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Abstract  

 

The study of wave action on large, elastic floating bodies has received considerable attention, 

finding applications in both geophysics and marine engineering problems. In this context, a 

higher-order FEM for the numerical simulation of the transient response of thin, floating 

bodies in shallow-water wave conditions is presented. The hydroelastic initial-boundary 

value problem, in inhomogeneous environment, characterized by bathymetry and plate 

thickness variation, is analyzed for two configurations: (i) a freely floating strip modeling an 

ice floe or a Very Large Floating Structure (VLFS), and (ii) a semi-fixed floating beam 

representing an ice shelf or shore-fast ice, both under long-wave forcing. The variational 

formulation of these problems is derived, along with the energy conservation principle and 

the weak solution stability estimates. A special higher-order finite element method is 

developed and applied to the calculation of the numerical solution.  Results are presented and 

compared against established methodologies, thus validating the present method and 

illustrating its numerical efficiency. Furthermore, theoretical results concerning the energy 

conservation principle are verified, providing a valuable insight into the physical 

phenomenon investigated. 
 

Keywords:  hydroelastic analysis, large floating bodies, higher-order FEM,  

                     shallow-water conditions, wave-ice interaction 
 

1. Introduction 

The analysis and simulation of ocean wave-ice interaction poses a significant and challenging 

problem, due to its direct association with sea ice distribution and global climate change [1-3]. 

In fact, climate change has triggered wind intensification, as well as a significant increase in 

wave height and storm intensity over the last 20 years [4]. Hence, as wave trains become 

more energetic and ice formations weaken due to temperature rise, ocean wave excitation 

exhibits a heightened contribution to the demise of the summer Arctic sea ice cover [5] and to 

the stability or even growth of the winter Antarctic cover [6]. Furthermore, tsunami waves 
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have recently been identified as a potential mechanism of ice breaking; as in the case of 

Sulzberger Ice Shelf calving event in 2011 [7], where observational data suggest that the 

tsunami wave generated by the Honshu earthquake initiated the separation of large bodies of 

ice from the previously stable shelf.    

 

Stability of ice shelves is vital for ice sheet mass balance and consequently for the global 

climate system [8]. Signs of an increasing ice shelf disintegration rate are a major concern 

among scientists, as climatic patterns are expected to shift due to the ensuing increase in melt 

water circulation and sea-level rise [9].  As mentioned above, ocean forcing acts as a trigger 

leading to calving or break off events of weakened ice formations. In particular, the structural 

integrity of ice shelves is found to be affected by infra-gravity waves [10], storm-generated 

swell [11] and tidal effects [12], thus associating ocean wave forcing with ice sheet mass 

balance. In the case of sea ice, ocean waves are shown to be inimical to saline sea ice as well. 

In fact, ocean waves and sea ice are bound in an autocatalytic mechanism. Intense seas can 

reduce sea ice formations to sludge. In turn, the decline of sea ice generates swelling, 

resulting in waves of even greater amplitude. The loss of sea ice deprives ice shelves of a 

buffer zone that absorbs wave energy and prevents ice shelf disintegration [13]. Ocean wave-

ice interaction is manifested in both the break-up of pack ice and the calving of ice shelves or 

ice tongues [10-14]. In both cases, wave excitation adds to the inherent structural 

imperfections within the ice formation, while oscillatory flexural bending caused by the 

excitation ultimately leads to ice shelf calving or the splitting of pack ice.  

 

Research on ocean wave-ice interaction focuses on both the study of waves passing through 

sea ice formations and their resultant effects on the latter. Mathematical models are 

distinguished between those incorporating continuous models simulating ice shelves as 

constrained infinite or semi-infinite bodies, extending into the ocean, and those dealing with 

solitary raft-like structures of finite dimensions, simulating ice floes, free to move in all 

directions. One of the early works, involving thin elastic plates in shallow water, can be 

found in Evans & Davies [15], where the problem was solved using the Wiener-Hopf 

technique. The response of solitary ice floes has been studied primarily in the frequency 

domain under harmonic excitation, while a number of works examine time-domain response 

of a compliant raft, also accounting for irregular wave forcing analysis [13]. Ice floes are 

commonly modelled as floating thin plates of arbitrary geometry, [16-17]. While the majority 

of works focus on the freely floating ice sheet problem, the response of a floating plate near a 

vertical wall has also been considered [18]. Various plate edge conditions have been 

examined, including a free edge and a fixed or pinned edge at the vertical wall interface. An 

analytical solution to the problem of a clamped semi-infinite, homogeneous, elastic plate over 

flat seabed has been presented in [19], while scattering waves by the edge of an ice cover 

have also been studied [20]. 

 

Given recent technological advances in offshore engineering, it is very difficult to ignore the 

fact that significant developments in the subject have been brought from the hydroelastic 

analysis of Very Large Floating Structures, an area that evolved in parallel with marine 

geophysics, as thoroughly depicted by Squire [21]. Pontoon type VLFS share the same 

hydrodynamic qualities with ice floes and as a result the methodologies developed for their 

study bear great resemblance. The foundation of both fields is set on hydroelasticity, the 

branch of science concerned with the response of deformable immersed bodies under sea 

wave excitation [22]. Applications span from ships and VLFS [22-24] to floating ice bodies 

[13]. Frequency domain methods, serving as primary analysis tools, are based on mesh 

methods [25, 26] or other techniques, as, for example, Galerkin schemes [27], Green function 
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[28] and eigenfunction expansion approaches [29]. Time domain analysis of elastic floating 

bodies allows for better treatment of irregularities in wave forcing and moving loads. In this 

direction, methods based on direct time integration schemes [30, 31] and Fourier transforms 

[32-34] have been developed. Focusing on the transient response of a freely floating body 

under long-wave excitation in shallow-water environment, a modal expansion technique has 

been developed by Sturova [35].  VLFS and ice floes are expected to span over considerable 

horizontal distances and thus, variable bathymetry effects could become important and have 

been considered by various authors. In particular, the effects of sloping seabed are examined 

in [36], while a fast-multipole technique is used in [37] to account for variable bathymetry. A 

coupled mode method has been developed by Belibassakis and Athanassoulis [38] for the 

hydroelastic analysis of a thin floating body over general bathymetry characterized by 

continuous depth variation. The latter method has been extended to weakly non-linear waves 

[39], and shear deformable large floating bodies of finite thickness lying over variable 

bathymetry regions [40]. Various attempts have been made to account for more general wave 

excitation, higher-order elastic plate models and treatment of geometrical complexities. In 

particular, methods for studying irregular wave effects, like tsunami and multidirectional 

ocean waves, have been developed [41-43]. Moreover, the Kirchhoff thin plate assumption 

which is usually considered for both VLFS and ice floes [15-17,38] has been criticized as 

restrictive and unrealistic, [21,22] and thus non-linear and higher-order models, like the von-

Karman plate [44] and Timoshenko theory [45,46] have been incorporated and applied to 

hydroelastic problems involving large floating bodies. 

 

In the present work, the finite element method will be employed for the calculation of the 

transient response of large floating bodies of variable thickness, under long wave excitation, 

in an inhomogeneous shallow water environment. In particular, in Section 2 the mathematical 

formulation of hydroelastic problems concerning a freely floating thin, elastic strip and a 

semi-fixed beam under long wave excitation are presented.  Then, in Section 3, the 

variational formulations of the above problems are presented and, subsequently, in Section 4 

the principle of energy conservation and stability estimates for the weak solution are derived 

and discussed. Section 5, presents the special finite element method developed for the 

numerical solution of the aforementioned variational problems. Finally in Section 6, 

numerical results based on two chosen examples are presented and discussed, illustrating the 

efficiency of the present method. For validation, numerical results are compared against the 

method developed by Sturova [35]. Finally, the main theoretical results concerning the 

energy conservation principle are verified, providing a valuable insight into the physical 

phenomenon. 

 

2.  Governing Equations   

In this section the mathematical model of linear waves interacting with a floating body of 

small thickness, lying over variable bathymetry in shallow water conditions, is presented. For 

simplicity, the 2D problem on the vertical xz  plane corresponding to a beam under the action 

of normally incident waves is treated. However the present analysis is directly extendable to 

the 3D problem and multidirectional wave conditions. A Cartesian coordinate system is 

introduced with origin at the mean water level and the z -axis pointing upwards. The plate of 

uniform density 
p
 and variable thickness ( )x  spans horizontally over 0 x L  , where L  

is the plate length. Additionally, the plate is assumed to extend infinitely in the transverse  y - 
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direction. The liquid of constant density 
w

, is confined within the variable bathymetry 

domain 0: x    , 0( )H x z   , where ( )H x  denotes the local water depth, measured 

from the still water surface.  Under the irrotationality assumption, the velocity potential in the 

fluid region  ( , , )x z t , satisfies the Laplace equation in    ( 2 0  ), and the impermeable 

bottom boundary condition on the mildly-sloped seabed 

  0  n  on  
b

 ,                                                        (2.1)                                       

where n  is the outer normal vector. On the free surface, the linearised condition applies 

 

0
tt z

g     on 
f

 ,                                                   (2.2) 

where g is the acceleration of gravity and ( ) ( )
a

a    . As the plate is considered thin 

compared to its length scale and its wetted surface mildly sloped, the Euler-Bernoulli beam 

theory is adopted. Hence, on the plate boundary the dynamic and kinematic boundary 

conditions, respectively, are 

 

  ( ) ( ( ) ) ( , )
tt xx xx

m x D x q x t p  ,   and    
t z

 on 
p

 ,            (2.3)    

where ( ) ( )
p

m x x  is the plate mass density and 
3

212 1

( )
( )

( )

E x
D x 


  the flexural rigidity,  

E is the Young modulus and ν denotes Poisson’s ratio. Also,  ( , )q x t  is the vertical load on the 

plate, ( , )x t  is the deflection and     /
w t

p g  denotes the dynamic component of 

pressure. The problem is supplemented by appropriate conditions at infinity and initial 

conditions, as follows 

  

             0
x
    x   ,       and           

0
0( , ) ( )x x ,   t=0.                        (2.4) 

 

(a)  Shallow water approximation 

 

Floating bodies of interest, in both geophysical and engineering scales, feature large 

horizontal dimensions compared to water depth. In polar geophysics for example, an ice shelf 

might extend over 100 km into the ocean, floating over a depth of only 100 m [7]. This fact 

renders the shallow water approximation ( ( , , ) ( , )x z t x t ) valid for the problems 

concerning the present work. Hence, the linear shallow water equations coupled with the 

dynamic equation of the plate (Eq. 2.3) in the respective region, yield the system,  

 

( ) ( ( ) ) ( , )
tt xx xx w w t

m x D x g q x t ,                                  (2.5) 

0( ( ) )
t x x

b x ,                                  (2.6) 

 

where ( ) ( ) ( )b x H x d x  is the bathymetry function incorporating the mean water depth 

( )H x  and the plate draft ( )d x . The latter, assuming that each segment of the plate is neutrally 

buoyant, is  1( ) ( )
w p

d x x   [35, 47].  
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Figure 1. Configurations of hydroelastic interaction under shallow water conditions: (a) freely floating thin 

flexible strip, (b) floating cantilever. 

Outside the floating plate region, the linear shallow water system reduces to the wave 

equation 

 

0( ( ) )
tt x x

g b x ,                                        (2.7) 

 

where ( ) ( )b x H x . The free surface elevation in this region is  1

t
g .  

In the following sections, two hydroelastic problems regarding to the response of thin floating 

bodies under long wave excitation are considered; see Fig.1. The first model problem 

concerns the case of a freely floating strip, while the second simulates, the response of a 

floating semi-fixed beam modeling the interaction of waves with shorefast ice or even an ice 

shelf. 

 

(b)  Freely floating, thin, flexible strip 

 

Let ,L T  and define the domains 
0

0( , )L  , 
1

0( , ) , 
2
( , )L   . Using the 

length of the beam as a characteristic length, the following nondimensional variables are 

introduced: 
1x L x , 

1 2 1 2/ /t g L t , 1L  and 
1 2 3 2/ /

i i
g L , 0 1 2, ,i . The 

system of governing equations for a freely floating thin elastic strip is (using the 

nondimensional variables and dropping tildes): 

 

1 1
0( ( ) )

tt x x
B x   in 

1
0( , ]T                      (2.8) 

     
0

( ) ( ( ) ) ( , )
tt xx xx t

M x K x Q x t   in 
0

0( , ]T                    (2.9)               

                                         
0

0( ( ) )
t x x

B x  in 
0

0( , ]T                    (2.10) 

    
2 2

0( ( ) )
tt x x

B x   in 
2

0( , ]T                    (2.11) 

 

where 
( )

( )
w

m x
M x

L
, 

4

( )
( )

w

D x
K x

gL
,  

( )
( )

b x
B x

L
and 

( , )
( , )

w

q x t
Q x t

gL
. The non 

dimensional bending moment and shear force in the flexible strip are 

 

    ( , )
b xx
M x t K  and ( , ) ( )

x xx
V x t K  .                           (2.12) 
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The above system is supplemented with boundary, interface and initial conditions. The 

boundary conditions stating that both the bending moment and shear force vanishes at the 

ends of the strip are 

                                                        

0 0 1 1 0( , ) ( , ) ( , ) ( , )
b b
M t V t M t V t .                            (2.13) 

 

The interface conditions expressing conservation of mass and energy at the water interface 

between regions 
1

 , 
0

  and 
2

 , 
0

 are  [35, 47], 

 

        
1 0

0 0 0 0( ) ( , ) ( ) ( , )
x x

B t B t  and 
1 0

0 0( , ) ( , )
t t

t t              (2.14) 

    
0 2

1 1 1 1( ) ( , ) ( ) ( , )
x x

B t B t   and 
0 2

1 1( , ) ( , ).
t t

t t               (2.15) 

.                                               

Finally, appropriate initial conditions are     

                                                 

0
0 0 0( , ) ( , )x x , in 

0
 ,                                 (2.16) 

1 1
0 0   0 0( , ) , ( , )

t
x x , in 

1
  and                               (2.17) 

2 2
0 0   0( , ) , ( , ) ( )

t
x x S x , in 

2
 .                                (2.18) 

where 
1( ) ( )S x L s x . The generalization of the above formulation to many interacting 

floating strips is direct. 

 

(c) Floating semi-fixed beam 

 

Considering now the initial-boundary value problem for the case of floating cantilever (see 

also Fig. 1(b)) is given by (2.9), (2.10), and (2.11). In this case, zero deflection and rotation 

for the beam are assumed at 0x  and the respective boundary conditions read 

 

0 0 1 1 0( , ) ( , ) ( , ) ( , )
x b

t t M t V t ,                             (2.19) 

 

Interface conditions at 1x  are the same as (2.15). Assuming an impermeable wall 

underneath the beam at its fixed end  0x , the zero velocity condition yields 

 

0
0 0( , )

x
t . 

 

Finally, initial conditions for this problem are given by Eqs. (2.16) and (2.18)                      

 

3. Variational formulation 

In this section, the variational formulation of problems Π1 and Π2 will be presented. The 

following notation will be used. For every Hilbert space U , we denote by   ( , )
U

 the 

corresponding inner product and   
U

,   
U

, the induced norm and seminorm, 

respectively. The standard notation ( )kH   is used for the classical Sobolev (Hilbert) spaces 



Published in the Proceedings of the Royal Society A: Mathematical, Physical and 

Engineering Sciences, 471(2173):08 Jan 2015 

 

7 

 

2, ( )kW  , k . For 0T , we denote the Banach valued function spaces as 0( , ; )pL T U , 

1 p  and the corresponding norm 

1

0 0

/

( , ; )p

p
T p

L T U U
u u dt , 1 p  and 

0 0( , ; ) [ , ]
sup

L T U Ut T
u ess u . 

Finally,   
0 0 0([ , ]; ) [ , ]

max
C T U Ut T
u u ( see e.g.  [48]). 

 

(a) Variational formulation of problem Π1 

In order to derive the variational formulation, Eqs. (2.9), (2.10), (2.8) and (2.11) are 

multiplied by 
1 2 1 1

1 1 0 0 0 2 2
and   ( ), ( ), ( ) ( ),w H v H w H w H  respectively. 

Assuming enough regularity for the proper definition of all integrals and the application of 

integration by parts we get  

0 00

1 1 1 1 1 1
0

tt x x x
w dx Bw B w dx   ,                                 (3.1) 

  
0

0 0 0 0
( ) ( , )

L L L L

tt xx xx t
Mv dx K v v dx v dx vQ x t dx  ,      (3.2) 

     
0 0 0 0 0

0 00
0

LL L

t z x x
w dx Bw B w dx         ,                                 (3.3)                          

    
2 2 2 2 2 2

0
tt x x xLL L

w dx Bw B w dx      ,                               (3.4) 

 

Adding (3.1)-(3.4) and using the boundary condition (2.13) and the interface conditions 

(2.14), (2.15), we have the following variational problem: 

Find ( , )x t , 
0
( , )x t , 

1
( , )x t  and 

2
( , )x t  such that for every 

2

0
( )v H  , 1

0 0
( )w H  , 

1

1 1
( )w H   and 1

2 2
( )w H  it is 

0

0 0 2 2 1 1
0 0 0

0 0 0 1 1 1 2 2 2
0

         ( , ) ( , ) ( , ) ( , ) ( , ) ,

L L L

tt t t tt ttL
L

vM dx v dx w dx w dx w dx

a v b w b w b w vQ x t dx
         (3.5)   

in 0( , ]T  with  initial conditions, 

2 2
1 1

1 1 1 1
0 0 0

( ) ( )
( ( , ), ) ( ( , ), )

tL L
x w x w

 
,                       (3.6) 

2 2
0 0

0 0
0 0 0

( ) ( )
( ( , ), ) ( ( , ), )

L L
x v x w

 
,                        (3.7) 

2 2 2
2 2 2

2 2 2 2 2
0 0   0

( ) ( ) ( )
( ( , ), ) , ( ( , ), ) ( ( ), )

tL L L
x w x w S x w

  
.                        (3.8) 
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For  each 0( , ]t T , the bilinear functionals 2 2

0 0
: ( ) ( )a H H  , 

1 1

0 0 0
: ( ) ( )b H H  , 1 1

1 1 1
: ( ) ( )b H H   and 1 1

2 2 2
: ( ) ( )b H H   are 

defined as 

0
( , ) ( )

L

xx xx
a v K v v dx ,  

0 0 0 0 0
0

( , )
L

x x
b w B w dx ,           (3.9) 

0

1 1 1 1 1
( , )

x x
b w B w dx , 

2 2 2 2 2
( , )

x xL
b w B w dx .         (3.10) 

 

(b) Variational formulation of problem Π2 

 

In this case, the appropriate solution space is 

 

2

0
0 0 0( ) | ( ) ( )

x
V u H u u . 

 

Similarly to the variational formulation of problem Π1, and using the corresponding 

boundary and interface conditions presented in Sec. 2(c), we have the following formulation: 

Find ( , )x t , 
0
( , )x t  and 

2
( , )x t  such that for every v V , 1

0 0
( )w H   and 1

2 2
( )w H 

it is, 

0 0 2 2
0 0 0

0 0 0 2 2 2
0

         ( , ) ( , ) ( , ) ( , )

L L L

tt t t ttL
L

vM dx v dx w dx w dx

a v b w b w vQ x t dx
,         (3.11)   

in 0( , ]T  with  initial conditions, 

2 2
0 0

0 0
0 0 0

( ) ( )
( ( , ), ) ( ( , ), )

L L
x v x w

 
      ,                        (3.12) 

2 2 2
2 2 2

2 2 2 2 2
0 0   0

( ) ( ) ( )
( ( , ), ) , ( ( , ), ) ( ( ), )

tL L L
x w x w S x w

  
.             (3.13) 

 

4.  Energy conservation and stability estimates 

In this section, under the assumption of sufficient regularity for the weak solutions of the 

variational problems presented in the previous section, an energy conservation principle will 

be derived, along with stability estimates for the weak solution of problems Π1 and Π2. The 

respective propositions will be derived for both the freely floating beam and the floating 

cantilever simultaneously. 

The following assumptions are introduced, where for problem Π2 we set 
1

 . 

(A1) 
1

2
( ) ( )S x H  . 
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(A2) Let 
0,1,2

i

i

X


  . For the bathymetry function it is ( )B L X . We denote, 

( )
( )

B L X
C B x  and assume there exists positive constant 

B
c  such that 

 inf 0( )
Bx X

ess B x c . That is, the bathymetry attains only positive values so that the seabed 

never reaches the water free surface in 
1

 , 
2

 and the lower surface of the ice self in 
0

 .  

(A3) It is 
0

, ( )M K L   and there exists positive constants 
M
c , 

K
c  such that 

0

 inf 0( )
Mx

ess M x c


 and 
0

 inf 0( )
Kx

ess K x c


.  

(A4) For the solution of problem Π1, it is assumed that 
2 2

0
0, ( , ; ( ))

t
L T H  , 

2 2

0
0( , ; ( ))

tt
L T L   and 2 10, ( , ; ( ))

i t i i
L T H  , 2 20( , ; ( ))

tt i i
L T L  0 1 2, ,i . 

The solution of problem Π2 is assumed to satisfy 
2 0, ( , ; )

t
L T V , 

2 2

0
0( , ; ( ))

tt
L T L   and 2 10, ( , ; ( ))

i t i i
L T H  , 2 20( , ; ( ))

tt i i
L T L  0 2,i .  

The first main result is presented in the following subsection, for both configurations. 

(a) Energy conservation principle 

Let 1  when the variational problem under consideration is Π1 and 0  for problem 

Π2, and define the quantity 

2 22
1 20

2 2 2
1 2

1 2

0 0 0 1 1 1 2 2 2
              

/

( ) ( )( )
( ; )

( , ) ( , ) ( , ) ( , )

t t tL LL
E t M

a b b b
  .                           (4.1) 

The following theorem states an energy conservation principle for problems Π1 and Π2.  

Theorem 1 (Energy conservation principle). Let 0Q  and assume that (A1), (A2), (A3) 

and (A4) hold. Then, 0( , ]t T  it is 0( ; ) ( ; )E t E . 

Proof. For problem Π1, set 
0 0 1 1 2 2

, , ,
t t t t

v w w w  in (3.1), (3.2), (3.3) 

and (3.4). For problem Π2 set 
0 0 2 2

, ,
t t t

v w w in (3.11). In both cases,  

0 0
0 0

0
L L

t t t t
dx dx ,                                    (4.2) 

is directly achieved. In the same time all boundary terms appearing in those equations vanish 

due to the interface conditions Eqs. (2.13)-(2.15) and (2.19). By invoking the assumed 

regularity, the following relations hold 

22
10

2
2

02 2
1 2

1 1 1
0

2

2 2 2

1 1

2 2
1

                                
2

/

( )( )

( )

,
L

tt t t tt t t LL

tt t t LL

d d
M dx M dx

dt dt
d

dx
dt





,         (4.3) 



Published in the Proceedings of the Royal Society A: Mathematical, Physical and 

Engineering Sciences, 471(2173):08 Jan 2015 

 

10 

 

and 

0 0

1

2
( , ) ( , )

L L

t txx xx t

d
a K dx dx a

dt
                     (4.4) 

Similarly it is 

0 0 0 0 0 0 1 1 1 1 1 1

2 2 1 2 2 2

1 1

2 2
1

                       
2

( , ) ( , ), ( , ) ( , )

( , ) ( , )

t t

t

d d
b b b b

dt dt
d

b b
dt

                 (4.5) 

Using (4.3), (4.4) and (4.5) we derive in compact form for problems Π1 and Π2 

2 22
1 20

2 2 2
1 2

1 2

0 0 0 1 1 1 2 2 2
0

2

/

( ) ( )( )
( ) ( ) ( ) ( ( ), ( ))

( ( ), ( )) ( ( ), ( )) ( ( ), ( )) ( , )

s s sL LL

L

s

d d
M s s s a s s

ds ds
d
b s s b s s b s s Q x s dx

ds

 
(4.6) 

Setting 0Q , integrating (4.6) with respect to time from 0s  to s t  and using initial 

conditions (3.6)-(3.8), (3.12), (3.13)   the conservation of ( ; )E t  is obtained.                        □                                                                                                                                                                        

Equation (4.1) is an energy conservation principle, which states that when no forcing is 

present, the total hydroelastic energy, i.e. the kinetic and strain energy of the beam along with 

the kinetic and potential energy of the water column remains constant in time and equals the 

energy of the initial water free surface elevation in the region outside the hydroelastic 

interaction. 

Remark: The bathymetry function B , possesses a discontinuity in the form of a finite jump 

at x L . Thus, when defined as a function :B X  the regularity ( )B L X  is 

appropriate in order to form a simple but realistic model. However, the bathymetry function 

could be smoother when restricted to the interior of 
0

  ,
1

  and 
2

 . In fact, higher 

regularity for these restrictions of the bathymetry function and , ,M K S  is typically needed in 

order to ensure the solution spaces described in (A4). 

 

(b)  Stability estimates for the flexible strip response 

Stability estimates, in the physical energy norm for the hydroelastic problem, will be derived. 

In addition, a priori estimates for the ice self deformation characteristics in the maximum 

norm will be proven. 

Theorem 2. Let assumptions (A1), (A2), (A3), (A4) hold. Further let 
2 2

0
0( , ; ( ))Q L T L  . 

Then there exists constant C  such that 

2 2 1 2 1
0 0 0 2 2

1

2 1 2 2 2
1 1 2 1

2 2 2 2 2

0 2 2

2 2 2 2
1

1 1 0
                      

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( , ; ( ))

t tL H H L H

C T

t L H L L T L
C e S Q

    

   

,    (4.7) 
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Proof. Integrating (4.5) with respect to time from 0s  to s t  and using initial conditions, 

we get, 

2 22
1 20

2
2

2 2 2
1 2

1 2

2

0 0 0 1 1 1 2 2 2
0 0

2

/

( ) ( )( )

( )

( , )

( , ) ( , ) ( , ) ( , )

t t tL LL

t L

sL

M a

b b b S Q x s dxds

 



.      (4.8) 

Using Cauchy-Schwarz inequality and inequality 2 22  for real numbers it is, 

2 2
0 0

2 2
2 2

0 0

1 1 1

2 2 2( ) ( )
( )

L L

s s s L L
Qdx Q dx Q

 
.           (4.9) 

Invoking (A3) it is, 
22

00

2 2
1 2/

( )( )t M t LL
M c


. For the bilinear functional ( , )a  it is 

2 2

2 2 2
2

0 0 ( ) ( )
( , )

L L

xx K H L
a K dx dx c

 
.                  (4.10) 

The norm equivalence in 2

0
( )H   and (4.9) lead to 

2
0

2

0
1

( )
( , ) min ,

K H
a c c


 , for a 

positive constant 
0
c . Set 

0
1min ,

L K
c c c . Finally it is 

1

2

( )
( , )

i
i i i B i H
b c


, 0 1 2, ,i . 

From relations (4.7)-(4.10) it is 

2 2 2 2 1
0 1 2 0 0

1 1 2 2 2
1 2 2 0 0

2 2 2 2 2

1 2 0

2 2 2 2 2
1

1 2
0 0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( , )

t t tL L L H H

t t

sH H L L L
C S ds Q x s ds

    

    

   (4.11) 

where 1min , , ,
M L B

C c c c . Application of Gronwall’s lemma in (4.11) yields the desired 

result.                                                                                                                                          □ 

We now proceed to the derivation of a stability estimate for the elastic strip deflection field in 

the appropriate energy norm 

 

Theorem 3. Let all assumptions stated in Theorem 2 hold. Then it is 

1

2 2 2 2 2 2 2
0 0 2 0

1

0 0 0
2

( , ; ( )) ( , ; ( )) ( ) ( , ; ( ))

C T

t L T L L T H L L T L
C Te S Q

   
,      (4.12) 

with 1min , , ,
M L B

C c c c  

Proof. From Theorem 2 we get 

      
1

2 2 2 2 2
0 0 2 2

2 2 2 2
1

0( ) ( ) ( ) ( , ; ( ))

C T

t L H L L T L
C e S Q

   
,                (4.13) 
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where 21min , , ,
M K L W B

C c c c c c . Integrating with respect to time in 0[ , ]T   

1

2 2 2 2 2 2 2
0 0 2 0

2 2 2 2
1

0 0 0( , ; ( )) ( , ; ( )) ( ) ( , ; ( ))

C T

t L T L L T H L L T L
C Te S Q

   
.       (4.14) 

Taking square roots and using the norm equivalence in 
2
 equation (4.14) yields (4.12).     □    

For several applications it is of interest to derive a bound on the maximum value of the 

flexible strip deflection and slope. For this purpose, the following classic embedding result 

will be used [49]. 

Lemma 1. Let 
n  be a Lipschitz domain. It is , ( )k pW   ( )C    if  1k np . 

Using Theorem 2 and lemma 1, we get 

Theorem 4. Let all assumptions stated in Theorem 2 hold. Then 
0 1

0
0([ , ]; ( ))C T C   and 

there exists 
0
C  

0 1 2 2 2
0 2 0

0 0([ , ]; ( )) ( ) ( , ; ( ))C T C L L T L
S Q

  
 ,                             (4.15) 

where 
11 1

0

C TC C e . 

Proof . The first part follows directly from Lemma 1 and (A4). From (4.7), and Lemma 1, it 

is  

1

1 2 2 2
0 2 0

2 2 2
2 1

0 0( ) ( ) ( , ; ( ))

C T

C L L T L
C C e S Q

  
,                       (4.16) 

Thus it holds  

1

1 2 2 2
0 1 0

2 2 2
2 1

0 00 ( ) ( ) ( , ; ( ))[ , ]
max C T

C L L T Lt T
C C e S Q

  
,                  (4.17) 

and (4.15) follows by taking square roots.                                                                                 □   

 

5. The Finite Element Method 

In this section, the discretization of the variational problems (3.5) and (3.11) with finite 

elements is described. Α special hydroelastic element HELFEM(5,4) is introduced. The 

element incorporates cubic Hermite shape functions for the approximation of the beam 

deflection/upper surface elevation in 
0

  (  and 
x

 degrees of freedom - dof) and quadratic 

Lagrange shape functions for the approximation of 
0
; see, e.g., [50,51]. The approximation 

spaces are defines as, 
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Figure 2. Shape functions of hydroelastic element HELFEM (5,4). 

 

6
2

0
1

1 0| ( ( ) , ) ( ) ( )h h h h h

i ie
i

U U U H if U V if and H x t , 

    

  (5.1) 

                    
5

1

0 0 0 0 0
1

| ( ) ( ) ( )h h h h h

i ie
i

W H and L x t ,                                (5.2) 

where h

e
u  denotes the restriction of hu  in element e , ( )

i
H x  are Hermite polynomial shape 

functions of order 5 and ( )
i
L x  Lagrange polynomial shape functions of order 4. For the 

approximation of 
i
 in 

i
  for 1 2,i  , it is 

                         
5

1

1

| ( ) ( ) ( )h h h h h

i i i i i j ije
j

W H and L x t .                            (5.3) 

 

The hydroelastic element shape functions are shown in Fig. 2. 

 

(a) Discretization of the hydroelastic system 

 

The discretization of the problem leads to a second order system of ordinary differential 

equations of the form 

 

                                               
tt t

M u C u Ku F ,                                               (5.4) 
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Figure 3. Comparison between the finite element solution and the method presented in [35].  

 

where the vector of unknowns u  contains the nodal values for h , 
0

h  , 
1

h and  
2

h . We 

remark here that matrix M  is singular as only the term  
0

L
h h

tt
v M dx   produces non zero 

terms in it. This fact, forces the use of an implicit time marching scheme for the integration of 

system (5.4). Setting t u v , Eq.(5.4) is transformed to a first order system. Time integration 

of the latter first order system is performed by means of the Crank-Nicolson method [51]. 

 

(b) Validation of the present Finite Element Method 

 

A modal expansion technique has been developed by Sturova [35] for the determination of 

the transient response of a freely floating, thin and heterogeneous elastic beam. The present 

finite element code was compared against the aforementioned technique, in an example of 

initial beam deflection given in [35]. Water depth was considered to be constant at 20 meters, 

the length of the plate was taken 500 m, while its thickness varies as ( ) 1 2x x   . The 

initial deflection was of the form 0 0.5 0.5cos( 5)x    .The excellent agreement of the 

present finite element scheme for the beam deflection, employing 10 HELFEM(5,4) elements 

and the modal expansion technique, based on the first 40 modes, is  shown in Fig.  3.  

 

The higher order hydroelastic finite element HELFEM (5,4) exhibits rapid convergence, as 

expected, due to the increased degree of interpolation. Although the modal expansion method 

of Sturova is tailor-made for the given problem and thus yields rapid convergence, the 

higher–order FEM method is also found to be robust and greatly efficient. Extensive 

investigation of convergence characteristics and error estimates for the HELFEM schemes 

will be presented in a forthcoming work. 

 

6. Numerical Results 

 

In this section, two examples will be considered for the analysis and discussion of problems 

1  and 2 . In both cases a mollified Heaviside function is used as the initial upper surface 

elevation in the free water region. The pulse form is, 

 

 
2

0 0 0( ) ( )( )

0 exp
x w x x w x x w

A x x
        

     ,                                       (6.1) 

where  is the point of origin,  is the half length of the disturbance, A  is the amplitude of 

the initial pulse and  is a positive parameter controlling the smoothness (see also Fig. 4). 

0x w


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The initial elevation described above, simulates a dislocation generated tsunami as discussed 

in [52, 53]. Decreasing , the excitation assumes a bell-like shape, while as the latter 

parameter increases a step function is generated. The material properties of ice [35] are given 

as follows: Young’s modulus of 95 10E Pa  , Poisson’s ratio  0.3v  , and density 
3922.5 i kg m . Water density is taken as 31025

w
kgm . 

 

(a) Freely floating strip  

 

First we consider the case of a freely floating strip, with a uniform thickness of 4 m and 

length of 1 km, as shown in Fig. 4. This configuration simulates large, freely floating bodies 

resembling both ice floes and VLFS. A constant depth of 10 and 20 meters is assumed for 

regions 1  and 2 , respectively. The plate floats over linearly varying bathymetry 

characterised by a constant bed slope equal to 1%. For the approximation of the plate 

response shown in Fig. 4, 100 HELFEM(5,4)  and 10000 time steps are employed. 

 

The space – time plot of the calculated wave field is illustrated in Fig. 4, while Fig. 5 shows 

the upper surface elevation at specific moments in time. We clearly observe the disintegration 

of the initial pulse of bandwidth 100w m , amplitude 0.2A m  and 50  , into two 

propagating waves, in accordance to the solution of the wave equation in the constant depth 

region 2 .The two pulses travel away from the original formation, in opposite directions. As 

one of the travelling waves impacts the plate, partial reflection is observed. After the impact, 

the hydroelastic wave begins to develop in the plate, exhibiting dispersive characteristics that 

are clearly observed in both figures as smaller amplitude waves preceding the main 

disturbance. The wave train exiting the plate region, is shown to propagate into the shallower 

water region 1 , with a lower speed compared to the wave disturbance propagating in 2 , 

due to the decreased water depth.  An important aspect of the present method is the ability to 

provide useful information concerning possible locations of high stresses and initial crack 

development. Both features are especially important in both the study of crack propagation 

and ice floe breaking or separation. In this direction, revisiting the previous example, the 

extreme values of bending moment and shear force at every moment in time, along with their 

location on the floating elastic strip are shown in Fig. 6. As it can be seen, the maximum 

values occur moments before the transmission of the main excitation from the plate into the 

free water region at the left side of the floating body. 

 

Energy conservation, for the case of a freely floating strip, is investigated in detail in Fig. 7. 

Calculations by the presented FEM are found to be in perfect agreement with the theoretical 

analysis given in Sec.3. The total non-dimensional energy remains constant in time, as 

expected, since dissipation effects are not present. 

 

 

 


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Figure 4. Space-time plot of wave propagation, for the freely floating strip example. The form of initial upper 

surface elevation (propagating pulse) is shown in the subplot, where w is the bandwidth and μ the form 

parameters. 

 

 

Figure 5. Calculated upper surface elevation at distinct moments. The elastic deformation of the strip is 

shown by a thick line (the upper surface elevation is exaggerated). 
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Figure 6. Extreme (max/min) values of  bending moment and shear force and their location on the floating 

elastic strip  in the case of the first example.        

 

   

Figure 7.  Illustration of the energy conservation principle, in the case of the first example. All energy quantities 

in the plot are nondimensionalised with respect to the initial energy of the travelling pulse E0. 
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Figure 8. Location of extreme bending moment on the floating body for various values of the beam thickness 

and bandwidth parameters of the initial propagating disturbance (pulse). 

 

In Fig. 7, it is observed that, at the beginning of wave motion, the total energy of the system 

associated with the initial pulse is confined within the water region 2 . At the initial 

moments of wave motion, the total energy amounts to the sum of the kinetic energy of the 

free water surface and the potential energy associated with flux discharge in region 2 .  

When the excitation reaches the floating strip ( 5.5t ) the energy flows into 0 , hence the 

strain and kinetic energy of the body, along with the discharge flux energy of the region 0 , 

increase. As the excitation transmits into 1 ( 10t ), an increase in the energy of the domain 

can be seen, expressed as an increase of the kinetic energy of the free water surface and the 

discharge energy flux of the region. The energy transfer from the main pulse into the 

formation of  smaller dispersed waves, preceding the main disturbance in 1 ,  is visible as 

sudden drops in the kinetic and strain energy, as well as in the flux discharge energy of region 

0  ( 13,14t ). When maximum bending moment occurs, the strain energy term increases 

momentarily, while the discharge flux energy of the region is seen to mirror the fluctuations. 

Gradually, as the elastic strip reaches a state of rest , the total energy of the system is given 

by the potential flux discharge and kinetic energies of the freely propagating waves in the 

water subregions 2  and 1 . 

  

Based on the above analysis, it is concluded that the present method is able to provide useful 

information concerning the distribution of stresses in a floating elastic body. Furthermore, it 

may contribute to the parameterization of wave ice interaction processes incorporated in 

global environmental models aiming at the prediction of breaking and demise events of 

floating ice bodies. Revisiting the freely floating configuration, the location of extreme 

bending moment values along the strip, for different values of beam thickness and initial 

pulse bandwidth are presented in Fig.8. In the analysis, the examined configuration of 20 km 

in length is comparable to the lateral dimensions of the B-31 iceberg, formed by calving of 

the Pine Island Bay glacier in Antarctica (2013) [54]. Two different (constant) thickness 

values have been examined, namely 0.5% and 1% of length, respectively.  Finally, the depth 
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to length ratio is 2%. The smoothing parameter is set 100 . It is observed (Fig. 8) that the 

extreme values of the bending moment are relatively insensitive to the forcing pulse 

wavelength especially for the shorter wavelengths of the examined pulses (these values are 

close to the limits of the long wave approximation). This is in agreement with the analytical 

result of Squire [14] on the maximum hydroelastic normal stresses on semi-infinite strips, 

valid for all wavelengths.  

 

(b)  Semi-fixed floating beam  

 

The case of a semi-fixed floating beam is considered. The configuration serves as a 

macroscopic, mechanical model of a floating glacier under long-wave forcing; see, e.g., 

Sergienko [55]. In the following example, the semi-fixed floating beam, with 50 km length, 

resembles an ice shelve extending into the ocean, subjected to long wave-forcing. The model 

is able to simulate the energy transfer from an incoming tsunami wave into the ice-shelf and 

calculate its response to the excitation. The thickness of the beam varies linearly from 200 m 

at the fixed boundary to 100 m at the free end. A constant depth of 300 m is assumed for 

region 2 . A 0.1% sloping bottom is assumed under the elastic beam, reaching a depth of 

250 m underneath the fixed edge. The system is subjected to the same initial wave forcing 

profile as the one considered in the first example. The selected parameters are 2000w m , 

amplitude 0.5A m  and 50   

 

The space – time plot of the calculated wave field by the present FEM is shown in Fig. 9, 

while Fig. 10 shows the upper surface elevation at specific time instances. The response of 

the semi-fixed beam was approximated by 120 elements HELFEM (5,4), and  10000 time 

increments were used for the simulation shown in these figures.  At 10t  the incident wave 

on the beam is partially reflected at the free tip, and the hydroelastic wave starts to develop. 

After some time, the waveform reaches the fixed end of the beam where it is fully reflected, 

and then it backpropagates into the hydroelasticity-dominated region. Finally, the wave fully 

reflects back into the water region, travelling away from the beam in 2 . The dispersive 

characteristics of the hydroelastic wave are clearly observed in both figures.  

The extreme values of bending moment and shear force along with their location in the semi-

fixed beam, are plotted in Fig. 11. In this case, it is observed that the maximum values occur 

at the fixed end of the beam, at the moment of full reflection, as expected by the present 

idealised model. However, in more realistic cases of wave - ice interaction, the effects of 

diffraction and dissipation, in conjunction with long propagation distances, are expected to 

reduce the wave action propagating towards the shore. Thus, the critical conditions for ice 

breakup would be rather similar to the ones arising from the previous discussion of Fig. 8. 

Finally, the principle of energy conservation in the case of the second example is illustrated 

in Fig. 12. The reflection of the dispersed hydroelastic wave is seen in this figure as a series 

of fluctuations in the strain energy of the beam, due to the momentary increase in the 

maximum bending moment as the wave train reaches the fixed boundary. As before, the 

discharge flux energy in region 0  is seen to mirror those fluctuations. As the reflected 

hydroelastic waves re-enter the sub region 2 , the energy of the region is seen to increase. 

Finally, as the excitation propagates away from the free end of the semi-fixed beam, the 

elastic body and the water column underneath it reach a state of rest and the total energy of 
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the system is given by the potential flux discharge and kinetic energies of the freely 

propagating wave in the water sub region 2 . 

 

 

Figure 9.  Space-time plot of wave propagation in the case of second example. 

 

 

Figure 10.  Calculated upper surface elevation at distinct moments. The elastic deformation of the strip 

is shown by using a thick blue line (the upper surface elevation is exaggerated). 
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Figure 11. Extreme (max/min) values of  bending moment and shear force and their location on the floating 

semi-fixed beam, in the case of second example. 

 

Figure 12. Energy conservation principle in the case of the semi-fixed floating beam. 

In conclusion it must be noted that, although the present work is confined in two-dimensional 

large, elastic floating bodies under long-wave excitation, the whole methodology is directly 

extendable to two horizontal dimensions and more complex incident wave forms, finding 

useful applications in the study of more realistic phenomena of wave-elastic body interaction 
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in inhomogeneous environments. Additionally, extensions to include more general, shear 

deformable beam/plate models, effects of body finite depth effects and wave non-linearity is 

supported by the present model, and this is left to be examined in future work. 

 

5.  Conclusions 

A new hydroelastic FEM model is presented for two-dimensional problems concerning the 

response of large floating elastic bodies, in inhomogeneous shallow water environment, 

characterized by variable bathymetry and thickness distribution. More specifically, two 

configurations have been modelled, concerning a freely floating strip representing an ice floe 

or a VLFS, and a semi-fixed floating beam, able to simulate representing wave-floating body 

interaction in shallow water conditions. The variational formulations of the above problems 

are derived, along with the energy conservation principles and the weak solution stability 

estimates. A special higher-order finite element method is developed and applied to the 

calculation of the numerical solution. Present theoretical results concerning the energy 

conservation principle are also verified, providing a valuable insight into the physical 

phenomenon investigated. An important aspect of the present method is the ability to provide 

useful information concerning the space-time distribution of bending moments, which are 

particularly important in the study of ice shelf and ice floe breakup mechanisms. 
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