61) 

1.1 ± 0.8† 
(d = 2.2, r = 0.13) 

1.8 ± 0.7*† 
(d = 3.6, r = 0.04) 

0.6 ± 0.5* 
(d = 1.2, r = 0.55) 

1.3 ± 0.5*† 
(d = 2.6, r = 0.54) 

1.3 ± 0.5*† 
(d = 1.4, r = 0.54) 

Peak TC 1 ± 1† 
(d = 1.0, r = 0.54) 

1 ± 1† 
(d = 1.0, r = 0.68) 

1 ± 1† 
(d = 2.0, r = 0.68) 

0 ± 1 
(d = 0.0, r = 0.73) 

0 ± 1 
(d = 1.0, r = 0.73) 

0 ± 1 
(d = 1.0, r = 0.73) 

Note; * significant difference between trials (P<0.05), † difference above the a-priori pre-defined limits.  

 

 

 

 


