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Abstract

The digital currency Bitcoin has become a popular payment technology since its
invention in 2008. Countless other projects have adopted and expanded the func-
tionality of the underlying blockchain technology. These so-called cryptographic
currencies allow users to send financial transactions over a decentralized global
network. Some of these currencies even support payments that are based on com-
plex conditions, also called smart contracts. The biggest obstacle to the practical
use of cryptographic currencies is their limited scalability. Without a solution to
this problem, blockchain technology cannot support the continuously growing user
base or compete with centralized payment providers. This thesis presents three
approaches to scaling that increase the number of transactions or enable a cheaper
and faster execution of smart contracts.

The first contribution of this thesis is the PERUN protocol, which allows a net-
work of users to send a large number of microtransactions at no cost. For this
purpose, all users of the system open a so-called payment channel once and use
it to send off-chain transactions without costs or delays. We will also show how
to combine these channels in an off-chain manner to so-called virtual channels
that connect even more users. The next contribution of this dissertation is the
FAIRSWAP protocol, which aims at reducing the costs for the secure sale of large
digital goods. It improves the scalability of such “fair exchange” protocols by re-
ducing both the storage requirements and the complexity of the underlying smart
contracts. We then present another protocol called FASTKITTEN, which uses a
Trusted Execution Environment (TEE) to secure the off-chain execution of smart
contracts. A TEE provides a secure runtime environment in which programs are
executed safely and correctly. This allows an operator to execute the smart con-
tracts on inputs from the users off-chain, which makes the execution much faster
and cheaper for all participants.

To guarantee the security of these protocols, each construction is accompanied
by detailed formal security definitions and cryptographic proofs. Furthermore, we
demonstrate the efficiency of the protocols by implementing and analyzing the
costs of each protocol.
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Zusammenfassung

Die digitale Wahrung Bitcoin hat sich seit ihrer Erfindung im Jahr 2008 zu einer
populdaren Zahlungstechnologie entwickelt. Das hohe Interesse an der zugrun-
deliegenden Blockchain-Technologie wird vor allem durch die zahlreichen Pro-
jekte verdeutlicht, die in den letzten zehn Jahren die Funktionalitdt von Bit-
coin libernommen und erweitert haben. Diese so genannten kryptographischen
Wiéihrungen ermoglichen es, den Benutzern, finanzielle Transaktionen iiber ein
globales, dezentralisiertes Netzwerk zu versenden. Einige dieser digitalen Wahrun-
gen ermoglichen sogar Zahlungen, die an komplexe Bedingungen gekniipft werden,
welche durch sogenannte Smart Contracts beschrieben werden. Das grofite Hinder-
nis fiir den praktischen Einsatz von kryptographischen Wahrungen ist ihre man-
gelnde Skalierbarkeit. Ohne eine Losung fiir dieses Problem kann die Blockchain
Technologie die standig steigenden Nutzerzahlen nicht unterstiitzen und nicht
mit zentralisierten Zahlungsanbietern konkurrieren. In dieser Arbeit werden drei
Losungsansatze zur Skalierung vorgestellt, die es ermoglichen viele Transaktionen
und komplexe Smart Contracts giinstiger und schneller zu abzuwickeln.

Der erste Beitrag dieser Arbeit ist das PERUN-Protokoll, das es einem Netz-
werk von Nutzern erlaubt, eine grole Anzahl von Mikrotransaktionen kostenlos zu
versenden. Zu diesem Zweck 6ffnen alle Benutzer des Systems einmalig einen soge-
nannten Zahlungskanal und nutzen diesen, um Zahlungen zwischen den Nutzern
direkt und ohne Kosten oder Verzogerungen auszufithren. Das PERUN Protokoll
ermoglicht es aulerdem diese Kanéle ohne Blockchain Interaktionen zu so genan-
nten virtuellen Kanélen zu kombinieren, die noch mehr Nutzer verbinden.

Der néchste Beitrag dieser Dissertation ist das FAIRSWAP-Protokoll, das zum
Ziel hat die Kosten fiir den sicheren Verkauf von groflen digitalen Giitern zu senken.
Dabei wird die Skalierbarkeit solcher “Fair Exchange”-Protokolle verbessert indem
sowohl der Speicherbedarf als auch die Komplexitat der zugrundeliegenden Smart
Contracts reduziert wird.

Der dritte Beitrag dieser Dissertation ist ein Protokoll namens FASTKITTEN, das
Trusted Execution Environments (TEEs) verwendet, um die off-chain Ausfiihrung
von Smart Contracts abzusichern. TEEs bieten eine abgesicherte Laufzeitumge-
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bung in denen Programme sicher und korrekt ausgefiithrt werden. Sie erlauben es
einem sogenannten Operator, die Smart Contracts auf der Grundlage von Eingaben
der Benutzer lokal auszufiihren und damit Kosten und Laufzeiten senkt.

Formale Sicherheitsdefinitionen und kryptographische Beweise garantieren die
Sicherheit der entwickelten Protokolle. Des Weiteren zeigen wir die Effizienz der
Protokolle indem wir eine Implementierung anfertigen und analysieren.
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1 Introduction

Blockchain technology emerged in 2008 when Satoshi Nakamoto proposed a cryp-
tographic currency for trustless online payments called Bitcoin [151]. In contrast
to previously proposed electronic cash protocols [49, 50, 32], Bitcoin does not re-
quire trust in a bank or otherwise centralized authority. Instead, the system is
secured by a cryptographic protocol that is executed in an open peer-to-peer net-
work. Motivated by the ongoing financial crisis, Bitcoin promised to be the “cash
of the Internet”, which cannot be controlled by financial institutions.

The Bitcoin implementation was deployed in 2009, only a few months after
Nakamoto published his protocol on a cryptography mailing list [150]. Initially,
Bitcoin was mostly used by a handful of enthusiasts, but it gained considerable
popularity over time when an increasing number of users adopted the currency!.
The technology also received widespread attention from both academia and in-
dustry which lead to many projects analyzing, applying, or extending Nakamoto’s
ideas. The broad interest in this technology is illustrated by the high amount
of projects and research papers in this area, e.g., the original Bitcoin paper was
cited around 9000 times [26] and its implementation was forked over 25 thousand
times [182].

Bitcoin and its follow-up projects are also called cryptocurrencies or distributed
ledger technologies. Their foremost goal is to provide secure financial transactions
in decentralized, trustless networks. The main building block of cryptocurrencies is
the blockchain, a public ledger, which stores the history of all transactions. Nodes
of the underlying peer-to-peer network, called miners, collect transactions and pub-
lish them in new blocks, which extend the chain. Once transactions appear in this
immutable public log, they are considered valid. The basis for distributed ledger
technologies form established cryptographic primitives, i.e., digital signatures au-
thenticate the transfer of coins and hash functions link the blocks together. But
the main challenge of the system is that it requires all miners to reach consensus
in an open and unregulated network. These, permissionless systems are often vul-

!Today, Bitcoin’s market capitalization exceeds 140 billion euros, which is roughly equal to the
GDP of Bulgaria [154].
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nerable to so-called Sybil attacks [65], in which miners get an unfair advantage by
creating new fake identities. Many cryptocurrencies protect against these attacks
by letting miners solve a cryptographic puzzle, called a Proof of Work (PoW) [12].
PoWs ensure that the chance of proposing a new block is proportional to the
computational resources a miner is willing to invest. The system’s security relies
on the assumption that honest parties control the majority of the computational
power.

Smart Contracts. Blockchain technology is also the basis for other promising
innovations, most notably smart contracts, which allow users to deploy program-
ming code on the blockchain. Smart contracts can store data publicly, receive
coins, and define rules on their redistribution. The blockchain enforces these rules,
which allow developers to build self-enforcing trustless applications. While Bit-
coin only has limited support for smart contracts, other cryptocurrencies, like
Ethereum [186], have incorporated powerful contract programming languages in
their design. Popular applications of smart contracts can be found in the shar-
ing economy [18, 174], e-commerce [6], trading [126, 10], online gambling [82, 63]
and digital rights management [66]. When designing protocols between mutually
untrusted parties, smart contracts can be utilized in various ways to secure the
correct and fair protocol execution.

1.1 Challenges for Blockchain Technology

While some have regarded Nakamoto’s original protocol as innovative and ground-
breaking, it also received quite some negative attention, and countless projects
work on adding additional features. Bitcoin and other cryptocurrencies have been
associated with crime because of their pseudonymous user identification. For ex-
ample, Bitcoin was the dominant payment method for online black markets [54]
and ransom payments of extortion malware [113]. While some research papers
(e.g., [143]) showed how law enforcement could follow the paths of pseudonymous
transactions and deanonymize payments, other projects [146, 181, 171] proposed
new currencies with advanced privacy features, that promise anonymous and un-
likable payments. Another criticism that cryptocurrencies face is their enormous
energy consumption. As more miners joined the network and invested their compu-
tational power, the energy usage of the overall Bitcoin system increased drastically.
Currently, the energy consumption and carbon footprint of Bitcoin equals that of
a small country [64]. This waste of natural resources motivated a large body of
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works that propose more sustainable cryptocurrencies, i.e., based on alternative
mining puzzles [116, 149].

Scalability. But one of the biggest disadvantages of distributed ledger technolo-
gies is their limited scalability, which also motivates this thesis. The original paper
envisioned Bitcoin to provide “cheap and fast payments” [151] which, as the user
base grew, quickly turned out to be unrealistic and can not be provided by the
blockchain technology as it is in use today. Ethereum also suffers from limited scal-
ability, which has been called a “big bottleneck”, that could hinder the system’s
further adoption [129].

The limited scalability of cryptocurrencies results from two inherent factors: the
block creation time and the fized block size. The former factor influences the average
time between the creation of two blocks, and the later limits their maximum size.
Both limitations are necessary as they ensure that blocks have sufficient time to
be distributed in the peer-to-peer network. Even with both security measures in
place, temporary blockchain forks can occur when two miners propose different
blocks (somewhat) simultaneously. The consensus rules, which say that miners
should always extend the longest chain, ensure that miners will eventually agree
on one of the chains. To protect against this temporary uncertainty, users should
only accept new blocks and the transactions inside them, once a few newer blocks
extend it; i.e., in Bitcoin, it can take around 60 minutes until transactions are
confirmed. In addition to the long delays, blocks can only include transactions up
to a maximal block size. This parameter either upper bounds the data size (as
in Bitcoin) or the complexity of instructions (as in Ethereum). However, in both
cases, there is a limit to the overall transaction throughput, which indicates the
number of transactions supported per second. In Bitcoin, it is said to be around
seven transactions per second [58] and 15 for Ethereum [17]. These numbers are
incomparable to the high throughput of centralized systems like the Visa credit
card network, which support thousands of transactions per second [58]. During
times of high transaction volume, many transactions compete for the limited space
in blocks. As a result, transaction fees increase drastically as only the payments
with the most lucrative fees are chosen by the miners. The combination of long
confirmation delays and unpredictable and high transaction fees make blockchain
technology unattractive for many applications.

Many research papers have focused on these scalability issues and have proposed
solutions on multiple layers. The authors of [58] have analyzed the limits of how far
the blockchain parameters can be tweaked to ensure that blocks can still propagate
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fast enough in the underlying network. Some scaling proposals change the rules
of the blockchain system, while others change the way that users interact with
it. An example to a more scalable consensus proposal is sharding [133, 119, 189],
which partitions the blockchain into multiple shards, that are maintained by a
subset of nodes. As every miner only has to verify a small subset of transactions
and blocks, this approach can scale the overall transaction throughput, if the
honest majority assumption holds for each sub-committee of the network. Another
idea is to arrange transactions in a Directed Acyclic Graph (DAG) instead of a
blockchain [162], such that they directly reference (approve) previous transactions.
This allows the network to be asynchronous and have (to some degree) different
views on the currently approved transactions.

Another group of proposals build scaling improvements without changing the
consensus rules and is often classified as second layer or off-chain research. The key
idea of protocols proposed in this area is to reduce the on-chain transaction load
by letting the parties interact directly with each other, instead of sending transac-
tions to the blockchain. As a result transaction costs and confirmation times can
be reduced. Examples of off-chain protocols are payment channels (e.g., Light-
ing [161]), commit chains (e.g., Plasma [160]), and off-chain execution frameworks
(e.g., TrueBit [177]).

Secure Protocol Design. As these protocols can become rather complex, it is
challenging to design them without flaws. Severe attacks like the 47 million euros
theft from the “DAO” smart contract [9] or the 30 million euros theft from Parity
wallets [156] show the importance of secure contract and protocol design. The
field of modern cryptography provides important tools necessary to achieve high
confidence about the security of a protocol. By formally defining the properties
of a system, we can quantify its security and describe the attacks we aim to
protect against. Then we can build a protocol and prove that it satisfies these
requirements. By writing formal proofs, we analyze the security of the protocol
and capture possible attack vectors during the design phase.

The need for schemes that are secure by design is demonstrated by various
examples of flawed schemes, that have been designed in an ad-hoc fashion, without
undergoing a thorough security analysis. A famous example for such a project
is the initial proposal [98] of the Transport Layer Security (TLS) protocol and
its predecessor, Secure Sockets Layer (SSL), which are essential cryptographic
protocols securing communication over the Internet. It was later shown that the
initial proposals included severe conceptual flaws and vulnerabilities [145]. In the
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context of cryptocurrencies, the need for secure design has been highlighted by,
e.g., the Zerocoin project [146], in which it was possible to destroy coins of honest
users [170]. This flaw was not captured in the original proposal, despite the fact
that it included a correct security proof, because its security definition did not
capture such an attack.

1.2 Goal of this Thesis

The goal of this thesis is to increase blockchain scalability through the use of smart
contracts. In order to ensure security, we apply the methods of modern cryptogra-
phy and develop formal security definitions and proofs for our protocols. We utilize
the existing blockchain protocols, in particular, Bitcoin and Ethereum, and build
off-chain protocols that shift the main transaction load away from the blockchain.
We apply a scaling technique from the area of Multi-Party Computation (MPC)
that makes complex protocols more efficient. These so-called optimistic proto-
cols [8] were initially proposed for fair exchange settings, where two parties want
to exchange two values. Fair exchange ensures that either both parties learn the
respective values or neither party learns the input of the other. It has been shown
that it is impossible to build such protocols without an (often expensive) Trusted
Third Party (TTP) [155]. Optimistic protocols distinguish two cases: When both
parties behave honestly, we call the protocol execution optimistic, while the pes-
simistic case occurs when at least one player starts deviating from the honest
behavior. The idea is to rely on the trusted intermediary only in the pessimistic
case, and make the optimistic case efficient and cheap. The design rationale behind
this setup is that the optimistic case is much more likely to occur, and thus the
protocol execution will be efficient in the standard case. The trusted intermediary
can act as a judge in many cases and identify who of the participants misbehaved.
This party could then be punished, and the other party can be compensated.
This idea is often applied when optimistic protocols are used in the context of
blockchain technologies where financial penalties and compensation is easy [23].
In the protocols designed in this thesis, we aim to minimize interaction with the
blockchain in the optimistic case and only rely on it to judge on misbehavior in
the pessimistic case.

An additional challenge for our protocols is that the concept of monetary trans-
actions, coins, or financial security is traditionally not considered by modern cryp-
tography. As these elements are crucial to the secure design of our protocols, we
model the blockchain and the interface that we require from it. To this end, we
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formally define the ledger system, which takes care of coins on the blockchain and
ensures their correct transfer. We also provide a formal definition of smart con-
tracts, which includes their functionality and all interactions with both the ledger
and the protocol participants. The protocols we design are accompanied by formal
proofs that show how we achieve the defined security guarantees. In particular, we
ensure that a party will not lose its coins if it behaves honestly, even if all other
involved parties do not follow the defined protocol. This means that no malicious
party can benefit from cheating.

1.3 Contribution

We design three protocols in this thesis that use optimistic protocols for scaling
blockchain technologies. We will discuss them in more detail in Chapters 4 to 6.
In all of these protocols we will try to minimize (expensive and slow) interactions
with the blockchain to reduce the costs. We provide formal security analysis for
each of them and show feasibility through a proof-of-concept implementation.

Chapter 4: Virtual Payment Channel Hubs. In Chapter 4, we present the
PERUN protocol, based on the publication “Perun: Virtual payment hubs over
cryptocurrencies” [69] published at the 2019 TEEE Symposium on Security. In
this work, the scalability of blockchains is improved by extending the functionality
of payment channels. Payment channels were previously introduced by [61, 161,
148] and allow two parties to send transactions off-chain to each other directly
instead of sending them on the blockchain. In Ethereum, payment channels are
secured by a smart contract that is only required for the setup and closing of
channels in the optimistic case, which makes this case very cheap and efficient.
The pessimistic case occurs whenever the two channel participants disagree on the
state of the channel, or if one of the two parties aborts. In this case, a party can
start a dispute process and complain to the smart contract. However, we assume
that the pessimistic case will rarely happen as no party can benefit from it. Thus,
channels provide a very cheap and efficient way to send a large number of payments
and reduce the number of interactions with the blockchain.

Our goal is to design a protocol for executing micropayments nearly instanta-
neously. While the current blockchain mechanism is too expensive and slow to
execute micropayment transactions, payment channels are a promising solution.
However, while this technique nicely scales transactions between two parties, every
new connection requires the setup of a new smart contract on the blockchain. To
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reduce this overhead, payment networks, like the lightning network [161], re-use
existing channels and route payments via one or more intermediaries off-chain. For
example, consider a scenario where party Alice has an open channel with Interme-
diary Ingrid, who, in turn, opened a channel with party Bob. This setup allows
Alice to route a payment to Bob with Ingrid’s assistance. Alice promises to send
the coins off-chain to Ingrid, but Ingrid will only be able to redeem this condi-
tional payment if she sent the same sum to Bob through their channel. This setup
allows Alice and Bob to send and receive payments off-chain without needing to
trust Ingrid, who, at the same time, does not risk losing any funds. The problem
with such previous constructions [161, 148, 165] is that they are inadequate for
micropayments, as the routing over the intermediary adds additional delays and
fees. The goal of this work is to find a new way of combining existing channels
and allow the exchange of microtransactions without additional routing delays and
costs.

To this end, we introduce PERUN, a protocol for wvirtual payment channels,
that allows a faster and cheaper way of routing transactions. Virtual channels
require the communication with untrusted intermediaries similarly to how direct
channels use smart contracts: only during setup, closing, and in case of disputes.
Since sending transactions in virtual channels does not require communication
with the intermediaries, virtual payments are just as fast as payments though
direct channels. We provide a detailed description of the PERUN protocol, formally
model its functionality, and prove its security in the global Universally Composable
(UC) framework [45]. Additionally, we analyze its efficiency with a prototype
implementation in Ethereum and discuss extensions. In particular, we briefly
describe how the system can be extended to provide not just payments but generic
smart contracts [71] and how to build multi-party virtual channels [68].

Chapter 5: Moving Complex Computation Off-Chain. While Chapter 4 pro-
poses a scaling solution that allows users to send simple payments off-chain, in
Chapter 5, we aim to move complex smart contracts away from the blockchain.
Our goal is to reduce execution costs for complex smart contracts without compro-
mising on the security. This is achieved by keeping large inputs off-chain instead
of sending them to the smart contract and by reducing the on-chain complexity of
contract code. The FAIRSWAP protocol does not only improve the scalability and
execution costs of complex contracts but also allows the evaluation of functions,
which would be too large to execute directly in a smart contract. The protocol
designed in this chapter is called FAIRSWAP, and it is based on the paper “Fair-
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Swap: How To Fairly Exchange Digital Goods” [67], which was presented at ACM
Conference on Computer and Communications Security 2018.

In particular, we consider the case of a two-party smart contract, which runs
a fair exchange of a (potentially large) digital commodity. This is the standard
setting of a secure sale over the Internet, where a buyer is willing to pay a price
of p coins to a seller if he receives a certain digital good x. This trade can be
implemented naively by a smart contract, that takes p coins from the buyer and
the commodity x from the seller. If x is “correct”, the contract transfers the money
to the seller. In any other case, the money is sent back to the buyer. But in order
for this to work, the contract needs to evaluate a predicate function ¢, which
outputs 1 if x is correct and 0 otherwise. Such a smart contract ensures financial
fairness, which means that the price is only paid if and only if the buyer receives
the correct x. However, if x gets large or the verification function ¢ is complicated,
the contract gets too costly. Consider the example where z is a digital file that is
identified by its publicly known hash h, i.e., the function ¢ outputs 1 only if the file
x hashes to h. If x is a multimedia file, its size is easily in the range of gigabytes.
A transaction that stores a single megabyte of data on the blockchain would cost
approximately 319 euros in fees? and would not fit into a single transaction.

We propose an optimistic protocol called FATRSWAP, which guarantees the same
financial fairness as the straightforward solution and is efficient even for large x
and/or complex ¢. The idea is that the seller sends the encrypted z directly to
the buyer, who will then lock the coins in the contract, thus confirming that he
received the ciphertext. Only then will the seller reveal the key, which lets the
buyer decrypt x. In case it is the expected file, the money goes to the seller, and
the sale is successfully completed. However, in case the file is wrong, the buyer
can prove this fact to the smart contract using only a (relatively) small statement,
called proof of misbehavior. FAIRSWAP shows how both the size of this proof and
its verification inside the contract can be kept very small in comparison to the size
of  and x. We also evaluate the efficiency of the scheme by providing a proof of
concept implementation. We prove the security of this scheme by showing that if
the file is wrong, the buyer can always expose the seller’s mishehavior. However,
at the same time, a malicious buyer cannot produce such a statement if the file
is correct, and the seller was honest. We additionally discuss extensions of the
protocol [73], in particular how to make the proof of misbehavior interactive to
make the optimistic case of the protocol even more efficient.

2We consider an exchange rate of 162.43 euros and a gas price of 3 GWei. More information
on the Ethereum fee structure can be found in Section 3.2.1.
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Chapter 6: Off-Chain Smart Contracts on Bitcoin. In this chapter, we inves-
tigate another direction of scaling complex smart contracts. Instead of running
the contract on-chain or letting all parties execute the code locally (as in the pre-
vious proposals), we now outsource it to a Trusted Execution Environment (TEE)
— a secure and trustworthy runtime environment for applications [159]. The re-
sulting protocol is called FASTKITTEN and has been presented in the publication
“FastKitten: Practical Smart Contracts on Bitcoin” [59] at the Usenix Security
Symposium in 2019.

The main building block of this work is a TEE, such as Intel’s Software Guard
Extension (SGX) [142, 99, 4], or the ARM TrustZone [7]. Such TEEs are specifi-
cally designed to be tamper-resistant, which allows them to run code in protected
computation environments that strictly isolate a specific application on a poten-
tially untrustworthy machine. The TEE guarantees confidential and correct code
execution. We call the host or owner of the TEE the operator, and while the TEE
itself is trusted, the operator can be malicious. This means he decides when to
run the TEE, and he controls its inputs and outputs but cannot influence the
computation inside the device or learn about its internal state. Based on the secu-
rity of TEEs, we build the FASTKITTEN protocol, which guarantees efficient and
fast evaluation of generic smart contracts that can interact with a fixed number
of parties. Again, we minimize the interaction with the blockchain and only use
it to lock the coins during the contract evaluation, and in the pessimistic case, to
guarantee message delivery and penalize misbehaving players. Unlike the solutions
in previous chapters, we show that FASTKITTEN only requires simple transactions
that are supported by blockchains without advanced scripting capabilities. We
provide a construction that works on Bitcoin and analyze its efficiency and fees.
We formally prove the security of the scheme and show that malicious parties
cannot influence the computation of the contract or steal coins from it.

1.4 Structure of this Thesis

In Chapter 2, we introduce all cryptographic building blocks that we use in the
protocols, i.e., hash functions, encryption, commitment, and signature schemes.
We present the formal notation and definitions that we rely on in this thesis.
Additionally, we discuss the concept and essential aspects of provable security and
present the relevant formal models.

Chapter 3 gives a detailed introduction and explanation of blockchain technol-
ogy and smart contracts. We also analyze their limited transaction throughput
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and compare previous proposals that aim at improving scalability. Additionally,
we focus on the formal properties of cryptocurrencies. In particular, we discuss
the trust assumptions needed to build distributed ledgers and what security they
can offer and present how we formally treat the handling of coins and the commu-
nication with the blockchain.

In the following three chapters, we discuss the protocols PERUN, FAIRSWAP,
and FASTKITTEN, that have been developed in this thesis. The content of each
chapter follows the same order. The contribution is summarized for each of them
at the beginning. Then, we provide a more detailed overview, which presents the
motivation and high-level design ideas for each scheme and discusses additional
related work. A preliminary section in each chapter briefly presents additional for-
mal notations and models, if necessary. Next, we define the security and construct
the protocol. Following this, we present the security proof, and the benchmark-
ing results from our implementation. Finally, we discuss the results and present
extensions to the initial protocol design.

In the final Chapter 7 of this thesis, we compare the three proposed protocols
from the previous chapters and discuss their advantages and shortcomings. We
give an overview of what applications can benefit from their usage.

10



2 Cryptographic Preliminaries

In this chapter we introduce the basic notions and formal cryptographic definitions
that we will use in this thesis.

2.1 Notation

We denote the set of natural numbers 1, ..., m as [m], the set of all binary strings
with the length of n bits as {0,1}", the set of all bit strings as {0, 1}*, and the
n bit string comprised only of 1s as 1". Whenever we consider a probabilistic
algorithm A, then y < A(x) denotes that the output y is generated by A using
internal randomness r. For deterministic algorithms or whenever we make this
internal randomness explicit we write y := A(x,r) instead. When a value x is
sampled uniformly at random from a set X we write z<-X. We will use & to
denote security parameters, and say that a function negl is negligible if for all
positive polynomials poly there exists some constant kg such that for all K > kg it
holds that negl(x) < m.

We denote algorithms Alg with upper case serif free fonts and parties Q with
calligraphic letters. Parties are modeled as interactive Probabilistic Polynomial
Time (PPT) Turing machines. Whenever parties send messages to each other, we
will give each message a name, denoted with typewriter font, i.e., a message with
value x is denoted as (msgName, z).

The notion of computational indistinguishability [108] is a heavily used in mod-
ern cryptography. We say two distributions X and Y are computationally indis-
tinguishable if it is difficult to tell them apart (cf. formal Definition 1). We write
X=.Y.

Definition 1 (Computational indistinguishability). Let k be a security parameter.
Two distribution ensembles X = {X(k)}. and Y = {Y ()}, are computationally
indistinguishable if for every PPT distinguisher A there exists a negligible function
negl s.t.:

PrA(1%,z) = 1] = Pr[A(1%,y) = 1]|< negl(x)

11
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where the probability is taken over the randomness of algorithm A and the random
sampling of x<X and y<-Y.

When we define security, we often consider experiments, that an algorithm A is
trying to win. We will argue about the winning probability of A, where winning
requires him to run the (randomized) experiment and produce a specific event.
We denote this probability as

Pr[ event : experiment |

where the probability is always taken over the randomness of that experiment.

2.2 Provable Security

The concept of provable security is used to formally argue about the security of
cryptographic algorithms and protocols. The paradigm of the field of modern cryp-
tography is to apply rigorous logical argumentation in the form of mathematical
proofs, to show that the analyzed schemes cannot be attacked. Before such a proof
can be conducted, the following has to be specified.

Adversary model: We need to describe any possible attacker that our protocol
should protect against. Modeling this attacker includes a clear description of
its power and capabilities. In this thesis we consider computational security,
which models the adversary as a poly-time bounded! algorithm which is
allowed to have a negligible probability of breaking the security (the attackers
advantage). This means that the adversary can break the security with a
negligible probability, i.e., by guessing or brute-force.

Formal definitions: The first step to a security analysis of every cryptographic
scheme is a sound formal definition of its security. Such a definition captures
the required properties of the scheme by defining the threat model. This is
usually done by providing the adversary model, which defines the capabilities
that an attacker has, i.e., what he can and what he cannot do. The goal
of the adversary is formulated either in a game based or in a simulation
based fashion. In game based security, a security property of the scheme is

In particular we consider algorithms which require runtime that is polynomial in the secu-
rity parameter and are successful with probability which is negligible in the same security
parameter.

12
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defined and analyzed over an adversary who has to win a predefined game
or experiment in order to break the analyzed security property. We say the
system is secure if the adversaries’ advantage (the probability of him winning
the game) is at most negligible in the security parameter. In simulation
based security definitions the adversary needs to distinguish between the
original and a simulated version of the security experiment and his advantage
describes the probability which with he wins the experiment apart from
guessing.

Assumptions: The security of most cryptographic schemes relies on assumptions.
Typically examples for such assumptions are that some mathematical prob-
lem is hard to solve (e.g., factorization of large numbers) or on the existence
of cryptographic primitives and their security. These assumptions should be
easy to state and must be well studied by the cryptographic community.

Security proofs are often non-trivial as we need to show that there does not
exist an adversary that is able to break the stated security definition. Therefore,
showing security against specific attackers would not be helpful in these proofs.
Instead, we utilize reductions (a common proof technique of modern cryptography)
to show that the existence of an adversary would contradict our assumptions. We
will often reduce the security of a scheme to the security of one of the primitives
that we use. Thus, often security statements define a security property of a scheme
in relation to the underlying assumptions.

Security of cryptographic protocols. In this thesis, we design and analyze in-
teractive cryptographic protocols between two or more parties. At the beginning
of the protocol, parties get input, and at the end, they output some value. In
general, we consider a static adversary that can choose which parties to corrupt
but only before the start of the protocol. A corrupted party is controlled by the
adversary, who learns all its inputs and decides how it behaves. If the adversary
possesses additional powers, they must be clearly defined.

In cryptography, we can choose from different models for conducting security
proofs. In particular, we distinguish between the standalone model and the Univer-
sally Composable (UC) model in this thesis. In the standalone model, we analyze
the security of isolated single protocol execution. For this purpose, we define every
security property of the protocol in the presence of a PPT adversary who tries to
break this property. In Chapter 6, we follow this model and prove the security
properties for a standalone protocol execution.

13
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The main limitation of the standalone model is that it ignores a much more com-
plicated world where multiple protocol instances are executed by many parties at
the same time. To address this shortcoming, a different model for proving security
of cryptographic protocols, called the Universally Composable (UC) framework,
was proposed by Ran Canetti in 2000 [43]. The UC model captures the security of
concurrent (parallel and sequential) protocol executions between many parties and
even in composition with other protocols. In contrast to the standalone approach,
protocols are analyzed by running them in the presence of an environment that
initiates the protocol executions, selects all inputs, and controls the adversary’s
behavior (and that of corrupted parties). Security in this model is defined through
an ideal functionality, which captures the ideal outcome of the protocol. This ideal
representation defines all security properties that the final protocol should have.
Additionally, it models the inputs and outputs of every party, and all leakage and
influence that each of them gets (including the adversary). The security proof then
analyzes the differences in the execution of the ideal functionality and the proto-
col, often called the real-world. The key idea is that if these executions cannot be
distinguished (by the environment), then the protocol is just as secure as the ideal
representation. We provide a more formal overview of the UC framework and its
components below in Section 2.4, as this model is used in Chapters 4 and 5.

2.3 Cryptographic Primitives

Next, we present the basic cryptographic primitives that are required for the rest
of this thesis. In particular, we define commitment, signature and encryption
schemes as well as hash functions and their security.

Hash Functions

Cryptographic hash functions are important cryptographic primitives, which are
heavily used by the schemes presented in this thesis as well as for cryptocurrencies
in general. A hash function H (as considered in this thesis) maps binary strings of
arbitrary length to binary strings of a fixed length p. Formally, hash functions are
modeled as keyed hash functions, where a key generation algorithm Gen, which
takes as input the security parameter x, selects a seed from a key-space K. This
seed is used to parameterize the deterministic hash function H*. We require
that the hash function H” satisfies collision resistance [167] for a sufficiently large
parameter f.

14
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Definition 2 (Collision Resistant Hash Functions). Let k be a security parameter.
A keyed hash function is a tuple of algorithms (Gen, H*) where Gen on input of 1%
outputs a seed k € K and H* indexed by the seed k outputs a hash value h € {0,1}#
on input of a value v € {0,1}*. A keyed hash function is collision resistant, if for
any PPT adversary A there exists a negligible function negl s.t.:

Pr[H"(v) = H*(v') AND v # v’ : k < Gen(1%), (v,7) < A(k)] < negl(r)
where the probability is taken over the randomness of algorithms Gen, H*, and A.

In this thesis we will follow the convention of writing H instead of H* as it
simplifies the exposition of hash functions. In Chapter 5 we will model collision
resistant hash functions as random oracles, which we will introduce in more detail
in Section 5.2.

Merkle Trees Merkle trees [144], provide domain-extension for collision resistant
hash functions. In particular, they allow to hash a large input string to a constant
sized digest h € {0,1}*. This is particularly useful when many (say n) elements
are hashed to a single value, as it is possible to generate a short proof that a
certain element is part of the tree. The key idea is to create a complete binary
tree, which has the n values as leaves, and every node is a hash of its children. The
root of that tree serves as a digest h of the n values, and whenever it needs to be
shown that a particular element was part of the tree, we open all values (i.e., the
siblings) on the path between the node and the root hash, resulting in a number
of [log(n)] elements. In Section 5.2, we provide more details on how to construct
Merkle trees using the algorithms Mtree™, Mproof’*, and Mvrfy™.

Encryption Schemes

A symmetric or private key encryption scheme allows to encrypt a message x from
a message space X under a secret key k, such that the ciphertext without the key
does not reveal information about x. Formally, a symmetric encryption scheme
for a message space X consists of three PPT algorithms (Gen, Enc, Dec). The key
generation algorithm Gen takes as input 1%, where x is the security parameter,
and outputs a key k from key space K. The encryption algorithm Enc takes
as input a key £ € K and a message * € X and outputs a ciphertext ¢ from
ciphertext space C. The deterministic decryption algorithm Dec, which takes as
input the key £ € K and ciphertext ¢ € C, outputs x or an error denoted as L.
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We require correctness of the scheme, i.e., that for all k <— Gen(1%) and = € X:
Dec(k, Enc(k,x)) = x.

In contrast to symmetric encryption schemes, asymmetric or public key en-
cryption schemes allow anyone to encrypt a message x under a known public
key pk. But only the owner of the corresponding secret key sk, can decrypt the
ciphertext. Formally, an asymmetric encryption scheme for messages x € X con-
sists of three PPT algorithms (Gen, Enc, Dec). The key generation algorithm Gen
takes as input 1%, where k is the security parameter, and outputs a key pair
(sk, pk) < Gen(1%). The encryption algorithm Enc takes as input a public key pk
and a message r € X and outputs a ciphertext ¢ € C. The deterministic decryp-
tion algorithm Dec, which takes as input a secret key sk and a ciphertext ¢ € C
outputs x or an error denoted as L. We require correctness of the scheme, i.e.,
that for all (sk, pk) < Gen(1*) and = € X: Dec(sk, Enc(pk,x)) = x.

The asymmetric encryption scheme used in this thesis needs to be indistinguish-
able under chosen plaintext attacks (IND-CPA security) [108]. This means that
for any PPT adversary that chooses two messages xg, 1 (of the same length) and
learns ¢ = Enc(pk, z,) for a randomly chosen bit b, it must be hard to guess b
correctly except with negligible advantage. The adversary in this case is called
twice, once to provide two inputs x1, xs and a second time to choose which of the
two inputs was encrypted. Note, that the adversary stores a state between these
two calls and (as it gets the public key as input) can encrypt arbitrary messages.

Definition 3 (IND-CPA Secure Encryption). Let k be a security parameter. A
public key encryption scheme (Gen, Enc,Dec) has is indistinguishable ciphertexts
under chosen plaintext attacks (is IND-CPA secure) if for all PPT adversaries A
there exists a negligible function negl s.t.

Pr[b = b :(sk, pk) < Gen(17%), (zo, z1) + A(1", pk),
b<-{0,1}, ¢ < Enc(pk, ), 0" + Alc)] < 5 + negl(k)

where the probability is taken over the randomness of algorithms Gen, Enc and A
and the random choice of b<-{0,1}.

Digital Signature Schemes

Digital signatures allow a sender to authenticate messages with a secret key sk,
such that every recipient with knowledge of the corresponding public key pk can
be ensured that the message was sent by the sender. In particular, it is computa-
tionally infeasible to generate a valid signature without the secret key. Formally,
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a signature scheme for messages from a message space X is a triple of PPT al-
gorithms (Gen, Sign, Vrfy). The key generation algorithm Gen takes as input 17,
where £ is the security parameter, and outputs a key pair (sk, pk) from key space
K. The signature algorithm Sign takes as input a secret key sk and a message
x € X and outputs a signature o. The deterministic verification algorithm Vrfy
takes as input the public key pk, the message x, and the signature ¢ and outputs
1 if the signature is correct or 0 otherwise. Again, we require correctness of the
scheme, i.e., that for all (sk, pk) <— Gen(1%) and = € X: Vrfy(pk, z, Sign(sk, x)) = 1.
We require that the signature scheme is existentially unforgeable against adaptive
chosen message attacks (we will also say EUF-CPA secure). This means we protect
against an adversary who can see valid signatures for messages of his choice. For-
mally this is modeled as a signing oracle which on input of a value x outputs the
signature o = Sign(sk, ). The task of the adversary is to produce a fresh message
(that has not been queried before to the signing oracle) and a valid signature with
respect to pk.

Definition 4 (Unforgeability Against Adaptive Chosen Message Attacks). Let
Kk be a security parameter. A signature scheme (Gen,Sign, Vrfy) is existentially
unforgeable against adaptive chosen message attacks if for all PPT adversaries
A5 with oracle access to the signing oracle Sign(sk,-), there exists a negligible
function negl s.t.

Pr|Vrfy(pk,xz,0) =1 AND = ¢ Q :(sk, pk) < Gen(1")
(z,0) « ASECE) (1% pk)] < negl(k),

where Q) is the set of all queries that A made to the signing oracle and the proba-
bility is taken over the randommness of algorithms Gen, Sign and A.

Commitment Schemes

A commitment scheme allows a sender to convince a receiver that he fixed (or
committed to) a message x by providing a commitment ¢, which does not reveal
information about . At a later point he can reveal x and prove that it was com-
mitted to by providing an opening value d. Formally, a commitment scheme for
input values = € {0, 1}* consists of three algorithms (Gen, Commit, Open), where
the key generation algorithm Gen takes as input 1, where x is the security parame-
ter, and outputs public parameters pp. The (probabilistic) algorithm Commit,,(z)
is parameterized by these public parameters and outputs a commitment ¢ and an

17



2 Cryptographic Preliminaries

opening value d, and the algorithm Open,,(c,d) = = outputs z for a valid com-
mitment (¢, d) < Commit(z) and L otherwise. A commitment scheme is correct,
if for all z € X: Open,,(Commit,,(z)) = x with pp +- Gen(1¥). Cryptographically
secure commitment schemes [108] have to satisfy the hiding and binding proper-
ties. Hiding guarantees that for any two messages =,z and (¢, d) = Commit,,(z)
and (¢, d') = Commit,,(2'), we have that ¢ ~. .

Definition 5 (Computationally Hiding Commitments). Let x be a security pa-
rameter. A commitment scheme C' = (Gen, Commit, Open) is hiding, if for any
PPT adversary A there exists a negligible function negl s.t.:

Pr[b =0 :pp < Gen(1%), (0, 1) + A(1", pp), b<-{0, 1},

1
(¢,d) + Commit,,(xp),b <+ A(c)] < 5T negl(k)
where the probability is taken over the randomness of Gen, Commit and A.

The binding property prevents the commiter from being able to open the com-
mitment to a different value than x. In particular, it requires that it is com-
putationally hard for any PPT adversary A to find a triple (¢,d,d’) such that
Open,,(c,d) = x and Open ,(c,d') = 2" with x # 2’ and z,2" # L.

Definition 6 (Computationally Binding Commitments). Let x be a security pa-
rameter. A commitment scheme (Gen, Commit, Open) is binding, if for any PPT
adversary A there exists a negligible function negl s.t.:

Pr[Open,, (c,d) =z AND Open, (c,d) = 2’ AND x # ' AND x,2" # L :
pp < Gen(1%)(c,d, d') = A(1", pp)] < negl(r)

where the probability is taken over the randomness of Gen, Commit, and A as well
as the random choice of b<-{0,1}.

For simplicity we will often omit the public parameters and write Commit and
Open without explicitly mentioning pp.

2.4 The Universal Composability Model

One common method to describe and analyze complex cryptographic protocols
is the universal composability (UC) framework of Canetti [43]. We analyze a
protocol IT which runs among a set of parties P, that are modeled as interactive
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PPT Turing machines. In the UC framework, security of a protocol is analyzed by
comparing its execution with an idealized and simplified trusted protocol execution
F, which we call ideal functionalities. The case when the parties interact with the
real protocol II is called the real world execution while the ideal world means the
parties interact with the ideal functionality F instead. Both worlds are operated
by a special party Z — the so-called environment, which selects inputs for the
protocol participants and receives their outputs. In the real world 11 is executed
among the set of parties P, which are connected by authenticated communication
channels that guarantee delivery of messages within one round. In addition, a
special party called the adversary A may corrupt parties. Corruption of a party
P € P means that the adversary takes full control of P’s actions and learns his
internal state. For simplicity, we consider a static adversary, where corruption
only takes place at the beginning of the protocol. Formally, the output of the real
world execution of protocol II with input z is denoted as

REALZA(k, z).

To analyze the security of the protocol Il in the real world, we compare its
execution with an idealized protocol execution. In the ideal world we consider a
dummy protocol where the parties from set P just forward their inputs to an ideal
functionality F. We call these parties dummy parties. The ideal functionality
specifies the protocol’s interface and can be viewed as an abstract specification of
what security properties I shall achieve. In the ideal world, the ideal functionality
can be attacked through its interface by an ideal world adversary — called the
simulator Sim. Formally, we denote the output of the ideal world execution as

IDEALZ"™(k, x).

The environment Z orchestrates both worlds by providing the inputs for all
parties, and receiving their outputs. But this party acts as a distinguisher, which
means that is does not know which of the worlds it is interacting with. We say
a protocol II is UC-secure if the environment Z cannot distinguish whether it is
interacting with the ideal or real world. This indistinguishability must hold for all
PPT environments Z. We prove this security formally by showing that for every
real world adversary A we can construct an ideal world simulator Sim such that
for all environments Z and all inputs x the following holds:

REALZA(k, ) ~. IDEALZ"™(k, x).
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Security in the UC framework implies that a protocol II is at least as secure as
the ideal functionality F. We will then also say that a protocol emulates the ideal
functionality.

We use a particularly useful property of the UC framework to modularize the
design of our protocols. The universal composition theorem [43] allows us to use
ideal functionalities as subroutines in our protocols and later replace them by re-
spective protocols that realizes these functionalities. A protocol which uses an
ideal functionality F as a sub-routine is often said to run in the F-hybrid world.
We will apply this technique to model interactions with smart contracts (cf. Sec-
tion 3.2). To this end, we define a hybrid world where the protocol has access to
an idealized smart contract functionality C'. The execution of the functionality
is trusted and can only be influenced through its specified interface. If a hybrid
functionality is used during the protocol execution we denote the output of this
hybrid-world protocol execution as

HYBRIDZ (s, x)

and show that it is indistinguishable from the output of the ideal world execution.

Global UC model. A shortcoming of the UC framework is that — even though it
models concurrent protocol executions — it does not allow that different executions
share the same hybrid functionalities. This, however, leads to unwanted restric-
tions when it comes to modeling a protocol component (like a random oracle [46]
or a common reference string [45]) that is available in many different protocols.
In the traditional UC model, security could only be guaranteed if, for every single
protocol instance, a different and independent component is used. However, this
does not correspond to how these components are implemented in practice. E.g.,
the random oracle is often replaced with the same hash function. To overcome this
limitation, in [45], the authors propose an extension to the UC framework, which
allows for global shared functionalities. In particular, these functionalities can be
accessed from both the ideal and real-world execution and store global state.

In Chapters 4 and 5, we will use global functionalities to model the functioning
of the ledger, which (for concurrent protocol executions) handles the secure coin
transfer, as realized by blockchains. By modeling the ledger as a global functional-
ity, we allow that our smart contracts (as hybrid functionalities) make changes on
the ledger. These changes affect all concurrent protocol executions and are public
to any observer. This modeling ensures that our protocols are secure, even if the
balances on the ledger are affected by other concurrent executions of the same or
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different protocols. In Chapter 5, we will additionally model the random oracle as
a global functionality following the work of [41]. We provide detailed information
on the model we use in Section 5.2.
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Since the invention of the Internet, researchers (i.e., [49, 50, 32]) envisioned digital
cash systems that allow everyone to own, transfer, and receive money in a de-
centralized and trustless manner. Instead, only a handful of large companies like
Visa, Mastercard, or Paypal offer the financial infrastructure that allows monetary
transfers all over the globe. But all of these providers are controlled by a central
authority that the users have to trust. These companies control which users and
transactions to accept and how the transfers are processed. Additionally, these
companies benefit from monitoring and storing the transaction history to create
individual customer profiles.

In 1985 David Chaum proposed anonymous electronic cash (in short e-cash) [49,
50], which was later extended by Brands [32] and many others. While there is still
a central bank in these proposals, it issues coins anonymously. The users withdraw
these coins and can spend them to any merchant they like. When the merchant
deposits the coins back to his bank account, he has the guarantee that these
coins were valid, but the Bank cannot link the user to the merchant. While e-cash
systems in some regards mimic the traditional cash systems, they still require trust
into a central component, which decides on exchange rates and who can withdraw
coins.

With the proposal of Bitcoin in 2008 [151] by Satoshi Nakamoto, a new digital
currency was invented that does not rely on a trusted intermediary but distributes
the trust to a decentralized network instead. The challenge of Bitcoin is to achieve
some form of Consensus within this network. However, in contrast to traditional
consensus [127], the set of parties in the network is unknown and may change over
time. This setup is often referred to as the permissionless model of consensus.

In this chapter, we will first present the basic building blocks and mechanics
of Bitcoin. We will also present another cryptocurrency, called Ethereum, and
their main feature smart contracts. While the results in this thesis could work
on other currencies as well, these two currencies will serve as exemplary tech-
nologies for the modeling and implementation, since they are the largest of their
kind. In Section 3.4, we present an overview of the formal security properties that
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blockchain-based cryptocurrencies like Bitcoin and Ethereum provide.

3.1 Bitcoin

We start by describing the original Bitcoin protocol, as described in [151]. There
are many challenges in designing a secure, distributed currency. It must guarantee
that only the owner of a coin can decide when and how to transfer a coin, and at the
same time, prevent that someone spends a coin twice (double spending). Creating
a unified global decision on the status of a transaction is difficult in distributed
systems where the number of participants is unknown, and the creation of new
nodes is cheap. In such distributed networks, we must always assume that some
participants have malicious intent. They might for example want to change the
validity of transactions in retrospect for their enrichment or censorship. In this
section, we describe how Bitcoin solves these challenges step by step, starting with
the layout and mechanics of the used data types, i.e., the transactions and blocks.
Afterwards, we explore how these elements are used in the overall Bitcoin protocol
and how the security of the system is guaranteed.

3.1.1 Transactions

Digital signatures' secure the ownership and correct transfer of coins (cf. Sec-
tion 2.3). Bitcoin users are identified via their addresses, which is (a hash of) their
public signing key. When a user wants to spend his coins, he specifies a receiver
using his address and authorizes the payment by providing a digital signature.
Therefore digital signatures ensure that only the owner of the corresponding se-
cret key can create a transaction. Once a transaction is signed, however, anyone
can publish it by sending it to the network. Bitcoin transactions work in the
sp-called Unspent Transaction Output (UTXO) Model.

Transactions are the fundamental underlying data structure of Bitcoin. Every
transaction tx contains a list of input references, and a list of output scripts. Every
input reference points to a prior transaction (more specifically to one of its output
scripts), which will be spent by transaction tx and a witness. Output scripts spec-
ify the rules on how to redeem a certain number of coins in the Bitcoin scripting
language. If a transaction distributes the money to multiple destinations, it re-
quires multiple output scripts. A transaction can also contain multiple inputs and

!The underlying signature scheme used in Bitcoin is the Elliptic Curve Digital Signature Algo-
rithm (ECDSA).
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combine coins from different sources. To spent transaction tx; (i.e., refer to it as in
the input of a later transaction txs), the spender has to append a correct witness,
often in the form of a signature. Miners accept a transaction tx, that spends an
output of tx; if the output script of tx; in combination with the transaction witness
of txy evaluates to true. Most (standard) output scripts that send coins to another
party, only specify its address, i.e., the hash of the public key of the receiver. In this
thesis, we mainly require these simple standard pay-to-pubkey-hash transactions,
which are redeemed using the signature of the sender. Additionally, we need two
more features of the scripting language. The OP_Return [151] instruction allows
storing data in a transaction and the OP_CheckTimeLockVerify [178] instruction
timelocks it. The later allows us to specify at which future time? a transaction will
be considered valid. Similar to [5], we represent transactions by tables, as shown
exemplary in Figure 3.1.

Transaction tx

tx.Input:  Coins from unspent input transaction

tx.Output: Coins to receiver address

tx.Time:  Some timelock (optional)

tx.Data: Some data (optional)

Figure 3.1: A simple transaction tx with a single input and output.

Bitcoin also supports more complex transaction outputs as long as they are
stated in the minimalistic Bitcoin scripting language (SCRIPT). This language
supports simple expressions like boolean arithmetic and enables constructions such
as fair commit-reveal schemes [23]. Several works have shown how Bitcoin can
support lotteries [147], poker games [123], and generic MPC [122] protocols. Other
cryptocurrencies provide more expressive scripting capabilities. In Section 3.2.1
we present Ethereum transactions which support Turing complete instructions —
also called smart contracts.

3.1.2 Blocks and Mining

All participants of the Bitcoin network must agree whether a transaction is valid,
which requires that they agree on the order of transactions. This ordering is
achieved by sorting them into a list of blocks, the so-called blockchain. Every Bit-
coin block includes an ordered list of valid transactions. New blocks are proposed

2Time is measured in total block count.
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on average every 10 minutes and extend the tail of the chain by referencing the
previous block (via its hash). The hash references link all blocks together, starting
with the first, so-called genesis block. They ensure that any attacker, who wants
to change a single block (or its content) needs to change the whole chain from that
point onward.

The blockchain is stored redundantly by every node in the distributed Bitcoin
network. Some of these nodes, called miners, work on the creation of new blocks.
They collect new transactions, verify their correctness, and try to publish them
in new blocks. Together, all miners secure the correctness and liveliness of the
cryptocurrency [85]. By verifying and confirming new blocks, they ensure that no
false blocks are published and by proposing new blocks, they guarantee that new
(valid) transactions are included in the blockchain eventually (more formally these
properties are discussed in Section 3.4).

The underlying network is open, which means everyone can join as a new node
and can become a miner. The peers are connected through a gossip network, where
new transactions and blocks propagate by being forwarded from one node to its

neighbors.
Block; Block ;41
—— Header ——Header
H(Blockj.1) PoW solution {-- -t H(Block;) PoW solution
Tx root hash Difficulty Tx root hash Difficulty
——Body ——Body
Transactionq: c¢; coins from A -; B Transactiong: cz coins from E -; F
Transaction,: c, coins from C -; D Transaction,: ¢, coins from G -; H

Figure 3.2: Bitcoin Blockchain

The open and unregulated nature of these systems raises the need for protection
against Sybil attacks [65]. In traditional voting style systems, attackers can gain an
unfair advantage from creating many fake identities and increasing their influence
on the vote. In Bitcoin, this problem is prevented by binding the miners’ influence
on the computational resources that they are willing to invest.
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Proof of Works. A Bitcoin block consists of a header and a body that includes
the transactions (cf. Figure 3.2). The header contains, among other values, the
reference to the previous block, a hash of all transactions in the body (i.e., a Merkle
tree root hash).

Every block header must also include the solution to a so-called PoW, a puzzle
that requires a significant amount of computational power to solve. The purpose
of these schemes is that a prover can convince a verifier that he spent (on average)
a certain amount of work on finding a solution. The proof must be easy to verify,
and its difficulty should be adaptable. PoWs have been proposed in the literature
before, i.e., for denial-of-service or spam prevention [12]. In Bitcoin, PoWs prevent
Sybil attacks, as they ensure that the miners’ contribution to finding new blocks is
proportional to their computational power. The mining process works as follows:
A miner (acting as the prover) has to provide a value which (in combination with
the current block header and the hash of the latest block) hashes to a sufficiently
small number (the difficulty). The best strategy to find this PoW solution is
guessing, which means that all miners race against each other to find the solution
first and publish the next block. The probability of winning this race increases
with the number of computational resources a miner invests in this task.

Whenever a new block is found, it is sent to all miners and the race restarts. The
case where there are two (or more) blocks competing against each other is called
a fork. This case can happen, when two miners find a block at the same time or
when a malicious miner publishes another version of a recent block. Honest miners
reject blocks that include invalid transactions, and malicious miners might propose
alternative blocks to change the transaction order. While, in rare cases, forks can
occur for the duration of a few blocks, they are usually quickly resolved. Honest
miners will always choose the longest (or rather the most difficult) fork and try to
extend it, which guarantees that all honest miners will work on the same branch
of the chain eventually, and the other branch will perish. The temporary risk of
forks leads to the recommendation to wait a while until a block is considered valid.
In fact, it is said only to accept a block which has been confirmed at least by six
newer blocks.

To keep the average delay between blocks fixed (to on average of 10 minutes)
the difficulty is adapted in regular intervals to account for changes in the invested
mining power. At the time of writing this thesis, the hashing power which is
invested in Bitcoin is equal to approximately 1,153 x 10® THash per second.
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3.1.3 Bitcoin Fees

The primary reason for miners to invest in and spent energy on running mining
hardware is because it is profitable. For every new block, that a miner publishes,
he gets a block reward and transaction fees.

Mining rewards. The block reward consists of newly minted coins, which are
created according to the rules of the protocols and can be claimed by the miner
of the block. When the Bitcoin currency started in 2009, the block reward was
set to 50 BTC. As the value of coins rises over time and to counter inflation, the
reward halves every 210 000 blocks as more and more coins are created. The overall
Bitcoin supply will stagnate at around 21 million coins in the year 2140 [151].

Transaction Fees. In addition to the mining reward, the miner will also get the
transaction fees inside the block. The sender of a transaction sets and pays the
transaction fees, which means he can freely choose how much he is willing to pay
(if at all). As the size of blocks is limited by 1 megabyte, the individual fees per
byte influence which transactions are most profitable for miners and will most
likely be included first. Table 3.1 gives an overview of how Bitcoin fees influence
the confirmation speed. Transaction fees in Bitcoin are typically stated in satoshi
(the lowest denomination of Bitcoin equal to 1 x 1078 BTC) per Byte.

’ Priorty | Fee per Byte | Waiting Time ‘ # of Blocks

low 1 satoshi 300 min 19
medium 5 satoshi 180 min 9.5
high 10 satoshi 55 min

very high 15 satoshi 35 min 1

Table 3.1: Average time and number of blocks that it takes until a Bitcoin trans-
action is included (numbers from [27])

In this thesis we will assume transactions have a very high priority, thus they
should be included in the next block (by an honest miner). This means we
consider transaction fees around 15 satoshi per byte. The median size of Bit-
coin transactions is 214 bytes, which means we consider transaction fees around
0.26 euros per transaction. We assume for this calculation an exchange rate of
7951.95 euros per BTC, which corresponds to the 180 day average exchange rate
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of Bitcoin (calculated from the 24th of Feburary 2020). The data was taken from
blockchain.com [28].

3.2 Ethereum and Smart Contracts

The second biggest cryptocurrency is Ethereum, which was proposed in 2014 by
Vitalik Buterin [37] and later formalized [186] and implemented. The design of
Ethereum differs from Bitcoin in some ways but the most important one is that
it provides rich scripting features and smart contracts. It enables countless novel
applications and is often regarded as a glimpse into our future.

3.2.1 Smart Contracts

Informally speaking, smart contracts are coded agreements, which are stored on the
blockchain, that can receive, store, and redistribute coins depending on some well-
specified conditions. Smart contracts bind money transfers to program code, and
thereby allow to execute transactions based on complex contractual agreements
enforced by the miners of the cryptocurrency. Unlike Bitcoin, Ethereum does not
work in the UTXO model but in an account-based model, which distinguishes two
types of accounts:

Externally owned accounts Represented though a public address, based on an
ECDSA public key, these accounts are controlled by users. Sending coins
requires a correctly signed transaction.

Contract accounts These accounts are controlled by their contract code, which
describes how stored coins are redistributed. Contract addresses are gener-
ated during deployment.

Every account is identified over an address and can hold Ether (the currency unit
in Ethereum). Contract accounts additionally also store their contract code (in
bytecode form) and storage. Once deployed, the contract is public and all users
may interact with it. A smart contract cannot act on its own. Instead, it needs to
be triggered by a transaction from an externally owned account. Such a contract
function call contains the function parameters and might optionally contain funds
that are sent to the smart contract. Such a transaction is executed by the miners
that evaluate the contract function code with the provided parameters as input.
As a result, the contract state is updated. All honest miners verify the correctness
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of published blocks and, thus, also of the state updates. All miners must have
the same view on the code and execution of contracts. Thus they can only run
deterministic code and cannot have a private state.

Smart contracts are passive pieces of code that do not act on their own nor
interact with users directly. Therefore, we require that whenever a contract func-
tion needs to be evaluated, a user triggers the contract with a function call. If
one contract is activated from an externally owned account, it can also call other
contracts via their address. A call from one contract C4 to another contract Cg
is called a contract message. They work similarly to contract calls and reference
a specific function. Contract messages can contain function parameters and even
transfer coins. After the function evaluation in contract Cp finishes, the rest of the
contract C4 is executed.

Miners locally store the state of the Ethereum system, which contains the current
state of all active contracts. Ethereum blocks contain both the list of transactions
and a hash of the most recent state. This allows Ethereum nodes to execute
contract calls quickly and verify the state transition proposed by new blocks.

Contract Deployment

In Ethereum, smart contracts can be written in a scripting language (e.g., Solid-
ity), which is then compiled down to low-level Ethereum Virtual Machine (EVM)
bytecode. In order to deploy a contract, an externally owned account publishes a
create transaction, which includes the contract code as storage. When this trans-
action is processed, the contract code will be written on the blockchain, and a
contract address is generated. If the contract contains a constructor, this function
is executed immediately by the miners.

A recently added EVM instruction® introduced a new way of contract deploy-
ment [80]. Previously, a contract address is generated during deployment, and it
was not possible to securely predict which address this would be. The new create2
transaction deterministically calculates the address from the hash of the contract
code instead. This method allows users to reference and send coins to contracts
that do not exist yet. The secure binding of code and address guarantees that
they can always deploy the code later, if necessary.

3This instruction is active since the Constantinople fork of march 2019
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Ethereum Gas Model

Transaction fees for Ethereum transactions are paid in gas, which is an internal
Ethereum currency. Transaction fees in Ethereum are essential to prevent Denial
of Service (DoS) attacks, which could force all miners to run unnecessary long
code and block their verification resources. Therefore, the amount of gas depends
on the size and complexity of transactions. The exact gas value is measured by
accumulating the costs of every EVM instruction in the code. All instructions in
Ethereum have a fixed amount of gas assigned to it [186]. If a transaction does
not contain a sufficient amount of gas, the miners stop the contract execution and
revert all changes to the state. Additionally, to the gas amount, every transaction
also specifies a gas price, which defines the exchange rate between gas and ether.
As miners will always consider transactions with the highest revenue first, the
gas price influences how fast a transaction will be processed. Just as in Bitcoin,
these transaction fees underly the market demand and rise when blocks get full. In
Ethereum, the block size is bounded by how much gas can be used for evaluating all
transactions inside it. Table 3.2 shows the relation of gas prices to the confirmation
times. For this thesis, we will consider a medium priority of transactions, which
means all transaction costs are computed with a gas price of 3 Gwei. We chose this
value because it leads to approximately one minute of confirmation time, which still
means the protocols will proceed reasonably fast (especially compared to Bitcoin).
At the same time, the gas prices are low enough to be comparable with related
works. For all calculations in this thesis, we choose an exchange rate of 162.43
euros per Ether, which corresponds to the 180 day average exchange rate calculated
on the 24th of February 2020. The data was taken from etherscan.io [78].

Priority | Gas Price | Waiting Time ‘ # of Blocks ‘

low 1 GWei 3640.666667 sec 317.6
medium | 3 GWei 326.3333333 sec 27.35
high 6 GWei 37.66666667 sec 2.45
very high | 12 GWei | 24.66666667 sec 2

Table 3.2: Average time and number of blocks that it takes until an Ethereum
transaction is processed.

The price per instruction varies largely, where the overall idea is that instruc-

tions that require a lot of the miner’s resources are more expensive. For instance,
addition costs 3 gas and multiplication, or modulo operations require 5 gas. Some
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cryptographic operations like signing and hashing have their own instructions in
the EVM language, i.e., evaluating the Keccak-256 hash on a 32 byte input takes
36 gas. Storage is especially expensive in Ethereum since every stored value takes
space in the state, which all miners have to store in highly accessible memory.
Storing a 32 byte word to the Ethereum storage costs 20000 gas and 5000 if al-
ready allocated storage is reused. Storing values to volatile memory instead is
much cheaper and only requires 3 gas units. A special EVM instruction called
selfdestruct allows users to deactivate contracts, such that they can be excluded
from the miner’s state. This instruction can even lead to the payout of gas to the
users.

3.2.2 Designing Secure Contracts

An essential component for the construction of secure smart contracts is the con-
cept of timeouts. Whenever an input of a party is required, we construct a timeout
around the expected message, which is large enough that an honest party always
has sufficient time to react. If an expected message is not received in time, we
consider this a faulty behavior. The other contract participant(s) can then trigger
a timeout function, which verifies the misbehavior and punishes the party for the
missing input. For the secure design of smart contracts, it is crucial that honest
parties must never be punished, and therefore, the timeout is sufficiently large. In
this thesis, we denote this maximal waiting time as the blockchain delay A. We
note that in most cases, parties will react reasonably fast, but an honest party’s
response could nevertheless be delayed up to A rounds (but not longer). Addition-
ally, we require that every transaction and state change is only considered valid,
after it has been confirmed by a few more blocks. This security measure mitigates
the risks of temporary forks.

When designing secure smart contracts, we always try to identify malicious be-
havior. Fault attribution is necessary whenever the contract ends up in a state
which does not happen during honest behavior. We distinguish between uniquely
and non-uniquely attributable faults. Uniquely attributable faults occur when a
malicious party does not follow the protocol, and the other participants can con-
vince the contract about this fact. This case occurs, e.g., when a party signed
two contradictory statements, or when a timeout expires. A fault is non-uniquely
attributable if some participant of the protocol knows that some other party is
dishonest, but they are not able to prove it to the contract. A standard example
is a situation when a message is sent directly from a party P to party Q. In this
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case, @ might claim that the message was not received while P claims that he sent
it. The parties know who of them is dishonest, but neither can prove it. Uniquely
attributable faults are easy to handle since we can instruct the contract to punish
the cheating party financially. Non-uniquely attributable faults are harder to deal
with as it is not clear who should be punished and which party is telling the truth.

Grieving. Another factor that needs to be considered for a secure and fair con-
tract design is how much fees each party needs to pay. Ideally, the fee burden
is equally distributed over all protocol participants, and the maximum amount of
fees can be predicted before the protocol starts. This is often not possible when
one of the parties misbehaves. In these cases, it would be ideal if the faulty party
can be identified and has to carry the fees.

If one of the parties can force another party to pay a much higher share of the
fees, we call this a grieving attack. More precisely, a grieving factor of 2 : 1 means
that it costs roughly x coins to force another party to pay 2x coins in fees. Ideally,
the factor is 1 : 1, such that no party has an advantage, or even better, every fault
can be attributed, and the misbehaving party carries all fees.

Grieving can also be applied to coin deposits or so-called collateral [74]. For
the security of some smart contracts, parties need to lock coins for a certain time,
e.g., penalty deposits or locking coins for routing payments in payment channels
(cf. Section 3.3). For the duration of this locked deposit, the owner cannot use
the coins for any other purpose, and the opportunity costs are often regarded
as collateral costs. Grieving occurs in this case as well, when a malicious party
forcibly prolongs the duration of deposits, which increase costs for honest parties.
In particular, smart contracts need to ensure that any locked deposit is unlocked
eventually, and the lock time is upper bounded.

3.3 Scalability Solutions

In the previous sections, we explained how Bitcoin and Ethereum work and why
they have an inherent scalability problem. Recall that their transaction throughput
is limited because blocks have only a fixed size and there needs to be sufficient
time between blocks such that they can propagate through the underlying gossip
network. In this section, we discuss previously proposed scaling solutions and
analyze how they can help to reduce transaction costs and confirmation times.
Proposals for fixing this scalability issue can be categorized as first or second layer

33



3 Blockchain Technology

solutions. Layer one proposals aim to change the consensus rules of the blockchain
technology to increase the transaction throughout. Layer two solutions work on
unmodified cryptocurrencies and aim to scale through off-chain protocols that only
utilize the blockchain for the setup and for settling disputes.

3.3.1 Changing Blockchain Parameters

The bottleneck of the systems is the peer-to-peer gossip network, which limits
the speed of block propagation. If blocks get too large or there is not sufficient
time between blocks, nodes on the edges of the network will not receive blocks in
time to mine competitively. Such a setup would lead to centralization in the long
term, which contradicts the goals of the systems. The authors of [58] analyzed
the Bitcoin network and concluded that the block size should not be increased to
more than 4 MByte, and the blocks should have at least 12 seconds to propagate
through the underlying gossip network. In their study, these parameters ensure
that 90% of miners would have sufficient bandwidth and connectivity to continue
mining. While this measure could help Bitcoin to support 26 Transaction per
Second (TPS), it is not enough to reach the throughput of centralized systems like
Visa credit card network with 2000 TPS [58].

Some protocols like Fibre [138] or Kadast [168] optimize the message propagation
in Bitcoin and others like the bloXroute project [118] propose scaling though a
different network architecture. Thir idea is to use semi-trusted relays nodes that
collect and distribute block and transaction data faster than they would be in
gossip networks. If the network information propagation speeds up, it would be
possible to increase the block size even further than the bounds found in [58].
Sometimes, these scaling approaches are also called layer zero scaling [103].

3.3.2 Scaling the Consensus Layer

Projects which propose changes to the consensus protocols are often classified as
layer one scaling solutions. They cannot be applied to existing cryptocurrencies
easily, as they require an entirely new blockchain protocol which must be accepted
by all miners.

A broad range of blockchain consensus protocols has been proposed in the last
years, and we refer the reader to [15] for a detailed overview. Here we present a
rough categorization and name only a few typical protocols for each category. Tra-
ditionally, consensus is a problem from distributed systems or MPC, often with
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a fixed network of users (i.e., PBFT [48]). Some consensus protocols approach
the problem by electing a leader, i.e., to propose new blocks. The blockchain
consensus of Bitcoin [151] and Algorand [88] fall in this category. In hybrid pro-
tocols, the network elects one or more committees to speed up the process, e.g.,
Chainspace [19] or Omniledger [119].

Sharding

A specific form of committee style consensus is sharding. In traditional consensus
protocols, the system slows down when more parties join, as either the number
of rounds, message, or communication complexity grows in the number of partici-
pants. Sharding systems aim for the opposite, the system should get faster if more
miners join. The key idea is to divide miners randomly in committees (or shards),
where each committee is responsible for a subset of transactions. These shards
can then reach consensus on their transactions and publish a (partial) chain faster
then the overall network could. At the end of a predefined epoch, the sub-chains
of each shard are combined. To prevent that corrupted miners take control over a
shard, the assignment of miners to shards is random. But many sharding schemes
require a lower adversarial bound than traditional cryptocurrencies. A comparison
of sharding schemes [184] found that sharding protocols can lead to a much higher
transaction throughput, i.e., Rapidchain [189] can support around 7300 TPS and
Omniledger [119] around 10000 TPS when the adversary controls at most 12, 5%
of the computation power.

Blockchain Data Strucutre

Some distributed ledger protocols propose to use a Directed Acyclic Graph (DAG)
instead of a blockchain for organizing transactions. In Tangle [162], for example,
transactions are proposed directly without the need for a central mined blockchain.
In DAG protocols, the resulting data structure is not linear, but every transac-
tion (or block) may reference more than one predecessor. The GHOST protocol
proposed by [175] proposes such a method for blocks, where uncles, which would
be considered invalid forks in Bitcoin-style blockchains, are included in the DAG
of blocks. The Ethereum design [186] used a blockchain protocol that follows a
GHOST variant. The scalability of these protocols comes from the fact that blocks
do not need to propagate through the network entirely, as two or more blocks can
(to some degree) be published in parallel and can all be included in the valid DAG.
This extension allows Ethereum to have a block creation times of 10 — 20 seconds.
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Alternative Mining Puzzles

Yet another approach to scaling blockchain consensus are Proof of Stake (PoS)
protocols like Ouroboros [116] and the Etheruem Casper protocol [39]. In PoS
schemes, miners do not invest their computational resources but their financial
ones. Instead of solving PoWs they lock a certain amount of coins for the purpose
of mining, called their stake. The protocol randomly selects the miner for the
next block proportionally to the size of his stake. As it does not require miners to
waste energy on hashing, PoS is considered a more sustainable alternative to PoW
blockchains. Additionally, it would lower the costs that miners have to invest,
which should lead to lower transaction fees. The scalability comes from the fact
that consensus without mining can be reached much faster, and this would reduce
block times. Current proposals for secure PoS systems are purely academic and
thus, their transaction throughput has not been measured. Nevertheless, the main
reason for PoS is to replace the resource waisting PoW schemes and not to improve
scalability.

3.3.3 Scaling Through Off-Chain Protocols

Another line of proposals from both academic and industry consider off-chain so-
lutions that work on the so called second layer. In contrast to first layer solutions,
they aim to increase transaction throughput of existing cryptocurrencies without
changing their consensus protocol. They rely on optimistic protocol execution
where parties first try to agree without the blockchain and only rely on this ex-
pensive and slow component in case someone disagrees. This approach makes
off-chain protocols directly compatible to current existing systems. The main idea
that these solutions have in common is that a large portion of (transaction) data is
processed off-chain between users and are not sent to the blockchain. In contrast to
the overall mining network there is no trust assumption on the users, which means
they could potentially deviate from the protocol. Therefore second layer solutions
use the underlying blockchain (also called parent chain) to secure the user funds
during the off-chain phase. While we give a high level overview of existing schemes
here, we refer the reader to [103] and [93] for a full overview on existing off-chain
proposals.

Payment Channels. The most prominent off-chain solution approach to increase

the transaction throughput in blockchain technology is given by payment channels,
which allow users to send many transactions off-chain and only commit the final
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distribution of coins to the parent chain. The first proposal for payment channels
was made by Spilman and Hearn [176, 96] who proposed payment channels on
Bitcoin as early as 2011 [95]. They construct a unidirectional payment channel
using a Bitcoin transaction that can either be spent by the issuer after a timeout
t or by two signatures of both the issuer and the recipient of a payment. This
technique allowed the issuer to promise increasing shares of the locked money to
the recipient (by sending his signature). The recipient would eventually send the
latest statement, which represents all accumulated shares to the blockchain and
append both his own and the issuers’ signature. The timeout ¢ prevents that the
issuers’ money is locked forever in the channel.

More advanced proposals [61, 161] build bidirectional channels, which allow
two users to re-use locked coins off-chain. Bidirectional channels require that
channel updates invalidate older channel distributions such that users cannot send
outdated states to the parent chain and get more coins than they deserve. In
Bitcoin, this is done with refund transactions. Whenever a party proposes a state
update, it will ask the channel partner to sign a refund transaction for the previous
state, which will make it impossible to collect the coins on-chain from it (in time).
In Ethereum, bidirectional channels can be implemented easier by using version
numbers or counters [148, 165].

Any channel lifetime can be separated into three distinct phases. During the
opening or funding phase both players commit their funds on-chain to a multi-
signature funding transaction or smart contract. When all funds are locked, the
channel is considered to be open. If Alice locks cajce and Bob cgep, the initial
channel balance reflects this distribution. In order to send a payment, the parties
update their channel balance and confirm it with their digital signature. For
example, if Alice wants to send ¢ coins to Bob, she updates the channel balance to
Calice — q and cgop +¢q. Then she signs the new channel balance and sends it and her
signature to Bob. If he also sends his signature to Alice, the update concludes, and
both parties have the guarantee that they can enforce the newly updated balance
on the blockchain (if they must).

The security that channels offer is that any fund distribution and state that
both parties agreed on during the off-chain phase can be enforced on the blockchain
within some predefined absolute or relative time period if at least one of the channel
participants is online and reactive. If the channel should be closed or if one party
notices misbehavior, it sends the latest (signed) channel balance to the blockchain.
Then the channel partner will have a predefined time to react and send his own
latest version or invalidate any outdated version. After this timeout, the channel
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is closed, and the funds are paid out.

Payment channels offer high scalability for many payments between two parties.
As long as neither of them aborts from the protocol or closes the channel, they can
send transactions off-chain, without additional delays or fees. The parties can only
move the money, which is locked on the parent chain, which means they might
have to continue on-chain or reopen the channel if a party has insufficient funds
for the desired payment.

State Channels. Most literature focuses on payment channels, but some con-
structions also allow the extension of state channels [148, 71, 56, 86]. They allow a
set of parties to execute complex smart contracts off-chain. As long as all parties
are honest and agree on the state transitions, the blockchain is contacted only
during funding and closing. The update, i.e., the proposal of a new state of a
channel contract, is performed off-chain. However, once parties start to disagree,
they have to resolve their dispute on-chain and perform the contract evaluation
via the blockchain. This is an additional step, which is not necessary in payment
channels.

The opening of a state channel works analogous to payment channels. Once the
channel is open and funded, the channel state can be updated, which means users
can send transactions to each other. This step, often called state transition [93,
56], is executed off-chain. Again, the closing phase requires on-chain interaction
by at least one of the players and ensures that the latest update (the last state) is
enforced on-chain. While in the optimistic case when all parties are honest, state
channels are very efficient, a potentially heavy computation might need to be done
on-chain in case of disagreement. Just as payment channels, state channels need
to provide mechanisms that allow all channel participants to enforce the off-chain
state and prevent that money is locked forever.

Additional Works on Payment Channels. Some channel constructions also al-
low routing of transactions in so-called channel networks [161, 148, 135, 136]. We
give a detailed overview of channel network proposals in 4.1.2. Other propos-
als [148, 68, 56, 35| extend channels to support n parties instead of just two. We
will discuss this extension in more detail in Section 4.7.

Payment channels require, that channel participants continuously need to watch
the blockchain, in case a malicious user tries to close the channel with an outdated
state. In particular, this requires that channel participants are online and have a
running node of the underlying blockchain. One factor that influences this problem
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is the closing timeout, which says how much time some party has to react to a
proposed channel closing. If this parameter is high, e.g., one day, parties only
need to check the blockchain for channel-related messages roughly once every 24
hours, but at the same time, this means a channel closing might take one day to
finish. A more practical solution for the always online requirement is provided by
watchtower services [141, 11, 110]. Users send their latest state to watchtowers
before they go off-line and trust the watchtower to complain on their behalf.

Arbitrum. The disadvantage of state channels, i.e., the potentially heavy on-
chain execution in case of dispute, is addressed by the Arbitrum proposal [105].
Every smart contract, which Arbitrum models as a Virtual Machine (VM), to
be executed off-chain has a set of manager parties responsible for correct VM
execution. As long as managers reach consensus on the VM state transitions,
execution progresses off-chain in a similar fashion as state channels. But, in case
of dispute, managers do not perform the VM state transition on-chain. Instead,
one manager can propose the next VM state, which other managers can challenge.
If the newly posted state is challenged, the proposer and the challenger run an
interactive protocol via the blockchain, so-called bisection protocol, in which one
disputable computation step is eventually identified and whose correct execution is
verified on-chain. Hence, instead of executing the entire state transition on-chain
(which might potentially require a lot of time/space), only one computation step
of the state transition has to be performed on-chain in addition to the bisection
protocol. The Arbitrum protocol works under the assumption that at least one
manager of the VM is honest and challenges false states if other managers post
them. Since the blockchain interaction during the bisection protocol is rather
expensive, Arbitrum uses monetary incentives to motivate managers to behave
honestly and follow the protocol.

TrueBit. Another solution that supports off-chain execution of smart contracts
using incentive verification is TrueBit [177]. For each off-chain execution, the
TrueBit system selects (randomly) one party, called the solver, that is responsible
for performing the state transition and inform all other parties about the new
contract state. The TrueBit system incentives parties to become so-called verifiers
and check the correctness of the computation performed by the solver. In case they
detect misbehavior, they are supposed to challenge the solver on the blockchain
and run a wverification game, which works similarly to the bisection protocol of
Arbitrum. Similar to Arbitrum, TrueBit relies on the assumption that there is at
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least one honest verifier that correctly performs all the validations and challenges
malicious solvers. In contrast to Arbitrum, all inputs and the contract state are
inherently public even in the optimistic case when everyone is honest.

Commit Chains. Another off-chain construction relies on a central but untrusted
operator, who collects all payments or state updates off-chain and computes a new
off-chain state. This is done once every epoch, and then a short commitment to this
new state is submitted to the blockchain. These proposals are sometimes called
commit chains and come in different varieties [111, 160]. Commit chains were
designed to reduce the high collateral costs that exists for other off-chain solutions,
e.g., for payment channel networks. But an essential distinction between commit
chains and channels is the finality of the off-chain transactions. If a user proposes
an off-chain state change in a channel and the other channel participants sign it,
this change is considered final or valid. This means the user has the guarantee
that he can enforce it on-chain. In commit chain scenarios, on the other hand,
any proposed change is only final after the operator sends a commitment to the
blockchain (at the end of an epoch).

The first proposal for a commit chain was called Plasma, initially introduced
by Poon and Buterin [160]. Nowadays, there exists a whole family of plasma
protocols? Plasma chains are built on top of the Ethereum blockchain and have
their own operator who is responsible for validating off-chain plasma transactions.
In regular intervals, he posts a short commitment about the current state of the
Plasma chain to a smart contract on the Ethereum blockchain. Additionally, he
informs all users about the full, or the relevant parts of the state. The regular
commitments are in the form of Merkle tree roots over the whole state of the
plasma chain, and provide checkpoints of the Plasma chain to the users. As long
as the user can verify his inputs were included in the root, he knows that his inputs
were processed. In case the operator cheats, the plasma user can at least enforce
the state of the latest checkpoint in the plasma smart contract, by providing that
state and a Merkle tree path to the root.

The plasma protocol promises that parties can exit the Plasma chain with all
their funds. A recent work analyses the limitations of commit chain proposals [70]
and identifies a significant efficiency trade-off of current proposals. If the operator
is caught cheating, either a so-called mass exit can occur where all honest parties
simultaneously leave the system, or an honest party is forced to send lots of data

4An overview of plasma proposals can be found at https://ethresear.ch/t/
plasma-world-map-the-hitchhiker-s-guide-to-the-plasma/4333.
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to the blockchain to prove the latest state is valid. Both scenarios can lead to a
high transaction load on the blockchain and to very high fees for honest parties.

While the original goal of Plasma [160] was to support arbitrary complex smart
contracts, to the best of our knowledge, there is no formally specified protocol
yet that would achieve this goal securely (there currently exist multiple proposals
for Minimal Viable Plasma (MVP) [38]). Moreover, the plasma research com-
munity currently conjectures that Plasma with general smart contracts might be
impossible to construct [16].

In summary, applications that require a fast (reliable) state progression are
not ideal candidates for commit chains and should rather rely on state channels
instead, as they offer instant finality. Commit chains, on the other hand, allow
cheaper off-chain transactions (as no collateral is involved) with delayed finality.
The Nocust paper [111] discusses how collateral can help to achieve instant finality
over the operator.

3.4 Formal Treatment of the Blockchain

Blockchain protocols are often referred to as consensus protocols. Traditionally, a
consensus protocol in cryptography is defined as a means to enable a set of par-
ticipants to agree on value [84]. In the context of cryptocurrencies, the miners
need to (repeatedly) reach consensus on the validity of transactions or state up-
dates (in Ethereum). A particular challenge to blockchain consensus is that the
underlying network is permissionless, meaning that peers can join and leave at any
time. Additionally, the gossip network (in practice) is unstructured and does not
give perfect guarantees on (fast) message transfer. Some previous works [84, 85,
158, 13] have analyzed cryptocurrencies and the guarantees they can provide. We
will not present these works in detail, but we summarize the security guarantees
and assumptions that we take into consideration in the next sections of this thesis.
In Chapters 4 and 5, we work in the UC framework introduced by [44]. At the
same time, in Chapter 6, the blockchain is modeled as an oracle, and we rely on
its security properties in the standalone model (more details on the distinction
of these models can be found in Section 2.2). We give more details on the exact
modeling in each chapter.
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3.4.1 Security Provided by the Public Ledger

The Bitcoin Backbone protocol [84] analyzes Bitcoin in the standard model under
the assumption that more than half of the computing power in the system is
controlled by honest miners. The paper and its follow up works [115, 85] identify
three important features of blockchains, namely the common prefix property, the
chain quality property, and the chain growth quality.

Common Prefix This property guarantees that all honest players agree on a large
common chain of blocks, the prefix of the blockchain. While the parties might
have a different view on the last k& blocks of the chain, the rest of their chains
are identical with overwhelming probability. To account for the uncertainty
of the last blocks, we assume that honest parties only accept blocks that are
confirmed at least k times.

Chain Quality This property argues about the fraction of blocks in the chain that
were mined by honest miners. This property guarantees that honest miners
will eventually mine blocks and thus control a (potentially small) percentage
of blocks in the chain.

Chain Growth This property was originally proposed in [115] and guarantees that
after some rounds, the chain gets extended by at least a few blocks. Chain
growth guarantees that the protocol cannot be halted, i.e., by DoS attacks,
and eventually, new blocks will be found.

With these properties, it can be shown that Bitcoin provides state machine
replication with its two properties: liveness and persistence. Liveliness means that
valid transactions from honest parties are guaranteed to be included within the
next A — k blocks. By the common prefix property, we know that the transaction
will be part of the chain of all other honest parties within & more blocks®. This
is why we upper bound the time to send a transaction by time AS. Persistence
guarantees that eventually, all users have the same view on the current state of the
blockchain (i.e., the processed transactions and their order). In addition, it says
that blockchains are immutable, which means that once transactions end up in the
blockchain (deep enough), they cannot be reverted. Again, the common prefix

5For most practical purposes, k is chosen as a small constant, i.e., in Bitcoin, it is generally
believed that for k = 6, a block can be assumed final.

6More precisely, we work in the synchronous communication model and say that it takes at
most A rounds
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property helps to ensure persistence and immutability only after some time has
passed, where block confirmations measure time. Formally, a block b; is confirmed
k-times if there exists a valid chain extending b; with & further blocks. Once block b;
has been sufficiently often confirmed, we can assume that all honest parties agreed
on the transactions in block b; and that they cannot be reverted. In particular, we
assume that all honest parties agree on the order of the chain starting from the
genesis block by up to block b;. For a more detailed analysis of Bitcoin and the full
security analysis of the above-stated properties, we refer the reader to [85] in the
synchronous and semi-synchronous setting, and [158] in the asynchronous setting.

In the work “Bitcoin as a Transaction Ledger: A Composable Treatment” [13],
the authors analyze the security of Bitcoin in the UC framework. In particu-
lar, they specify Bitcoin as a ledger functionality in the Global UC model of
Canetti [45]. The ledger of [13] is a global ideal functionality, which holds the
current state of blocks and transactions and provides them to parties. Parties can
also send transactions to the ledger, which are included in blocks if they are correct
(with respect to the blockchain state and the transaction validation rules).

3.4.2 Communication Model

So far, we have discussed permissionless blockchain protocols in this section. But
in the further sections of this thesis, we will analyze another kind of protocol, where
we consider interactions of a fixed set of mutually known participants. Therefore,
we consider synchronous, round-based communication between parties, where par-
ties are always aware of the current round. Formally, this can be modeled by a
global clock [109, 84, 13] for which we omit the detailed modeling here. Whenever
parties communicate, we assume that sending a message takes at most one round.
If a party (including the adversary) sends a message to another party in round 4,
then it is received by that party at the beginning of round ¢ + 1. Hence, rounds
can be understood as a measure of real time”. We assume that local computation
is instant (or at least negligible compared to the time to send a message) for this
model. The adversary can decide about the order in which the messages arrive in
a given round. However, we assume that he cannot change the order of messages
sent between two honest parties (this can be easily achieved by using, e.g., mes-
sage counters). Additionally, we assume direct secure channels, which means that
messages are authenticated and private. This is a simplifying assumption for our

7A round can be translated into a few seconds, which can be viewed as an upper bound on
however long it takes to send a message between two honest and active parties
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protocols, and in practice, additional measures need to be taken, i.e., to encrypt
and authenticate messages.

We will abstract from the exact workings of the blockchain and only consider in-
teractions of the parties with an idealized ledger, that fulfills the above-stated prop-
erties. Formally we say that the proofs in this thesis are based on the blockchain
assumption. This means our protocols are secure as long as the above properties
hold. To ensure this, we have to consider large enough A and k. In order to model
liveliness, we assume that it takes at most A rounds for a party to send a message
to the blockchain. This parameter can vary for different blockchain systems but
must always be an upper bound on the maximal number of communication rounds
that it takes to send a transaction to the miners, get included in a block of the
chain, and get confirmed by at least k& blocks.

In the formal models of all of the works in this thesis, we also abstract the
fees necessary for every transaction. While we do provide an analysis of the costs
during the benchmark chapters, we assume that parties will always send enough
transaction fees to guarantee that a transaction will be confirmed by time A.
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Summary. This chapter summarizes the PERUN protocol, which was published
in “Perun: Virtual Payment Hubs Over Cryptocurrencies” [69]. The applications
that motivate this work are scalable micropayments — high-speed and low-cost
transfers of tiny amounts of money. As discussed in the previous chapter, cur-
rent blockchain systems such as Bitcoin (cf., Section 3.1) and Ethereum (cf., Sec-
tion 3.2) are too expensive and slow to support micropayments. Second layer
solutions (cf. Section 3.3) aim to improve the scalability issue by reducing the fees
and increasing the transaction throughput. Side- and commit chains are not ideal
for micropayments because the delayed finality limits the speed of transaction con-
firmation. Payment channels, on the other hand, seem to be the perfect solution
for micropayments between two parties, as they offer instant confirmation times
and eliminate the need for fees per transaction.

A remaining issue of payment channels is that opening and closing still come
with fees and delays, and they can only connect two parties at a time. Any
new connection requires another channel. Next to the costs and delays that on-
chain transactions entail, users must also lock-up additional funds for every new
channel — and during the channel lifetime, these funds cannot be used for any
other purpose. If many users want to connect to each other, they need to lock a
lot of funds in parallel. As a countermeasure to this problem, payment channel
networks, like the Lightning network [161], have been proposed. They allow off-
chain routing of payments over a path of existing payment channels. However,
sending payments through existing networks leads to additional delays, since the
payment routing requires the interaction of all path intermediaries. This active
involvement adds delays and, most likely, routing fees, and thus hinders the fast
execution of microtransactions between two not directly connected users.

In this chapter, we introduce the PERUN network, a new type of channel network,
which allows high-speed transactions over a path of channels without additional
costs and delays. In this work, we consider a network with a star topology, which
supports n users that connect to one intermediary hub, which we will call Ingrid for
simplicity. PERUN only requires new users to open a single bidirectional payment
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channel (on-chain) with Ingrid — we call these channel a ledger channel. After this
setup, any user in the system may open a new connection off-chain with every
other user with Ingrid’s help. As the resulting connection has the same properties
as a payment channel, but it is opened and closed entirely off-chain, we call it a
virtual channel. The users can exchange high-speed micropayments through these
virtual channels with direct messages, and thus without additional fees and delays.

To build secure virtual channels, we require more complex ledger channel con-
structions compared to existing payment channel constructions. In particular, we
utilize smart contracts for the on-chain channel setup with the hub. This lets us
add additional features, i.e., instead of just distributing funds between Alice to
Ingrid, we allow that coins can also be assigned to a different set of public keys,
for example, the one of Alice and Bob. Then these coins are locked in a virtual
channel between these parties and are unlocked only when both, Alice and Bob,
agree on a new distribution (or after a timeout).

In this section, we discuss not only how to design contracts that support virtual
payment channels, but also how to use them securely. This involves a intricate
protocol in which the intermediary but also the two connecting parties need to
open and close new connections carefully. We analyze the security of the resulting
PERUN protocol to show that it provides security even when parties behave ma-
liciously or collude. In order to prove the protocol security, we provide accurate
modeling of smart contracts and security proof in the UC framework (cf. Sec-
tion 2.4). To demonstrate the feasibility of the proposed protocol, we also provide
a proof-of-concept implementation to estimate costs and produce benchmarks.

We note that the system does not require trust, as we can show that no party
can steal funds and owed money will always be paid out. Nevertheless, the parties
need Ingrid to interact with them and to lock collateral coins such that their
channels will be funded from both sides. Her interaction is needed whenever users
want to join and leave the system, and when they want to connect to each other.
Additionally, she needs constantly watch the network and blockchain for signs of
misbehavior of any of the parties. While we can show that she will always get
her locked funds back and no user can cheat Ingrid, she will most likely ask for
payment for her service that are proportional to the collateral costs of virtual
channels.

We start this section with a high-level overview of a simplified version of our
protocol, to describe the key ideas and compare our design to related works (cf.
Section 4.1.2). In Section 4.2, we give additional notation and background required
for our formal UC modeling. Section 4.3 contains the construction of the PERUN
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ideal functionality and Section 4.4 contains the full PERUN protocol. We formally
prove UC security in Section 4.5. The implementation details are discussed in
Section 4.6 and possible extensions and future work are described in Section 4.7.

4.1 Overview

As discussed in Section 3.3, cryptocurrencies suffer from limited scalability, which
leads to high transaction fees when many transactions compete to be included in
the next block. Additionally, blockchain technologies can only process transactions
with low fees with significant delays, which grow during times of high transaction
load. In Section 3.1.3, we presented that it can take hundreds of minutes until
Bitcoin transactions with medium fees are accepted in the blockchain. Even in
Ethereum, where transactions are usually processed in under a minute (cf. Sec-
tion 3.2.1), delays of minutes and high fees also prevent some applications.

Even small fees and minor delays are a big issue when we consider micropayments
— rapid transactions of small amounts, sometimes even fractions of cents. In such
high-frequent and fragmented payments, delays cannot be tolerated, and constant
(even small) fees would quickly accumulate to large amounts. When users mutually
distrust each other, micropayments allow customers to pay in a stream of tiny
payments for the ongoing usage of a service or good. They can also be applied in
the Internet of Things (IoT) context, where smart devices can pay for their power
consumption or network communication. This pay-by-the-minute approach helps
to minimize the maintenance costs and sets incentives to build more sustainable
devices that minimize resource requirements. Another promising application of
micropayments is the digital media consumption in the Internet. The common
business models of music, movie or news providers are either subscription payment
systems or advertising-supported revenue models. Micropayments could open the
path for fairer models where users only pay for every consumed item. Business
models that currently are financed by online advertisements or data collection,
could switch to tiny user payments or donations. But all of these use-cases are
only possible if micropayments are enabled.

We propose a new protocol for instantaneous micropayments in star topology
networks with a single hub, over Ethereum. To connect to the network, the users
only have to connect to the hub through an on-chain deposit once. Once they
established such a connection, they can send instant payments to any user in
the network without additional blockchain interaction. Our protocol, called PE-
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RUN!, proposes a more efficient payment channel construction. (cf. Section 3.3).
However, payment channels can only provide one-to-one micropayments. While
multiple works [161, 148, 135] have analyzed how payment channels can be used
to route transactions over multiple connections, routing in these so-called payment
networks introduces additional delays and fees. The PERUN protocol composes
smart contract-based payment channels in a novel way, with a technology we call
virtual channels. Given existing connections between two parties and an interme-
diary, we can establish a direct (virtual) link between the two parties off-chain,
which allows them to send transactions where the intermediary does not need
to get involved in each payment. This protocol significantly reduces latency and
costs and can support micropayments. For our protocol, we require smart con-
tracts. Thus PERUN works over any cryptocurrency which allows Turing complete
scripts. We demonstrate the feasibility of our proposal by providing a prototype
implementation of the channel contracts for Ethereum (see Section 4.6).

4.1.1 Intuition and Design ldeas

Let us first informally describe our system in which we present the main con-
tributions in a simplified setting. Here we describe the key design ideas behind
ledger and virtual channels on a high level and discuss the security provided by the
protocol. We later give a formal definition of the PERUN protocol (cf. Section 4.4).

Ledger channels

We denote payment channels that are built directly on top of the blockchain as
ledger channels®. We use this terminology to differentiate clearly between direct
blockchain-based channels and the new virtual channels. A ledger channel allows
two parties to instantaneously send payments to each other, once the channel is
opened. We denote ledger channels as [ and the two channel participants that it
connects as the channel end-parties. For simplicity we call them Alice (or 4) and
Bob (or B), where Alice deposits z, coins into the channel and Bob deposits x5
coins into it (for some x4, x5 € R>). Figure 4.1 depicts the basic setup of such a
channel.

Ledger payment channels are secured by a channel smart contract (or channel
contract) on the blockchain. A ledger channel is created through two sequential

!Perun is the god of thunder and lightning in the Slavic mythology. This choice of a name
reflects the fact that one of our main inspirations is the Lightning system [161].
2Ledger channels are essentially identical to payment channels from prior work (see, Section 3.3).

48



4 Virtual Payment Channel Hubs

T X
Alice| o~ ) o |Bob

Channel
Contract

Figure 4.1: Ledger channel § between end-parties A and B.

on-chain transactions in an opening procedure, initiated by Alice and confirmed by
Bob. If Bob does not confirm the opening to the contract, the channel closes, and
Alice gets her funds back. Otherwise, the coins of both parties are locked in the
channel, which means that until the channel ( is closed, these coins remain in the
channel contract, i.e., the parties cannot use them outside the channel network.
The initial balance of the channel states that Alice has x4, coins in her account in
5, Bob has z coins in his account, and the overall value of the channel is x , + x5.
This balance can be described by a function as [A — x4, B — 4]

Once the opening procedure is finished successfully, and the coins are locked, we
consider channel 3 to be open. Now, Alice and Bob can update the distribution
of the funds in the channel as often as they want off-chain, i.e., without sending
transactions to the block. The update mechanism, which consists of two direct
messages between the parties, is used for performing payments. If, for example,
A wants to pay some amount ¢ < x, of coins to B, then the parties perform an
update that changes the balance of 53, i.e., [A — x4 — ¢, B — x5+ ¢]. Naturally,
the channel can only be updated as long as both accounts in § have non-negative
amounts in them. Performing updates like this guarantees that the total value of
the channel never changes. We use counters to keep track of the latest version of
the update, and signatures to signal the acceptance of a new state. Both measures
ensure that parties only have to store the latest fully signed update. The protocol
ensures that they can always enforce it in the underlying contracts.

At any point, the channel 5 can be closed via the contract. Both Alice and Bob
can initiate this process by sending a transaction to the contract, which contains
the current channel balance ([A — 2/,, B — x]). If the other end-party (or coun-
terparty) confirms to the channel contract, that this is indeed the current balance,
the channel closes and both parties receive their coins 2/, and z};, respectively. In
case some party aborts the procedure, the other party can close the channel alone
after a sufficient timeout has passed. But in case a malicious party tries to send an
outdated state to the contract, the counterparty can (instead of the confirmation)
prove to the contract that a more recent valid, signed state exists.
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Payment Channel Networks

As payment channels only connect two parties at a time, payment channel networks
have been proposed [161]. The idea is to use existing channels to route payments
off-chain. The setup of a single hop is depicted in Figure 4.2. Instead of a direct
channel, we now assume that the parties Alice and Bob are connected via an

intermediary party called Ingrid.

Yya Yz . Z z
Alice| © @ o |Ingrid o @ g Bob
Channel 3,4 Channel 35
Contract Contract

Figure 4.2: Setup for payment routing from Alice to Bob over Ingrid.

The payment routing technique introduced in [161] is a transaction construction
called Hashed Time Locked Contract (HTLC). This construction (originally built
for Bitcoin scripts) is a conditional payment of coins, where the condition is that
the receiver needs to reveal the witness within a certain time limit. This witness
r is the preimage of a hash, i.e., the receiver has to reveal r such that H(r) = h,
and h is fixed in the HTLC. If the expected witness r is not revealed (in time),
the coins remain with the sender. This construction can also be used off-chain
inside payment channels. Channel participants can update the channel in favor of
the receiver if (and only if) a preimage was correctly revealed in time. Therefore,
HTLCs can be used to send coins off-chain through existing payment channels (as
in Figure 4.2). The key idea is to simultaneously ensure that A sends ¢ coins to
7T, while Z sends q coins to B. Let us assume that the channel has sufficient funds,
i.e., that y, > ¢ and 2; > ¢q. The payment routing protocol proceeds as follows:

B — A: 1. send hash h = H(r)

A — Z: 2. HTLC over ¢ coins with witness h and timeout 2t
7 — B: 3. HTLC over g coins with witness hA and timeout ¢
B — Z: 4. send witness r

Z — A: 5. send witness r
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As the timeout of the HTLC between Alice and Ingrid is larger than the one
between Ingrid and Bob, it ensures that at time t3, Ingrid either learned the
preimage r from Bob or she knows that the transfer will not happen. In the first
case, Ingrid paid for the transaction (either off-chain or because the HTLC was
published on-chain), but she also learned the preimage r. This knowledge and
the additional time, ensure that the payment will also happen in the channel 3.
Therefore Ingrid stays financially neutral as she receives ¢ coins on one side while
she lost ¢ on the other.

A disadvantage of HTLC transaction routing is that the intermediary Ingrid has
a lot of control and influence on the transfer. In particular, Ingrid will demand
fees for her service every time she is involved in the routing. If the parties Alice
and Bob want to send many small microtransactions, they are always dependent
on Ingrid’s goodwill and cooperation. Additionally, the speed of this exchange is
always limited by Ingrids reaction time. We now show how we can overcome these
limitations by using virtual payment channels.

Virtual channels

The main novelty of Perun is the virtual payment channel infrastructure that
increases the efficiency of the off-chain payment routing as it does not require
interaction with the intermediary Ingrid for payments between Alice and Bob.
We apply the same technique that allows parties in ledger channels to update a
channel without the blockchain, to create virtual channels that can be updated
without the intermediary. While ledger channels are built over smart contracts on-
chain, virtual channels are built on top of two ledger channels off-chain. Figure 4.3
illustrates the concept of a virtual channel denoted 7. The channel parties here
are A, B, and Z, where Alice and Bob are the end-parties of channel +. v is built
on top of the ledger channels 8, and (5 which we will call sub-channels of ~.

Virtual channel opening. A and B can establish the virtual channel v with
initial balance [A +— x4, B — x;] without blockchain interaction and only with
communication with Ingrid. By opening 7, some coins from the parties’ accounts in
the underlying ledger channels 5, and 35 will be temporarily removed (or locked).
More precisely, after opening v, the balances of 8, and [z change as follows: in
channel 3, Alice will have =, coins removed from her account, and Ingrid will

3Where t is sufficiently large such that a transaction can be posted and confirmed on the
blockchain (cf. Section 3.4).
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Figure 4.3: Setup for a virtual channel v between Alice and Bob.

have x5 coins removed. Symmetrically, in channel S5, Bob locks z,; coins and
Ingrid locks z, coins. The coin distribution after the virtual channel opening is
represented in Fig. 4.3.

Opening a virtual channel 7 is only possible if all resulting channel balances are
non-negative, i.e., r, < min(y,, 27) and xz < min(yz, 25). In other words, A, B
and Z need to have enough coins in their corresponding ledger channels to open
~. The coins x4 and x,; remain removed from parties’ accounts in 3, and (s for
as long as the virtual channel is open. For A and B, this situation is similar to
locking coins in a newly created ledger channel. Only now they reuse the coins of
the ledger channels with Z.

Virtual channel update. Once a virtual channel is opened, it can be updated
multiple times, precisely in the same way as the ledger channel, i.e., transferring
q coins from A to B results into a new balance of v as before in 5. As long as
everybody is honest, A and B do not need to interact with Z during the update
process.

To keep track of the latest update, the end-parties of v maintain the wversion
number w € N. Initially w is set to 1, and it is incremented after each update of ~.
The update procedure is initiated by one of the end-parties. Let us for simplicity
assume Alice wants to send ¢ coins to Bob, the opposite case works symetrically.
In this case, A acts as the initiator and B as the confirmer. A proposes an update
of channel v to a new balance [A — x4 — q,B — x5 + ¢q] and sends this update
message W, := (m., 04), where m contains the new balances and version

m. = update 7 to [A+— x4 — ¢, B — 5 + ¢, with version number w

and o, is A’s signature on m.,. If B agrees on this update then he replies with
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Wy := (m.,,0s) where o, is B’s signature on m,. At this point the channel is
updated to its new balance, and w is incremented by 1.

Recall that transaction routing via HTLCs requires five messages, including
communication with the intermediary, who might not have fast reaction times
and can force any payment to timeout after a potentially long time ¢. In virtual
channels, on the other hand, the update can be processed as fast as a quick round
trip of two messages between two devices. Therefore, virtual channels build the
ideal basis for micropayment channels in (hub-based) payment networks.

Virtual channel closing. Each of the channel end-parties P € {A, B} can initiate
the channel closing for 7. In order to do so, P sends the latest update message Wo
that he received from his counterparty Q (if no update has been performed, then
he sends Wy, equal to the initial channel balance with version number 0). When
the contract receives Wy, Q is notified about P’s request and replies (within A
rounds) with the latest update message Wp that he received from P. Note that
if both channel end-parties are honest, they will always agree on the proposed
updates, and Wp and Wy will contain the same message.

When the contract received both messages, it checks which of them Wp and Wg
has a higher version number, and distributes the money according to the balance
that is provided in this message. Suppose, for example, the latest state is equal
to a transfer of ¢ coins from A to B (i.e., [A — x4 — ¢, B — x5+ ¢|). Then the
channel contract gives x, — ¢ coins back to Alice and x5 + ¢ coins to Bob in their
subchannels 3, and 85. Additionally, Ingrid gets x4+ ¢ coins in subchannel 55 and
x4 — q coins in subchannel (5. Overall, closing v leads to the balance distribution
depicted in Figure 4.4.

Ya—Ta—q yr—rpt+q . 22— A—(q z—Tp+q
Alice| © @ o |Ingrid| o @ o | Bob
Channel 34 Channel (g
Contract Contract

Figure 4.4: Ledger channels 8, and 35 after closing ~.

If we compare the distributions before the opening, and after closing the virtual
channel v, we see that Alice lost g coins while Bob gained ¢ coins. It is important
to note that Ingrid did not gain or lose anything since she spent ¢ coins in one
channel but, at the same time, received ¢ coins in the other. We say Ingrid stayed
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financially neutral. This guarantee allows us to update virtual channels without
Ingrid’s confirmation, as Alice and Bob cannot change the number of her overall
coins. Virtual channels allow her to temporarily use her coins to provide the
off-chain infrastructure for transfers between Alice and Bob.

While the distribution of the parties’ balances changes in the ledger channels,
their on-chain accounts are not affected (yet). To withdraw the coins from the
channel, the parties need to close the underlying ledger channels. However, as
long as they do not need the coins for any other purpose, they can also leave the
coins in the system and use the channels to send payments to Ingrid or to open
new virtual channels off-chain.

Further Challenges and Security Measures

So far, we did not consider that parties act maliciously, e.g., by not reacting (in
time) or sending false messages. To prevent that coins are stolen, destroyed, or
blocked indefinitely, we need to add additional security measures.

o Channel updates always need to include digital signatures by both channel
end-parties to show that the update has been approved.

o Channel updates include a version number which is increased with every
update. They prevent a cheating party from submitting an outdated state.
If two different channel updates are provided, the one with the highest version
number is considered valid.

o Every message sent to the contract has a timeout for fault attribution, which
is large enough to ensure that the messages of honest parties are always
accepted. Timeouts guarantee that if an expected message was not received
in time, the other channel parties could request an action and potential
punishment. For example, during the closing procedure, channel contracts
might send funds to the party, which did not misbehave.

o When ledger channels are closed, both parties have a chance to submit their
latest channel update. This means closing is not immediate but only after a
sufficient waiting period.

o As long as a virtual channel 7 is open, our system prevents the subchan-
nels #, and (s from being closed. In other words, the parties that opened
these ledger channels have to wait with closing them until the financial con-
sequences from the closing of v are known.
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o Virtual channels have a special timing parameter called validity that A, B,
and Z agree on during the opening procedure. The validity determines when
a virtual channel expires and can be closed by the intermediary. This timeout
ensures that (i) Ingrid’s coins cannot be blocked forever and (ii) Alice and
Bob have sufficient time to use the virtual channel before the intermediary
can close it.

In this section, we omitted some more technical details that the protocol design
needs to consider. In particular, we present our scheme in a non-concurrent setting,
i.e., we assume that the channels are not opened or updated in parallel and that
there is at most one virtual channel built over every ledger channel at any given
time.

We formally present the security and efficiency properties of our system in the
form of an ideal functionality in Section 4.3 and prove that the PERUN protocol is a
UC secure realization of this functionality. We emphasize that our scheme is secure
against arbitrary corruptions of A,Z, and B, and in particular, no assumption
about the honesty of Z are needed.

Consensus on channel opening. A ledger or virtual channel 6 € {3,v} can
only be opened if all involved parties agree. In particular, Ingrid has to confirm
the creation of a virtual channel (and agree on this channel’s validity). Let us
emphasize that our protocols guarantee that there is always a consensus among the
honest parties, whether a ledger or virtual channel has been successfully opened.
This requirement is easily satisfied for the ledger channels (as they are public on
the blockchain), but less trivially for virtual channels. The consensus among the
honest parties is needed, since a disagreement on the status of v may lead to
misunderstandings. For instance, if Alice thinks that 7 has been opened, while
Bob believes the opposite, then he will not respond to Alice’s requests to update ~.

Optimistic timings. Opening the ledger channels always takes O(A) rounds.
Opening a virtual channel takes constant time (i.e., time independent of A) as it
can be processed off-chain. For ledger/virtual channel 4 Alice and Bob need to
confirm every update. Channel updates always take constant time.

Guaranteed channel closing. Let § be a ledger channel. Both Alice and Bob

can request the closing of 5 at any time (provided there is no virtual channel open
over ). Once such a request is made, the channel is closed in time O(A). Let
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v be a virtual channel, and let 7 denote its validity. Channel ~y is closed in time
7+ O(1) in the normal case, and v + O(A) in the pessimistic case.

Guaranteed balance payout for end-users. The end-users of a ledger/virtual
channel are guaranteed that the channel’s latest balance is paid out. Concretely,
this means for a ledger channel 3 that coins are transferred back to the accounts
of the end-users on the ledger, and for virtual channel v, it means that the latest
balance of the channel is transferred back to the respective ledger channels.

Balance neutrality for intermediary Ingrid. Virtual channels are always finan-
ctally neutral for the intermediary Ingrid. More precisely: suppose 7 is a virtual
channel built over ledger channels 3, and 5. Once 7 is closed the following holds:
if Ingrid loses = coins in (4, then she gains z coins in (5 (and vice versa).

4.1.2 Related Work

Most related to this protocol are other proposals of payment channel networks.
Section 3.3 provides an overview of payment and state channel technologies, so
we do not recall all works in detail here. Instead, we compare the works that
allow payment routing over non-custodial intermediaries or hubs. In general, these
intermediaries are required for the successful protocol execution. However, they
are not trusted, i.e., they cannot influence the correctness of the protocol and do
not control any of the user funds. It also requires that the intermediaries lock
collateral deposits for the time of the transaction routing.

The Lightning Network. The first proposal of off-chain payment routing was
made in The bitcoin lightning network: Scalable off-chain instant payments [161].
This whitepaper introduced the HTLC technique that allows payment routing in
channel networks (cf. Section 4.1.1). When the lightning network was proposed,
the Bitcoin currency still lacked a central ingredient to support HTLC. However,
the support was added with the segregated witness or SegWit Bitcoin improvement
(BIP141) [132] in 2017. The underlying problem was transaction malleability,
which allowed parties to slightly modify transactions before they were included
in the blockchain. While this change did not affect the validity of the malled
transaction, it changed its hash and invalidated pre-signed refund transactions,
which are crucial for the lightning construction. However, the SegWit Bitcoin fork
solved this issue, and the lightning network could be built. Nowadays, the network
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connects over 10.000 nodes with more than 35000 channels [1]. In fact, there exist
multiple implementations of the lightning protocol [130, 2, 75, 62]. In a recent
paper [114], the lightning network was also formalized and analyzed in the UC
model.

Sprites [148], the StateChannels project [56], Raiden [165], and Connext [24] also
built payment channel networks over Ethereum, which use a similar but simpler
routing technique. However, in all of these works, off-chain payment routing still
requires interactions with the intermediaries. Only the StateChannels project [56],
added a similar technique to virtual channels, which they call meta-channels.

Improvements on Payment Channel Networks

Since the first proposal of payment channels [176] and payment channel net-
works [161], these technologies were analyzed and extended in various research
papers. Two of these works provide an overview of second layer and, in particular,
channel technologies [93, 103]. In the following, we present some of the extensions
that were made to payment channel networks.

Multi-hop Channel Networks. While we only consider a hub-based payment
network, lightning [161] works for open, fully decentralized networks. In particular,
payments can be routed over many hops from one point to another. With every
new hop, timeouts need to be increased to account for the risk that one link
needs to be disputed over on-chain. Therefore, a concurrent work, which is called
“Sprites: Payment Channels that Go Faster than Lightning” [148], improved the
duration of long HTLC routing, especially with many hops (in Ethereum). They
introduce a central registration for the witness, meaning that if one link is disputed
over, all intermediaries learn the witness and can immediately close their channels.
A recent paper [74] proposed a new technique for Bitcoin-based payment channels,
which also only requires a constant collateral lock time.

However, they focus on different aspects of channel networks than we do. Namely,
they do not aim to remove the interaction with the intermediaries, but on making
the pessimistic time of channel closing constant. Overall, the asymptotic runtime
of virtual channels in the PERUN protocol (and its extensions [68, 71]) which in-
fluences the time that intermediaries lock collateral, is primarily influenced by the
channel validity and not the length of the underling path.

An interesting attack on multi-hop routing was observed by the authors of [136].
They present the wormhole attack, in which two colluding intermediaries on a long
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payment route eclipse an honest intermediary and steal his routing fees. Instead
of closing the HTLC route by revealing the witness, the intermediaries share it
with each other directly. As a result, the payment from the sender to the receiver
succeeds, but the honest intermediary is not part of it. Thus, the malicious in-
termediaries collect the routing fees of the honest party, who locks the collateral
and behaves honestly but does not get compensated. We note that this cannot
happen in the PERUN construction as a virtual channel, once opened is no longer
controlled by the intermediaries*. The fix for wormhole attacks proposed by [136]
is now part of the lightning network construction [103].

Other works focus on efficient routing and pathfinding in large networks. In
the lightning network [161], the sender decides which path a payment should take
based on his view of the network. Other proposals like SilentWhispers [134] and
Flare [163] propose more efficient pathfinding methods through publicly known
landmark nodes that hold routing tables. The SpeedyMurmurs [169] protocol
proposes an embedding-based approach where every node decides how to route
payments further in the directions to the receiver. As routing is straightforward
in PERUN we do not discuss these approaches in detail.

With large payment networks another interesting problem occurs. When the
channels are regularly used and a high number of payments are routed from one
area of the network to another, channels can deplete, i.e., the channel balance is
shifted to certain users. If this happens, the channel can only be used to send
payments in the opposite direction. The payment channel constructions that we
discussed above cannot deal with this situation natively, and the only solution is to
add or redistribute funds though an on-chain payment. A solution to this problem
is offered by so-called rebalancing proposals [112, 74]. On a high level, the idea
is to send coins off-chain in a circle, such that the channel funds are distributed
evenly after the rebalancing.

Privacy Preserving Payments. Another direction of research papers analyze
the privacy aspects of payment channel networks. “Concurrency and privacy with
payment-channel networks” [135] proposes privacy-preserving payments which was
improved in [136]. Both works guarantee value privacy, meaning that no observer
can determine how much money was routed over some path. An interesting obser-
vation was made in [135], which analyzed that privacy-preserving payment routing
is not compatible with concurrent payments. In particular, the simultaneous rout-
ing of more than one payment over the same link might lead to deadlocks in the

4This holds even for multi-hop virtual channel extension as presented in [71].
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network. The paper shows that any solution which would solve this issue requires
transaction identifiers which in term would lead to linkable payments.

Some works also consider privacy in hub-based networks. The paper “Bolt:
Anonymous payment channels for decentralized currencies” [91] constructs a pay-
ment channel hub on top of a privacy-preserving currency, i.e., Zcash [190]. The
TumbleBit [97] and Trilero [76] protocols provide unlikable payments on top of
Bitcoin using a central hub, called a tumbler. This untrusted party routes pay-
ments but cannot directly link sender and receiver (provided the routed amounts
do not reveal this information). The goal is to hide from the hub, who payed
whom. While the hub can always see the final balances of all users, he cannot link
the single payments. A restriction for both protocols is that the number of coins
in each payment is fixed such that the amount does not leak the relation between
sender and receiver.

4.2 Preliminaries

In this section, we provide the notation and syntax as well as the formal definitions
of the ledger, which we need for the rest of this chapter. We work in the GUC
model described in Section 2.4 and rely on the communication model for blockchain
communication introduced in Section 3.4.

For the PERUN protocol, we assume a fixed set of parties P = {Py,...,P,}
that use the channel network system. We assume that before the protocol starts,
a public-key infrastructure setup phase is executed by some trusted party. To
simplify the protocol description, we denote the signature of P € P on a message
m as Signp(m). We say that a tuple (z1,...,2,,0) is signed by P if o is a valid
signature of P on (z1,...,%,), i.e., Vrfy(pkp, (z1,...,2,),0) = 1. We emphasize
that the use of a PKI is only an abstraction that helps to describe our protocols.
In practice, the trusted setup can easily be realized by posting public keys on
the blockchain. To keep the model as simple as possible, we do not include the
transaction fees in our modeling.

We use keyword attributes attr to refer to certain values in (channel) tuples.
Formally, an attribute tuple is a function from its set of attributes to {0,1}*. To
improve readability, the value of an attribute attr in a tuple T (i.e., T(attr)) is
referred to as T.attr.

All messages start with a keyword (e.g., 1c-open). All communication with the
environment Z and with the ideal functionalities is instantaneous. To account for
the blockchain delay, we allow the adversary to delay a reaction of the functionality
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to a message by at most A rounds. We write that some action is executed within
time A. This means that the exact round until when this action is completed is
up to the adversary to decide, but A is an upper bound.

We introduce two functions 7 and # that help to manage the balances of channels.

The balance function 7 : {P, Q} — R, describes the current channel balance
or coin distribution between two parties P and Q. Adding g € R>o coins to
the account of P in m results in a updated balance function 7" which is equal
to 7 for party Q and for party P, ©'(P) = n(P) + q. Removing q coins from
P’s account is shorthand for writing 7'(P) = n(P) — q.

The transfer function 0 : {P,Q} — R describes the balance change for an up-
date by specifying a redistribution. In particular it specifies how many coins
are sent from one party (negative amount) to another (positive amount),
hence the following must hold: 8(P) + 6(Q) = 0. Transferring q coins from
P to Q results in a transfer function 6 such that §(P) = —q and 6(Q) = q.

These functions can be added in a natural way, i.e., if f and g are transfer or
balance functions for the same parties P and Q, then h = f + ¢ is a function
h:{P,Q} — Ry, defined as h(P) := f(P) + g(P) and h(Q) := f(Q) + g(Q).

4.2.1 Channels Syntax

We define a ledger channel over the set of parties P as an attribute tuple 3 of the
form:

3 = (B.id, B.Alice, 3.Bob, §.cash)

and a virtual payment channel v over P as an attribute tuple of the form:
v = (7.id, y.Alice, v.Ingrid, v.Bob, 7y.cash, vv.subchan, ~.validity).

Every channel has an identifier d.id € {0,1}*. The two parties J.Alice, d.Bob € P
are two distinct elements of P called the end-users of §. If § = ~ is a virtual
channel, then the party ~.Ingrid is also an element of P (distinct from §.Alice
and ¢.Bob) and it is sometimes called the intermediary. We define the set of
end-users of § as d.end-users = {d.Alice,d.Bob} (note that when ¢ is a virtual
channel, then this set does not contain d.Ingrid). If 0 is a virtual channel then
d.all-users denotes the set {d.Alice, §.Bob, d.Ingrid}, and if ¢ is a ledger channel then
simply ¢.all-users = J.end-users. As it will often simplify the writeup to refer
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to the opposite end-party (or counterparty) in a channel, we define the short-
cut d.other-party : d.end-users — J.end-users as d.other-party(d.Alice) = §.Bob and
d.other-party(6.Bob) = d.Alice, respectively. The attribute d.cash is a balance func-
tion for the parties d.end-users.

Virtual channels have more attributes than ledger channels. The attribute
d.subchan is a function subchan: y.end-users — {0, 1}* which references the iden-
tifiers of the sub-channels v.subchan(v.Alice) and 7.subchan(~.Bob) over which ~
is constructed. Second, the time parameter ~.validity € N denotes the channel
validity, i.e., the round until which the virtual payment channel stays open.

4.2.2 The Ledger Functionality

We aim to prove the security of the PERUN protocol in the Global UC (GUC)
model (cf. Section 2.4) as it allows functionalities to access by functionalities from
different sessions. In particular, we model the ledger £ as a global functionality,
which makes it available both in the real and ideal world, and moreover, can be
used over multiple protocol executions [46, 41].

Functionality £

Functionality £ runs with a set of parties P = {P;...,P,} and stores a
value p; € N5 for every party P;, ¢ € [n] which denotes the number of coins
that party P; € P owns. It accepts queries of the following types:

Initialization Upon receiving message (init,p,...,p,) from the Environ-
ment Z (via Sim or A) such that p; € Ny for all ¢ € [n], store this
tuple.

Add Coins Upon receiving a message (add, P;, q) (for P; € P and q € Nx)
from an ideal functionality F let p; := p; + ¢. We say that the func-
tionality F added q coins to P;’s account in L

Remove Coins Upon receiving a message (remove,P;,q) (for P; € P and
pi > q € N5g) from an ideal functionality F let p; := p; — ¢. We say
that the functionality F removed q coins from P;’s account in L

\. J

The state of the ledger L is public, and it maintains a non-negative vector of
natural numbers (py, ..., p,), where p; corresponds to the current amount of coins
in party P;’s account. The parties cannot directly access the ledger. Instead, their
accounts are maintained via the smart contract functionality C (in the real world)
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or via the ideal functionality Fchpanneis (in the ideal world). These functionalities
can add or remove coins on a parties’ account on the ledger by sending add or
remove messages. We assume that the communication of ideal functionalities and
the ledger is instant; this corresponds to the fact that contracts update the state of
the ledger immediately after their execution. We model the blockchain delay (cf.
Section 3.4) by modeling delays when contract functionalities, i.e., C are triggered.

We allow the environment Z (over the simulator Sim in the ideal world and
over A in the real world) to freely remove money from the accounts of corrupted
parties. This corresponds to the fact that we are not interested in preventing
corrupt parties from acting irrationally and losing money.

4.3 ldeal Functionality

In this section, we state the ideal functionality Fchanneis, which defines the behavior
of the PERUN channels in the ideal world. This functionality receives messages
from and outputs messages to the Environment Z via the dummy parties Alice
A, Bob B and Ingrid Z. Recall that dummy parties cannot act on their own.
Instead, they forward any message they get from Z to Fchannels and vice versa.
The functionality also interacts with the ideal world simulator Sim.

FllIlCtiOIlality Fchannels

Functionality Fchannels runs with a set of parties P = { A, B,Z} and maintains
an initially empty channel space . This functionality leaks all messages that
it receives to the ideal world simulator Sim.

(A) Opening a ledger channel

1) Upon receiving message (1lc-open, ) from party .4 in round 7, where
[ is a ledger channel, s.t. A = [.Alice, (wait at most time A) remove
xy = f.cash(A) coins from A’s account on the ledger £ and go to
step 2.

2) Upon receiving message (1c-open, ) from party B s.t. B = $.Bob in
the next round:

2a) If this message was received, (wait at most time A to) remove
xp = [.cash(B) coins from B’s account on the ledger £, add S
to ¥ and output (lc-opened) to A, B, and Sim. Then accept
messages from A and B for 5 as defined in the sub-functionalities
(B) - (D) below.
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2b) Otherwise, (wait between A — 2A rounds and) add x4 coins to
A’s account on the ledger £, output (lc-not-opened) to A and
stop.

(B) Updating a Ledger Channel 5 or Virtual Channel ~

Accept messages that concern channel § which is either a ledger channel
or a virtual channel v stored in X.

1) Upon receiving a message (update,d.id,d,«) from a party P where
0 is a transfer function, s.t. P € d.end-users and for all Q €
d.end-users : d.cash(Q) + 6(Q) > 0. Then, within 3 rounds, send
(update-requested, f5.id, 6, o) to P’ := d.other-party(P).

2a) If in the next round P’ replies with a message (update-ok) replace J in
> with a channel 0 that is equal to ¢, except that d.cash := d.cash + ¢
and send (updated) to P.

2b) Otherwise do nothing.

(C) Closing Ledger Channel

Accept messages from end-users of channel § € .

Upon receiving a message (lc-close, f.id) from a party P s.t. P €
[.end-users and there is no open virtual channel built over £, do the
following (within time 3A ¢):

o Add f.cash(B.Alice) coins to (§.Alice’s account on L.
o Add [.cash(S.Bob) coins to .Bob’s account on L.
e Erase ( from X.

o Send (lc-closed) to the parties in §.end-users and to Sim.

(D)-(E) Opening and closing a virtual channel v

la) Upon receiving the message m = (vc-open,<y) from parties A, B,
and Z within two rounds, where v is a virtual channel and ~.Alice =
A,~v.Bob = B and ~.Ingrid = Z, (wait at most time A to)

« remove 7.cash(A) coins from A’s account and +.cash(B) coins
from Z’s account in X(y.subchan(A)).

« Remove 7.cash(B) coins from B’s account and +.cash(A) coins
from Z’s account in X(y.subchan(B)).
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e Add « to X,
o Output (vc-opened) to A, B and Z.
1b) If within 2 rounds (from receiving m for the first time) you do not

receive m from all the parties A, B and Z € ~.all-users then (wait
between A - 2A rounds to) output vc-not-opened to them and stop.

2) Wait until round ~.validity where 5 := ¥(+.id) is the current version
of 7. Then execute the following operations within round ~.validity +
TA + 5%

e Add #J.cash(A) coins to A’s account and 7.cash(B) coins to Z’s
account in 3(v.subchan(.A)).

o Add 7.cash(B) coins to B’s account and 7.cash(A) coins to Z’s
account in X(v.subchan(B)).

Output (ve-closed) to A, B and Z and erase 4 from .

%this is reduced to 2A in the optimistic case, i.e., when both §.end-users are honest
bthis is reduced to ~.validity + 5 in the optimistic case, i.e., when all y.end-users are
honest

J

The functionality Fchannels Mmaintains a channel space > — an initially empty set
that stores all open ledger and virtual channel tuples. We require that channels
have unique identifiers, i.e., for every id € {0,1}* there exists at most one § € X
s.t. d.id = id. This allows us to refer to channels by their id: § = X(id). For
virtual channels v € Y, we additionally require that ¥ also contains the two ledger
channels 54, fp € ¥ which were used to construct -, i.e., that y.subchan(v.Alice) =
fa.id and v.subchan(v.Bob) = §p.id.

The Fchannels functionality is triggered by messages from the parties (messages
concerning the ledger channels start with Ic, and those concerning the virtual
ones start with vc). A ledger channel 3 between Alice and Bob is opened by a
message (lc-open, 5) from Alice and a confirmation (1lc-open, /) from Bob. The
functionality removes Alice’s coins from £ and refunds them if Bob does not con-
firm. Otherwise, the channel is considered open and added to the channel space
3. A virtual channel v between Alice and Bob over Ingrid is opened by a messages
(vc-open, 7) from each party and closed automatically when time ~.validity comes.
Ledger and Virtual channels are updated via a message (update,id, 6, ), where
id refers to the channel that shall be updated according to the transfer function
0. The update annotation o € {0,1}* is used to guarantee that the parties agree
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on why a given update happen (see also Eq. (4.1) on p. 82). Channel updates
are triggered by one of the channel end users (message update-requested) and
confirmed by the other (message update-ok). Ledger channels are closed with a
message (lc-close, id).

Note that the parties can play different roles in the virtual channels, e.g., it may
happen that virtual channels v and +" are open over 3, and 3.Alice plays the roles
of v.Alice and +/.Ingrid while 3.Bob plays the roles of 7.Ingrid and ~.Alice, say. We
emphasize that the description of the ideal functionality is significantly simplified
due to the restrictions on the environment that we make below. Note that (unlike
the simplified protocol in Section 4.1.1), our functionality is fully concurrent, and in
particular several channel updates can be performed simultaneously, and multiple
virtual channels can be open over the same ledger channel j3.

4.3.1 Restrictions to the Environment

Below we list the restrictions on the environment that we make to simplify the pro-
tocol. Most of them are very natural and ensure that the environment never asks
the honest users to do something obviously wrong, e.g., open two different channels
with the same identifier, or open a channel without having sufficient funds. These
restrictions could be eliminated at the cost of a more complex protocol description.

e The environment never asks the parties to open a channel 6 such that é.id
already exists, or when the parties do not have enough funds.

o If the environment asks the parties to open a virtual channel + then the
channel with identifiers specified in ~.subchan exists in ¥, and no closing
procedure for them has been initiated.

e The environment never asks to close a ledger channel in time earlier than
~v.validity + 7TA 4+ 5 where ~ is a virtual channel whose opening has been
initiated by the environment (even if this opening was unsuccessful).

o If the environment asks one of the parties P € d.all-users to open a channel
9, then it asks all the other parties in d.all-users to do the same (in the same
round).

o The environment does not perform (or confirm) any update procedures for
channels whose closing has been initiated.
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e If a previous update of a channel § failed, then the environment will not
request a new update of .

e The environment always confirms an update that it initiated, and never
confirms an update which she did not initiate.

o The environment always instructs corrupted parties (via the adversary) to
initiate coin refunds. This restriction allows us to abstract from the explicit
refund and lets functionalities always payout coins within one blockchain
round (A). We discuss in Section 4.5 how this assumption and simplification
could be easily removed by adding the influence for Sim to instruct F to not
add coins back (e.g., during the ledger channel opening).

A consequence of these restrictions is that in our protocol, we can assume that
all the honest parties have the same view on what channels should be open. For
example: [.Alice knows that if she received a (vc-open, ) message from the envi-
ronment, then 3.Bob also received such a message (in the same round). This, in
particular, means that if 5.Bob refuses to participate in the procedure of opening
channel (3, then he must be corrupt.

4.3.2 Perun Properties

Next, we will discuss how the ideal functionality Fchannels Satisfies the security
requirements defined in Sec. 4.1.1.

Consensus on channel opening and on channel update: The ideal functional-
ity Fchannels always guarantees that honest parties always agree on whether
a channel has been created or updated. This is achieved by the notification
that the functionality sends to parties. The lc-opened/ lc-not-opened or
vc-opened/ vc-not-opened messages ensure that all parties know whether a
channel has successfully been created or not (after at most O(A) rounds).
Similarly, the functionality (instantly) informs parties about update requests
and completed updates, thus ensuring consensus on updates.

Guaranteed channel closing: A ledger channel S can be closed by any of the
parties P € (.end-users as long as there does not exist a virtual channel that
uses [ as a subchannel. In this case, the closing is completed within time at
most 3A.
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If an open virtual channel v uses 3 as a sub-channel, the parties in 3.end-users
have to wait until 7 is closed, before they can close 5. Virtual channels are
closed automatically (cf., Step B.2) after the validity is over and the closing
procedure takes at most until v.validity + 7A + 5. If all participants of the
virtual channel are honest, this process will be completed within ~y.validity 45
rounds.

From these two cases, it follows that virtual channels can be closed within a
predefined time, depending on validity, and ledger channels can be closed in a
fixed time after potential virtual channels are closed. From this reasoning, it
gets evident why we need virtual channel validity to guarantee this property.

Guaranteed balance payout for end-users: When a virtual channel is opened,
the coins for this channel are taken out of the underlying ledger channels
by the functionality Fchanneis- 1he exact number of coins are added back
to the sub-channels when the virtual channel is closed, thereby enforcing
the coin distribution from the latest virtual channel update (cf., Step B.2).
Only after all virtual channels are closed, the underlying ledger channels
can be closed (procedure (D)). The functionality pays out the latest channel
balance, meaning that the coins from the current balance are added to the
user accounts in the ledger. These steps guarantee that no coins are created
or lost by opening or closing any channels and that the coin distribution
during closing is enforced.

Balance neutrality for intermediary Ingrid: To understand how we achieve bal-
ance neutrality for Ingrid, we analyze the opening and closing procedures
of a virtual channel «y over its two subchannels 3, := (.subchan(~y.Alice))
and [ := X(7.subchan(y.Bob)). When the virtual channel is opened .Ingrid
had a total of x4 + x5 coins removed from her accounts in the subchannels,
i.e., r, := 7y.cash(y.Bob) from her account in §,, and x, := .cash(~y.Alice)
from her account in 35 (cf., Step B.1a).

During the closing procedure (Step B.2) she gets 2/, + 2, coins back to her
accounts, i.e., 2/, := 7.cash(y.Bob) to in 4, and z), := 7.cash(y.Alice) coins
in Bs. It remains to show that x, + x5 = 2/, + «),. This is guaranteed by
the channel update process since it does not allow overall value changes in
the virtual channel v. 6 in the update requests has to be a transfer function,
which guarantees that for every update x4+ = 2/, + 2. Hence the balance
neutrality holds.
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4.3.3 Formal Security Statement

Let k denote the security parameter (which is given as input to the environ-
ment and to the parties). First, REAL%;‘:W“C’E(K) is the output of Z running
the real world protocol Il¢hanne in the C-hybrid world with adversary A. Second,
[DEAL?&?::QS’ £(k) denotes the output of Z running in the ideal world with the
Fehamels ideal functionality and the simulator Sim. In both cases to simplify ex-
position, we will assume that Z is from a class of restricted environments, i.e., we
will make some explicit assumptions about Z’s behavior (cf., Section 4.3.1).

We say that protocol Il¢hanner running in the C-hybrid world emulates an ideal
functionality Fchannels With respect to a global ledger £ and with blockchain delay
of A rounds, if for any PPT adversary A there exists a simulator Sim such that
for all restricted environments Z (see Section 4.3.1), we have:

HYBRIDZ™ . ()~ IDEALZ™™ (k).

FChannelss

We can now state our main security theorem formally.

Theorem 1. Assume the underlying signature scheme is existentially unforgeable
against adaptive chosen-message attacks. Then the protocol lcpanne Tunning in
the C-hybrid world GUC emulates an ideal functionality Fchannels With respect to a
global ledger L and with blockchain delay A.

4.4 The Perun Protocol

In this section, we provide a formal description of the PERUN protocol Ilchannel-
Our protocol Igpanner includes interaction with a smart contract, which we must
formally define in the UC framework. Therefore Il¢hanne is defined in a C-hybrid
world, where C is the contract functionality that maintains the set of active contract
instances. We define C formally in Section 4.4.1. We assume the existence of a
public-key infrastructure (cf. Section 4.2).

Challenges from Concurrency. In contrast to the informal description in Sec-
tion 4.1, we consider a fully concurrent execution here, which means that many
channels can be opened, updated, and closed in parallel. In particular, any ledger
or virtual channel § could receive two different updates from two parties in the
same round. To ensure the security of the protocol, we must prevent that the
parties agree on two different updates with the same version number w in this
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case. To avoid this scenario altogether and keep the protocol simple, we prevent
that d0.Alice and §.Bob can propose updates in the same rounds. As the update
process takes two rounds and the parties should only be able to propose updates
in alternating rounds, they can only initiate updates every fourth round. We say
d.Alice can propose updates if the round number 7 = 0 (mod 4) and 0.Bob if the
round number 7 = 2 (mod 4). Note, that since we assumed that the adversary
cannot reorder messages sent from P to P’ (see Sect. 3.4.2), the version number
w will remain synchronized between the parties.

Another potential problem could come from the fact that two update requests
that are sent in the same round by P arrive at P’ in reversed order. Note that
this would lead to inconsistent views of P and P’ on the transfer functions # in
both of these requests. To avoid this issue, we assume that the adversary cannot
reorder messages sent between two parties in the same round.

Additionally, we need to address the challenge that several virtual channels
are simultaneously opened over the same ledger channel Sp. Multiple virtual
channels imply that — once cheating behavior is detected — honest parties can
be forced to wait until the timeout of each open virtual channel has passed be-
fore they can close the underlying ledger channel $p that connects them with
the malicious party. Recall, that this waiting period guarantees that intermedi-
aries cannot be cheated for their locked coins. When closing the ledger channel
Bp, all final balances of virtual channels must be known. Therefore, we do not
instruct Ingrid to close Sp while there are still open virtual channels. Instead,
we let the contract instance C(f5.id) (that corresponds to p) simply record the
information about the outcome z of each virtual. Observe, that there may be
multiple such z’s that need to be stored in C(8p.id) during the lifetime of Sp
(each x coming from closing a different virtual channel that is constructed over
pp). To save space in the contract’s storage, we simply accumulate all of the
values by summing them up. Technically, this is done by defining a transfer func-
tion transfer : Bp.end-users — R that is initially equal to 0 on both inputs. This
function keeps track of the number of coins that needs to be transferred between
the parties. That is, each time x coins are transferred from Sp.Alice to Sp.Bob;
the function is updated by letting transfer(Sp.Alice) := transfer(Sp.Alice) — = and
transfer(3p.Bob) := transfer(5p.Bob) + z.

This function is kept in the contract’s storage until the channel is closed. During
the channel closing, it will be used to correct the amounts of coins that the parties
receive. Suppose, for example, that the last balance of Sp on which that parties
exchanged the signatures is [Bp.Alice — 34, Op.Bob — yg]. Then as a result of
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closing the channel p.Alice will get y4 + transfer(Sp.Alice) coins, and Sp.Bob will
get yp + transfer(S,.Bob) coins.

4.4.1 The Channel Smart Contract C

Let us start by constructing the ledger channel smart contract. In our protocol,
this contract is modeled as an ideal functionality that is used by the parties in P.
In the UC framework, this ideal functionality is also called a hybrid functionality.

As discussed in Section 3.2, Ethereum smart contracts always need to be trig-
gered by transactions in order to execute a function, receive or payout coins or
store data. This means we need to anticipate this contract behavior in our proto-
col. As a contract can also not send messages to parties directly to inform them
of a particular behavior, we require honest parties to always watch the contract
on the blockchain to see if it changed state after some function call.

Whenever we construct timeouts, we assume that an honest party will trigger
the smart contract to ensure that the timeout is enforced. If a message is expected
from a party, the functionality will inform the other channel participants once the
message arrived. If the message did not arrive in time, other honest parties send a
timeout message, that wakes up the functionality, which can verify that the timeout
for the expected message expired. In most cases, the functionality will then be
able to attribute the fault and punish the malicious party by assigning all funds
that are concerned with this fault to the other channel party. Fault attribution
and timeouts are presented in more detail in Section 3.2. In the functionality C, we
handle fault attribution in virtual channels in the subroutine (C). Otherwise, the
contract consists of the following parts: (A) the subroutine used for constructing a
given contract instance and (B) the main execution functionality of the contract.

The contract functionality C maintains the set of active contract instances. Each
contract instance has a unique identifier. We refer to a contract instance with
identifier ¢d as C(id). In our case, each contract instance corresponds to one ledger
channel, and, for simplicity, has the same identifier. In other words, a contract
instance C(f.id) corresponds to a ledger channel 5. When a channel is closed,
then the corresponding contract instance terminates (i.e., it is removed from the
set of contract instances of C). Contract instances can be easily implemented as
a separate contracts or as a singleton contract storing C on the Ethereum ledger.
For simplicity we consider a separate contract for each instance. A new contract
instance C(f.id) is created when C receives a constructor message. We also say
that a message m is sent to C(id) or sent by C(id) to denote interaction with
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this specific contract instance. One can also think about it in the following way:
every message (other than the constructor message) that is sent to C contains the
identifier id that specifies to which particular contract instance it is addressed,
and a similar rule applies to messages sent by C.

The contract C defines a transfer function transfers : 5.end-users — R initially
equal to 0 on both inputs. This function keeps track of the sum of the transfers
between [(.Alice and 3.Bob that were communicated to the contract. In our case,
these transfers will come only from the closing of virtual channels. The contract
also stores information about virtual channels (built on top of ) that were closed
via the contract. Technically, we say that some channel v is marked as closed if it
is added to the list of such closed channels.

When both channel end-users are honest, the contract is executed only for the
optimistic closing of the channel through a lc-close message to the contract (cf.
Subroutine (B) Step 4 and 4a). In particular, this means both parties only try to
close the ledger channel after all virtual channels are closed. However, if at least
one of the channel end parties is dishonest, the other party may initiate the closing
of a virtual channel via the contract functionality. In this case, an honest party
must be able to prove that the counter party agreed to open a virtual channel. For
this purpose both end-users sign opening certificates (v, o) every time they open
a new virtual channel. This statement can later be sent to the contract to prove
this fact. Similarly, parties exchange signed closing certificates when they agree to
close a virtual channel. An opening certificate ocp (resp. closing certificate ccp)
for party P and channel 7 look as following:

oc, :=(open v with initial balance [A +— z4; B +— 5] and validity v)
ccp :=(close y with final balance [A — z4; B +— 5| and validity v),

Where each such statement is accompanied by a signature o, over the respective
statement by party P.

Additionally, the contract must be able to compare channel versions for both
ledger and virtual channels. To this end, we use the following terminology to
describe channel version tuples: Let w € N be a natural number called a version
number, and a € {0,1}* be an update annotation (see Sect. 4.3). Then (0, w, ) is
called a version of § if 5 is equal to § on all attributes except of d.cash, and the sum
of the balances (the value) of 8 is equal to the value of 8. Moreover, (8, w,a, o)
is called a signed version of 9 if o is a valid signature of P on (S, w,a). ifw=0
then we call (S, w, ) the initial version of §, and we do not require a signature,
i.e., we allow o = L.
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We define the winner selection procedure Win to determine which version of a

channel is newer. It was already implicitly defined for V’s and W’s in Section 4.3.
Formally it is defined as follows. Let § be a ledger or virtual channel. Win takes

as input a pair ((6°, w°, o, ¢?), (61, w', al, o)) of signed versions of §, and returns

as output a cash function 6 : d.end-users — R~ defined as follows: let ¢ be such

that w' > w'™" (if no such ¢ exists then choose 7 := () and then let 6 := §.cash.

We are now ready to define the hybrid contract functionality C formally:

Hybrid Functionality C.

This functionality captures the behavior of a channel contract instance .

(A) The contract for channel 5 opening

1) Upon receiving message (1c-open, 3) from party A where (3 is a ledger
channel s.t. A = f.Alice, remove [.cash(A) coins from A’s account
on the ledger £ and send message (1c-opening, 3) to 5.Bob and go to
step 2)

2) Wait at most A rounds to receive a message (1c-open, ) from party

B = [5.Bob.

2a) If this message was received, then remove f.cash(B) coins from
B’s account on the ledger L. Let transfers: 5.end-users — R be a
transfer function for § which initially outputs 0 on both inputs;
Send a message (1c-opened) to §.end-users and run subprocedure

(B) below.

2b) Otherwise, if no message from B was recorded add x, coins back
to A’s account in £ and send message (1lc-not-opened) to A.

(B) The contract C(id) execution

Assumption: for every channel 6 € {f,~} each party P can send at most
one message of a given type that concerns .

1. Upon receiving (ve-close-init, 7y, ocp) from +.Ingrid € [.end-users in
time at least ~y.validity + 2 (where oc, is an opening certificate of P :=
[.other-party(.Ingrid) on ) and v has not been marked as closed:
then send a message (vc-close-init,~y.id) to P and wait for one of
the following messages:

a) Upon receiving (vc-already-closed,”, ccp) from P, where ccp
is a closing certificate of ~y.other-party(P) on +: then mark v as
closed.
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b) Upon receiving m := (vc-close, vy, W, Signp(W)) from P (where
W is a version of v signed by ~.other-party(P)): then send m to
~v.Ingrid.

¢) Upon receiving (vc-close-timeout,~y) from ~.Ingrid in time at
least A after you sent the message (vc-close-init,y.id): then go
to subroutine (C) below.

2. Upon receiving message m := (vc-close-final,y, ocp, (V5 Bob, Sy.Alice),
(V5 Alices Sy.Bob)) from ~y.Ingrid where oc, is an opening certificate of
P := [.other-party(7.Ingrid) on ~, each Vp is a version of 7 signed by
~v.other-party(P), and Sp is a signature of P on W (or is equal to L if
W is the initial version of 7), and 7 has not been marked as closed:
then send message m to P and wait for one of the following messages:

a) Upon receiving (vc-already-closed, 7, ccp) from P, where ccp is
a signed closing certificate on v from ~.Ingrid do nothing.

b) Else upon receiving (vc-close-timeout,y) from ~.Ingrid in time
A + 1 after you sent m to P: then go to subroutine (C) below.

3. Upon receiving (vc-close-timeout, "y, ccp) from P € ~.end-users in
time at least ~y.validity + 4A + 5 where oc, is an opening certificate of
~.Ingrid on v and v has not been marked as closed: send a message
(ve-closing, v.id) to «y.Ingrid and wait for one of the following messages:

a) Upon receiving (vc-already-closed, v, ccp) from ~.Ingrid, where
ccp is a closing certificate of .other-party(P) on v: then do noth-
ing.

b) (vc-close-timeout,~) from P in time at least A after you sent
the (vc-closing, 7.id) message to v.Ingrid: then in this case go to
subroutine (C) below.

4. Upon receiving (lc-close, W) from P, where W = (yp,wp,¢,0) is
a version of § signed by P’ = [.other-party(P): send a message
(Lc-closing) to P’ and wait for one of the following to happen:

a) Upon receiving a rely of P’ with (lc-close, W’) where W' is
a version of f signed by P’ = [.other-party(P): let balance :=

~

Win(W, W’) + transfers. For P € [.end-users send balance(P)

coins to P’s account on the ledger together with a message
(Lc-closed), and close the contract.

b) In time 7 party P’ replies with a message (vc-active, z), where
z is an opening certificate of P on some channel vy constructed
over # and 7 < ~v.validity + 7A + 5: then do nothing.
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¢) Upon receiving (lc-close-timeout) from P in time A after

you sent the (lc-closing) message to P’: then let balance :=
yp.cash + transfers. For P € [3.end-users send balance(P) coins to

P’s account on the ledger together with a message (1c-closed),
and close this contract instance.

(C) Subroutine for closing a virtual channel when cheating by
party P is detected

Let  := ~y.cash(y.Alice) 4 ~y.cash(y.Bob). Remove x coins from P’s account
in transfer and add x coins to [.other-party(P)’s account in transfer. Mark
v as closed. Send a message (vc-closed) to both [3.end-users.

The assumption that for every channel § each party P can send at most one
message of a given type that concerns 0 (see subroutine (B)), is a technical restric-
tion that simplifies the presentation. By message type, we mean the keyword that
starts the message. It essentially means that, e.g., no party can ask to close the
same channel twice.

4.4.2 The Ilhanne protocol

Now that we have seen how the channel contract works, we can construct the
protocol formally. The overall PERUN Protocol consists of many sub-protocols:

(A) Ledger channel opening. This step is performed on-chain with the help of
the smart contract functionality C. If both parties agree they open a ledger
channel § and lock the necessary coins for this procedure in the ledger.

(B) Channel update. As long as both §.Alice and 0.Bob agree, this step does
not require interaction with the contract functionality or Ingrid and can be
repeated as many times as necessary. ¢ can be both a ledger or virtual
channel.

edger channel closing. Any channel party can initiate the closing on-chain

C) Ledger ch | closing. Any ch 1 party initiate the closing hai
via the smart contract functionality C. It guarantees that the balances of
the last agreed upon update will be payed out.

(D) Virtual channel opening. This step is performed off-chain with the help of
Ingrid. If all three parties agree they open a virtual channel § over two sub-
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channels 8, and 8z and lock the necessary coins for this procedure in the
subchannels.

(E) Virtual channel closing. In the optimistic case, a virtual channel is closed
once its validity expires. This requires interaction of Alice, Bob and Ingrid
and makes sure that the virtual channel coins are distributed correctly and
added back to the balances of the ledger channels.

Channel Opening Sub-Protocol

This sub-procedure describes the opening of ledger channels 3 between the parties
S.Alice and .Bob in interaction with the smart contract functionality C = C(.id).
To open a channel 3, party (.Alice sends to C a contract constructor message
for C(5.id) together with f.cash(f.Alice) coins. This is a message with a fixed
timeout, meaning that (§.Alice sends a timeout message if she does not receive a
reply from C(3.id) within time A after the contract instance C(/3.id) appeared on
the ledger. In this case (.Alice gets her coins back. The contract sends a message
(Lc-opening, ) to B.Bob informing him about the fact that 5.Alice initiated ledger
channel opening. Once the contract gets the confirmation message 1c-open from
[.Bob (together with Bob’s coins) then the channel is opened.

Protocol Ilhannet (A) Opening ledger channel

1. Upon receiving a message (lc-open, ) from the environment, party
[.Alice forwards this message to C and goes to step 3.

2. Upon receiving a message (lc-open, () from the environment and
(lc-opening, ) from C(S.id) (within A rounds), party [.Bob replies
to C(f.id) with a message (1c-open, ) and goes to step 3.

3. Each party P € .end-users waits for one of the following:

a) Upon receiving message (lc-not-opened) from C(f.id) output
(lc-not-opened) and go idle.

b) Upon receiving message (lc-opened) from C(f.id) output
(lc-opened) and run sub-procedures (B), (C) and (D) for channel
any virtual channel .

Once a ledger channel § was opened it can be updated and closed. Additionally,
parties can open, update, and close a virtual channel ~.

75



4 Virtual Payment Channel Hubs

Channel Update Sub-Protocol

Next we describe the update process for any open ledger or virtual channel (as
both procedures work identically). In order to update a channel ¢ the parties
exchange signed channel versions as defined above.

Protocol Ihanner-(B) Update of (ledger or virtual) channel §

Let ¢ be an open ledger or virtual channel. Each end-party P of § stores the
latest version (dp,wp, ap) and a signature of the opposite party ¢’ on this
version for §. Let P’ = J.other-party(P) then P proceeds as follows:

1. (Initiate Update) Only if no update procedure is going on: Upon
receiving message (update,d.id,f,«) s.t. for all Q € d.end-users :
d.cash(Q) + 0(Q) > 0 from the environment Z party P waits for the
next P’s update round of 4. When this round comes P lets 5 be
equal to op except that §.cash := 0p.cash + 0. Then she sends a tuple
(updating, d,ws + 1, a, ) (where & is P’s signature on (8, wp + 1, )
to P’ and goes to Step 4

2. (Receive Update) Upon receiving a correctly signed message
(updating,d,w, o, o) from the counter party P’ st. for all Q €
d.end-users : 6cash(Q) +60(Q) > 0 and w = wp + 1, compute
0 := d.cash — dp.cash, output (update-requested, /3.id, 6, ) to the
environment Z and go to Step 3.

3. (Confirm Update) If Z replies with (update-ok) in the next

round, compute signature o on (6, w,a), send a message
(update-ok, (,w,,5)) to P’, overwrite the stored version with
(5 ,w,a) and the signature with &, and stop the update procedure.
If Z does not send the update-ok message in the expected round, send
a tuple (updating,d,w + 1,&,5) to P’ (where ¢ is P’s signature on
(0,w+ 1,&)) and @ is a the update rejection annotation and goes to
Step 5

4. (Finalize Update) Upon receiving a message m within 2 rounds (where
the message contains a correct signature of P’ on all message param-
eters), proceed as follows:

o If m = (update-ok, (0p,ws + 1,,5)) output (updated) to Z,
overwrite the stored version with (d,, wp+1, ) and the signature
with &, and stop the update procedure.
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o If m = (updating,d,wp, + 2,&,5) output (not-updated) to Z,
overwrite the stored version with (9, wp + 2,&) and the signa-
ture with . Then compute signature o on (0, w, + 2,&) and
send a message (update-ok, (J, wpr + 2,&,0)) to P’. Then output
(not-updated) to Z and stop the update procedure.

5. (Finalize Failed Update) Upon receiving msg (update-ok, (0, wp +
2,a,0")) (where the tuple is correctly signed by P’) output
(not-updated) to Z, overwrite the stored version with (§, w, + 2) and
the signature with o', and stop the update procedure.

Channel updating is done with messages updating and update-ok. Note that
channel updating can take up to 5 rounds: In the first round, A may propose an
update. If she does, B informs the environment about this in the second round
and received confirmation in the third, which will make him send a valid signature
to A. Thus, as a result A outputs either updated to Z if this message was received
or not-updated otherwise. If B does not receive an ok from the Environment in
the third round, he will propose a new update reverting the channel balance to the
initial v but increasing the version number w. This ensures that B does not have a
signature of A on a valid update to 4 and could thus enforce this version on-chain,
while A does not have this power. Thus, in the rejection case, the protocol requires
A to sign the not-updated v with a higher version w, + 2 in the fifth round.

Channel Closing Sub-Protocol

Protocol Ilhanner-(C) Closing the ledger channel with identifier id

Each end-party P of § stores the latest version (gp, wp, ) and a signature
of the opposite party ¢’ on this version for every open (ledger or virtual)
channel 6. Let P’ = d.other-party(P) then P proceeds as follows:

1. Upon receiving a message (lc-close,id) (where id is an identifier of
some ledger channel ) from the environment party P lets (/3,0) be
the initial version of the channel with identifier 7d and lets V' be the
last signed version of 5 which P received from P’ = [3.other-party(P)
(if P has never received such a version then she lets V' = (,0,¢, 1)).
She sends to C(id) a message (1lc-close, V).

2. Upon receiving (in some round 7) a message (1c-closing) from C([.id)
party P does the following:
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a) If earlier she received an opening certificate ocp of P’ :=
[.other-party(P) on some virtual channel v that is constructed
over virtual channel § and ~.validity + 7A +5 > 7 — then she
sends to C(5.id) a message (vc-active,”y, ocpr) and she continues
waiting.

b) Otherwise she sends to C(/3.id) a message (lc-close, W'), where
W' is the last signed version of 3 that she received from P (if she
has never received such a version then she lets V' = (3,0, ¢, 1)).
Upon receiving a message (1c-closed) from C(S.id) she outputs
(lc-closed) and goes idle.

3. Upon receiving a message (Lc-closed) from C(f.id) party P outputs
(Lc-closed) and goes idle.

Closing a ledger channel is performed, with P and P’ playing roles of Alice
and Bob, and messages (1c-close, W) and (1lc-close, W’) corresponding to W,
and Wy. Message lc-closing is used by C(5.id) to communicate to party P’
that P requested channel closing. Message vc-active is used to communicate to
the contract (in Step 2b) that there is a virtual channel still open over the ledger
channel $. This is handled by the contract in Step 4b). Note that in the optimistic
case this procedure takes time 2A (one A for proposing the closing, and one for
confirming). In the pessimistic case it takes 3A since P sends the (7) message the
latest in time 2A, and it takes up to one additional A for the contract to process
it.

Virtual channel opening.

We now describe the protocol for the virtual channels (cf. Figure 4.3 on p. 52).
Recall that a virtual channel ~ is built over ledger channels 5, and (§5. Let C,
and Cy be the contract instances corresponding to the ledger channels 5, and (5
(respectively).

We start with the opening procedure. Suppose (,.Alice and [55.Bob get in-
structed to open a virtual channel v with the initial balance [A — z4; B — x5,
and validity v. Assume that the channels 5, and 3, have balances as on Figure 4.2.
Recall that opening ~ results in changed balances of 5, and (5 as illustrated on
Figure 4.3). Let us now discuss how this channel opening is realized at the protocol
level.

Informally, opening v is done by letting the parties exchanging opening certifi-
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1. open cert ocy, 04 1. open cert ocg, 053
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Figure 4.5: Message flow between Alice, Bob and Ingrid during opening of ~.

cates for . Recall, that such an opening certificate of P € {A,Z, B} for - has the
form (ocp,0p). The role of this certificate is to guarantee that a party P cannot
deny that she agreed to open = towards the contract instances. For example, if
Ingrid denies that she ever agreed to open v then Alice can use these certificates
to prove her wrong during the channel closing (see Section 4.4.2).

Let us first describe the process of opening a virtual channel in case all parties
are honest. First, A and B send their opening certificates for v to Z. If Z receives
both of these certificates, then she replies to A and B with her opening certificate
for v and considers the channel open. Parties A and B upon receiving Ingrid’s
certificates forward them to each other. They consider the channel to be open
(either upon receiving Ingrid’s opening certificate directly from her or receiving
it from the channel partner). Pictorially, the message flow looks in this case is
depicted in Figure 4.5. Note that the ledger channels 5, and S, are not updated
in this procedure. Therefore, technically, virtual channel opening does not result
in immediate direct removal of coins from parties’ accounts in the ledger channels.
Instead the parties locally keep track of the coins (and their distribution) in the
ledger channels and remove coins for opening of the virtual channel locally. If
necessary, they can always enforce this removal in the on-chain contract. For the
security, it is crucial, that the parties locally keep track of all open channels, their
certificates and their (latest) versions.

Now consider what happens if some parties are misbehaving. In this case the
execution of the protocol can result in not opening channel . Let us first discuss
how our protocol ensures that honest parties will agree on open channels. The
result of the protocol execution is that the parties receive opening certificates
from the other channel participants for 7. Since such a certificate can later be
used to claim coins from a party P € {A,Z, B}, the main security risk for P is
that it sends out a (signed) certificate without receiving a (signed) certificate back.
In such a case, the other parties might later claim that v was opened, while P
cannot prove the same. It is easy to see that this problem cannot lead to financial
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damage for A and B. This is because these parties will not consider the channel
open if they do not receive an opening certificate from Z, and in this case they will
never perform any update to 7. Consider the case where a malicious Z does not
send an opening certificate for v to A or B and then requests to close v when +’s
validity time comes. Note, that her behavior will not change the coin distribution
for both A and B, just as if the channel was never opened (as the default state
of 7 is that both parties get the same amount of coins as they deposited). If
Ingrid is honest on the other hand, then clearly there is a consensus among all
honest parties on whether the channel v was open or not (since either Ingrid sends
her opening certificate to both Alice and Bob, or to none of them). If Ingrid is
dishonest, then the only situation when there is disagreement between the honest
Alice and Bob is if the malicious Z sends her opening certificate to one of them,
and not to the other one. To avoid this problem we let the parties forward to each
other the opening certificate from Z. This guarantees that if at least one of them
considers the channel open, then the other one considers it open as well.

It remains to show that Z stays financially neutral (cf. Section 4.1.1). Here,
the problem could potentially be larger, as Z could lose coins if she sends her
certificate to Alice (say) without getting the certificate from Bob (as during the
channel closing she would be forced to pay coins to Alice without being guaranteed
that she gets the same amount of coins from Bob). This problem is precisely the
reason why in our protocol Z signs the opening certificates only if she received the
opening certificates for « from both A and B. In other words: she only agrees to
cover Bob’s commitments in front of Alice if she is guaranteed that Bob can be held
responsible for these commitments (and symmetrically for Alice’s commitments).

Finally, let us comment on the behavior of the parties when the opening pro-
cedure successfully ends. One thing that would obviously be dangerous is if one
of the parties starts the ledger channel closing procedure for 5, or s when ~ is
still open (i.e., before its validity time comes). Therefore, after every successful
opening of a virtual channel v, each party P € {A,Z, B} monitors the situation
in the ledger channels, and reacts to it. Suppose, for example, that a malicious
Ingrid contacts C, with a request to close channel 5, while v is still open. As
described above, C', informs Alice about this fact. Alice then has a chance to stop
the closing of 3, by sending to C', the opening certificate of Ingrid for ~.
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Protocol Il hanner-(D) Opening virtual channel v

1. Upon receiving a message (vc-open,~y) from the environment each
party P € ~.end-users signs and sends her opening certificate oc, on y
to v.Ingrid, waits one round and goes to Step 3

2. Upon receiving a message (vc-open,y) from the environment party
~.Ingrid waits one round.

a) If she receives (correctly signed) opening certificates ocp, ocpr of
both (P, P’) = ~.end-users, she replies to P and P’ by sign-
ing and sending her opening certificate oc;. Then she outputs
(vc-opened), waits until round -y.validity and then goes to the (B)
Virtual channel closing procedure.

b) Otherwise: she outputs (vc-not-opened) and stops.

3. If a party P € ~.end-users receives a (correctly signed) opening cer-
tificate oc; on ~ from ~.Ingrid then she forwards this certificate to
P’ = ~.other-party(P), outputs (vc-opened). Now they can proceed
with updates on the virtual channel subprocedure (B) and close the
virtual channel at time ~.validity through subprocedure (E).

Virtual channel closing.

The channel closing procedure is started automatically when the validity of
expires. The main idea of this procedure is that it is Z who is responsible for
closing v and taking care that the channels 5, and S5 are updated in the correct
way (i.e., according the the latest balance of 7). Therefore, in some sense, Z plays a
role similar to the role of C' for the ledger channel closing. Of course, the situation
is more complicated now, since (unlike C'), Z cannot be assumed to be trusted.
Our closing protocol is constructed in such a way that it is guaranteed that
an honest Ingrid will always manage to close a virtual channel within some fixed
time Thax (Or at least convince the contract that she correctly started the closing
procedure). If Ingrid does not close v on time, this is a uniquely attributable fault,
i.e., a contract instance (e.g., C,) can always determine if it was indeed Ingrid who
did not close the channel ~, or if Alice is falsely accusing Ingrid. This comes from
(i) the fact that Ingrid agreed on opening a channel v (with validity ~.validity) can
be proven using the opening certificate ocingria, and (ii) proving that a channel has
been closed is possible thanks to the closing certificates that we define below.
Therefore, what remains is to describe the protocol in which Ingrid can close ¥
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in bounded time. If this does not happen, then Alice and Bob complain to the
contract instances C'y and Cjy respectively, and these instances will punish Ingrid
by transferring all of Ingrid’s coins to the complaining party. If everybody is honest
then the procedure works in a straightforward way. Let us start by explaining it,
and ignoring for a moment some details that are needed for preventing cheating
by dishonest parties. First, Alice sends Ingrid the latest update message Vj that
she received from Bob (if no update has been performed then Vj is the initial
channel balance of v with version number 0, and no signature). In parallel, Bob
mirrors this behavior with the latest update message V, that he received from
Alice. Then Ingrid decides which of the versions is the latest balance of v by
checking which version has a higher number (this is done according to the same
rules as the ones used by C' in the ledger channel closing procedure). She then
proposes to update the ledger channels accordingly. That is: if the latest balance
of v is [A — 2;; B — )] then the balance of the ledger channel 3, is changed
to by adding —z, + 2/, coins to Alice’s account and —x, + ), coins to Ingrid’s
account in 3, (note that these two values sum up to 0), and, symmetrically: adding
—x 4+, coins to Ingrid’s account and —xz5+ ', coins to Alice’s account in (5 (see
also Figure 4.4 on p. 53). Recall that —z, and —x coins were subtracted during
the channel opening procedure. Alice and Bob confirm the update, and channel
is closed.

One problem with the above procedure is that the parties end up with no proof
that the virtual channel has been closed. In particular, this means that a dishonest
party could later try to close v again, or Alice and Bob could accuse Ingrid of not
closing v on time. To fix this, we make the following change in the ledger channel
update procedure. Instead of exchanging signatures on message mg, of a form as
in Figure (4.4), Alice and Ingrid exchange closing certificates ccg , on 7y defined as

mj, = (update 3, to [A > 2/, Ingrid — ]
because of closing ~, version number w ),

(4.1)

where w, is the current version number used for updating channel 3,. Symmetri-
cally, Ingrid and Bob exchange signatures on the analogously defined mj,_ . Hence,
a successful closing procedure of 7 results in each party holding a signed string
that can serve as a proof that v was correctly closed. We call such signed strings
closing certificates (cc).

Another problem is that Ingrid has no proof that one of the parties, Alice, say,
indeed sent to her the message V. In particular, since this message does not con-
tain Alice’s signature, it can be easily fabricated by malicious Ingrid collaborating
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with malicious Bob. Hence, it cannot be later serve as proof from Ingrid during the
interaction with the contract instance C',. We solve this problem by requiring that
this message has to come with Alice’s signature (and, symmetrically V, sent by Al-
ice, has to come with Bob’s signature). Let msg, (for i = 1,2,3 and P € {A, B})
denote the consecutive messages that should be exchanged between the parties (if
all of them are honest), i.e., msgy, := (Vpr, 0p) signed by P, and msg? := (m3,,0z)
signed by Z, and msgs, := (m},,, 0p) signed by P. To summarize, the message flow
in the closing procedure (in case everybody behaves honestly) looks as depicted
on Fig. 4.6.

1 1. msgl = (Vs,04) . ] L msgl = (Va,08) [
2. msg? = (mj3,.01) 2. msgy = (M, 01)

Al < A > | B
3. msg> = (M, 04) 3. msgl = (M3, 05)

Figure 4.6: Message flow between Alice, Bob and Ingrid during closing of ~.

Consider now what happens when the parties are malicious.
the interaction between Alice and Ingrid (the interaction between Ingrid and Bob

Look, e.g., at

is handled analogously). First, suppose Alice is dishonest and does not send a
message msg’, or msg® to Ingrid. In this case Ingrid has to resolve this issue by
contacting C',. Here the absence of a message is a non-uniquely attributable fault
i.e., C'4 has no way to determine if Alice in fact did not send this message or Ingrid
only claims this. Therefore, Ingrid cannot expect C, to punish Alice immediately.
The procedure works as follows. In both cases (msg!, not sent and msg® not sent)
Ingrid initiates her conversation with C', by providing evidence that Alice should
send a message to her. This evidence is different in each case.

msgl, not sent: In this case it is enough that Ingrid sends Alice’s opening certifi-
cate oc, for 7 to the contract functionality C'y. C'4 then checks ~’s validity
and rejects the complaint if the channel is still valid, i.e., if the validity did
not expire yet. Otherwise C, informs Alice about Ingrid’s complaint. If ~
has already been closed then Alice proves it to C', by replying with a closing
certificate on v signed by Ingrid (in which case C', punishes Ingrid). Oth-
erwise, Alice sends msgl to C, who forwards it to Ingrid and we say that
Ingrid received msg!, via the contract. If Alice does not react within time
A, then it is a uniquely attributable fault, and C, punishes Alice.
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msg> not sent: In this case Ingrid publishes Alice’s opening certificate ocajice for
7, plus messages msg{ and msg? that Ingrid received earlier (either directly
from the Alice and Bob, or via the contract Cy). Note that these messages
consist of versions of v signed by Alice and Bob, and hence C, can determine
the final balance [A — 2/;; B — ] of «. Since the opening certificate
contains the initial balance [A — x4;B — xz] of 7, C can compute the
value ¢ := —xp + ;. This value corresponds to the coins that should be
transferred from Alice to Ingrid (note that x can be negative, in which case
—z coins are transferred from Ingrid to Alice).

Ingrid then starts the following emergency closing procedure of channel j3,.
Closing of B4 with simultaneous transfer of q coins from Alice to Bob: The
channel is closed exactly as described in Sect. 4.1.1 except that the amounts
of coins that the parties get are corrected to take into account the transfer q.
To be more concrete, suppose Ingrid played the role of Bob in channel 5,
(and Alice played the role of Alice). Let the message m24 with the higher
version number be as on Figure 4.4. Then the amount of coins that Alice
gets is x4 — ¢ and Bob (who is Ingrid in our case) gets x5 + q.

A less complicated case occurs when Ingrid does not send msg? to Alice, or send a
wrong message msg? (e.g., a message that proposes to Alice fewer coins than what
she is supposed to receive from closing «). In this situation, Alice simply does
nothing until time T},., comes, or until she gets some message from C', triggered
by Ingrid’s action (see above). This is acceptable, as we place the burden to close
~ before time T}, on Ingrid.

Protocol I hanner-(E) Virtual channel closing

For P € 7.end-users let 3, denote the channel with identifier .subchan(P),
and let (7o, 0) be the initial version of channel . For P € ~.all-users let oc,
denote the opening certificate of P on ~. If P € «.end-users then P’ denotes
~v.other-party(P).

1. In round ~.validity each P € ~.end-users lets Vo := (Vpr, Wpr, Qpr, 01)
be the latest signed version of v that P received from P’. If P never
received a signed version of v from P’ (which means that no updates
of v have been performed) then P lets Vo := (7,0,e, L). Then P
sends to 7.Ingrid a tuple (ve-close, Vyr, Sign, (V) and goes to Step 4.

2. In round #~.validity + 1 party ~.Ingrid does the following for each P &
~.end-users:
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a) If she receives a correctly formated (vec-close, Vs, Sp) message
from P then she goes to Step 3.

b) Otherwise she sends a message (vc-close-init,7y,ocps) to
C(Bp.id). If she then receives a message (vc-close, Vs, Sp) from
C(Bp.id) then she goes to Step 3. Otherwise she receives a mes-
sage (vc-closed) — in this case she sets Vpr := (70,0,¢, L) and
Sy := 1 and goes to Step 3.

3. Party v.Ingrid waits to learn (Vpr, Sp) for both P € .end-users (either
by getting (Vr, Sp) directly from a party, or via the contract in Step
2b). She lets 6 := Win(V, ajice, V5.80b). Then for each P € v.end-users
she proposes an update of 5, that adds x := 6(P) — ~p.cash(P) coins
to P’s account and —x coins to 7.Ingrid’s account and is annotated
with a string channel ~.id closed, and goes to Step 5.

4. Party P € ~.end-users waits for one of the following events to happen:

a) Party ~.Ingrid proposes an update to ledger channel 5, that adds
~pr.cash(P) — vp.cash(P) coins to P’s account and is annotated
with a string channel v.id closed: P confirms this update, out-
puts (vc-closed) and goes to Step 6.

(In case P in the past did not receive a confirmation on her last
update message (updating, (7, w, @, d)) she also accepts updates
that add 7.cash(P) — vp.cash(P) coins to her account.)

b) Party P receives a message (vc-closing,~.id) from C(5p.id),
party P replies (ve-closing, Vs, Sign,(V5)) and continues wait-
ing.

¢) Within round ~.value + 4A + 5 none of the above happens: P

sends message (vc-close-timeout,, 0Cy.ingrid) to C(Bp.id), out-
puts (vc-closed) and and continues waiting.

d) Party P receives a message (vc-closed, ) from C(id): party P
outputs (ve-closed) and goes to Step 6.

5. For each of the update procedures proposed by her in Step (3) v.Ingrid
does the following:

a) If the update procedure is successful then she outputs
(ve-closed) and goes to Step 6.

b) Otherwise she sends message (vc-close-final,y, ocp, (V5 .8obs Sy.Alice
(V. Alices Sy.Bob)) to C(Bp.id).  Once she receives a message
(ve-closed, ) from C(fp.id) she outputs (vc-closed) and stops
this procedure.
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6. A party P € ~.all-users goes in to an idle state. If at any point later
P receives a message from C that concerns channel v then P answers
with (vc-already-closed, cc), where cc is the closing certificate on ~y
(see Sect. 4.4.1).

The vc-close-init messages sent by the end-users of v correspond to messages
msgs on Fig. 4.6. The updates proposed by ~.lngrid in Step 3 correspond to
messages msgy and msg?. These updates are annotated with strings channel +.id
closed since they correspond to messages of a form as on Eq. (4.1) (p. 82). Recall
that we considered two cases of malicious behavior of the parties. The actions of
7.Ingrid in the first case (msgl not sent) are described in Step (2b), where ~v.Ingrid
sends a vc-close-init message to the contract. The contract receives this message
in Step (la) and ensures that the virtual channel is closed correctly in time. The
second case (msg>, not sent) is handled in Step 5. Recall that in our informal
description ~.Ingrid had to send P’s opening certificate on v and messages msg’,
and msgl to the contract. In the formal description these values correspond to
ocr and pairs (V, gob, Sy.alice) and (V5 alice; S+.80b) respectively, which are sent to
C(Bp.id) in the vc-close-final message. Note also that in case P did not receive
a confirmation on her last update message (that contained a channel tuple 7) then
she accepts that ~.Ingrid transfers to her the amount of coins that she should get
from 4 (and not from 7,/). This is needed since ~.Ingrid has no way to find out
what happened between P and P’ when they were updating v (more concretely:
she does not know if indeed P’ did not confirm the update).

4.5 Perun Security Proof

We are now ready to prove Theorem 1 defined in Section 4.3.3. Recall that we
need to show that for all PPT adversaries A, the protocol execution of Ilcpanne in
the C-hybrid world is indistinguishable from the Fchaneis world from the view of
an environment (which is restricted as described in Section 4.3.1).

We have already informally argued about the security of our scheme while pre-
senting it in the previous sections. Here we focus the formal UC-style proof of
security. Figure 4.7 depicts the setup for this proof technique where we distin-
guish the real and ideal world execution of PERUN (cf. Section 2.4). In both
worlds, the environment Z sends inputs to honest parties and receives outputs
from them. In the real world, honest parties behave as described in Section 4.4
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Figure 4.7: Setup of a simulation of the PERUN security proof in UC-style manner
for honest parties.

and interact with the hybrid contract functionality C that makes changes in the
global ledger functionality £. In the ideal world, on the other hand, honest par-
ties are so-called dummy-parties that forward any information from and to the
environment directly to the ideal functionality Fchannels, which changes the state
of the global ledger £. In the real world execution, the environment also sends
instructions to the adversary (called influence) and receives information in return
(called leakage). Recall that we assume a static adversary .4 that can corrupt
parties at the beginning of the execution. To make both worlds indistinguishable,
all changes in the ledger £, all outputs of honest parties and all leakage of the
adversary (towards the environment Z) in the ideal world must be identical to
the ones in the real world. For this purpose, we construct a simulator Sim that
interacts with the environment Z and the ideal functionality Fcpannels On behalf of
the adversary A and all corrupted parties in the ideal world.

At the beginning of the simulation, the simulator Sim internally starts the adver-
sary A and corrupts the parties that A would corrupt in the real-world execution.
The simulator also generates the (public key, private key) pairs for all parties —
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even the honest ones. It passes the set of public keys and the private keys of the
corrupt users to the adversary (and outputs them to the environment, simulating
the leakage of the adversary). Then, Sim simulates the behavior of A and watches
the instructions of Z to the corrupt parties. Depending on these instructions, Sim
generates messages to simulate the real world protocol execution and sends inputs
to the Fchannels functionality. In particular, he has two tasks to make it impossible
to distinguish between the simulated and the real execution. First, the simulator
needs to emulate the corrupt parties’ outputs, i.e., all messages sent by the C func-
tionality and other (honest) parties. Moreover, he has to ensure that changes on
the ledger £ happen simultaneously in both worlds. Recall also that the adversary
A can control when the ideal functionality Fchannels Processes some message (up to
A rounds). This accounts for the fact that in the IIcpanner protocol, the adversary
can delay any processing of honest parties’ messages to C by at most A rounds.
Recall that honest parties always send messages immediately, which ensures that
their message reach C in time before a timeout is triggered. Additionally, corrupt
parties may get instructed to send messages to C at any time they want. Therefore,
our simulator has to observe the network and enforce the delays and messages that
A is instructed to introduce also in the ideal world. This ensures that Z cannot
distinguish if C or Fchanneis made changes in £. As this is a continuous task of Sim
in all steps of the protocol, we abstract from it in the sketch of the simulator on
to keep the exposition clean.

We proceed by constructing a simulator Sim for every step (A) - (E) of the
protocol as introduced in Section 4.4.2 and show for each phase why the protocol
execution is indistinguishable from that of the ideal functionality. It is easy to
see that the only non-trivial cases are when some of the parties participating in
a given part of the protocol are corrupt, and some are honest. If all the parties
are honest, the protocol proceeds in the fully optimistic case. In this case, the
environment only has changes in the global ledger £ and honest parties’ outputs
as a base for the distinction. In this case, the ideal functionality Fchanneis proceeds
in the optimistic case, which trivially emulates the optimistic case execution of the
[Tchannel protocol automatically.

Another edge case scenario occurs if all parties, Alice, Bob, and Ingrid, are cor-
rupted by the adversary. In this case, Sim can internally simulate the contract
behavior on the input of corrupt parties, and forward any resulting messages to
the environment via the leakage. If the parties make the contract functionality
C lock or redistribute coins on the ledger £, Sim can simulate this behavior by
updating the balance of corrupted parties in £ using the init message (recall that
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he has the power to transfer coins from the corrupt parties freely).

4.5.1 Ledger Channel Opening

During this subprocedure, there are only two cases we need to consider: Either
the channel is opened (if Z sent lc-open to Alice and Bob) or the channel is not
opened (if Z did not send lc-open to one of the parties or one of them is corrupt).
This part starts when Z sends an (lc-open,3) message to both [.end-users in
some round 7. Simulating it is straightforward: Sim simply simulates the contract
functionality, plays the role of the honest party to potentially corrupt ones, and
ensures that coins are removed from ledger during the right rounds (by delaying
messages as discussed above).

Simulator for (A) ledger channel opening ]

Sim interacts with Z and Fcpannels in the ideal world. It controls all inputs
and outputs of corrupted parties.

For corrupted P € [.end-users

1. Upon being instructed from Z to send (1lc-open, ) on behalf of P,
forward this message to Fchannels-

2. Wait to receive a message from Fchannels-

a) Upon receiving (1c-not-opened) from Fcpanneis, forward this mes-
sage to Z.

b) Upon receiving (lc-opened) from Fcpannels, forward this message
to Z and run simulation of subprocedure (B) and (C) for channel

3.

For corrupted (.Bob (additional to the instructions above)

If 5.cash(/3.Alice) coins are removed in the ledger £ by Fchanneis due to the
opening of (3, forward message (1c-opening, ) to Z.

7

In the real world, Bob checks if Alice initiated the channel before he sends his
message (1c-open, 3), but in the ideal world, this check is performed by Fchannels-
Note that when the channel does not open (case 2b), Alice should get her coins
back. However, if Alice is corrupted, she could potentially leave the coins in the
contract and not request them back. This case is captured by the restriction 4.3.1
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on the Environment. We could circumvent this restriction by adding some more
cases to the descriptions of Icpanner, C, and Fepannets- In the real world, we would
let Alice request for a refund (within time A after Bob did not react). In the ideal
world, we must also be able to capture this case, by letting Sim influence the ideal
functionality Fchannels t0 leave the coins untouched. We would, however, restrict
this influence only to be accepted if Alice is corrupted.

4.5.2 Channel Updating

Sim aims to simulate the real-world protocol to Z in the ideal world while in-
teracting with Fcpannels- In the case where neither party is corrupted, the worlds
are indistinguishable without Sim’s involvement. He only needs to ensure that
messages are sent at the right time.

| Simulator for (B) channel § update ]

Sim interacts with Z and Fcpannels in the ideal world. It controls all inputs
and outputs of corrupted parties.

For corrupted initiators P € [.end-users

For every open ledger or virtual channel ¢ the simulator Sim stores the latest
version (0, wp).

1. Upon being instructed from Z to send (updating, S, wp + 1,a,0) on
behalf of Ps, where & is a valid signature of P on the tuple (3, wp+1, a),
send message (update, d.id, 0, &) t0 Fchannels, Where 6 := §.cash—d.cash.
Then go to step 2.

2. If Fchanmnets Sends a message (updated) to P, generate signa-
ture o' of P’ = J.other-party(P) on (6, wpr + 1,a) and output
(update-ok, (0, wp + 1,,0")) to Z.

For corrupted confirmers P’ € (5.end-users

For every open ledger or virtual channel ¢ the simulator Sim stores the latest
version (6, wpr).

1. If Fchannels sellds (update-requested, £.id, 0, ) to P’, compute )

as 0p except d.cash := d.cash + 0, generate signature o of P =
d.other-party(P’) on (0, wpr + 1,a) and output (updating,d,wp +
1,a,5) to Z.
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2. Upon being instructed from Z to send (update-ok, (dp, wp + 1,a,0”))
on behalf of P, within 2 rounds (where the tuple is correctly signed
by P’), send message (update-ok) to Fchannels

If the initiator of an update is corrupt, the environment will start sending mes-
sages on behalf of this party. In particular, the procedure starts when Z sends
the first protocol message in the name of the update initiator P € ¢.end-users.
Now Sim starts the ideal world execution by sending message (update, id, 6, ) on
behalf of P to Fchannels When Z sends the first (correctly signed) protocol message.

If in the next round Fchannels Outputs the updating request to party P’ :=
d.other-party(P), which is indistinguishable if P’ is honest. Otherwise, Sim simu-
lates message (updating, 5A, wp + 1,a,) to Z via the corrupted party. Note, that
if P is honest Sim needs to generate his signature for the above message. Recall
that Sim generates all keys for all parties in the ideal world simulation. Therefore
he can compute the signature even of honest parties.

If Z sends the confirmation message of the protocol (again only if it is correct
and singed) Sim triggers the update confirmation in the ideal functionality. Then
in the next round, Sim simulates the confirmation message from P’ if the initiator
P is corrupt. Again, this requires signing messages with P’ private key, but Sim
can do it since he knows the private keys of all the parties.

4.5.3 Ledger Channel Closing

Ledger channel closing starts when Z sends to P (again we call P the initiator)
a message (lc-close,id). As in the case of channel opening the simulation is
straightforward: the simulator simply simulates the other parties and the contract
functionality for corrupt parties, and ensures that the unlocking of coins and the
lc-close message of Fcpannels is €xecuted in the correct round.

| Simulator for (C) ledger channel closing |

Sim interacts with Z and Fcpannels in the ideal world. It controls all inputs
and outputs of corrupted parties.

For corrupted closing initiators P € [.end-users

1. Upon being instructed from Z to send (1c-close, 3, v, €, 05 ) on behalf
of P, where 0, is a valid signature of P’ = [3.other-party(P) on (3, v, ),
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send message (1lc-close, 5.id) t0 Fchannels-

2. Wait to receive a message (1lc-closed) from Fcpanneis and forward this
message to Z.

For corrupted channel partners P’ = [3.other-party(P)

1. One round after P initiated channel closing, simulate C by sending
(Lc-closing) to Z via the corrupted P’.

2. Upon being instructed from Z to send (1lc-close, f’,w,e’,05) on be-
half of P’, where o, is a valid signature of P = [.other-party(P’) on
(8", w,e"), send message (1c-close, 3'.id) t0 Fchannels-

3. Wait to receive a message (1lc-closed) from Fcpanneis and forward this
message to Z.

For both corrupted A = [.Alice and B = (.Bob (additional to the
instructions above)

Let B be the version of the ledger channel that Z sent through the corrupted
parties which would be enforced by C, ie., 8 = 8isv > w and 8 = j
otherwise. If F adds p, # [.cash(A) and ps # [.cash(B) coins back to the
accounts of 3.Alice and 3.Bob on the ledger, simulate the coin distribution
of 3 as follows:

e if p, > B.cash(A), transfer [.cash(B) — p, coins from A’s account in
ledger to B’s account.

e if p, < B.cash(A), transfer 3.cash(A) — p4 coins from B’s account in
ledger to A’s account.

J

The only tricky case occurs when Z instructs both corrupt parties (P, Q) =
[.end-users and to enforce an outdated version of a channel. In this case it can
happen that a version is enforced that is less beneficial for one user than the last
agreed upon version (this can only happen if both parties are corrupted). We
simulate this outcome, by adjusting the balances of both users in £ in the ideal
world (using the init influence for the simulator on behalf of corrupted parties),
thus ensuring that Z cannot distinguish the outcome of the ideal and real world
result.
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4.5.4 Virtual Channel Opening

The simulation proceeds as in the previous cases, i.e., Sim mimics the behavior
of the corrupt parties towards Fchamels and emulates the protocol behavior for
the environment. Again, the honest case where none of the parties is corrupted
is straightforward. All messages that the parties get from the environment in
the ideal real-world execution are sent to the ideal functionality, and the result is
indistinguishable for Z.

,—[ Simulator for (D) virtual channel v opening |

Sim interacts with Z and Fcpannels in the ideal world. It controls all inputs
and outputs of corrupted parties.

For corrupted parties P € v.end-users

1. Upon being instructed from Z to send an opening certificate oc, on a
virtual channel v with a valid signature on behalf of P, send message
(vc—open, 7) to fChanneIs'

2. Upon being notified by Fchannes that any party Z = ~.Ingrid sent an
opening request for channel v, sign an opening statement over v in the
name of Z and send the resulting opening certificate ocz to Z in the
name of P. Repeat this for both end-parties in 7.

3. Upon receiving a message (vc-opened) from Fcpannels for channel 7,
simulate a message from the other channel end-party by signing an
opening statement over v in the name of Z and send the resulting
opening certificate ocy to Z in the name of P.

For corrupted intermediaries Z = y.Ingrid

1. Upon being notified by Fchannels that any party P € v.end-users sent
an opening request for channel ~, sign an opening statement over v in
the name of this party and send the resulting opening certificate ocp
to Z in the name of Z. Repeat this for both end-parties in ~.

2. Upon being instructed from Z to send a (correctly signed) opening
certificate ocz in the name of Z, send message (vc-open, ) to the ideal
functionality Fchannels-

J

Whenever all honest dummy parties agree to open a virtual channel, Sim sends
the (vc-open,y) message in the name of all corrupted P € ~.all-users to the
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ideal functionality Fcpanneis and lets the ideal functionality immediately output
(vc-opened) to all the users. This ensures indistinguishability since virtual chan-
nels are always opened in the ideal world, when honest parties agree that such
channels are opened in the real world.

4.5.5 Virtual Channel Closing

Virtual channel closing is the most complicated case of the protocol. Here we need
to distinguish the case when the intermediaries are misbehaving and the case when
the end-parties are malicious. Note that again, the case of three honest parties is
straightforward.

,—[ Simulator for (D) virtual channel v opening ]—

Sim interacts with Z and Fcpannels in the ideal world. It controls all inputs
and outputs of corrupted parties.

For corrupted intermediaries Z = ~.Ingrid

1. For every honest P &€ ~.end-users of v simulate the initiation mes-
sage (vec-close, Vyr, Sign,(Vy)) for where Vo = (v, w,a,0p) was ei-
ther the last valid version that Sim received from a corrupted P’ =
~v.other-party(P) is a successful update of -y, or if both parts are honest
let v be the latest version that was registered in Fchannels, W is the
number of updates of v, @ =¢ and o,/ a valid signature of the previous
values by P’.

2. Upon being instructed from Z to send (vc-close-init, ocp) in the
name of Z, simulate the response from contract C by

» Sending (vc-closing,y.id) to any corrupt P € -y.end-users.

o If within time A Z sends a correctly signed message
(ve-closing, Vo, Sign,(V5)) on behalf of a corrupted party, out-
put (ve-close, Vyr, Sp) to the environment simulating a message

from C(f5.id) for Z.

o If all other parties are honest, Sim needs to simulate this message
instead (just as in the first Step of this simulation). Again it sends
(ve-close, Vv, Sp) to the environment simulating a message from

C(Byp.id) for T.

3. Upon being instructed from Z to send an update request for the sub-
channels 5, and (4, simulate the update procedures as described in
simulation (B).
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4. If corrupted Ingrid did not send any of the messages as defined in step 2
or step 3, simulate the forced timeout by outputting (vc-closing, 7.id)
to Z.

« Upon being instructed from Z to send (vc-already-closed, z) in
A rounds, where z is a closing certificate of [3.other-party(P) on
~ then do nothing.

o otherwise simulate the message (vc-closed) to any corrupt end-
party P.

5. Upon being notified by Fchannels that any party P € ~.end-users sent
an opening request for channel ~, sign an opening statement over v in
the name of this party and send the resulting opening certificate ocp
to Z in the name of Z. Repeat this for both end-parties in ~.

For corrupted parties P € v.end-users

1. Upon being instructed from Z to send (ve-close, Vyr, Sign,(V3)) in
round ~.validity on behalf of P, where V, = (v, w, a, 05) is correctly
signed by P’ = ~.other-party(P) output this message to the environ-
ment if v.Ingrid is corrupted. Then go to step 3.

2. If Z did not instruct corrupted party P to send the expected message
in round ~.validity simulate the execution of C.

o Send (vc-closing, v.id) to any corrupt P € .end-users.

o If within time A Z instructs a corrupted party P to send a cor-
rectly signed message (ve-closing, Vpr, Sign,(V5)), wait 1 round
and go to step 3.

3. Simulate the update of the underlying ledger channels where the new
balance is changed by the outcome of the virtual channel. In this
update Ingrid acts as the initiator (see simulation (B)).

J

Closing of virtual channel starts automatically when time ~y.validity comes. As
argued in Section 4.4.2; the virtual channel is always closed, as long as at least
one party on <.all-users is honest. Again, Sim simulates the execution of the
contract towards corrupt parties and, depending on their behavior, instructs the
ideal functionality Fchannels to send the (vc-closed) message to the honest parties
(in time at most v.validity + 7A + 5).
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4.6 Implementation and Performance

In this section, we summarize the performance of the PERUN protocol. This in-
cludes the best case and worst case execution times, message, and storage com-
plexities but also the costs for executing the Ethereum smart contracts.

4.6.1 Execution Times

Let us take a look at how much time, pessimistically, v.Ingrid needs in order to
close . First, she needs to wait 1 round to receive the vc-close messages from
both Alice and Bob. If she does not receives any of them, then she needs to let
the contract know about it by sending a vc-close-init message to the contract.
Sending this message takes A rounds in the worst case. Then, the end-party
has to respond to the contract (which takes another A rounds), and if she does
not respond then ~.Ingrid sends a (7) message (another A rounds). After these
3A rounds, 7.Ingrid initiates a channel update procedure (that takes at most 4
rounds). If this is unsuccessful then she sends a message vec-close-final to the
contract which takes one more blockchain delay A. Hence within time v + Thax,
where T = 4A +5: either ~.Ingrid closed the channel v, or the contract received
a message vc-close-final. The end-party either responds to vec-close-final with a
vc-already-closed message, or another (timeout) message is needed (which in total
takes time 2A). If .Ingrid did not close v within time y+7},ax, then the end-parties
have to close it. It is easy to see that it takes time at most 3A (A rounds for the
ve-close-timeout message, another blockchain interaction for waiting for ~.Ingrid’s
response, and yet another one of the (timeout) message). Thus, pessimistically,
the virtual channel closing takes time v + Tiax + 3A = 7TA + 5. Optimistically,
the virtual channel closing procedure takes 5 rounds (1 round for the ve-close
messages, and 4 rounds for channel update).

4.6.2 Implementation and Gas Costs

For the purpose of measuring these costs, we implemented the PERUN contract and
published it at https://github.com/PerunEthereum/Perun. In this section, we
present the findings and benchmarks. The implementation shows both feasibility
and also gives an idea of the fee costs of the channels. While execution fees were
not discussed and considered for the formal protocol specification and proof, they
influence whether the channels can be built efficiently, and when it makes sense to
use them.
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Size Fees
Protocol phase [gas] [gWei] ‘ [ETH] [EUR|]
| Deployment | 2757111 | 8271333 | 0.008271333 | 1.06981421022 |

(A) Open LC 62337 187011 | 0.000187011 | 0.02418800274
(B) Update LC/VC 0 0 0 0

(C) Close LC (optimistic) | 147788 | 443364 | 0.000443364 | 0.05734469976
(C) Close LC (pessimistic) | 275049 | 825147 | 0.000825147 | 0.10672451298
(D) Open VC 0 0 0 0

(E) Close VC (optimistic) 0 0 0 0

(E) Close VC (pessimistic) | 418318 | 1254954 | 0.001254954 | 0.16231575036

Table 4.1: PERUN execution fees (with exchange rates from Section 3.2.1).

Table 4.1 displays the execution costs of running the PERUN protocol using the
LedgerChannel contract. The execution costs are dominated by the deployment
fees of over 1 euro.

If both Alice and Bob jointly agree to open, update and close the channel (the
optimistic case), they need to execute four on-chain transactions and pay less
than 0.10 euros (excluding the deployment cost). Specifically, both parties have
to send one transaction each for the opening and closing. To measure the costs
for disagreement, we always consider the worst possible case with most on-chain
transactions and the highest gas costs (pessimistic case). If either Alice or Bob
tries to close the ledger channel with an outdated state while a virtual channel is
still active (LC close pessimistic), the other party sends a proof of a (newer) version
with an open virtual channel to the smart contract. Settling this disagreement in
the smart contract raises the costs for both parties to 0.13 euros. If the parties go to
the smart contract in order to dispute over the virtual channels, they additionally
need to pay 0.11 euros for every open virtual channel. Note that in this case, Ingrid
needs to participate in the on-chain dispute on behalf of one of the parties. In the
most costly scenario, she needs to request the closing of the virtual channels, then
wait for the other party (e.g., Alice) to make a move, and send another transaction
to the blockchain to finalize the dispute. This worst-case scenario limits the fees
Ingrid can be forced to pay in the most unfortunate outcome. Let us now take
a look at the message complexity of our protocol, i.e., the number of messages
sent between the parties involved in the protocol. Notice that each such message
consists of a subset of two Ethereum addresses, eight integers (three channel ids,

97



4 Virtual Payment Channel Hubs

the cash distribution, the validity, and a version number) as well as two signatures
over all of these values. The signatures are the dominating factor for both message
length and computation complexity.

We note here that the protocol can be adapted slightly to reduce message com-
plexity for both the update and closing procedure. If both parties sign a closing
statement, which invalidates all other versions of the channel, then the smart con-
tract only needs this one final witness for an immediate close. This leads to a
speedy and cheap closing procedure. Another practical optimization that we want
to highlight is that by allowing one party to submit an outdated state to the
contract, we can reduce the messages required for an update to a single message.
This change requires us to adapt the protocol slightly to allow honest parties to
send an outdated version during the closing procedure. This is necessary since the
recipient of a message does not counter-sign it. So only one of the two parties has
the latest version of the channel.

4.6.3 Channel Network Comparison

For the ledger channel opening and closing procedures, the message complexity
is similar to that of existing payment network systems like Lightning [161] and
Sprites [148]. The main advantage of PERUN is the fact that the virtual payment
channel can be updated instantaneously by the two parties without sending mes-
sages to the intermediaries. This means that after a virtual channel is set up, it
can be updated without additional delays by sending only two update messages.
The new version, new balances, and a signature are sent by the sender, and the re-
ceiver responds with a single signature. Sending the same transaction through one
relay in HTLC-based systems requires the computation of at least six signatures,
and the intermediary has to receive, compute, and send at least two messages. In
other systems, this is even higher. The message complexity limits the effective
throughput of how many transactions can be sent over such a system per second.

4.7 Discussion and Extension

We introduced an off-chain payment channel system called PERUN. Its main ad-
vantage over the existing solutions is that it allows creating virtual channels, which
are channels of length 2 that do not require interacting with the intermediary for
every payment. The security of our protocol is defined in the UC framework and
is formally proven. Our work can be generalized in many directions. Longer state
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channels are described in subsequent work [71]. One can also ask if it is possible
to create a scheme in which the intermediaries do not need to block the coins that
are used for constructing virtual channels. This can be done by slightly relaxing
the security guarantees. Namely, one can replace the full cheating-resilience (that
has been assumed in this work), by a weaker notion of cheating-evidence. We leave
formalizing this as an interesting future direction.

The role of the intermediary. It is interesting to look at the assumptions and
trust that the PERUN system puts in the intermediaries. Without their coopera-
tion, new virtual channels cannot be opened. They can also, at any point in time,
request the underlying ledger channels to close, which forces the system partici-
pants to watch the ledger constantly and react if necessary. If the hub is malicious
or unreliable, the users may decide to open new ledger channels directly to each
other or move to a different hub, which requires on-chain transactions. However,
an honest hub is, to some degree, a safety barrier for honest users. Consider the
scenario where an honest Alice has a reliable connection to Ingrid and then decides
to open a virtual channel with an untrusted party, Bob. If Bob starts misbehaving
in the virtual channel, Alice knows that she only needs to proceed on-chain (and
pay transaction fees) if Ingrid acts maliciously. Therefore, Alice is shielded by
Ingrid from the potential risk of costly on-chain dispute interactions.

Ingrid is a so-called non custodial hub, which means that she has to pay the
collateral costs for every virtual channel that is opened over her, i.e., she has
to lock the exact balance that the channel end-parties lock in the virtual channel.
However, it is important to note, that Ingrid does not control the coins of Alice and
Bib, but instead only relays their payments. This collateral overhead guarantees
balance security to honest parties. While balance security is also guaranteed for
an honest Ingrid, she still has costs for providing the hub service. Therefore, we
assume that Ingrid will ask for fees that compensate her for these costs. If multiple
hubs compete with each other new users will most likely choose the hub based on
their fees, their reliability, and their connectivity. We proved that Intermediaries
cannot benefit from misbehavior and cannot harm the users.

4.7.1 Extensions and Impact

Virtual channels have received widespread attention, and we will present here the
academic improvements that have been made since the initial publication of [69].
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“General state channel networks”

The PERUN virtual channels construction serves as the main inspiration for the
paper “General state channel networks” [71], which aims for the same security
guarantees but supports more features. The first improvement is that it considers
state channels instead of payment channels, i.e., channel end-parties can execute
a smart contract off-chain. As long as the two channel end-parties agree, they
can add a deterministic two-party contract® in a channel. The coins that are used
inside this contract will be locked during the lifetime of the contract and only
paid out according to the final distribution that the contract outputs. Now the
parties evaluate the contract by sending their contract interaction and an updated
contract state off-chain during the channel update process. In case of disputes, the
contract needs to be evaluated on-chain, which means the last agreed-upon state
is registered on the blockchain. But in order to guarantee that parties can continue
the game, they can finish the game on-chain through the so-called force-execution
process.

The second improvement is that it allows longer routing instead of just one-hub
hub-based virtual channels. In fact, it generalizes the concept of virtual channels,
such that they can be built on top of virtual channels as well. To explain the main
extension, let us consider a virtual channel v*, which is built on top of two virtual
channels, v, and 5. If now a dispute occurs in the top virtual channel v*, then the
parties first try to resolve this dispute with the intermediary that connects them.
Only if this does not work, the dispute process continues in the ledger channels
below. Again, this only requires the misbehaving party to go on-chain while the
other link can stay off-chain. However, a downside to this approach is that the
cascading dispute process can lead to very long worst-case timings, which influence
the timeouts.

“Multi-party Virtual State Channels”

Therefore, a further extension of the virtual channels framework is the paper “Multi-
party Virtual State Channels” [68], which proposes a new dispute mechanism.
While so far, virtual channels use indirect dispute, in which dispute is always
escalated to the underlying channels, and the intermediary has to get involved,
[68] introduces direct disputes that allow parties in virtual channels to resolve the
dispute among each other on-chain.

5Such contracts must not depend on any on-chain data, require inputs from any outside par-
ticipants, or be time-dependent.
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But the main contribution of this work is that it allows more than two parties
to interact through an off-chain channel. An n-party channel connects not only
two end-parties but n end-parties. This means each party can lock coins into the
channel, and the channel balance is distributed over n accounts. But this means
any channel update does require the approval of all channel participants. Recall
that the PERUN construction prevents that two parties can propose updates at
the same time. If we extend this solution to n parties, the update procedure
would require O(2n) rounds. Instead, we solve both problems by changing the
update procedure and allow an update to have inputs from every party, which are
evaluated in a deterministic way (using a sorting function f). The update process
looks as follows:

1. First, all parties send their inputs to the update.
2. All parties evaluate function f on all received updates.

3. The update (which contains the result of the function evaluation from the
previous step) is signed and shared between all channel participants.

4. If all parties receive n valid signatures on the same value, they continue.
Otherwise, they start the dispute process.

This update procedure runs in constant time, even when the number of channel
participants gets large. Additionally, it guarantees that they achieve a (simplified
notion of) consensus, i.e., either they all agree on the same set of inputs and new
channel state, or they settle the update through a dispute.

While [148] already proposed multi-party state channels that are built on top of
the ledger, in [68], we show that also virtual channels can be between more than
two parties. In particular, we can build multi-party virtual channels on top of
2-party channels (ledger or virtual).

The resulting virtual channels framework consisting of the papers “Perun: Vir-
tual Payment Hubs Over Cryptocurrencies” [69], “General state channel net-
works” [71] and “Multi-party Virtual State Channels” [68] is a very powerful con-
struction. A network that supports all of these protocols allows many parties to set
up a channel once, and then potentially connect them off-chain by opening virtual
channels (assuming the channel capacities are sufficient). The parties can decide
to send payments, execute contracts, and even build multi-party channels with any
subset of the network participants. Additionally, all parties can choose between
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two dispute mechanisms for every new channel. Direct channels allow short dis-
pute timeouts, as any potential dispute is resolved directly on-chain, while indirect
dispute escalates the dispute process to the underlying channels.
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5 Moving Complex Computation
Off-Chain

Summary. This chapter proposes another approach to scaling with off-chain pro-
tocols, based on the publication “FairSwap: How To Fairly Exchange Digital
Goods” [67]. While payment channels can be employed to reduce the number
of on-chain transactions, we now focus less on the transaction quantity but try
to reduce their size and complexity instead. The protocol we design in this work
is called FAIRSWAP and aims to reduce the gas costs of large and complicated
smart contracts (in Ethereum). In particular, we reduce the deployment costs by
decreasing the code size, and we limit the execution costs by minimizing contract
storage and function sizes. Again, we will utilize an optimistic off-chain protocol,
which shifts the task of function evaluation from the contract to the users.

As a motivating example, we consider the setting where a large digital file is sold
over the blockchain. Using the smart contract for this problem ensures financial
fairness to both the seller and the buyer. In particular, they know that the seller
will receive the payment if and only if the buyer received the correct file, where
the correctness is checked via a publicly known file hash. The trivial solution
for this problem requires storing the whole document on the blockchain, which is
extremely expensive for large files.

FAIRSWAP reduces these high gas costs by reducing the complexity and, thus,
also the costs for the function evaluation inside the contract. Instead of running
the computation itself, the contract only acts as a judge, which holds the coins
during the sale and ultimately transfers them to the right user. If the buyer does
not receive the correct file, he can prove this to the judge contract by sending a
small proof of misbehavior. Our solution guarantees fairness and efficiency, even
for large witnesses.

Our FAIRSWAP protocol works for generic function ¢ that verifies a witness x
and outputs 1 if the witness is as expected and 0 otherwise. While there have been
several proposals for building fair exchange protocols over cryptocurrencies, our
solution minimizes the cost of running smart contracts on the blockchain and avoids
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expensive cryptographic tools such as zero-knowledge proofs. We provide formal
security definitions for smart contract-based fair exchange and prove the security
of our construction. Additionally, we evaluate the practicality of FAIRSWAP via
a prototype implementation for our motivating example of selling large files over
Ethereum.

5.1 Overview

In this section, we start with a high-level overview of our construction before
we proceed with the formal construction and security analysis in the following
chapters.

Setup. We start by sketching the overall setup of the problem we consider (Fig-
ure 5.1). Here, a receiver R wishes to buy a digital commodity z from a sender
S. The receiver is willing to pay p coins for a digital commodity = € {0, 1} if
it is correct, meaning that it satisfies some predicate function ¢ : z™N s {0,1}

(i.e., if p(x) =1).

witness

T

Sender S Receiver R

T~

p coins

if p(x) =1

Figure 5.1: Setup for digital fair sale between sender S and receiver R.

This fair exchange of digital goods or contingent payments in the setting of
cryptocurrencies were initially proposed by Maxwell in 2016 [140]. He proposes a
solution for the following scenario: R is willing to pay the first person who can
provide a valid solution to a tricky Sudoku puzzle. In this case, x would be the
solution, and ¢ specifies the rules of this particular Sudoku game and outputs 1
if the solution is correct. In another example, x could be a large file (e.g., some
movie) where the receiver has knowledge! of its hash h. In this case, evaluating
¢ requires computing the hash H(x) and comparing the result against h (i.e.,
¢(x) =1 <= H(z) = h). Suppose that the parties wish to execute the exchange

'The hash could come from a trusted source or could be publicly known.
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over the Internet, where R and S do not trust each other. A fundamental challenge
in this setting is to guarantee that the exchange is fair. In particular, how to ensure
that S receives the payment when he delivers the correct  to R, and similarly,
that R does not need to pay if z is incorrect (i.e., ¢(x) # h). Unfortunately, it has
been shown that without further assumptions, it is impossible to design protocols
that guarantee such strong fairness properties [155].

A simple way to circumvent this impossibility is to introduce a Trusted Third
Party (TTP), in practice often referred to as an escrow service [125]. This middle-
man receives the money from R and the commodity = from S. He only executes
the exchange if ¢(x) = 1 is satisfied. However, such a fully trusted mediator is
often not available or very costly. Therefore smart contracts offer an appealing
alternative for implementing such an escrow service.

5.1.1 Intuition and Design Ideas

We will now see how to design an efficient fair sale protocol by taking a brief
look at three approaches of smart contract-based fair exchange. We start with the
straightforward implementation of an escrow contract; next, we analyze an im-
provement using zero-knowledge proof systems. Finally, we sketch our FAIRSWAP
protocol.

Straightforward escrow contract. We start by considering a simple escrow pro-
tocol that utilizes a smart contract. In an initial step, the two parties R and S
set up a contract, where R blocks p coins. The sender S now has to send x to the
contract within A rounds. Otherwise, the money goes back to the receiver R. If
the contract receives the witness, it evaluates ¢(z), and if the output 1 sends the
coins to the sender. If the output is 0, on the other hand, the receiver gets all the
coins stored in the contract back. A simplified? version of this protocol is depicted
in Figure 5.2.

While the above smart contract example achieves fairness for & and R, it has a
fundamental drawback if x is large. Since in cryptocurrencies, users pay fees to the
miners for every step of a smart contract execution, storing and computing complex
instructions results in high fee costs. For instance, in Ethereum, the amount of
gas paid for executing the smart contract strongly depends on two factors: (a) the
complexity of the program ¢ and (b) the size of x. Concretely, for storing a value

2The protocol does not include the refund of R in case the second message is not received in
time.
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2. witness x 1. p coins

——— || Contract —
if p(x) =1

(a) send coins to S

else
\_/ (b) send coins to R \_/

3.a) p coins 3.b) p coins

Sender S Receiver R

Figure 5.2: Naive smart contract based fair sale.

x of size 1 MB in Ethereum, the parties would need to pay more than 250 euros
in transaction fees (cf. gas price estimate in Section 3.2.1). These costs have to
be reduced drastically if fair digital sales over the blockchain should be used in
practice.

Fair sale using zero-knowledge. One appealing solution to the above problem
called Zero-Knowledge Contingent Payment (ZKCP) has been proposed in [185].
ZKCP protocols use zero-knowledge proof systems [89] that allow a prover to con-
vince a verifier that a specific statement is correct. In this case, the seller (in
the role of the prover) uses this technique to prove to the buyer (acting as the
verifier) that ¢(z) = 1 holds without revealing the witness x. More precisely,
a ZKCP protocol between S and R works as follows: First, S encrypts x with
key k and computes a commitment (c,d) = Commit(k). Moreover, he produces
a zero-knowledge proof m, showing that computation of the ciphertext and the
commitment was indeed done with a witness x, which satisfies ¢(x) = 1. Next,
S sends the ciphertext, the commitment ¢, and the zero-knowledge proof 7 to R,
who verifies the correctness of the zero-knowledge proof, and deploys a smart con-
tract funded with p coins. It remains for the contract to wait until S publishes the
key k, such that the commitment can be opened correctly, i.e., Open(c,d, k) = 1.
[185] showed that, if the underlying cryptographic primitives are secure, then the
ZKCP smart contract scheme realizes a fair exchange protocol.

The execution costs of the smart contract from the ZKCP protocol are quite
cheap, as it only requires the contract to evaluate commitment on a short in-
put (the key). However, using the ZKCP puts a significant computational bur-
den on the sender §. Indeed, despite impressive progress on developing effi-
cient zero-knowledge proof system over the last few years, current state-of-the-
art schemes [53, 21, 157, 87, 187, 137] are still rather inefficient if either ¢ gets
complex, or the witness x becomes large.

Non-interactive Zero-Knowledge Proofs (NIZKs) are a special kind of zero knowl-
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1. z,e,m
1. m: ZK Proof over

z = Enc(k, z)

(¢,d) = Commit(k) 2. verify ZK Proof
Contract Y

oz) =1 using z,c, ™

3. key k, if Open(c, d, k) = 1 2. p coins,
Sender S opening d commitment ¢ | Receiver R

(a) send coins to S

else
\—/ (b) send coins to R \_/

4.a) p coins 4.b) p coins

Figure 5.3: Zero-Knowledge Contingent Payment (ZKCP) based fair sale.

edge proofs that can be computed by the prover without having to interact with
the sender. An additional challenge that occurs especially for NIZKs is that they
require a trusted setup. In particular, a trusted entity needs to generate a Common
Reference String (CRS). Zero-knowledge schemes guarantee soundness (i.e., that
only true statements can be proven) and zero knowledge, meaning that nothing
about the witness is leaked to the buyer. But if the setup is run by either R or S,
these properties cannot be guaranteed. In fact the authors of [42] show that the
ZKCP implementation of Maxwell [140] leaks information if R computes the CRS.
In the Sudoku example, R can force § to send a proof which reveals if a certain
field contains some value z. In the same paper, the authors propose a solution
using witness indistinguishability [42]. However, a later paper [81] showed that
their protocol could again be attacked though a weak CRS.

To prevent both the heavy computation for § and the difficulty of trusted setups,
we aim to build a protocol without zero-knowledge proof schemes that is still
efficient.

Simplified FairSwap protocol. Our construction is based on the following obser-
vations. While it is very costly (for large circuits ¢ and witnesses x) to prove that
S behaved correctly, it is much cheaper to prove that S cheated. We show how
to construct a proof of misbehavior which is small in size, and whose verification
only requires a low number of cryptographic operations. Therefore, we can build a
smart contract that can efficiently judge if the sender cheated. Only if the receiver
cannot produce such a proof, S will receive the locked coins from the contract.
We will now present a high-level description of the FAIRSWAP protocol (depicted
in Figure 5.4), where we omit some details that we add later in the full protocol
description in Section 5.4. The sender starts by running an encoding algorithm on
the transcript of evaluating ¢(z). In particular, this means S runs the evaluation
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of ¢(x) once and encodes every intermediary step of the process. The resulting
overall encoding z contains the witness x and the intermediate result of each step
of ¢. S then sends z to R (step 1), who cannot extract = or any information about
it from the encoding without knowing the encoding key k. Once R received the
encoding, he sends his coins to the contract (Step 2), which prompts S to reveal
the key k£ (Step 3). Once the key is published, the receiver learns = from z. He
uses an extraction function Extract™, which we will specify in more detail later.
If the witness is correct, the function outputs x, R sends a confirmation to the
contract (step 4a), and S gets his payment. However, if ¢(z) # 1, the extraction
function outputs a proof of misbehavior = (step 4b), which allows R to prove to
the contract that he received a false witness.

1. encoding z

1. generate key k
z = Encode™ (¢, z, k)

(¢, d) = Commit(k) Contract
2. p coins
ﬁ if Open(c,d, k) # 1 —
Sender S 3. key k, or Judge™ (k, ) =1 Receiver R
opening d (a) send coins to R M
else 4.a) "ok”/ 4. (z,7) = Extract™ (¢, z, k)
(b) send coins to S 4b) 7 if p(z) # 1
(a) send ok
5.b) p coins 5.a) p coins else

(b) send proof 7

Figure 5.4: The FAIRSWAP protocol for fair sale

In order to keep the optimistic case cheap, we need to make sure that the con-
tract does not get large inputs and does not run heavy computation. In particular,
this requires keeping the value k, all public parameters in the contract small and
independent of the sizes of ¢ and x. Additionally, we want to keep the pessimistic
case cheap as well. We have to design secure functions Encode™, Extract™, and
Judge®™, such that the proof 7 is small, and the contract evaluation stays cheap.
At a technical level, we use a similar technique as proposed initially in the context
of multi-server delegation of computation [47], where correctness of a computation
can be showed as long as a single party is honest. We need to address several tech-
nical challenges to apply this idea in our setting. In particular, our construction
is non-interactive and involves only two parties. Moreover, we additionally have
to provide privacy guarantees, that the witness stays hidden until the receiver has
committed the coins (step 2).
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Our Contribution

The main goal of FAIRSWAP is a smart contract-based protocol, which
1. achieves secure fair exchange of a witness against payment,
2. uses simple smart contracts that can be executed with low fees, and

3. avoids the use of heavy zero-knowledge proof systems to lower the computa-
tional burden on the players and prevent difficult trusted setups (like CRS).

Our protocol works for arbitrary predicate functions ¢ and witnesses x of large
size. Concretely, we model ¢ as a circuit with m gates taking as input a witness
x = (x1,...,2,), where each z; is represented as a bit string of length A. We
require that the gates of the circuit represent operations from some set of allowed
instructions I'. The main distinctive feature of our construction is its efficiency.
Concretely, for a circuit of size m, our smart contract has asymptotic complexity of
O(log(m)), where the hidden constants in the asymptotic notation are small. For
our file sale example, the verification in the contract can be carried out using only
O(log(n)) hash function calls. We show that running the protocol only requires
a constant low amount of fees in the optimistic case (0,56 euro) and the fees for
judging a dispute are low (around 1.07 euro) and only slowly increase logarithmi-
cally in the sizes of x and ¢. Additionally, the local computation that R and S
run is very efficient compared to zero-knowledge proofs.

Encoding scheme. We present an efficient encoding scheme that allows S to
send a hidden commitment of = and the step-by-step evaluation of ¢(z) to the
receiver. Similar to commitment schemes, this commitment cannot be changed by
the sender after the fact (binding) and ensures that the receiver cannot learn any
information without knowledge of the encoding key k (hiding). While k serves
as an opening value for that commitment, we show how to keep this value small.
In particular, we construct an encryption-like encoding scheme, whose security
properties are analyzed in the Random Oracle Model (ROM).

Definitions and security analysis. The second contribution of our work is to
provide a formalization of contract-based or coin aided fair exchange protocols.
To this end, we follow the UC framework of Canetti [43] and develop a new ideal
functionality that formally captures the security properties one would expect from
a fair exchange protocol (cf. Section 5.3). In addition to providing a formal model,
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we also carry out a full security analysis of our construction in the global random
oracle model [46] in Section 5.5.

Implementation. Besides our conceptual contributions, we also provide a proof-
of-concept implementation of our contract (cf. github.com/1EthDev/FairSwap).
For our implementation, we consider the file sale example mentioned above and
discuss the advantages of contracts specialized for this application in comparison
to the general construction. Additionally, we benchmark the costs of deploying
this contract and running our protocol over Ethereum. For more information on
the details of the implementation, we refer the reader to Section 5.6.

Extensions. We discuss several extensions in Section 5.7. As a first extension,
we analyze how to integrate penalties into our protocol to mitigate the risk of
denial of service attacks by the sender. This is realized by also letting the sender
S lock g coins into the contract, which will go to the receiver R if S is caught
cheating. Such financial penalties allow us to deal with the costs and fees for
R, which naturally occur in smart contract-based protocols. Concretely, we want
compensation for R when § misbehaves, e.g., by sending a wrong file. The penalty
deposit repays R for his costs of interacting with the contract (e.g., for the initial
contract deployment) but also for the collateral costs of locking his p coins. This
addition enforces the honest behavior of rational senders.

A second extension is based on the paper [73], which discusses how to make the
dispute process in FAIRSWAP interactive. While an interactive protocol can lead to
more transactions and thus increased execution costs and times in the pessimistic
case, the protocol is more efficient in the optimistic case. We also discuss how an
interactive FAIRSWAP can be used to provide fairness of transaction fees, which
are not discussed in FAIRSWAP.

To further reduce the costs of our construction, we discuss how we can run it
inside off-chain state channels (see Section 5.7), when the sender and receiver wish
to execute multiple recurring fair exchanges. To illustrate this setting, consider a
sender that wishes to sell ¢ commodities to a receiver. In our original protocol from
above, this use case results in ¢ repeated executions of the FAIRSWAP protocol. In
state channels, on the other hand, the parties can use the contract multiple times
without requiring interaction with the blockchain, thereby significantly reducing
the costs of our construction. This extension allows us to amortize the on-chain
costs over multiple fair exchange executions.
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5.1.2 Related Work

Fair exchange is a well-studied research problem. It has been shown that without
further assumptions, fair exchange cannot be achieved without a TTP [155, 188,
90]. To circumvent this impossibility, researchers have studied weaker security
models — most notably, the optimistic model in which a TTP is consulted only in
case one party deviates from the expected behavior [8, 40]. One may view smart-
contract based solutions as a variant of optimistic protocols, where the smart
contract takes the role of the TTP. In particular [125] considers a similar use case
(file sharing), but the security guarantees it achieves are very different from our
work: (a) the arbiter uses a cut-and-choose approach and hence for a corrupted
file the probability of not detecting a cheater is non-negligible (and in fact quite
high for some cases, see citation [40] in [125]); (b) due to the cut-and-choose the
workload of the arbiter is large, resulting into high fees in a smart contract setting.
In contrast, our solution only has a negligible error rate, and the financial costs
are small. We also stress that the cost model of an arbiter and a smart contract
is very different.

As mentioned above, the Zero-Knowledge Contingent Payment (ZKCP) proto-
cols (introduced in [185]) solve the fair exchange problem by using zero-knowledge
proof systems. Their first implementation (for selling solutions of Sudoku puzzles)
was presented in [140], and was subsequently broken by Campanelli et al. [42].
The weakness discovered in [42] concerns all the ZKCP protocols that use NIZKs
protocols [29] where the verifier generates the CRS. The authors of [42] present
a fix to this problem using a tool called Subversion-NIZK [20] and extend the
concept of ZKCP to protocols for paying for service (i.e.: not only for static data).
[81] showed that also subversion-NIZK proofs could be attacked with weak CRSs.
ZKCP protocols for cryptocurrencies that do not support contracts or scripts in the
transactions were constructed in [14]. The problem with zero-knowledge systems
is that it is inefficient to prove statements over large data or complex function-
ality. For instance, in [102] the authors show that proving in zero-knowledge the
correctness of a single evaluation of a hash function (SHA256) on a witness of 64
bytes requires 3 MB of additional data transfer between the parties.

While our original motivation is to design efficient protocols for fair exchange,
we emphasize that our work also has other interesting applications in the context
of cryptocurrencies. In particular, we observe that our protocol offers an efficient
and low-cost construction for realizing the claim-or-refund functionality of [23].
Claim-or-refund is used to design fair protocols for multiparty computation and
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works as follows. In an initial preparation phase, a receiver can deposit some coins
p and a function ¢ into the contract. This preparation phase is followed by two
stages. First, in the claim phase, a party can claim the reward p by publishing a
witness x such that ¢(z) = 1. Finally, in the refund phase, the receiver can refund
its p coins if nobody has claimed the reward yet. It is easy to see that the above
describes the fair exchange setting, where the reward corresponds to the price paid
for receiving x. Bentov and Kumaresan argue that claim-or-refund can be realized
with smart contracts. However, a naive implementation will result in high fee
costs when ¢ is complex, or x is large. Using our protocol claim-or-refund can be
realized at significantly lower costs. There has been a large body of work on using
cryptocurrencies such as Bitcoin to achieve fairness in cryptographic protocols
(see, e.g., [5, 122, 121, 124, 117] and many more), which utilize the claim-or-
refund functionality of [23]. As our protocol provides an efficient realization of this
functionality, FATRSWAP can be used to further reduce the on-chain complexity of
these protocols.

Finally, we point out that the concept of proofs of misbehavior used in our
construction is a frequently applied technique in practical smart contract-based
protocols. One notable example is the TrueBit protocol, developed by Teutsch
and ReitwieBner [177]. The idea is to outsource the potentially resource-intensive
process of finding solutions for complicated computational puzzles. The system
consists of provers, verifiers and judges, where the provers are paid for solving com-
putationally hard tasks. As provers could lie about their results and still claim
the money, they are punished whenever misbehavior is detected. The verifiers are
responsible for reporting such misbehavior. They are rewarded whenever they find
bugs in the solution of the provers. Again, the verifiers have the ability to lie about
their results to get money, which is why there exist the judges. A judge is a com-
putationally bounded, trusted entity backed by the blockchain security and can be
implemented as a smart contract. This setting is similar to ours since we also rely
on the cryptocurrency and its smart contracts to judge a dispute between two par-
ties by verifying only a single operation instead of running complex computation
off-chain. The main difference is that their protocol requires all provers to publish
their solutions and interact with the verifier and judge in case they are challenged.
In our case, we need the verification of misbehavior to be non-interactive, and the
result of the computation should stay secret to outside observers. These restric-
tions add additional overhead to our protocol in comparison to a simple protocol
which only helps to resolve disputes. Finally, with respect to TrueBit, we point
out that its current whitepaper [177] provides only very little details on how such
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proofs are created at a technical level, and no formal security analysis is provided.
Hence, one may view our construction of the subroutines Encode, Extract™, and
Judge™ described in Section 5.4 as a building block for TrueBit, and our formal
security analysis as a first step in formally analyzing the TrueBit system.

In Section 5.7.5 we will also discuss two works that extend the FAIRSWAP results;
In particular, Section 5.7.2 describes the Optiswap protocol [73], which implements
an interactive version of FAIRSWAP. Section 5.7.3 discusses the SmartJudge re-
sult [183], which proposes a more generic method to improve deployment costs and
also presents an optimized implementation of FAIRSWAP.

5.2 Preliminaries

In this section, we introduce the notation and basic building blocks needed for the
FATRSWAP protocol specification and proof. In particular, we introduce circuits
formally as we model the verification ¢ as a circuit, and we present the global
ideal functionalities for the ledger and the random oracle that we use in the UC
modeling.

5.2.1 Modeling Circuits

In this work, we will use circuits to model arbitrary program code over an ad-
missible instruction set I'. A circuit ¢ is represented by a directed acyclic graph,
where the edges carry values from some set X, and the nodes represent gates. We
assume that gates evaluate some instruction op : X* — X, where op € I'. A gate
is evaluated by taking as input up to ¢ values from X, carrying out the instruction
op, and sending the result on its outgoing wire. We limit fan-in of gates to ¢ and
model arbitrary fan-out by letting the output of a gate be an input to any number
of other gates. A special type of gate that we consider are input gates, which have
no incoming edges (i.e., in-degree 0) and model the initial input of the circuit. We
will often use the notation ¢(z) to represent the output of evaluating a circuit ¢ on
some input z, where the evaluation is done layer-by-layer starting with the input
gates. Our construction requires a concise way to fully describe the topology and
the operations of a circuit ¢. To this end, we assign to each gate g of ¢ a label
represented by a tuple ¢; := (i,0p, I;). Each such tuple consists of an instruction
op : X! — X, which denotes the instruction carried out by this gate and a unique
identifier 7+ € N. The identifiers are chosen in the following way: All gates in the
7th layer of the circuit have identifiers that are larger than the identifiers used by
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gates in layer j — 1. This means that the identifier of g is larger than the identifiers
of all input gates to ¢g. Finally, the last element I; is a set of identifiers, where
I; = 0 if ¢ is an input gate; otherwise, I; is defined to be the set of identifiers of the
input gates to g. In the following, we will often abuse notation and sometimes use
¢ to present the circuit (e.g., when writing ¢(x) for the evaluation of ¢ on input
x), or to represent the tuple of labels, i.e., ¢ = (¢1,..., D).

It is well known that any deterministic program can be represented by a boolean
circuit. In this case, we have X = {0,1} and I' = {AND,NOT} are the standard
binary operations, where each gate has an in-degree of at most ¢ = 2. But in most
cases, [' will contain more powerful operations that compute on larger bit strings
{0,1}*. Examples of such higher-level instructions are hash function evaluations or
modulo multiplication, which are offered by higher-level programming languages®

5.2.2 The Ledger Functionality

Again we work in the global UC model described in Section 2.4, where we model
the ledger as a global functionality £. It stores the coins of users and smart
contracts which captures the basic properties of a cryptocurrency. Concretely, we
allow parties to transfer coins between each other and explicitly allow contracts to
lock coins.

Global Functionality Ledger £

Functionality £, running with a set of parties Py,..., P, stores the balance
pi € N3 for every party P;,¢ € [n] and a partial function L : {0,1}* — N
which stores how much coins are locked for each session ¢d (initially empty).
It accepts queries of the following types:

Initialization Upon receiving message (initialize, (py,...,p,)) from the En-
vironment Z such that p; € N5 for all ¢ € [n], store this tuple.

Update Funds Upon receiving message (update,P;,p) with p > 0 from Z
set p; = p and send (updated, P;, p) to every entity.

Freeze Funds Upon receiving message (freeze,id,P;,p) from an ideal
functionality of session id check if p; > p. If this is not the case,

3In our protocol, we require that an Ethereum smart contract can evaluate the instructions.
Therefore a good candidate for the instruction set are the supported operations of the EVM
or Solidity.
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reply with (no — funds, P;, p). Otherwise set p; = p; — p, store (id, p)
in L and send (frozen, id, P;,p) to every entity.

Unfreeze Funds Upon receiving message (unfreeze, id, P;, p) from an ideal
functionality of session id, check if (id,p") € L with p’ > p. If this
check holds update (id,p’) to (id,p’ — p), set p; = p; + p and send
(unfrozen, id, P;,p) to every entity.

J

Let us briefly describe the functionality £, whose internal state is public, and
consists of the balances p; € N of parties P; and a list of contract instances. For the
latter, we define a partial function L : {0, 1}* — N that maps a contract identifier
id to a number of coins that are locked for the execution of contract id. The
ledger functionality offers the following interface to the parties. The environment
Z can update the account balance of the users via sending an update message to
L. The parties Py, ..., P, cannot directly interact with £, but their balance can
be updated via freeze/unfreeze messages sent by other ideal functionalities. If
a functionality C interacts with the ledger, we will write C'* to make this relation
explicit. More precisely, freeze transfers money from the balance of a party to
a contract functionality (identified over the session identifier id), while unfreeze
sends this money back to the user’s account. To simplify exposition, for a malicious
party P; we let the simulator Sim decide how many coins are sent back to P;’s
account by sending an unfreeze message.? To simplify the functionalities, coins
are unlocked automatically in the ideal world when the timeout expires.

Recall the communication model we specified in Section 3.4. As the function-
alities in this chapter model smart contracts on the blockchain, we need to model
the blockchain delay of up to A rounds. In particular, we model that the commu-
nication to ideal functionalities is instantaneous, but the adversary has the power
to delay the reaction of the functionality upon receiving the message by up to A
rounds. In the functionality, we write the functionality expects a message within a
certain round t to denote this delayed execution.

5.2.3 Global Random Oracle

In addition to the global ledger functionality £, we will also model the hash func-
tion as a global functionality. While in practice, collision-resistant hash functions

4Looking ahead this is needed to simulate the case when a malicious party in the real world
decides not to request a refund and thus lock its coins in the contract.
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can be instantiated with constructions such as Secure Hash Algorithm 3 (SHA-3),
for our security analysis, we will assume that our hash function H is modeled
as a random oracle H. This model is common for cryptographic proofs and as-
sumes that hash queries return perfectly random values. For proving security in
the UC-model, we use a random oracle ideal functionality H, which (unless oth-
erwise instructed) responds to all queries with uniformly random sampled values
r <— {0, 1}* and stores all query-response pairs (¢, ) in the set Q. If a query for
q has been answered before, such that (¢,r) € @ is stored, H responds with r.

We model hash functions as a global functionality H following the works of [46,
41]. In this model, every party has oracle access to a global functionality H, which
represents idealized hash functions. Since we require programmability in the GUC
model, we follow the work of [41] and model H as a restricted programmable and
observable random oracle as defined below. This functionality allows the adversary
(or simulator) in the name of corrupted parties to simulate and observe only queries
made from their own session (denoted with session and contract identifier id).

The first feature of the random oracle is that parties can query it on some
value ¢, by calling (query, id,q). For simplicity we will write r < H(q). The
random oracle will return a uniformly sampled value or an already existing value
r from the set ). Additionally to this straightforward functionality, we require
programmability, which is a special property needed for proving security in the UC
model. Programmability means that the adversary is allowed to fix the response
of the oracle for certain queries if they have not been queried before by sending
(program, q,r) (we say the adversary programs the random oracle).

It is common for UC security proofs to work with programmable and/or ob-
servable random oracles. Programmability means that the ideal UC adversary
Sim can control the random oracle and program its hashes to specific responses.
Additionally, it can see all queries made by the environment Z to the random
oracle. Traditionally, such a random oracle is modeled as a local functionality,
which is in control of the simulator. This again implies that every unique protocol
execution has its own local disjunct hash function. Since we want to explicitly
allow the composition of multiple protocols, we follow the argument of [46, 41]
that such local functionalities are not a good model for a standard hash function
like SHA-3. A global functionality would respond to all queries in all sessions with
the same values, which cannot be done with local random oracle functionalities.
Programmable random oracles are a useful and practical tool in many UC simu-
lations, which has been studied intensively before in the non-global setting [152,
79]. In the non-global UC model, the simulator requires these properties to sim-

116



5 Moving Complex Computation Off-Chain

ulate indistinguishable commitments. In the global UC model, there might be
multiple executions that all interact with the same global random oracle, which
gives the power to the environment to compare queries and send influence from
different (parallel) executionst®. Intuitively, this adversarial power seems to break
the security of schemes based on this functionality, since any adversary is allowed
to program collisions. But H ensures that this is not the case. As a protection,
parties have the ability to verify if some response of the random oracle has been
programmed by calling H(isPrgrmd,r). If H responds with 1, the parties know
that the value was programmed and reject it.

Global Functionality # (from [41])

The H functionality is the global random oracle with restricted programming
and observability, which takes as input queries g € {0, 1}* and outputs values
r € {0,1}*. Internally it stores initially empty sets @), P and a set Q4 for
all sessions id.

Query

Upon receiving message (query, id, q) from a party of session id" # id pro-
ceed as follows:

o If (id,q,r) € Q respond with (query,q,r).
o If (id,q,7) ¢ @ sample r € {0,1}*, store (id,q,r) in @ and respond
with (query,q,r).

o If the query is made from a different session (id # id’), store (g, r) in
Qid-

Program

Upon receiving message (program,id,q,r) by the adversary A check if
(id,q,7") is defined in Q. If this is the case, abort. Otherwise, if r € {0, 1}*
store (id,q,r) in Q and (id,q) in P.

Upon receiving message (isPrgrmd,q) from a party of session id check if
(id,q) € P. If this is the case respond with (isPrgrmd, 1).

Observe

Upon receiving message (observe) from the adversary of session id respond
with (observe, Q;q).

J

5In our case, the environment could access the global random oracle through the adversary of
another session or protocol execution and program collisions.
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Additionally to the restricted programmability, the functionality H allows leak-
age of all illegitimate queries, which were made by the environment over the ad-
versary, by sending a observe message. The functionality H will respond with
the set Q;4, which contains all illegitimate queries made from that session. This
includes all queries from adversaries that are not from the desired session. For
more information about the construction and properties of this ideal functionality,
we refer the reader to [41].

5.2.4 Constructing the FairSwap Building Blocks in the
Random Oracle Model

We will introduce some further cryptographic building blocks in this chapter. In
particular, we show how to construct Merkle trees and a commitment scheme in
the previously defined global random oracle with restricted programmability and
observability.

Merkle Trees

A Merkle hash tree or Merkle tree is often used to create a short hash out of to a
large number of elements. The elements form the leaf nodes of the tree and two
nodes are iteratively hashed together to form a single root element. The tree root
serves as a digest of all elements and as the same time a short (logarithmic) proof
suffices to prove that a single element is included in the tree. We consider three
algorithms — Mtree™ to create the tree, Mproof™ to generate the logarithmic proof
that a single element is included and Mvrfy™ to verify if such a proof is correct.
Since H, which is queried internally in all three algorithms, is a global random
oracle with restricted programmability and observability, we construct the three
algorithms below, e.g., to ensure that Merkle Proof with programmed values are
not accepted.

Formally, we follow the standard notation as defined in [67]. A Merkle tree M
of elements z1,...,x, € {0,1}* (where for simplicity n is an integer power of 2)
is a labeled binary tree M = Mtree™(z,,...,2,) with the i-th leaf is labeled by
x; (denoted as label(x;) = ;). We will denote leaf nodes and their labels with z
and non-leaf nodes with V' and their labels with v. Moreover, a label v; of every
non-leaf node V; is the hash of the labels vjl- and vj of its two child nodes le and
V;f respectively (i.e., v; := H (v}, v})). We call V; the parent of v} and vj. We say

v; is a sibling of v and vice versa. A Merkle tree M of n elements zy,...,z, is
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created with the Mtree™ algorithm (cf. Algorithm 1).

Algorithm 1 Merkle tree hash Mtree’

Input: (z1,...,z,)

1. set V > V will be the root node
2. if n = 1 then > If input is single value, V is a leaf
3 label(V) = x4 > assign label of leaf V' as x4
4. else > otherwise recursively call Mtree’ algorithm again
5: vh = MtreeH(xl, ey Xp2])

6: vy = Mtree%(:ﬁ[n/g]ﬂ, cey Tp)

7 label(V') = H(root(v})||root(v])) > label = hash of subtree
8 Let M be a binary tree with root node label V and left subtree v} and right subtree v

Output: Merkle tree M with root V'

The label at the root of a Merkle tree M is denoted by root(M). For efficiently
proving that an element x; is included in the Merkle tree (identified over its root
hash h), we use a Merkle proof p, which is a vector (of length O(log(n))) consisting
of labels on all the siblings of elements on a path from the i-th leaf to the root
of the Merkle tree. We denote the algorithm for generating a Merkle proof by
Mproof*, which on input a Merkle tree M and an index i outputs a Merkle proof
p that z; is the i-th leaf of M (cf. Algorithm 2).

Algorithm 2 Merkle tree proof Mproof’*

Input: Merkle tree M, index ¢
1. V= M]J] > let V' be the i-th leaf node of M
2. for each j € [log,(n)] do
3: set [; = label(sibling of v)
4: set v = parent of v
Output: Merkle Proof p = (I1,...,14)

Finally, the algorithm Mvrfy* with oracle access to H. takes as input an element
z;, a Merkle proof p and a root of a Merkle tree root(M). The algorithm Mvrfy™
verifies if the i-th leaf element x corresponds to a Merkle tree with root r (generated
with Algorithm 1) using proof p (generated with Algorithm 2). If the verification
holds, the algorithm outputs 1 if the verification fails, the algorithm outputs 0.

If the root r of the tree is known beforehand, this algorithm can be used to
verify that x is the i-th element of a Merkle tree with root r. As the random
oracle functionality H that we consider can be programmed, however, we need
to ensure additional precautionary measures. In particular, we need to prevent a
honest verifier accepts a proof that is forged by programming hash values. This
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Algorithm 3 Merkle tree proof verification Mvrfy™
Input: i € [n],x € {0,1}*, p= (l1,...,1a),h € {0,1}#

1: for each [; € p do

2 if i/27 =0 mod 2 then

3 z = H(lg||x)

4 if H(isPrgrmd(lx||z) then

5: Terminate and Output L > reject hash is programmed
6 else

7 z = H(z||l;)

8: if H(isPrgrmd(z||l;)) then

9 Terminate and Output L > reject hash is programmed

10 if x = h then
11: Output 1
12: else

13: Output 0

can be prevented easily however, as the isPrgrmd query reveals exactly these
information to honest parties. Therefore every hash value in the path needs to
be checked as part of the Mvrfy* algorithm and the algorithms outputs 0 if any
programmed value is encountered.

Extending Merkle Trees to Commitments For our protocol Ilgrswap, We need
that both parties & and R jointly commit to the values x using a Merkle tree
commitment towards the smart contract. The commitment on the values x =
(x1,...,x,) is generated using randomly sampled d = (dy,...d,), d; € {0,1}" as
follows:

let 2’ = (z1||dy, ..., z,||dn))
Commit(z) = (root(Mtree*(z)), d) = (c, d)
Open(c. . d) = {x, if root(Mtree’(2')) = ¢

0, otherwise

The scheme is hiding, as long as the randomness d € {0, 1}" is chosen uniformly
at random in the ro because then the commitments are indistinguishable for any
PPT adversary. Note, that this commitment scheme does not satisfy the binding
property if the random oracle is programmable since the adversary has the power
to program two values x,y to result in the same response H(x) = H(y). In our
protocol, we do not need classical hiding when at least one of the parties S or R is
honest (which is the only case in which our protocol satisfies fairness). In our case,
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S generates the commitment (which he will do in the correct way if he is honest)
and sends it together with the committed values to R. The receiver R recomputes
the commitment and additionally checks if any of the labels of the Merkle tree
are programmed in H. If he encounters any programmed value, an honest R will
reject the root r and abort the protocol execution. This ensures that (as long as
there is one honest party), the commitment is binding.

5.2.5 Commitment Scheme Construction

Next, we construct the commitment scheme in the programmable random oracle
model. Note, that it is not easily possible to use UC-style commitment function-
ality here since our smart contract hybrid functionality needs to run the open
procedure. In the UC-model functionalities are permitted from interacting with
other functionalities, this prevents us from using ideal commitment functionalities.

Let x be the security parameter and (a||b) denote the concatenation of two
values a and b. Then we construct a commitment scheme (Commit, Open) in the
global programmable random oracle model as described in Algorithm 4.

Algorithm 4 Algorithm Commit
Input: z € {0,1}*
1. d <+ {0,1}" s.t. H(isPrgrmd,z||d) # 1 > choose d uniformly at random

2 ¢ < H(z||d) > query the oracle on x||d
Output: (c,d)

To show that this scheme is hiding, it needs to hold that any PPT algorithm A
cannot distinguish two commitments. From the randomness of the outputs of H
it follows that this construction is hiding because the output of H(z) ~. H(y) is
indistinguishable if the A does not know (or programmed) #H(x) or H(y) (which
by chance only happens with a negligible probability for computationally bounded
distinguishers). If d is chosen uniformly at random from domain {0,1}* and x
large enough the probability of guessing d is computationally hard, which means A
cannot distinguish Commit(z) from Commit(y) except with negligible probability.

In order to break the binding property, an adversary A needs to find a collision
H(x) = H(y), without programming #H. Since the outputs of H are uniformly
distributed, the best strategy for A is to guess values and query H on them.
If p is large, this is hard for computationally bounded adversaries, since they
can only make a polynomial in x number of queries to H. Thus, the scheme is
computationally binding.
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Algorithm 5 Algorithm Open
Input: c € {0,1}*,d € {0,1}"

1 ¢+ H(z||d) > query the oracle on z||d

2 if ¢ == ¢ and H(isPrgrmd, z||d) # 1 then

3: b=1 > ensure that the commitment was not programmed

4. else

5: b=0 > otherwise reject the opening
Output: b

5.3 Ideal Functionality for Coin aided Fair Exchange

Our ideal functionality F5. describes a setting where S sells a witness = to a
receiver R and obtains p coins if this witness was correct. The correctness of the
witness is defined through a predicate function ¢, which for a valid input x outputs
1, and 0 otherwise. Internally, F%, will interact with the global ledger functionality
L to maintain the balance of the parties during the fair exchange (for instance,
when a witness was successfully sold, then p coins are unfrozen in S’s favor).

7z
cfe

Functionality for coin aided fair exchange

The ideal functionality F4%, (in session id) interacts with a receiver R, a
sender S, the ideal adversary Sim and the global ledger L.

Initialize

(Round 1) Upon receiving (sell,id,¢,p,z) with p € N from S, leak
(sell, id, ¢,p,S) to Sim, store witness x, circuit ¢ and price p.

(Round 2) Upon receiving (buy, id, ¢, p) from receiver R in the next round,
leak (buy, id, R) to Sim and send (freeze, id, R, p) to L. If L responds
with (frozen,id, R, p) go to Reveal phase.

Reveal

(Round 3) Upon receiving (abort, id) from Sim taking the role of the cor-
rupted sender §* in round 3, send (unfreeze, id, p, R) to L in the next
round and terminate. Otherwise if no such message was received in
round 3, then send (bought, id, z) to R and go to Payout phase.

Payout
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(Round 4) Upon receiving (abort,id) from Sim taking the role of the
corrupted receiver R*, wait until round 5 to send (sold,id) to S,
(unfreeze, id,p,S) to L and terminate. Otherwise, if no such mes-
sage was received:

o If ¢(z) = 1, send messages (unfreeze, id, p,S) to L and (sold, id)
to S,

o If ¢(x) # 1, send messages (unfreeze,id,p,R) to L and
(not sold,id) to S.

\. J

L
cfe

the parties are honest. During the initialization phase the ideal functionality

receives inputs from both & and R. S sends the input x and a description of

L L
cfe* cfe

The functionality has three phases, which we first describe for the case when

the predicate circuit ¢ to If R confirms this request, the functionality
instructs £ to freeze p coins from R. If this is not possible due to insufficient
funds, the functionality ends the fair exchange protocol. During the reveal phase,
the receiver will learn x, after which the payout phase is started. In the payout
phase, we consider two cases. If ¢(z) = 1, then the sender S receives the coins as
a payment; otherwise if ¢(x) # 1, the functionality instructs £ to send the coins
back to R.

In addition to the above, malicious parties can abort the execution of F%, in
both the reveal phase and the payout phase. Concretely, during the reveal
phase, a malicious sender &* may abort, which means the funds are sent back to
R. On the other hand, a malicious receiver R* may abort the exchange during
the payout phase, which means S receives the coins. Both of these cases account
for the fact that in the protocol execution, a malicious party may abort and does
not send the required message. Looking ahead, in the protocol a malicious sender
S* may not reveal the key to the contract, leads to a refund of the locked coins
to R. On the other hand, a malicious receiver R* may not complain during the
payout phase, even though he received a witness x with ¢(z) # 1. In this case,
the funds must go to S because from the contract’s point of view, the case when
a malicious receiver did not complain (even though ¢(x) # 1) is indistinguishable
from the case when ¢(z) = 1.

Informal Security Properties. Let us now discuss what security properties are

guaranteed by our ideal functionality. Since our protocol realizes the ideal func-
tionality, these security properties are also achieved by our protocol in the real
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world.

Termination. If at least one party is honest, the fair exchange protocol terminates
within at most 5 steps (50 rounds), and all coins are unlocked from the
contract.

Sender Fairness. An honest sender S is guaranteed that the receiver R only learns
the witness iff he pays p coins to S.

Receiver Fairness. An honest receiver R is ensured that he only pays p coins iff
the sender delivers the correct witness in exchange.

Let us take a closer look at why these properties are realized by the ideal function-
ality. In the purely honest case, it is trivial to see that all properties hold. Now
assume the case of a malicious receiver R* instead. The ideal functionality F%,
only proceeds to the reveal phase if the receiver has locked p coins into the con-
tract during initialization. Then, in the payout phase these coins are only given
to R* iff ¢(x) # 1. In all other cases (i.e., if ¢(x) = 1 or a malicious R* aborts),
S receives p coins as required by sender fairness.

Finally, we consider a malicious sender &*, who only receives a payment during
the payout phase if either ¢(z) = 1 (i.e., the witness was valid), or the receiver
aborts in Step (4*), which an honest receiver never would do. This implies receiver
fairness. Conclusively, it is easy to see that the ideal functionality will terminate

after at most 5 steps, which may happen during payout when a malicious receiver
R aborts.b.

5.4 FairSwap Protocol

As highlighted in the overview section, we will solve the disagreement where the
sender S claims that he sent a witness x such that ¢(x) = 1 to the receiver R, while
R claims the contrary. To resolve this conflict, we will use a smart contract to act
as a judge and can decide which of both cases occurred. In order to minimize costs
for the execution of this contract, we do not want the judge contract to learn ¢,
x, nor require it to run ¢(x). Instead, we outsource the heavy work of evaluating
the circuit to S and R, respectively. The judge contract will only need to verify
a concise proof of misbehavior, which R generates if he wants to complain about

6Note, the ideal functionality does not provide any fairness or termination guarantees for two
corrupted parties.
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the fact that ¢(z) # 1. We will show in this section how to generate such a proof,
whose size is logarithmic in the circuit size representing ¢. This is an important
property, since we allow the witness z and therefore also ¢ to be large, i.e., z may
consist of n elements, © = (x1...,z,), with z; € {0,1}*. The circuit ¢ takes as
input z and has m > n gates, which are evaluated according to the topology of
the circuit where gate g,, is the output gate of the overall circuit. If the operation
of gate g, outputs 1, the circuit ¢ accepts the witness z. Otherwise, the witness
is rejected.

1. sell
S > R
1. initialize\
1.% initializeq
2.% accepted ¢ 2. accept :
< N Judge 3 *' Ii d
> % reveale
3. reveal Smart Contract [— >
) 4. *x sold C 4\, ok/complain
r—-—-—=|-—-=—=-=—===-=—=-=-=-=--f-=--- 1
! 5. finalize |
! 5.% sold X '
____ T if R aborts = {U__~

Figure 5.5: Outline of fair exchange with judge contract

We propose a new scheme that, at a high-level, works as follows (cf. also Fig-
ure 5.5). In the first step, the sender S encodes z and auxiliary information about
the computation of ¢(x) and sends these ciphertexts to the receiver R (Step la).
In the same step, it sends a commitment of the key k used for the encoding to the
judge contact (Step 1b). The receiver does some preliminary consistency checks
in the next step and (if he accepts) sends p coins to the judge contract (Step 2).
In the third step, the sender is supposed to reveal the key k to the judge contract
(Step 3). This enables R to extract = and verify the computation of ¢(x). If x was
not correct, i.e., ¢(x) # 1, then R has the chance to complain about the invalid z
in the fourth step via a concise proof of misbehavior (Step 4). In this case, the p
coins locked by R in the contract get refunded. Finally, in case R was malicious
and did not react in step 4, S can finalize the smart contract in the fifth step.
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5.4.1 Witness and Transcript Encoding Scheme

Before we describe our main protocol in detail, we start by taking a closer look
at how § generates the encoding 2z, and how R can either extract the witness x
or generate the complaint for the judge smart contract. We will consider three
algorithms, the Encode’ algorithm run by S, the Extract’ algorithm run by R,
and the Judge’ algorithm run by the smart contract. S takes x as an input and
outputs and encoding z, which hides x from the receiver before the encoding key
k is published. Extract® will take z and k and extract either the witness z (if
$(z) = 1) or output a proof of misbehavior 7. If Judge® gets such a proof = over
an incorrect witness x, s.t. ¢(x) # 1 the algorithm outputs 1 and 0 otherwise. We
present our protocol in a modular way using the subroutines Encode®, Extract™,
and Judge” shown in Algorithms 1-3.

The challenges for this construction are (i) to keep all data that is sent to the
contract small and (ii) reduce the computation inside the contract. The key idea
is to let the judge contract check that S carried out some part of the claimed
computation incorrectly instead of verifying the correctness of the entire compu-
tation. In our construction, we let the judge validate only the operation and the
result of a single incorrectly computed gate of ¢. This is done via a concise proof
! 7t . and the output out;

iny o ano

of misbehavior. Such a proof includes the inputs 7
of the gate ¢; where ¢; = (7,0p;, I;) specifies the index ¢ within the circuit, the
operation op,; and the set of indices of the input wires I;. Thus we need to ensure
that the judge gets all these inputs as part of the proof. In particular, we need to
prevent R from sending values for different indices so the judge contract can be
ensured that the values used for the proof of misbehavior were originally generated
by S§. We ensure this by an efficient commitment using Merkle trees.

Encode Algorithm. In the FAIRSWAP protocol, S uses the algorithm Extract™
to encode = and the intermediate values that are produced during the evaluation
of ¢(z) (cf., Algorithm 1). The output z of this encoding procedure is sent to the
receiver R. Moreover, as described above, S sends a commitment of the key k to
the smart contract.

The encoding of every element is done by hashing the key k together with the
index of the gate 7, which results in a new random string of the length p (as given
by the random oracle).

zi = x; & H(k||P)

As all elements z; also have at most this length, the bitwise xor leads to a random
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Algorithm 6 Encode™ (¢, z)
Input: ¢ = (¢1,...,0m) and == (1,...,2,)

1 k<« {0,1}" s.t. Vi € [m] : H(isPrgrmd(k||i)) # 1 > sample k
2. for each i € [n] do

3: out; = x;

4 k; = H (ki) > generate i-th key
5: zi = k; ®x; > Encode witness through xor with i-th key
6. for eachie {n+1,...,m} do

7: parse ¢; = (i,0p;, I;)

8: out; = op;(outy, iy, - - - ,outz,[g) > Compute the i-th operation
9: k; = H (ki) > generate i-th key
10: z; = k; @ out; > Encode output values through xor with i-th key

Output: z = (21,...,2m), k

ciphertext, similar to the computation of a one-time pad. One may say we use the
hash function to extend the domain of the key or generate a counter mode style
encryption of the elements” As we work in the programmable random oracle, we
avoid using keys that have been programmed before the encoding. We ensure this
by selecting a key randomly and checking if it has been programmed for any of
the indices 1 to m.

Extract Algorithm. Once S reveals the encoding key k, R can run the extraction
subroutine Extract™ (cf. Algorithm 2) and recover z. The algorithm gets as input
the encoding z, the circuit ¢, the key k and outputs a tuple, where the first element
is the decoding of the witness x and the second is either L (if ¢(z) = 1) or a concise
proof of misbehavior 7 (if ¢(z) # 1). The proof 7 is used later to convince the
judge/contract that some step of the computation of ¢(z) is incorrect.

On input the decoding key k, the root elements 7, and 74, and the proof 7
the algorithm Judge™ outputs 1 if the complaint succeeds or 0 otherwise (cf. Al-
gorithm 3). In order to verify the i—th step of ¢(z), the judge needs to know
the label ¢; = (op;,1,1;), all values outy,y), ..., outy on its input wires and the
value of its output wire out;. Using this information, the algorithm computes the
output of the i-th gate and compares it with the value out;. If both values are the
same, then the computation was carried out correctly, and the algorithm outputs 0
(i.e., it rejects the complaint). Otherwise, it outputs 1, and we say that the judge

"We note that this is not an encryption scheme as it only works for one-time encryption, as
we reveal the key and we require a stronger property from commitments, i.e., the binding

property.
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algorithm accepts the complaint.

Algorithm 7 Extract™(¢, z, k)

Input: ¢ = (é1,...0m), 2= (21,...2n),k
1. for each i € [n] do

2: ki = H(k||i) > Generate i-th key
3: T, = k; B z; > Extract witness by xor of key and encoding
4 M, = Mtree™(2) > Compute Merkle tree over z
50 My = MtreeH(gﬁ) > Compute Merkle tree over ¢
e if i € [n] s.t. H(isPrgrmd(k||¢)) then

7: Ty = (Pis Mproof”(i7 My) > Proof that ¢; € ¢
8: Tout = (24, Mproofﬂ(i, M.) > Proof that z; € z
9: set T = (7g, Tout, )

10: Terminate and Output: ((z1,...,z,),7) > Output complaint if any key is

programmed

11: foreachie {n+1,...,m} do
12: parse ¢; = (i,0p,;, ;)

13: out; = op;(outy, iy, - - - ,outz,[g) > Compute output of i-th gate
14; k; = H(E||7) > Generate i-th key
15: out, = k; ® z; > Extract output by xor of key and encoding
16: if out; # out; or (i = m and out; # 1) or (H(isPrgrmd(k||i))) then

17: 7 = (¢, Mproof (i, My)) > Proof that ¢; € ¢
18: Tout = (%4, MproofH(i, M.)) > Proof that z; € z
19: for each k € [{] do

20: set j = I;[k] > j is the k-th index in set I;
21: 7k = Mproof™(j, M) > Proof that z; € z
22 set T = (g, Touts Tiny - - - s T

23; Output: ((z1,...,z,),7)

Output: ((z1,...,2z,),1)

o
=

In particular if the algorithm encounters any programmed hash value, it also
accepts the complaint. This is important to prevent that the sender programs the
global random oracle H to make a false file hash to the correct root hash. This
attack is captured by also generating a proof of misbehavior and sending it to the
judge. Now it remains to construct the judge algorithm that correctly verifies the
complaint.

Judge Algorithm. To guarantee that R can only complain about values that he
has indeed received from § and that violate the predicate function ¢ on which both
S and R have agreed on, we require that the Merkle roots r, = root(Mtree™(2))
and r4 = root(Mtree*(¢)) are stored in the judge contract. Concretely, S sends 7.
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and ry to the contract in the first step, and R will only deposit p coins into the
contract if these values are consistent with z. When later Judge’ receives a concise
proof of misbehavior Judge™ checks if the containing Merkle proofs are consistent
with 7, and r4. Only if this is the case, a complaint is accepted by the contract.

Algorithm 8 Judge™(k, ., T, T)

1 parse m = (T, Touts Taps -+« s M)

2 parse 7y = (¢;, py)

3 parse ¢; = (i,0p,;, ;) > Reject if ¢; not i-th step of ¢(x)
4 k; = H(E||9) > Generate i-th key
5. if H(isPrgrmd(k||i)) then

6: Terminate and Output 1 > Accept if any key is programmed
7. else

8 out; = k; ® z; > Extract output by xor of key and encoding
9. if MvrfyH((bi,pd),w) # 1 output: 0

10: parse Tout = (2i, Pout) > Reject if z; not i-th element of z
1. if I\/IvrfyH(zi,pout,rz) # 1 output: 0

12: if 4 = m and out; # 1 output: 1 > Accept if ¢(z) # 1
13. for each j € [¢] do > j is the k-th index in set I
14; parse 1) = (2, pj) > Reject if z; not z[j]
15: if MvrfyH(zj,pj,rz) # 1 output: 0

16: Eri) = HK[| L) > Generate I;[j]-th key
17: if H(isPrgrmd(k||I;[j])) then

18: Terminate and Output 1 > Accept if any key is programmed
19: else

20: outr, ;) = k1, © zj > Extract output by xor of key and encoding
21: if op,(outy,p1], ..., 0uty, ) # out; output: 1 > Accept
22: Else Output: 0 > Reject complaint if evaluation correct

This concise proof of misbehavior 7 consists of a total of £ 4+ 2 Merkle proofs,
and hence the complexity of the judge is O(¢log(m)). The first element m, € 7
includes the Merkle proof that shows that label ¢; is indeed the label corresponding
to the ¢-th gate in ¢. The second element 7, includes a Merkle proof pyut, which
is required to verify that z; is indeed the i-th element in z. Finally, 7= contains

1
my

Given these Merkle proofs, the judge algorithm verifies their correctness, extracts

Merkle proof 7 wt for the ¢ encoded input values of the gate with label ¢;.

z; of the i-th operation ¢; into the output value out;. Then, it checks whether op;

evaluated on the ¢ inputs yields into out;. If all these checks pass, it outputs 1;
otherwise, it outputs 0.
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5.4.2 The Judge Smart Contract C

Now that we have seen the algorithms Encode’, Extract’, and Judge™, we are
ready to construct the judge smart contract C who will be modeled as a hybrid
functionality. It interacts with the parties S and R, the global ledger £, and
random oracle H.

Hybrid Functionality C for the judge contract

The ideal functionality C acts as a judge smart contract for session id id
and interacts with the global £ functionality and the parties & and R. It
locally stores addresses pks and pkgr, price p, commitment ¢, decryption key
k, Merkle tree root hashes r,,r, and state s.

Initialize

(Step 1) Upon receiving (init,id,p,c,r4,7,) from S with p € N, store
T4, T2, D, C, output (initialized, id, p,74,7s,¢), set s = initialized
and proceed to the reveal phase.

(Step 2) Upon receiving (accept, id) from R when s = initialized, send
(freeze,id,R,p) to L. If it responds with (frozen,id, R,p), set s =
active and output (accepted, id).

Reveal

(Step 3) Upon receiving (reveal, id, d, k) from sender S when s = active
and Open(c,d, k) = 1, send (revealed, id, d, k) to all parties and set
s = revealed. Then proceed to the payout phase.

Otherwise if no such message from S was received, send message
(unfreeze, id,p,R) to L and abort.

Payout

(Step 4) Upon receiving a message m from the receiver R when s =
revealed set s = finalized and do the following:

e If m = (complain,id,n) s.t. Judge™(k,r,,rs,7) = 1 send

p g ¢

(unfreeze,id,p,R) to L, (not sold, id) to S and terminate.

o Otherwise, send (unfreeze,id,p,S) to L, (sold,id) to S and
terminate.

(Step 5) Upon receiving message (finalize, id) from the sender S, when
s = revealed, send message (unfreeze, id, p, S) to L. Then output
(sold,id) to S and terminate.
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5.4.3 The Witness Selling Protocol Ilfairswap

Now we can formally construct our protocol I1g,rswap by using the three algorithms
Encode™, Extract™, and Judge®. The protocol consists of the judge contract and
the specification of the behavior of the two honest parties, S and R. In order to
formally define the functions provided by the judge smart contract C, we model
it as an ideal functionality C. The full description of C and the specification
of the protocol is given below. Our protocol proceeds in three phases, thereby
closely following the structure of the smart contract C. In the first step in the
initialization phase, C takes as input from S, the root elements r,, and 7,4 as well
as the commitment c. R receives z directly from S, and r,, 7, from C. If these
roots are computed correctly, then R accepts the contract. Additionally, if both
parties agree and R has sufficient funds, p coins are locked for this execution of the
fair exchange protocol. Only after this phase is successfully executed, the judge
contract is considered active. If, during this phase, some party decides to abort
the execution, this is not considered malicious.

Protocol Ilgairswap

The protocol consists of descriptions of the behavior of the honest sender S
and receiver R.

Initialize

S: Upon receiving input (sell, id, ¢, p, z) from the environment Z in step
1, S samples k£ < Gen(1%), computes (c,d) < Commit(k) and
z = Encode™(¢,z,k). Then he sends (sell,id,z, ¢,c) to R and
(init,id,p,c, 1y, 7.) to C, where r, = root(Mtree™(¢)) and r, =
root(Mtree”(2)). Then he continues to the reveal phase.

R: Upon receiving input (buy,id,¢) from the environment Z in step 2,
R checks if he received message (sell, id, z,c) from S in step 1 and
computes 7, = root(Mtree™(2)) and r4 = root(Mtree*(¢)). Upon re-
ceiving (init, id, p, ¢,rg, 7.) from C, R responds with (accept, id) and
proceeds to the reveal phase.

Reveal

S: Upon receiving (active,id) from C, S responds with (reveal, id,d, k)
and proceeds to the payout phase. If no (active,id) message was
received from C in the third step, he instead terminates the protocol.
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R : Upon receiving (revealed,id,d, k) from C, R proceeds to the payout
phase. Otherwise, if no (revealed, id, d, k) message was received from
C in step 4, R terminates the protocol.

Payout

R: The receiver runs (z,7) = Extract™(¢, 2, k). If 7 = L, he sends message
(finalize, id) to C, outputs (bought,id,z) to the environment Z
and terminates the protocol execution. Otherwise (if 7 # L) he sends
(complain, id, ) instead.

S: Upon receiving (sold, id) or (not sold, id) from C, S outputs this mes-
sage and terminates the protocol. If no message has been received in
step 4, he sends (finalize, id) to C.

In the reveal key phase, the contract expects S to reveal the key k, which allows
verifying the commitment c. If S fails to send the reveal message, he is considered
malicious, and R can get his money back. Otherwise, if S revealed the key, R can
decode the witness by running (z, 7) = Extract™(z, ¢, k). In the next phase, the
payout of the coins can be triggered. If the witness is valid (i.e., 7 = 1) R sends
message (finalize,id) to C, which will trigger the smart contract to unfreeze the
coins in S’s favor. If instead Extract’™ output a valid complaint, R sends a message
(complain, id, ) to C. If ¢(x) # 1, the verification algorithm Judge™(k,r., 74, )
will output 1 and thus accept the complaint and all coins are payed back to R. If
R sends neither message, S can call the judge contract in step 5, to trigger the
payout of coins.

5.5 FairSwap Security Proof

Recall that in the UC framework, the security of a cryptographic protocol g rswap
is analyzed by comparing its real world execution with an idealized protocol run-

ning in an ideal world. ITgsrswap iS attacked by an adversary A, who can corrupt

L

Ge» Which has an

some of these parties. In the ideal world, parties interact with
interface to the ideal world adversary Sim. In both the real and ideal world, the
environment Z provides the inputs for all parties and receives their outputs. A
protocol Ipsrswap is said to be UC-secure if the environment Z cannot distinguish
whether it is interacting with the ideal or real world. This implies that ITgyrswap 1S

at least as secure as the ideal functionality. To simplify our presentation, we omit
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session identifiers and the sub-session identifiers (typically denoted with sid and
ssid) and use instead of the contract identifier id to uniquely distinguish sessions.
In practice, the contract identifier may correspond to the contract address.

Formal Security Definition We consider a protocol IIp,rswap With access to the
judge contract functionality Gjc, the global random oracle ‘H and the global ledger
functionality £. Following the notation introduced in Section 2.4, we denote the
real world execution where the environment Z interacts with a protocol Iz, rswap
and an adversary 4 on input 1% and auxiliary input = € {0, 1}* as

Z,A
HYBR[DHFAIRSWAP 7gjc 7£7H (/{’ .Z') :

In the ideal world, the parties do not interact with each other but only forward

% . In this setting we will call the adversary

their inputs to an ideal functionality F4..

a stmulator Sim and denote the above output as
Z,Si
IDEALZ"" (K, ).
Given these two random variables, we can now define the security of our protocol
Hpargwap as follows.

Definition 7 (GUC security of Igygpswap). Let £ € N be a security parameter,
Hpamswar be a protocol in the (Gic, L, H)-hybrid world. Ilpgrswar @s said to GUC
realize F5, in the (Gic, L, H)-hybrid world if for every PPT adversary A attacking
Mpamswap there exists a PPT algorithm Sim, such that the following holds for all
PPT environments Z and for all x € {0,1}*:

IDEALZ (k@) ~e HYBRIDE o 5 (k. )

We are now ready to formally state the security of our protocol IIgrswap in this
GUC-style security notion.

Theorem 2. The two-party protocol lpsrswapr securely emulates the ideal fair ex-
change functionality F5, in the judge smart contract (C, L, H)-hybrid world, where
the global functionality H is modeled as a restricted programmable and observable
random oracle and the global functionality £ models the ledger.

5.5.1 Informal Security Analysis

The protocol terminates either after four steps, in the payout phase, after R sends
the finalize or complain message or in the fifth step after S sent finalize. We
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distinguish the following termination cases for the protocol with an active judge
contract and at least one honest party:

No abort: This case occurs when both parties act honestly. In this case, the pro-
tocol terminates in the payout phase, after R sends the finalize message
to C.

S aborts: In case S does not reveal the key k, C will terminate in the reveal phase
and make sure that £ assigns all coins to R.

R aborts: This case occurs when R does not react anymore after the key was
revealed. In the fifth step, S will then send (finalize, id) to C, and the
coins will be sent to S.

Sender Fairness. Sender fairness means that R must not learn the witness x
unless the honest sender S is guaranteed to be paid. From the secrecy property of
our encoding scheme and the hiding property of the commitment, it follows directly
that R cannot read the content of the encoded witness before S publishes the
encoding key k. At the point, when k is revealed, the coins have been successfully
frozen for the execution of the smart contract C. Now, that the exchange of the
witness is initiated, an honest S is guaranteed to receive the payment, even if
R aborts. Lastly, it remains to show that a malicious R cannot forge a proof
7, which is accepted by the judge contract, although S behaved honestly and
¢(xr) = 1. Forging such a proof would require R to forge a Merkle proof over
a false element of z. Informally speaking, this is not possible unless he finds a
collision in the hash function H.

Receiver Fairness. If S sends the encoding z, R continues with the protocol until
the coins are frozen for the execution of the smart contract C. To prove fairness
for an honest receiver R, we have to show that a malicious sender S cannot send
a wrong witness ' ¢ L such that R is not able to generate a correct proof of
misbehavior, which is accepted by the C contract. In order to successfully execute
such an attack, S must be able to find an encoding z such that Extract”(z, k,¢) =
(', 7") but the judge on input of 7 does not accept the complaint. The probability
of § finding such values is negligible since this would require him to break collision
resistance of the underlying hash function. Therefore, R is guaranteed, that as
soon as S publishes k, he will either receive the witness z with ¢(z) = 1, or he has
the guarantee that by executing C on a valid proof of misbehavior he will get all
coins. Therefore Il rewap satisfies receiver fairness.
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5.5.2 Formal GUC Security Proof

In order to prove Theorem 2, we show that Ilg,rswap iS a secure realization of
the ideal smart sale functionality F%. We need to show that the ideal world

Global Ledger L N Global Ledger £ ﬁqu

\ ‘ |
Hybrid World ‘U ||
77777777777777777777777 - ‘7 - - I
leakage )l\b — ‘
- T S 3 .
\\?;7 Tlﬂ?e;cg 7{7‘7:22 A \/ o

H C ofe

influence
influence
leakage

(a) (C, L, H)-hybrid world execution of (b) Execution of F45, with dummy par-
parswap with S, R and A ties S and R and Sim

Figure 5.6: Setup of a Simulation with honest parties

(the execution of F%, with dummy parties S and R and the ideal adversary Sim)
is indistinguishable from the hybrid world. In our case, the hybrid world is the
execution of ITg,rswap With parties S, R, and an adversary A where each party
interacts with the hybrid functionalities C® and H. Figure 5.6 depicts the setup
of the security proof. The PPT environment Z distinguishes whether it interacts
with the hybrid world execution of the protocol g, rswap (cf. Figure 5.6 (a)) or
with the ideal execution of the functionality F%, (cf. Figure 5.6 (b)). In the ideal

world, the parties R and S are so-called dummy parties that only forward the

L
cfe

the parties run the code of protocol g rswap. £ can use the leakage information
from the adversary A (respectively the ideal adversary Sim) or actively influence

in- and outputs of Z to the ideal functionality whereas in the hybrid world

8 As our hybrid functionality C models a contract, we indicate this relation by using the earlier
introduced double-line depiction.
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the execution to distinguish the two worlds. Additionally, it selects the inputs for
the two parties and learns its outputs. Lastly, Z can corrupt any of the parties
(using the adversary) to learn any internal values, and all messages sent to and
from the party. We will consider these cases in detail later. To prevent Z from
distinguishing the executions, we need to construct a simulator, that outputs all
messages such that it looks like the hybrid world execution to the Environment
Z. Specifically, Sim needs to ensure that the outputs of the parties are identical
in the hybrid world and the simulation. Even with corrupted parties, he needs to
generate an indistinguishable transcript of the real world execution while ensuring
that the global functionality £ blocks or unblocks money in the same rounds. In
order to formally prove Theorem 2, we need to consider four cases, the protocol
execution with two honest parties, execution with a malicious sender §*, execution
with a dishonest receiver R* and the case where both parties are corrupt. All of
the described termination cases (cf. Section 5.4) provide seller and buyer fairness
as defined in Section 5.3.

Simplifications and Notation. Whenever the simulator Sim simulates the ex-
ecution of C on some input of message m we write m’ <— C(m) to indicate that
the message m' is the output of C after m was received. Simulation of this ex-
ecution includes leaking these messages m,m’ to the environment, and sending
m’ to the corrupted parties according to the behavior of C. Note, that C is only
internally simulated by Sim and does not freeze/unfreeze coins in £. Whenever
parties send messages to F4, and C, the environment (over the adversary) has the
power to delay these messages by time A. We will not argue about this power
in detail during the simulation since we make the following simplifying assump-
tion. In every step (1) - (5), the adversary may instruct the ideal functionality
(over the influence port) by how much time the message is delayed. Using this
knowledge, Sim will ensure that F% is always delayed by the same amount of
time as the C functionality would be. This ensures that Z cannot distinguish the
real world for the simulation, using this influence. This simplification allows us to
construct the simulators without mentioning this influence explicitly in every step.
To simplify complex steps in our proofs, we sometimes use a sequence of simulation
games. This technique is often used in simulation based proofs to show indistin-
guishability. Instead of showing indistinguishability of the real world execution IT
and ideal world simulation with Sim immediately, we construct the experiments
Gamey, ..., Game,. We call the real world execution Gamey, and Game, is the
final UC simulation. The intermediate games are hybrid simulations, where each
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Game is one step closer to the ideal world simulation, but the simulator in these
intermediate games additionally controls the in- and outputs of the honest parties.
By showing that for each i € [n — 1] that Game; is computationally indistinguish-
able from Game; ; we show that the real world execution is indistinguishable from
the ideal world simulation, i.e., Gamey ~. Game,.

Simulation without corruptions

Simulation of the protocol execution with an honest seller and honest receiver is a
special case, in which the dummy parties S and R will forward all messages from
Z to F4 in the ideal world (as depicted in Figure 5.6 (b)). The simulation, in

this case, is straight forward since Sim/me

will be only required to generate a
transcript of all messages of the execution of Ilgyrswap towards the adversary and
thus Z. This includes the simulation of the first protocol message, send from S
to R, and all following interactions with C and H. Note that the communication
between the honest & and R is private, and Z cannot read the content of this
message, but only see if a message was sent.

Claim 1. There exists a efficient algorithm Sim""** such that for all PPT en-
vironments Z, that do mot corrupt any party it holds that the execution of
Hpamswap @0 the (C, L, H)-hybrid world in the presence of adversary A is compu-
tationally indistinguishable from the ideal world execution of with the ideal
adversary Sim"™et,

L
cfe

honest

Proof. We define a simulator Sim , which internally runs C and has oracle

access to H.

honest

[ Simulator Sim without corruptions ]

1. If S starts the execution with F% in the first step Sim""e

learns id,p,¢ from Fj5.. Then Sz'mh‘m“t, selects £ <« {0,1}~,
sets * = 1™ and computes Encode’™ (x*, k qf} z. He com-
putes r, = root(Mtree™(¢)), 7. = root Mtree ) and (c,d) <«
Commit(k). Now he simulates the executlon of HFAIRSWAP by running

(initialized, id,p,c, 7y, 7,) ¢ C(init,id, p,c,r4,75).

2. If R sends (buy, id, R) in the execution with F%, in the second step,
Sim""* runs (accepted, id) < C(accept, id) to simulate the accep-
tance by R. If instead R does not send this message in the ideal world,
Sim"°"*s* simulates the automatic refund of p coins in C and terminates
the simulation.
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3. In the reveal phase, Sim""™" runs (revealed,id,d k) <+
C(reveal,id,d, k).

honest

4. In the payout phase, Sim waits for F%, to unfreeze the coins.
If FZ%_ unfroze them in favor of S, Sim”"" simulates the execution
of (sold,id) < C(finalize,id). On the other hand, if the coins
are unfrozen in the name of R, Sim""*! simulates a complain by R.
Specifically, he generates a complain about the output of ¢ i.e., that

the output of g, does not equal 1*. Then terminate the simulation.

“Specifically, 7 = ((¢m, Mproof ™ (m, ¢, Mtree* (4))), (0, Mproof ™ (m, 0, Mtree* (2))))

Running Sim""*" in the F%, ideal world is indistinguishable from the (C, £, H)-
hybrid world execution to Z unless Z learns z and extracts 2’ # z (using k, which
he learns in the reveal phase). But we can show that this only happens if z
breaks the hiding property of the randomized Merkle tree commitment, which is
computationally hard, as explained in Section 5.2.4. This way Z does not learn

homest gimulates

any decoding of z, except for the last element which equals 0 if Sim
a complaint by R. Note, that in the honest case, both parties will follow the
protocol, thus most complain cases cannot happen. The only possible complaint

case occurs when the environment inputs a false file and hash to the parties. [

Simulation with a malicious sender

Simulation with a corrupted sender is slightly more tricky than the simulation with
two honest parties. The simulator, in this case, needs to simulate the transcript of
Mpsrswar and, additionally, all outputs of the corrupted sender towards F%, and
Z. This means whenever Z sends a message through the corrupted dummy party
S*, it is sent to Sim?® directly. Using these inputs, Sim® internally simulates the
execution of Ilpyrswap While interacting with F%, in the name of §*. Figure 5.7
shows the setup of this simulation.

Claim 2. There exists a efficient algorithm Sim® such that for all PPT environ-
ments Z, that only corrupt the sender it holds that the execution of Ilpsrswap
in the (C, L, H)-hybrid world in the presence of adversary A is computationally

< with the ideal adversary

indistinguishable from the ideal world execution of Fk&,

Sim®.

Proof. Since the simulation in the presence of a corrupted sender is not straight
forward, we construct a sequence of two simulation games Game; and Games,
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(a) (C, L, H)-hybrid world execution of (b) Execution of F4, with dummy par-
Mpamswap With S*, R and A ties S* and R and Sim®

Figure 5.7: Simulation with corrupted sender &* and honest receiver R

where the simulator of Game, equals the simulator Sim® from the ideal world ex-
ecution. But before we construct this ideal adversary, we will start with a slightly
modified Experiment Game;, in which the simulator Sim{ holds the private inputs
of the honest receiver and generates messages on his behalf. We will first sketch
this simulator Sim{ and argue that the execution of Hgyrswap in the (C, L, H)-
hybrid world is indistinguishable to the execution of Game; and then show how
to change the simulator, such that it runs in the ideal world (Games) and again
show indistinguishability.

Simulator Sim?

1. Upon receiving message (init,id,p,c,r,,7) in the first step, Sim] simu-
lates the execution of the hybrid functionality by sending (initialized, p,
¢, ry, 1) = C(init,id,p,c,r,,74) to S*. If §* did not send the message
(init), SimJ aborts the simulation. Otherwise, if message (sell,id, z, ¢, ¢)
was also received from S* in the first step, Sim{ sets z* = 1"** and sends
(init, id, ¢, p, z*) to Fh..
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2. In the second step Sim] waits to receives (buy, id, R) from F%,, which means
that the p coins were frozen in £. To simulate that this was performed by
the judge smart contract, Simj runs (active, id) = C(accept, id). If no

L

£ was received in step 2, Sim{ terminates the simulation.

message from

3. Upon receiving (reveal, id,d, k) from S* in step 3, such that Open(c, d, k) =
2. to output z* to R. Additionally, Sim; locally simulates

1, Simj triggers F5%,
the execution of Ilg,rswap by running (revealed, id, d, k) < C(reveal,id, d, k).
Since Sim{ controls the in- and outputs of R, he will exchange the out-
put message to the environment from (bought,id,z*) to (bought,id,x),
where 2 is the extracted witness (x,7) « Extract’(¢,z, k). If no message

(reveal,id,d, k) from S* is received, send (abort,id) to F5

5o in the name

of §* and simulate the refund in the hybrid world by running C until it
terminates.

4. If 7 = L, SimJ simulates the acceptance by an honest receiver by running
(sold,id) < C(finalize, id) and send (abort,id) to F4. He immediately
triggers the unfreezing of S coins in the ledger £ and outputs (sold, id) to
S*. If instead m = 1, Sim] needs to simulate a complaint. He does this
by running (not sold, id) < C(complain,id,7) and letting F4, terminate
normally. Then Sim] outputs (not sold,id) to S* and terminates.

The output (bought, id,z) of R in step (3) is is identical to the real world execu-
tion, since it is computed in the same way, as the extraction of z using key k. The
same holds for the outputs to §* in step (1), (2) and (4) since they are generated
by the simulation of C, with the honestly generated inputs of R. The environment
Z will only be able to distinguish the real world execution from the execution of
Game, if messages are sent in different steps or coins are frozen/ unfrozen dif-
ferently in £. Sim7 makes sure to simulate messages of C, and F%, in the same
step as Z instructs him on the influence port. Only in the case where an honest
receiver would send the finalize message, Sim® makes sure that the abort is

received by F%, in the same step as it unfreezes the coins for S. This is necessary

L

4 1s not correct, and upon checking, F% would not assign

since the input to .

the coins to S. But by immediately aborting and triggering the unfreeze, Sim;
can successfully simulate the case of no complaint. Since Game; does not capture
the full functionality of Sim?, we need to adapt Sim] further to work in the F%,
world. Mainly, Sim® must not be able to control inputs and outputs of honest
parties like depicted in Figure 5.7. Instead, it needs to utilize the observability
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functions of the random oracle and learn the witness x from the messages send by

S* in the first step of the protocol and input this witness to the ideal functionality

L

cfe*

to the previous simulator Sims;.

Instead of constructing a new simulator, we will only highlight the differences

[ Simulator Sim® for corrupted sender ]

1. Upon receiving message (sell, id, z, ¢, ¢) over S* in the first step, Sim®

learns @Q);4 from querying H(observe) and checks if (k||d,c) € Qiq. If
such a query exists in Qg Sim® runs (z,7) = Extract™(¢, 2, k). If no
such query exists, or S$* never send sell, set z = 1%,

Upon receiving (init,id,p,q,c,7,,75) through S* in the first
step, send (init,id,¢,p,q,x) to F%. Simulate the execution of
the hybrid functionality by sending (initialized,p,c,74,7.) =
C(init,ud,p,c,r,,7r4) to S*.

If 8* did not send both messages sell and init, Sim® aborts the
simulation.

. When Sim® receives (buy, id, R) from F%,, it means that the p coins

were frozen in £. To simulate that this was performed by the judge
smart contract, Simj runs (active, id) = C(accept, id). If no message
from F5, was received until step 3, Sim{ terminates the simulation.

. Upon receiving (reveal,id,d,k) from S* in step 3, such that

Open(c,d, k) = 1, Sim{ triggers F%, to output z to R. Addition-
ally Simj runs (revealed,id,d, k) < C(reveal,id,d, k) to simulate
the execution of g rswap.

If no message (reveal,id,d, k) from S* is received, send (abort, id)
to F&4. in the name of S* and simulate the refund in the hybrid world

by running C until it terminates.

. Upon receiving (sold, id) from F4%,, Sim® simulates the execution of

C by outputting (sold,id) < C(finalize,id) to S*. Then Sim® ter-
minates.

If instead he receives (not sold,id) from F%, Sim® runs

(not sold, id) < C(complain, id, ) and terminates.

7

Since Sim® cannot control the output of R anymore, it needs to guarantee that

L
cfe
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has to input x to F5%, in the fist step of the execution. But since Sim® does not know
2 he has to learn it from the inputs of §*. Specifically, he uses the observability
property of the global random oracle H to get a list Q4 of all queries to H that
were made by the environment (directly or over some adversary). We distinguish
the following cases now: (a) Either the commitment is not correct, in this case
Sim® cannot learn k from Q4 (this is identical to the case that k& was programmed,
which makes the commitment invalid), or (b) the commitment was done correctly.
In case (a) the execution of the real world protocol will fail just as the simulation
with overwhelming probability, since Z will not be able to provide a opening to
commitment ¢, such that the opening is accepted by C, except if Z guesses ¢, d such
that later H upon being queried k||d responds with exactly with c. Since H selects
the query response randomly from {0, 1}* this only happens with probability 2%,
which is negligible for large u. Case (b) occurs when the tuple (k||d, ¢) is stored in
the set Q4. This allows Sim® to run the extraction algorithm, just like the honest
sender will and recover x. If the commitment is opened correctly in step (3), the
honest receiver in the real world would output x, just as in the interaction with

4o in our case. It is only possible to distinguish these two cases if Z managed to
find a collision, i.e., Z must commit to one key and open to another key, i.e., find
a (k,d), (k',d) such that Open(c,d, k) = Open(c,d', k') = 1 But from the binding
property of the commitment scheme it follows that this is not possible except with
negligible probability. Thus, we have shown that the hybrid and the ideal world are
indistinguishable to the environment Z if the commitment of the key is binding.
This concludes the proof for the case of a malicious sender. n

Simulation with a malicious receiver

Next, we will show security against malicious receivers (denoted as R*). The setup
of the simulation is symmetrical to the one with a malicious sender and is depicted
in Figure 5.8.

Claim 3. There exists an efficient algorithm Sim™ such that for all PPT environ-
ments Z, that only corrupt the receiver it holds that the execution of Ilpsrswap
in the (C, L, H)-hybrid world in the presence of adversary A is computationally
indistinguishable from the ideal world execution of F4%. with the ideal adversary
Sim*.

Proof. The main challenge for Sim”™ in this proof is to provide the encoding z
without knowledge of the witness = in the first step and to present key k in the
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Global Ledger £ %\‘ Global Ledger £

Hybrid World

influence

influence

(a) (C, L, H)-hybrid world execution of (b) Execution of F4%, with dummy par-
parswap With S, R* and A ties S and R* and Sim®

Figure 5.8: Simulation against Z with honest sender S and malicious receiver R*

third step such that the decryption of z yields x. Additionally, the key he provides
during the reveal phase has to correctly open a commitment ¢, which Sim™ has
to output in the first step. In order to construct this simulator, we will mainly
utilize the programmability property of the global random oracle H. Again, we
construct the simulator using multiple experiments, Game;, Games, and Games,
which represents the ideal world execution with Ff%. We start with the first ex-
periment Game;, in which we give the adversary Sim[ the extra power to learn
all inputs and give all outputs to honest parties. In our case we require that it
can read the input of the dummy party S in the first step, which is the message
(sell,id, ¢, p,x). Specifically SimT learns x in this step, which he would not know
otherwise. Now we sketch the algorithm of our simulator Sim® with knowledge of

Simulator Sim[

1. The simulation starts when S sends (sell,id, ¢,p,x) to F&. Sim?T simu-
lates the execution of ITgyrswar by randomly sampling a key &, encoding ¢(x)

to z and sending (sell,id, z*, ¢, ¢*) to R*. When the functionality outputs
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(sell,id, ®,p,S) to the corrupted receiver Sim”™ internally runs C and out-
puts (init, id,p, c*,ry,7,) instead (where c is the commitment and r4 and
r, are the Merkle root hashes as defined in the protocol).

2. If the corrupt receiver accepts the exchange, Sim[ receives the message
(accept, id) from R* in step 2. In this case Simy sends (buy, id, ¢, p) to F
and simulates the judge contract by sending (active,id) < C(accept, id)
to R*.

3. In the reveal phase Sim[ simulates the honest sender by outputting (revealed,
id, d, k) < C(reveal,id,d, k) to R*.

4. In the payout phase the corrupted receiver can either accept the file, complain
or abort the protocol execution altogether. Simy waits for the message of
R* in the next step. If he receives a message (complain, id, ) where 7 is a
valid complain, Simy lets F5%, continue, this way the resulting messages of

& and C(complain, id, m) will be identical, namely (sold, id) if ¢(z) = 1 or
(not sold, id) otherwise. If Sim™ instead receives a message (finalize, id),
he sends (abort, R*) to F5% and immediately triggers the unfreezing of p
coins. This way the output of (sold, id) and the unfreezing of coins will be
indistinguishable to Z, even when the sent witness is false, i.e., ¢(z) = 1.
The third case occurs when SimT does not receive any valid message from
R* in step 4. In this case, he sends (abort, R*) to F5, and waits for one step
before he triggers the unfreezing of coins. This way, the behavior of FZ, will
be indistinguishable from the judge smart contract of input of (finalize, id),
which an honest sender would always send in step 5.

Thus, the execution of the experiment Game; running with adversary Simy is
indistinguishable from the real world execution of Ilg,rgwap With the judge smart
contract C. Note that this simulation is only possible since Sim* learns « in the
first step. We will now show how to construct a simulator that does not require
this additional input of x but uses the programmability of the random oracle to
simulate this knowledge. We will do this in two steps. First, we simulate the key
commitment without using the real encoding key and, in a third experiment, also
simulate the encoding of z without knowledge of x. We only sketch the main dif-

ferences to the previous simulator and later give a detailed construction of Sim™,

L

se- The Simulator of Experiment

which is the ideal adversary in the execution of
Gamey is very similar to Sim7 and only differs in the following way:
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Simulator SimJ

1. In the first step, Simj does not generate a commitment (¢, d) < Commit(k)
but randomly samples ¢* < {0, 1}* and outputs ¢* instead of ¢ to the cor-
rupted receiver. At this point Z cannot distinguish if it received c or ¢*, as
long as ¢* was sampled uniformly at random from the same domain that the
random oracle H uses.

3. In the reveal phase, Sim5 now needs to open the commitment and present
an opening value d, such that Open(c*, k,d*) = 1. Sim¥ randomly chooses
d* < {0,1}" and sends (program, id, k||d*, ¢*) to H to program the random
oracle to respond to all oracle queries of k||d* with ¢*.

This will succeed if H was not queried or programmed on k||d* before. Since Z is
computationally bounded, it can only guess r and program or query H on polyno-
mial many points. Additionally, if SimJ chooses an opening value such that the
programming fails, he can try again with a different value. Now when Z checks
the opening Open(c*, k, d*), it will try to detect this programming behavior in the
simulation, by querying H(isPrgrmd, x||r) from this session either over the ideal
adversary or a corrupted party. Since SimT is the ideal adversary and controls all
corrupted parties, he can interject all queries to H from this session and simply
send back a false response, to lie about the programmed values. Therefore the
result of the simulation of the commitment will be indistinguishable to Z with
overwhelming probability. Therefore the environment cannot distinguish the exe-
cution of experiment Games from the execution of Games, except with negligible
probability. It remains to show that Sim”™ can simulate the encoding z* without
knowledge of x in the first step, such that it is indistinguishable towards Z. This
is possible since the construction of our encoding scheme using the programmable
random oracle makes it non-committing for only the ideal adversary Sim*. He
proceeds as follows: In the first step he simulates the encoding z by sampling it
uniformly at random, i.e., z = (21, ..., zm)<{0,1}**™. Upon learning the actual
witness = (x;,...,2,) Sim™ needs to output a key k such that Dec(k, z) = ().
Knowing z, he samples k < {0, 1}* and programs the random oracle H to open
all decryption queries as follows:

Vi € m : H(program(kl||i, 0; & 2;)
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Should Z request the response of (1sPrgrmd, k||¢) for any i € n the simulator Sim™
lies to Z and claims that it was not programmed. This simulation is indistinguish-
able from the real world execution as long as the programming is not detected by
Z, which happens if it queries H(k||7) for any ¢ € [n] or programmed any of these
values himself before the programming took place. If the adversary does not know
k, this happens only with negligible probability since he can only make polyno-
mially many queries or programming requests to H. Therefore the execution of
experiment Games is computationally indistinguishable from experiment Games.
By showing that Sim” can simulate the encoding z without the knowledge of z, we
have completed all necessary steps of the simulation and can construct the ideal
world simulator Sim”™ and concluded the proof. To give the reader a complete
overview of the final simulator for the ideal world execution, we formalize it in

detail below, combining the steps of the three experiments above. O]
[ Simulator Sim™ } 1

/5

1. Upon receiving (sell, id, ¢, p,S) from F%, in the first step Sim™ ran-
domly samples z* < {0, 1}™*#. Additionally, he simulates the com-
mitment as ¢* < {0,1}* and sends the message (sell,id, z*, ¢, c")
to R*. Next he computes r, = root(Mtree”(¢)) and r, =
root(Mtree™ (2*)), runs C on input (init, id, p,c*,r4,7.) and sends the
output to R*.

2. Wait to receive (accept, id) from R* in the third step.

o If no such message is received, Sim”™ simulates the refund of locked
coins in C and terminates the simulation.

o If Sim™ receives the accept message he sends message
(buy, id, ¢, p) to F& and simulates the activation of C by sending
(active, id) < C(accept, id) to R*.

3. In the reveal phase Sim™ learns x from the message (bought, id,x),
which F%, sends to R*. Then he needs to simulate the messages of
the honest sender in the protocol.

o Sim™ selects k uniformly at random from {0, 1}" and for all i € [n]
set 0, := x; and for all j € {0,...,m —n} and ¢; := (4, 0p;, ;)
computes 0,1 := 0p;({0;}jer,)-

e Then map the encoding of z* and k to the correct values by
programming the random oracle H in the following way: for all
i € m send the messages (program(k||i,o; ® z;)) to H. Abort if
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the programming fails. Otherwise, from now on querying H(k||7)
results in r; = zF @ o; such that for all i € n Enc(k,z}) = z; &
H(k||i) = o; will decode z] to o;.

« To generate the correct opening for the commitment, Sim”™ sam-
ples d < {0,1}* and programs the random oracle by sending
‘H(program(k||d, c*)). Abort if the programming fails.

Whenever Z queries H (over R* or Sim”™) on the programmed val-
ues, Sim” interjects these queries and instead of forwarding them
to H, responds to them himself so he can pretend that the val-
ues are not programmed. Finally, Sim”™ runs (revealed,id,d, k) +
C(reveal,id,d, k).

4. Sim™ waits to receive a message from R* in step 4.

o If the message is a valid complaint (complain, id,7) Sim™ runs
C on input of this message. If the judge contract accepts the
complaint, he lets F%, continue and terminates.

o If the message is a false complaint or (finalize, id) Sim”™ instead
sends (abort, id) to F%, and immediately trigger the following ex-
ecution including the unfreezing of coins. Then Sim™ terminates.

o Ifinstead R* does not send a message, Sim™ also sends (abort, id)
but waits for one step before he triggers the further execution,
including the payout of coins. Then Sim™ terminates.

. 7

It remains to argue why the probability that the simulation fails is negligible.
This case only occurs when Sim™ fails to program the H because a value was pro-
grammed before. To trigger this case, the Environment Z must have programmed
any of the values k||d or kl||i prior to the simulation.

Simulation with two malicious parties

It remains to prove security for the last case, where Z corrupts both the sender
and the receiver. The case of malicious sender and receiver does not guarantee any
fairness and might not even terminate. Recall that we allow any malicious party
to lose money if it does not follow the protocol execution, aborts, and declines
the unfreezing request made by the ledger (cf. Section 5.2). A simple example of
such a case is when S&* does not trigger the finalize message when interacting
with C. This will result in his money staying blocked forever. But even if the
standalone case of two dishonest parties does not make much sense for the proposed
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applications, we still need to prove the indistinguishability of the real and hybrid
world to guarantee security when composed with other protocols.

Claim 4. There exists an efficient algorithm SimS™ such that for all PPT environ-
ments Z, that corrupt both, sender and receiver it holds that the execution
of Mgamswar i the (C, L, H)-hybrid world in the presence of adversary A is com-
putationally indistinguishable from the ideal world execution of F5, with the ideal

adversary Sim°*.

Proof. The simulation of the case with both malicious sender and receiver is a

L

e world and

mixture of the two previous simulations. The simulator runs in the
needs to simulate the execution of Il rswap in the real world, using the inputs of
S* and R*. Additionally, it needs to execute the functionality F5, on behalf of
S* and R* to ensure the correct freezing of coins in £. Since this case repeats the
steps of the simulations with one malicious party, we will only give a high-level
sketch of Sim®®. Whenever R* or §* instruct £ not to pay out the coins, Sim®®
forwards this message to £ to enforce the identical behavior in the real and ideal

world.

Simulator Sim°~ ] \

SR

1. Upon receiving message (init, id,p,c,7,,74) in the first step, Sim
simulates the execution of the hybrid functionality by sending
(initialized,p,c,74,7,) = C(init,id, p,c,r,,74) to S*.

If S* did not send the message (init), Sim®™ aborts the simulation.

Otherwise, if message (sell, id, z, ¢, c) was also received from S* in

the first step, SimS™ sets z* = 1"** and sends (init, id, ¢, p, z*) to

5
cfe*

2. When Sim®® receives (accept, id) by S* he sends (buy, id, R) to F&,.
Additionally he runs (active, id) = C(accept, id). If no message from
R* was received, SimS® terminates the simulation.

3. Upon receiving (reveal,id,d,k) from S* in step 3, such that
Open(c,d, k) = 1, SimS% triggers F5, to output of z* to R. Addition-

ally Sim®® runs (revealed, id,d, k) < C(reveal,id,d, k) to simulate
the execution of ITprswap-

If no message (reveal,id,d, k) from S* is received, send (abort, id)
to F%. in the name of §* and simulate the refund in the hybrid world
by running C until it terminates.
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4. SimS® waits to receive a message from R*.

o If the message is a valid complaint, (complain, id,7) Sim®® runs
C on the input of this message. If the judge contract accepts the
complaint, he lets F%, continue and terminates.

o If the message is a false complaint or (finalize,id) Sim®™ in-
stead sends (abort, id) to F%, and immediately trigger the fol-
lowing execution including the unfreezing of coins. Then SimS®
terminates.

o If instead R* does not send a message in the fourth step, SimS~
waits for S* to send (finalize, id) in step 5. If §* sends this mes-
sage, SimS™ triggers the further execution, including the payout
of coins. Then SimS® terminates. If S*, on the other hand, does
not send this message, SimS” also triggers the further execution
of F4., but when L request the payout of the coins to S*, he
refuses the request in the name of S*.

. 7

The simulator ensures that the coins are unfrozen correctly in £ by submitting a
wrong file 2* to F%,. This allows him to wait for the payout phase and simulate the
outcome of C accordingly. If the receiver can produce a valid complaint, which will
trigger C to output the coins to R, SimS* triggers the verification of the file, which
will conclude that ¢(z) # 1. Otherwise, if R does not produce a valid complaint,
SimS® triggers the payout to S in FZ

4. without checking if ¢(x) = 1 by sending
(abort, id). Now he waits for S* to send the finalize message. If this message is
received within the expected time, he simulates the payout of coins. Otherwise,
he needs to simulate that the coins are frozen in £. He does this by refusing the
payout of coins in £ when FZ, instructs it to send the payment of p coins to S*.
This will block the execution, and the money is frozen. Since Sim®™ controls all
outputs to the corrupted parties, it does not matter, that F%, outputs a wrong file
z, since Sim®*® could easily simulate the correct output from the internal execution
of C. This ensures that the execution of F5, with Sim®™® is indistinguishable from

the hybrid world execution to Z. O

5.6 Implementation and Performance

Now that we have proven the security of FAIRSWAP, we can take a closer look
at the efficiency of the scheme. In this section, we show how to use our general
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protocol for digital file sale and in more general use cases. We give performance
indicators for our protocol and the costs of our implementation for the judge
contract in Ethereum. While the runtime of FAIRSWAP is fixed to five steps, the
length of a step depends on A rounds, as every step requires one interaction with
the blockchain. This parameter is essential for the runtime and can be set by the
parties individually, based on the application. Therefore, we analyze the protocol
efficiency not on the runtime, but through the following aspects instead:

e The cost of deployment for the judge contract. This factor is largely
influenced by the size of the instruction set and structure of ¢, which the
contract needs to support. Below we discuss how the judge implementation
can be optimized to reduce this cost for our file sale example (when ¢ is a
Merkle tree).

o The cost for the optimistic protocol execution. This cost is constant
and independent of the size of ¢ and .

e The cost for the pessimistic protocol execution. For simplicity, we
will always consider the worst pessimistic case. The costs for a dispute, in
this case, heavily depends on the size of the proof of misbehavior.

o The size of the encoding. Another way of measuring the protocol’s effi-
ciency is to consider the message complexities. The by far largest message
of the protocol is the first one from & to R, which carries the encoding.

The numbers vary for different circuits ¢, where circuits with small instruction
alphabets I' and fan-in ¢ are the most promising candidates. For such circuits, the
overhead of the encoding is small, and the judge contract can run at low costs. To
get exact numbers for these aspects, we implemented the judge smart contract for
our file sale example. Before we present the findings, we discuss the circuit that
we consider in more detail and give an overview of the implementation.

Efficient and Fair File Transfer. Our protocol can be used whenever two parties
want to exchange data that is identified via its Merkle hash root h. The witness
is the file x = (z1,...,x,), which is split up into n parts, where each file chunk
x; € {0,1}* is of some short length \. The circuit ¢ checks if the Merkle hash root
of this file equals some publicly given value h (i.e., ¢(x) = 1, iff Mtree™(z) = h).
We assume that this value is made available via some public channel that the
receiver trusts, e.g., a webpage or file sharing log.The instruction alphabet of ¢
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consists of the operations H(z,y) and eq(z, h), where H is the Hash function used
for the Merkle tree and eq(x,y) is a function that outputs 1 if z = y. Figure 5.9
shows such a circuit for a file with n = 8 elements of size \.

15 g16

eq('7 h) +

Figure 5.9: Merkle tree circuit for exchange of = = (x4, ..., xs)

To benchmark the runtime and execution costs of our protocol, we implemented
the protocol for the file sale application® using the file sale circuit (cf. Figure 5.9). A
nice property of this circuit is the small size of the instruction alphabet (|T'| = 2),
and the small fan-in of operations (¢ = 2). This allows us to provide a highly
efficient smart contract implementation for this particular use case. The advantage
of the small instruction alphabet is that the contract can derive the operation of
gate g; from the index ¢ (indeed, there is only one operation in the entire circuit ¢
except for the very last instruction). This allows us to implement the verification
without committing, sending, and verifying ¢;. Additionally, for the special case
of a Merkle tree circuit, we have that the input to all gates (i.e., hash function
evaluations) are natural siblings in the encoding in z. This means that in the
concise proof of misbehavior to verify the correct evaluation of one hash functions
on two inputs, we only need one (slightly modified) Merkle proof verification,
which verifies both input values in one step. Thus, the proof 7 only includes two

9The source code of the solidity contract can be found at github.com/IEthDev/FairSwap
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input values of at most length A\, one output hash of length x, and two Merkle
proofs — one for the two input elements and one for the output of the gate. In
our implementation, the users have the ability to change the parameters of the
protocol, namely the number of file chunks n, which directly relates to two other
parameters in our application: the length of each file chunk |x;| = A and the depth
of the Merkle tree § (again we assume a full tree for simplicity). We can observe
the following relation of the parameters:

NET
n 20

The hash function optimized in the Ethereum virtual machine language is kec-
cak256, which outputs hashes of size p = 32 bytes. Since the instruction set
of Solidity is currently limited but provides a relatively cheap (in gas costs) and
easy hashing, we use this hash function to implement our encoding scheme. Since
the judge contract needs the possibility to extract each element z; € z without
knowledge of the whole vector z we use a variant of the plain counter mode for
symmetric encryption, for which keccak256 is evaluated on input of a key k£ and
index ¢, and the ciphertext is the bitwise XOR of the plaintext with this hash
output taking as input the key and the current counter. From the construction of
the encoding scheme, it follows that the file chunk length A should be a multiple
of 32 bytes to allow efficient encoding and extraction.

The judge contract implementations offers four different options for R to call
during the payout phase. The function nocomplain allows R to accept the file
transfer and directly send p coins to S, the complainAboutRoot function is used
whenever R complains about a false output of the circuit, namely that z,, # h.
The functions complainAboutLeaf and complainAboutNode allow R to complain
about the computation of two input gates g¢;, gi+1, ¢ € 1...,n or the computation
of some other gates g;, gj11 where n < j < m respectively. The reason for these
different complain functions is that each of them requires a differently sized input.

Transaction Fee Evaluation. In the first round, the sender deploys the FairSwap
contract, including the Ethereum addresses of S and R, the price value p, the
commitment ¢ and the roots ry and r,. The main gas costs result from this
deployment, which costs roughly 1050000 gas, which for a gas price of 3 GWei
translates to 0.00315 Ether or 0.51 euros.

The price for the execution of the functions deploy, accept, reveal, refund and
no complain stays almost constant for different parameters, but the cost of the
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complain function varies highly, depending on the kind of complaint, the choice
of the file chunk size A\ and the Merkle depth §. The data, which needs to be
sent to the blockchain (as part of 7), increases with the size of A. Figure 5.10
shows the costs for optimistic (green) and pessimistic (red) execution costs for
different file chunk lengths for a file of one GByte size. Optimistic means, that the
protocol continues until the payout phase, where R accepts the encoding without
complaint, whereas pessimistic means, that R complains to the judge contract
about the wrong computation of some input. The costs of the complaint originate
from the length of the concise proof of misbehavior 7, which needs to be sent to
the contract and evaluated on-chain:

|7T| = ‘Zm1| + |Zin1| + |Zout| + |;0m| + |pout|
22U XA+ p+20 X p

Figure 5.10 illustrates that even for very large file chunk sizes, the costs for
optimistic execution is close to constant around 0.56 euros, where the cost for
pessimistic execution increases exponentially in the length of the file chunks. We
highlight that using different cryptocurrencies can decrease the price for execution

10 "a well known fork of the Ethereum blockchain,

even further. In Ethereum classic
the cost for optimistic execution is only fractions of cents. The heavy computation
of the protocol is executed in round 1 and 3, by both the sender and the receiver
in the two algorithms Extract” and Encode’™. We will only take a closer look at
the performance of the sender, since the receiver will perform almost identical
computations only in reverse order. To encode file z = (xy,...,2,), S needs to
first generate M = Mtree”™(x) and store all intermediate hashes. The result is
n — 1 elements of size p. Next, he encodes each file chunk (which requires n x A
hashes in total) and each hash from the Merkle tree M (n — 1 hashes). It remains
to compute the Merkle root r, = Mtree®(z,..., z,) of the combined encoding
Z = z1,...,2m, for which he needs to hash 2m Elements. Therefore we get the

following estimates:

|z| = |z| + (n — 1)32 Bytes = n x A x 32 Bytes
Runtime of Extract” = n x A x O(H)

The size of z therefore can be used as an indicator for the performance of the
algorithm Extract’* and additionally affects the communication complexity, since

1%https://ethereumclassic.github.io/
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Figure 5.10: Costs and encoding size for different values of A

it needs to be transfered in the first protocol message which is the longest mes-
sage in the protocol. We did not optimize the implementation of the algorithms
Encode™, Extract™ for runtime, but it shall be noted that we reach an encoding
throughput of approximately 2 MB per second in a straightforward node.js imple-
mentation running on a single core of a 2.67 GHz IntelOCore i7 CPU with 8 GB
of RAM.

For most use-cases the execution cost will dominate the costs for extraction and
message sending. This indicates that the performance of the protocol is often
optimal for small A. Figure 5.10 illustrates his trade-off between the costs of
the protocol and its performance, measured in the overhead of encoding size in
comparison to file length % The protocol can be executed in 4 rounds, where
each round requires sending a message to the blockchain. The round ends when
the message is accepted by the miners and included in a block. Cryptocurrencies
ensure that a correct message (with sufficient fees) is eventually included in the
blockchain, but this process might take some time. We denote this maximal round
duration with A. Therefore the judge contract will have timeouts A to measure
whether some message has been sent or not. The exact value of these parameters is

154



5 Moving Complex Computation Off-Chain

chosen by the parties and depends on the congestion of the blockchain, the number
of fees they are willing to pay, their availability, and the number of blocks they
require to succeed a transaction in order to consider it valid. We note that the
minimum duration of the protocol is four blockchain rounds, which in Ethereum
can be executed in only a few minutes, as long both parties agree.

5.7 Discussion and Extension

In the previous chapters, we have presented the FAIRSWAP protocol and analyzed
its security and efficiency. In the optimistic case, the protocol is executed in 5
rounds and costs around 0.56 euros. In this section, we discuss how to apply
the system to solve free-riding in distributed systems. We additionally present
different extensions to the protocol. In Subsections 5.7.2 and 5.7.3, we discuss
how the communication overhead and transaction fees in the optimistic case can
be reduced by applying the ideas from the follow-up works [73] and [183]. In
Subsection 5.7.4, we discuss how incentives can be added to the protocol and how
FAIRSWAP can be executed in state channels.

5.7.1 Countermeasure against Free-Riding

We discussed the file sale application of FAIRSWAP in detail in the previous sec-
tion. Here we want to highlight how FAIRSWAP can provide an elegant solution to
the free-riding problem in distributed file-sharing systems. The free-riding prob-
lem states that the overall network suffers if enough peers only exploit the service
without sharing content themselves. Surveys like [164, 166] show that free-riding is
a common problem in decentralized systems whenever creating identities is cheap,
and users can dynamically join and leave the system. In [3], researchers found that
at one point, 75% of users of the popular platform Gnutella were free-riders. Some
incentive mechanisms have been proposed to make free-riding less attractive [107],
e.g., by introducing payments and let users pay small fees to the senders of files.
However, such approaches do not address the case when a malicious user offers con-
tent that is incorrect (i.e., it does not belong to the file that the receiver intends to
download). A natural solution to the free-rider problem is to use cryptocurrencies
that support smart contracts since they provide a decentralized trust platform that
handles payments. One possible solution already discussed in the introduction is
to use ZKCP, but this only works well for small inputs as otherwise, the users
would suffer from huge computational penalties. FAIRSWAP however, solves the
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fairness problems of digital file exchange for much lower costs and results only in
small overheads in terms of communication load.

5.7.2 Interactive Dispute

In an extension to the original FAIRSWAP protocol called OPTISWAP [73], we pro-
pose an interactive dispute process. As a result, we can reduce the communication
size, in particular the first message sent from S to R, and propose a fairer fee
distribution. The high-level idea of the OPTISWAP protocol is as follows: In the
first message, S sends only an encoding of x, not of the transcript of the evaluation
of ¢(x) to R. Otherwise, the protocol proceeds as in the FAIRSWAP protocol. In
case there is a dispute, the receiver R does not have enough information to build
a proof of misbehavior right away. Instead, he starts the interactive dispute pro-
cedure, which allows him to learn the missing elements from §. Both parties run
a challenge-response procedure via the contract, in which R requests the results of
single gates. If S does not respond (correctly) in time, the contract will notice this
misbehavior and assign the coins to R. Otherwise, the challenge-response process
will be finished within an a-priory fixed number of challenge-response pairs, and
R can prove the misbehavior of a cheating S.

This dispute resolution sub-protocol is only used in the pessimistic case and does
not add to the execution fees of the optimistic case, while drastically reducing the
overhead as observed in 5.6. In particular, the size of the message in FAIRSWAP
depends on the circuit and the witness size, while the message size in OPTISWAP
is independent of the circuit size. The paper includes a prototype implementation
and full security proof in the UC model of the interactive dispute protocol. The
authors of [183] implemented the fair file sale application in their framework and
managed to reduce the costs by 22%.

5.7.3 Splitting Escrow and Judge Function

In the optimistic case, the main cost for running fair file sale consists of the de-
ployment costs, which make 91% of the overall costs. In the original publication
of FAIRSWAP [67], we proposed to re-use the contract whenever the same circuit
is re-used, between the same parties. The contract needs to be slightly modified
such that it can store money for repeated exchanges and updates the internal bal-
ance after every execution. This approach increases the deployment costs slightly
(around 0.06 euros), the cost amortizes when the contract is re-used. While
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this approach can help to amortize the deployment costs, it only helps in the re-
peated exchange between two parties. The authors of [183] propose a more generic
method to improve deployment costs. They distinguish two parts of the contract,
the mediator function and the verifier function, as follows:

Tasks of mediator Task of verifier

o Store address of verifier contract o Stores the logic to evaluate func-

ti dge™
e Store coins from R ion Judge

o Receive proof of misbehavior
« Store exchange data (id, ¢, p, ¢, 74,72) P

S ine (d k) f S o Judge if S was honest by evaluat-
e Store opening ( ) ) rom ing JudgeH

* Enforce timeouts e Report the result to escrow con-

« Payout the stored coins tract

The contract now has two parts, the escrow part which stores the result of
the contract protocol execution and the judge part which verifies disputes. We
can split up the contract into two parts like this, as the judge is only needed in
the pessimistic case. Splitting up the contract allows users to re-use deployed
verification contracts for judging the same circuit evaluation. Additionally, the
verification contract can also be deployed on demand only during dispute with the
deterministic create2 opcode (cf. Section 3.2.1).

‘ Costs ‘ in Gas ‘ in ETH in Euro
FAIRSWAP 1050000 0.00315 0.51
Deployment )
Costs OptiSwap [73] 2273398 | 0.006820194 | 1.11
SmartJudge [183] | 1947000 | 0.005841 | 0.95
Costs for £l FAIRSWAP 1153303 | 0.00346 0.56
Optimistic Case | OPtiSwap (73] 101307 | 0.000303921 |  0.05
SmartJudge [183] | 143000 | 0.000429 | 0.07

Table 5.1: Gas cost comparison between FairSwap, SmartJudge, and OptiSwap.
Numbers taken from related work (with exchange rates from Sec-
tion 3.2.1).

In “OptiSwap: Fast Optimistic Fair Exchange” [73] the gas costs of the FAIR-
SwWAP, OPTISWAP and SmartJudge protocols were evaluated and compared. The
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result in presented in Table 5.1. The results show that SmartJudge managed to re-
duce the deployment costs of FAIRSWAP and the OPTISWAP protocol lowered the
execution costs in the optimistic case (additionally to the reduced overhead due
to the interactive dispute). As both approaches use different ideas which do not
exclude each other, they can also be combined to minimize both the deployment
and execution costs. We note, however, that both techniques are more expensive
than FAIRSWAP in the pessimistic case (as discussed above). Therefore, our next
extension discusses how to set clear incentives for both parties to avoid dispute.

5.7.4 Setting Financial Incentives for Honest Behavior

We have conducted a formal proof that FAIRSWAP is secure against malicious
behavior, which guarantees that no sender S can get the coins without revealing
the witness x to R and no R can get the witness without paying the honest sender
S. But we did not prevent that the parties can harm each other in another way.
In particular, the sender can force R to lock his coins for 4A rounds without even
knowing = (cf. collateral costs Section 3.2.2). We cannot prevent this behavior
because R cannot see the witness before the third round. But we can incentivise &
to behave honestly, to penalize this behavior. This is possible because the contract
can always correctly attribute the fault in the pessimistic case. In order to be able
to penalize S, he first needs to lock a penalty deposit of ps coins in the contract in
the first round. If he behaves correctly (i.e., follows the protocol description and
provides a correct witness), the contract sends the payment and his own penalty
deposit back to him. In case § cheats or aborts, the money is instead sent to R as
compensation!. A downside of this incentive mechanism is that is increases the
collateral costs for honest senders.

Another potential attack vector of the protocol is grieving though transaction
fees (cf. Section 3.2.2). So far, we did analyze how much fees need to be paid for
the execution of the protocol, but we did not discuss their unequal distribution
between the parties. In FAIRSWAP, the deployment fees are carried only by S,
and in case of dispute, R has to pay all fees for sending the proof of misbehavior
and evaluating Judge™. The deployment costs can be covered just as well from R,
but we recommend to use one of the previous approaches to reduce the deploy-
ment costs overall. An interesting solution to achieve fair fee distribution and set
incentives for honest behavior was introduced in [73]. Here we analyze how the
fees of (interactive) dispute can be shifted completely to the misbehaving party.

1 The money could also remain locked forever in the contract with the same result.
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Again, we use the guaranteed fault attribution to identify the malicious party and
use its deposit to compensate the honest party. In particular, we will distinguish
three possible cases:

1. When both parties behave honestly, the exchange proceeds without any ad-
ditional fees or deposits.

2. When § is honest and R forces a dispute case, § might need to temporarily
lock a deposit, but he is guaranteed to get it back and get compensated for
any fees that he paid during the process.

3. When R is honest and needs to dispute about a false witness, he might need
to temporarily lock a deposit, but he is guaranteed to get it back and get
compensated for any fees that he paid during the process.

5.7.5 FairSwap in Channels

To minimize gas costs and confirmation time for repeated execution, we propose
to run the judge contract described above off-chain in a state-channel (cf. Sec-
tion 4.7). State channels are an extension of payment channels and allow users
to execute arbitrary smart contracts off-chain without requiring interaction with
the blockchain. Constructions for state channels have been proposed in earlier
works, e.g., in [148, 71]. In our basic system, S and R open a state channel for the
(repeated) execution of FAIRSWAP. If the parties want to execute multiple fair
exchanges, they freeze a sufficient number of coins in the channel. Now the users
can run multiple fair exchange executions without sending blockchain transactions,
which drastically decreases the fees and execution times. If however, at some point
one of the parties starts to behave maliciously (e.g., a sender does not provide the
secret key for the i-th repetition of the protocol) the parties can always execute
the contract for this repetition on-chain and settle their disagreement in a fair
manner. Payment networks are an even more interesting tool here, when the goal
is to connect many potential buyers and sellers — for example in the distributed
file sharing use-case. With only a single on-chain setup a user can connect to
many other users off-chain. Virtual state channels [71] can be utilized to create
and close new state channels for every new connection off-chain. As long as the
user and its connection to the network behave honestly in the channel and the
FAIRSWAP protocol, no on-chain interaction is necessary for this user. Even if the
counterparty of the virtual connection starts to misbehave, the indirect dispute
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of [71] ensures that only the malicious party and its direct on-chain counterpart
dispute on-chain and carry the on-chain fees.
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6 Off-Chain Smart Contracts on
Bitcoin

Summary. So far, in this thesis, we have examined how smart contracts can be
used to build complex applications on blockchain technology. But many legacy
cryptocurrencies like Bitcoin do not support smart contracts, but only very sim-
ple transactions. In this chapter, we will explore a different approach to taking
complex contracts off-chain. In contrast to the previous chapter, we will consider
arbitrary contracts with more than two players. Instead of executing the contracts
on-chain or locally at the parties, we will outsource this task to TEEs.

In this chapter, we propose and analyze a TEE based scaling protocol, which is
based on the publication “FastKitten: Practical Smart Contracts on Bitcoin” [59]
— presented at the 2019 USENIX Security Symposium. In this work, we present
FASTKITTEN , an efficient protocol for executing generic smart contracts off-chain
at low costs over cryptocurrencies with reduced scripting capabilities. We execute
contracts off-chain in TEEs operated by an untrusted party and ensure through
penalties that malicious parties that prevent the contract execution will always
be punished. This setup allows the fast and cheap execution of smart contracts,
that can be arbitrarily complex and are independent of the underlying scripting
language. We show that we only require very simple transactions on the underlying
blockchain and that this system can be deployed on top of Bitcoin. We formally
prove strong security properties and show the feasibility of the construction based
on a prototype implementation.

6.1 Overview

Since the rise of Bitcoin, countless new cryptocurrencies have been launched to
address some of the shortcomings of Nakamoto’s original proposal. But despite
these developments, Bitcoin still remains by far the most popular and intensively
studied cryptocurrency, with its current market capitalization that accounts for
more than 50% of the total cryptocurrency market size [55]. A particular important
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shortcoming of Bitcoin is its limited scripting capabilities, which prevents the
support of smart contracts like the ones we modeled in the previous chapters.
The reduced scripting language is part of the design rationale of Bitcoin, and will
most likely not be changed. But limitations do not make it impossible to design
smart contracts, as many previous works have built protocols secured by Bitcoin
before [5, 123, 124, 121]. But while it is technically possible, it requires significant
financial costs due to complex transactions and high collateral.

Another option for running more complex smart contracts is Ethereum, where
the contract execution is directly integrated into the consensus mechanics. But
this forces every miner to execute and verify all contract calls which they are paid
for in gas. Additionally, the gas limit sets bounds on the number of instructions
that can be evaluated per block. Both factors limit the applications for smart
contracts. Finally, many applications for smart contracts require confidentiality,
which is currently not supported by either Bitcoin or Ethereum.

In this chapter, which is based on [59], we propose the FASTKITTEN protocol,
which leverages TEEs to run arbitrarily complex smart contracts at low costs on
top of cryptocurrencies as Bitcoin. We use a TEE to evaluate the contract inside
an enclave, shielding it from potentially malicious users, including the operator
of the TEE. Moving the contract execution into the secure enclave guarantees
correct and private evaluation of the smart contract even if it is not running on the
blockchain and verified by the decentralized network. This approach circumvents
the efficiency shortcoming of cryptocurrencies like Ethereum, where contracts have
to be executed in parallel by thousands of users.

Again, we will build an optimistic protocol, which only requires blockchain in-
teraction during the setup and closing phase when all parties behave maliciously.
This case will be very efficient even for complex smart contracts, which is executed
in many iterations (we say rounds) by many players. We will also show that in the
pessimistic case, the protocol is still secure, which means that the smart contract
will always evaluate correctly based on the correct inputs of the parties. While we
cannot prevent that some parties, mainly the operator of the TEE, has the power
to stop the contract execution, we can guarantee financial fairness. This property
guarantees that misbehavior such as stopping the contract execution will always
be punished and honest parties will be compensated with at least the amount they
stored in the smart contract.

Furthermore, the protocol is blockchain agnostic, but a reference implementa-
tion shows the feasibility and evaluates the costs for Bitcoin [59]. We emphasize
that FASTKITTEN requires only a single TEE that can be owned either by one
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of the participants or by an external service provider, which we call the operator.
In addition, smart contracts running in the FASTKITTEN execution framework
support private state and secure inputs, and thus, offer even more powerful con-
tracts than Ethereum. We will also discuss how the protocol can be extended, for
example, by building smart contracts that can operate different cryptocurrencies.

6.1.1 Intuition and Design ldeas

We consider the following setup where a fixed set of n users Py,..., P, want to
execute an arbitrary complex smart contract C' with deposits of ¢q,...¢, coins.
During the initialization phase, the contract receives these coins from the parties
and some initial inputs. Next, it runs for m reactive rounds, and in each round, the
contract can receive additional inputs from the parties P; and produces a round
output. Finally, after the m-th round is completed, the contract terminates. If the
contract proceeds to the final step, the last output specifies the coin distribution
of the locked coins. The protocol ensures that in the optimistic case, this output is
enforced. In the pessimistic case, it guarantees that, if the contract is not executed
until the end, all parties get their initial coins back, and cheating parties do not.
In the optimistic case, FASTKITTEN runs very fast, since the entire contract is
evaluated off-chain and only requires the blockchain during the coin (un-)locking
in the contract initialization and finalization.

We build the FASTKITTEN protocol over a decentralized cryptocurrency that
only supports very simple scripts. Concretely, we require (i) simple transactions
that send coins to public keys, (ii) transactions that can store data, and (iii) time-
locked transactions, that are only processed and integrated into the blockchain after
a specified time has passed. We emphasize that these are very mild requirements
on the underlying cryptocurrency that, for instance, are satisfied by the most
prominent cryptocurrency Bitcoin (cf. Section 3.1).! FASTKITTEN leverages these
properties together with the power of trusted execution environments to provide
an efficient general-purpose smart contract execution platform.

The key feature of FASTKITTEN, its very low execution cost, and high per-
formance, is achieved by running the contract within a single TEE like Intel’s
Software Guard Extensions (SGX) [142, 99, 4] or ARM TrustZone [7]. Such TEEs
are part of a processor and allow the creation of protected enclaves — computation
environments that strictly isolate the state and memory of a specific application,

!Bitcoin transactions can store up to 97 KB of data [139]; multiple transactions can be used
for bigger payloads.
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Figure 6.1: Setup and communication of FASTKITTEN protocol.

thus allowing confidential and correct computations. The owner of the machine
of the TEE is a party that we call the operator Q. In practice, this operator will
either be one of the users or a designated service provider that takes a small fee
for this service. Outsourcing the access to the TEE implies that ownership of a
TEE is not required to run a contract, making the system easily accessible for
everyone. While the TEE itself is trusted and the parties can attest that the TEE
is running the correct code, the operator is not trusted. We require that he also
deposits a (large) security deposit during the runtime of the contract. He will lose
this deposit if he stops running the TEE or relaying the correct messages. If he
behaves honestly, he will get all deposited coins (plus his payment). To enable se-
cure off-chain contract execution, our architecture builds on existing TEEs, which
are widely available through commercial off-the-shelf hardware.

As depicted in Figure 6.1, the FASTKITTEN enclave is responsible for executing
contract C' and is initialized with the initial blockchain checkpoint By. The enclave
is executed by the TEE, which is in the control of the operator Q. The untrusted
host process of Q takes care of setting up the enclave and handles the commu-
nication to the other participants and the blockchain. While this means that Q
has complete control over relaying the communication, the influence of a malicious
operator on a running enclave is limited: he can interrupt enclave execution, but
not tamper with it. Further, the enclave will sign all code and data as part of its
attestation towards parties, so they can verify the correctness of the setup before
locking their coins. The contracts are loaded into the FASTKITTEN enclave during
the initialization of our protocol by the underlying host process, and participants
can verify that contracts are loaded correctly. To support arbitrary contract func-
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tionality, the FASTKITTEN enclave includes additional verification and protocol
functionality to generate and verify transactions, and pass data from the contract
to the host.

Our protocol then proceeds in three phases, which we call setup phase, round
computation, and finalization phase. During the setup phase, the contract is loaded
into the enclave, and all parties Py, ..., P, can verify (attest) that this step was
completed correctly. Then, the operator and all parties block their coins for the
contract execution. If any party aborts in this phase, the money is refunded to
all parties that deposited money, and the protocol stops. Otherwise, all parties
receive a time-locked penalty transaction, needed in case Q aborts the protocol.
Afterwards, the round computation phase starts, in which Q sends the previous
round’s output to all parties. If a party P; receives such an output, which is
correctly signed by the enclave, it signs and sends the input for the following
round to Q. If all parties behave honestly, Q will forward the received round
inputs to the enclave, which computes the outputs for the next round.

The last phase of the protocol is the payout phase. In this phase, the enclave
returns the output transaction, which distributes the coins according to the ter-
minated contract. In case of a protocol abort, the coins initially put by the users
will be refunded to all honest parties. If any party was caught cheating, this party
would not receive back its coins. This means the money will stay in control of the
enclave and will never be spent.

Design Challenges of FastKitten

Leveraging TEEs for building a general-purpose contract execution platform re-
quires us to resolve the following main challenges.

Protection against a malicious operator. The operator runs the TEE and hence
controls all interaction with its environment (e.g., with the other protocol partici-
pants or the blockchain). Thus, the operator can abort the execution of the TEE,
delay and change inputs, or drop any ingoing or outgoing message. To protect
honest users from such an operator, the enclave program running inside the TEE
must identify such malicious behavior and punish the operator. In particular, we
require that even if the TEE execution is aborted, all parties must be able to
get their coins refunded eventually. To achieve this, we let the operator create a
so-called penalty transaction: this transaction time-locks the deposit coins of the
operator, which in case of misbehavior can be used to refund the users and punish
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the operator.

Designing such a scheme for punishment is highly non-trivial since it requires
the protocol to attribute faults. In particular, it must be clear whether it was the
fault of the operator Q or a party P; when an expected round input from P; does
not arrive. From the point of view of the enclave that runs the contract, it is not
clear whether the operator did not forward a message to the enclave or party P;
did not send the required message to the operator. Since it is clear that at least
one of the parties did not behave honestly, fault attribution is necessary, and we
leverage the blockchain to carry out a challenge-response mechanism: The TEE
will ask the operator to challenge P; via the blockchain. The operator can then
either deliver a proof that he challenged P; via the blockchain but did not receive
a response (in time), in which case P; will get punished?; or the operator receives
P;’s input and can continue with the protocol. Note that this is only required
in the pessimistic case, and this costly and time-consuming mechanism will never
occur when both the party and the operator are behaving honestly. Whenever a
part of the blockchain has been successfully verified by the enclave, it will store
the last block as the new checkpoint, simplifying future verifications.

Verification of blockchain evidence. We do not assume that the TEE is an
active node of the blockchain, i.e., it does not need to verify every single block or
validate the correctness of the transactions, as this would lead to a great compu-
tational effort. 2 Instead the operator feeds blocks and transactions, which we call
blockchain evidence — to the TEE only if necessary. To ensure that a malicious op-
erator cannot forge this blockchain evidence, we need to design a secure blockchain
validation algorithm that can efficiently be executed inside a TEE. We achieve this
by simplifying the verification process typically carried out by full blockchain nodes
by using a checkpoint block (or genesis block) to serve as the initial starting point
for verification. This is secure if all participating parties agree on this genesis
block. To further speed up the computation inside the TEE, we only validate the
minimum amount of information necessary. This includes the correctness of block
headers and protocol transactions while ignoring all other transactions. In order

2 Alternatively, we could allow the operator to spend the challenge transaction after a timeout
has passed. While this would result in easier verification for the TEE, the operator would
need to publish an additional transaction, increasing both fees and the overall time for the
challenge-response phase.

3In fact, we do not even assume that the TEE has access to the current time, but we do
assume that it has a strictly monotonic counter, which is increased with every activation of
the enclave.
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to be secure against forks and double-spending, a block is only considered by the
TEE, if it has been confirmed by at least a specified number* of blocks.

Preventing denial of service attacks. Complex smart contracts may take a
very long time to complete, and in the worst case, there is no guarantee that
they will terminate. Hence, a malicious party may carry out a denial-of-service
attack against the contract execution platform, where the platform is asked to
execute a contract that never halts. It is well known that determining whether
a program terminates is undecidable. Hence, general-purpose contract platforms,
such as Ethereum, mitigate this risk by letting users pay via fees for every step
of the contract execution. This effectively limits the amount of computation that
can be carried out by the contract. Since FASTKITTEN allows multiple parties to
provide input to the contract in the same round, it might be impossible to decide
which party (parties) caused the denial of service and should pay the fee. To this
end, FASTKITTEN protects against such denial-of-service attacks using a timeout
mechanism. As all users of the system (including the operator) have to agree on
the contract to be executed, we assume that this agreement includes a limit on
the maximum amount of execution steps that can be performed inside the enclave
per one execution round. See Section 6.6.1 for more details.

6.1.2 Related Work

In this section, we will focus on related work, which considers smart contract execu-
tion on Bitcoin. We separately discuss multi-party computation based smart con-
tracts and solutions using a TEE. We also provide a discussion on how Ethereum
based solutions compare to FASTKITTEN.

Multi-party computation for smart contracts An interesting direction to real-
ize complex contracts over Bitcoin is to use so-called multi-party computation with
penalties [123, 124, 121]. Similar to FASTKITTEN, these works allow secure m-
round contract execution, but they rely on the claim-or-refund functionality [123].
Such functionality can be instantiated over Bitcoin, and hence these works illus-
trate the feasibility of generic contracts over Bitcoin. Unfortunately, solutions
supporting generic contracts require complex (and expensive) Bitcoin transactions
and high collateral locked by the parties, which makes them impractical for most
use-cases. Concretely, in all generic n-party contract solutions we are aware of,

4This number can be adapted to fit the application.
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each party needs to lock O(nm) coins, which overall results in O(n?m) of locked
collateral. In contrast, the total collateral in FASTKITTEN is O(n), see column
collateral in Table 6.1. It has been shown that for specific applications, concretely,
a multi-party lottery, significant improvements in the required collateral are possi-
ble when using MPC-based solutions [147]. This, however, comes at the cost of an
inefficient setup phase, communication complexity of order O(2"), and O(logn)
on-chain transactions for the execution phase. Let us stress that the approach
used in [147] cannot be applied to generic contracts. Overall, while MPC-based
contracts are an interesting direction for further research, we emphasize that these
systems are currently far from providing a truly practical general-purpose platform
for contract execution over Bitcoin, which is the main goal of FASTKITTEN.

TEEs for blockchains There has recently been a large body of work on using
TEEs to improve certain applications on blockchains [191, 192, 22, 131, 179]. A
prominent example is Teechain [131], which enables off-chain payment channel
systems over Bitcoin. However, like most of these prior works, Teechain does not
use the TEE for smart contract execution. Some other works, including Hawk
[120] and the “The Ring of Gyges: Investigating the Future of Criminal Smart
Contracts” [104], propose privacy-preserving off-chain contract execution using
TEEs but do not work over Bitcoin.

Probably most related to our work are [52, 31, 106], which propose blockchain
agnostic systems for private off-chain function execution using TEEs. Despite
the conceptual similarities of these works and FastKitten, the goals are orthog-
onal. The goal of the above-mentioned works is to move heavy computation off
the chain in order to reduce the cost of executing complex contract functions.
However, they do not aim to reduce the communication load on the blockchain.
In fact, the communication complexity is often increased compared to the naive
on-chain execution of the contracts. In contrast, FASTKITTEN aims to minimize
the on-chain communication (especially for multi-round applications) and hence
can be viewed as a full-fledged blockchain scaling solution. The works [52, 31,
106] consider clients (contract parties) and computing nodes which have a simi-
lar task as FASTKITTEN ’s TEE operator since they also execute contracts inside
a TEE. In contrast to FASTKITTEN, they send the encryption of the resulting
contract state to the blockchain after every function call. If a client requests an-
other function call, a selected computing node takes the state from the blockchain,
decrypts it inside its enclave, and performs the contract execution. This implies
that reactive multi-round contracts are very costly even in the standard case when
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all participating parties are honest (cf. column Minimal # TX in Table 1). All
works [52, 31, 106] rely on multiple TEESs to guarantee service availability as long
as at least one TEE is controlled by an honest computing node. Even though
FASTKITTEN only relies on a single TEE operator, we discuss in Section 6.7.5
how fault tolerance can be integrated into the system in a straightforward way. A
joint goal of all systems is to provide state privacy of the contracts. Since one of
the main goals of FASTKITTEN is to provide a scalability solution of multi-round
applications, it incentivices parties to minimize the blockchain interaction as much
as possible. Fair distribution of coins is guaranteed through penalizing malicious
parties. Since this is not the focus of [52, 31, 106], fair coin distribution is not
discussed. For example, Ekiden does not even model or discuss the handling of
coins. It is not straightforward to add this feature to their model since the con-
tract state is encrypted, and hence the money cannot be unlocked automatically
on-chain. The works [52, 31, 106] are independent projects that have similar goals
and approaches. The main difference between Private Data Object [31], compared
to Ekiden [52] is the way in which keys are distributed among TEEs. In [31], the
owner of a contract can decide himself which computing nodes get access to the
decryption key needed for the contract state decryption. This is in contrast to
Ekiden, where all computing nodes have access rights by default. On the other
hand, Ekiden aims to achieve forward secrecy even if a small fraction of TEEs
gets corrupted via, e.g., a side-channel attack. Their strategy is to secret-share
a long-term secret key between the TEEs and use it to generate a short-term se-
cret key every epoch. Hence, an attacker learning the short-term key can only
decrypt state from the current epoch®. The work of [106] provides a more generic
construction for using blockchain to achieve statefulness and connectivity of TEEs
compared to [52, 31]. In addition, it provides a formal model, a rigorous secu-
rity analysis, and discusses multiple applications, like private smart contracts or
fairness in multi-party computation.

Ethereum based solutions. A large body of research aims at reducing the cost
and overheads of smart contract evaluation on-chain. Examples for these systems
include state channels [148, 69], Arbitrum [105], Plasma [160] and [177]. However,
these works do require an Ethereum like cryptocurrency and cannot be integrated
into popular legacy cryptocurrencies such as Bitcoin, which is their main difference

SWhile side-channel attacks are out of the scope of this work, note that FASTKITTEN can
achieve forward secrecy of states in case of side-channel attacks using the same mechanism
as Ekiden.
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compared to our work. Recall that one of the main goals of FASTKITTEN is making
minimal assumptions on the underlying blockchain technology and, in particular,
to run on top of the Bitcoin blockchain.

Another motivation for off-chain contract execution might be the goal of pro-
tecting privacy. Hawk [120] and the Ring of Gyges [104] are examples of works
that do keep the state, all inputs and outputs private. It is also true for the scal-
ing solutions mentioned above. These techniques work only over cryptocurrencies
with support for complex smart contracts, e.g., over Ethereum. Below we discuss
the differences between these solutions and FASTKITTEN when running on top of
Ethereum.

TEEs for privacy. None of the solutions discussed above achieves private off-chain
contract execution. The work Hawk [120], proposes privacy-preserving contract
evaluation, in which the state, all inputs, and all outputs are kept private. Hawk
contracts [120] achieve these properties using Ethereum smart contracts that judge
computations done by a semi-trusted third party (a manager), who executes the
contract on private inputs and is trusted not to reveal any secrets. Initially, all
parties submit their encrypted inputs to the contract, then the manager computes
the result and proves its correctness with a zero-knowledge proof. If the proof
is correct, the contract pays out money accordingly. While the authors of Hawk
discuss the possibility of using SGX for instantiating the manager and reducing the
trust assumptions in this party, it still leverages the blockchain for every user input,
which makes it slower and more costly compared to the execution of FASTKITTEN.
We say it only supports single round computation off-chain, which is their main
difference to FASTKITTEN. While FASTKITTEN also provides confidentiality of
the contract’s state and input privacy, our main goal is to enrich cryptocurrencies
with no contract support to be able to execute arbitrarily complex smart contracts.

Incentive-driven Verification. An additional direction of related work consists
of the Arbitrum [105] and TrueBit [177] projects. Recall from Chapter 3.3 that
the Arbitrum protocol lets a set of managers run a smart contract off-chain (in the
form of a virtual machine). As long as the managers reach consensus off-chain,
the contract state is updated. However, if they disagree, the new state is posted
on-chain by one of the managers, and the others can challenge it interactively
until the dispute is found. Compared to FASTKITTEN, Arbitrum has different
trust assumptions, i.e., that there exists at least one honest manager, requires
many more players compared to the single operator of FASTKITTEN and requires
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significantly more blockchain interaction in case of a dispute.

The TrueBit system [177], as described in Chapter 3.3 works in a similar fashion,
only that a single party is randomly assigned to be the solver, who proposes a new
off-chain state. The other players act as verifiers and challenge computations of
the solver on-chain. Similar to Arbitrum, TrueBit relies on the assumption that
there is at least one honest verifier, but it does not keep inputs and the contract
state private, even in the optimistic case.

Apart from the different trust models and lower requirements on the underlying
blockchain technology, FASTKITTEN differs from Arbitrum and TrueBit by pro-
viding stronger privacy guarantees, meaning that in both the optimistic and the
pessimistic case, inputs of honest parties, as well as the state of the smart contract,
remains private.

Approach M7;n’1rrr)1(al Collateral Cii?:;;is Privacy
Ethereum contracts O(m) O(n) v X
MPC [123, 124, 121] O(1) O (n®*m) v v
TEE based [52, 31, 106] O(m) no support for money v
FastKitten o(1) O(n) ‘ v v

Table 6.1: Selected solutions for contract execution over Bitcoin and their com-
parison to Ethereum smart contracts. Above, n denotes the number of
parties and m is the number of reactive execution rounds.

6.2 Preliminaries

In this chapter, we do not work in the UC model. Instead of using simulation-based
definitions, we will analyze this protocol against game-based security definitions.
In this section, we provide the formalities and model of the coin mechanics on the
ledger, the TEE, and the contract.

Modeling the Contract. Since our framework is not restricted to one specific
blockchain, we define a coin domain D, as a subset of non-negative ratio-
nal numbers. The concrete definition of the set D.,; depends on the consid-
ered blockchain.® In this work, we model an n-party multi-round contract C

8For Bitcoin, for instance, it would correspond to the smallest Bitcoin unit, called Satoshi,
which is equal to 108 BTC.
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as a polynomial-time Turing machine. Every contract has to define a vector
¢ € Dyp = (Deoin \ {0})" that corresponds to the initial deposits parties are
supposed to make. Note that every party must make a deposit, i.e., the coin value
has to be positive. We write C., when a reference to the deposit vector is needed.
The contract C, takes as input a value state € Dy U {0} and a vector of values
in € D2, and returns an output value out € D,,;, a new state state’ € Dy U{ L}

and a coin distribution d € D"

coin”
(out, state’, d) + Cq(state, in)

The initial state of every contract is state = () and the special state = L signals
the contract’s termination. In this final stage, the vector d defines the final payout
to each party of the contract. It must hold that Y ,cp, d[i] < ;e cli]. This
restriction guarantees that no money can be created, but we note that the overall
account can decrease such that fewer coins are paid out than have been locked.
This relates to the case where parties are punished by not giving back their coins.
The input domain D;,, the state domain D, and the output domain D,,; are
application specific and defined by the contract. For example, in case C' is the
“Rock-paper-scissor” game, then D;, could be {rock, paper, scissor} and the D,
could be {winA, winB, same}, where the values winA, winB would define the
winner and same signals that none of the players won. In this example we only
consider a one round game, the Dqp = 0.

6.2.1 Modeling the Blockchain.

As we want that FASTKITTEN can be deployed over simple cryptocurrencies like
Bitcoin, we work in the UTXO model as described in Section 3.1.1. Recall, that
we denote a transaction as

tx := (tx.Input, tx.Output, tx. Time, tx.Data),

where tx.Input refers to the input transaction, tx.Output denotes the output ad-
dress, tx.Value is the coin value, tx. Time € N can specify a timeout and tx.Data €
{0,1}* is a data field. Recall also, that a transaction tx only becomes valid if it is
signed with the corresponding secret key of the output address from tx.Input. We
require that the underlying blockchain system satisfies three security properties:
liveness, consistency and immutability from [84] as defined in Section 3.4.

In order to model interaction with the cryptocurrency, we use a simplified
blockchain functionality BC, which maintains a continuously growing chain of
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blocks. It stores a block counter ¢ internally, which starts initially with 0 and
is increased on average every t minutes. Every time the counter is increased, a
new block will be created, and all parties are notified. To address the uncertainty
of the block creation duration, we give the adversary control over the exact time
when the counter is increased, but it must not deviate more than A € [t—1] rounds
from ¢. Whenever any party publishes a valid transaction, it is guaranteed to be
included in any of the next A — k blocks. Parties can interact with the blockchain
functionality BC using the following commands.

o BC.post(tx): If the transaction tx is valid (i.e., all inputs refer to unspent
transactions assigned to creator of tx and the sum of all output coins is not
larger than the sum of all input coins) then tx is stored in any of the blocks
{block.,1,...,block.ian k}-

o BC.getAll(¢): If i < ¢, this function returns the latest block count ¢ — 1 and
a list of blocks that extend b;: b = (bj11,...,0b.)

o BC.getLast(): The function getlLast can be called by any party of the protocol
and returns the last (finished) block and its counter: (c, b.).

For every cryptocurrency there must exist a validation algorithm for validating
consistency of the blocks and transactions therein, which we model using the func-
tion Extends. It takes as input, a chain of blocks b and a checkpoint block b., and
outputs 1 if b = (bep+1, - -+, beptis - - - Deptitr) 15 @ valid chain of blocks extending
bep and otherwise it outputs 0. In Section 6.6 we give more details on the vali-
dation algorithm, and how this function is implemented for the Bitcoin system.
Recall, that we assume an adversary which cannot compute a chain of blocks of
length k by itself (cf. Section 3.4). This guarantees that he cannot produce a
false chain of length ¢ such that this function outputs 1. To make the position of
some transaction tx inside a chain of blocks explicit, we write ¢ := Pos(b, tx) when
the transaction is part of the /-th block of b. If the transaction is in none of the
blocks, the function returns oo.

6.2.2 Modeling the TEE.

In order to model the functionality of a TEE, we follow the work of Pass et. al.
[159]. We explain here only briefly the simplified version of the TEE functionality,
whose formal definition can be found in [159, Fig. 1]. On initialization, the TEE
generates a pair of signing keys (mpk, msk), which we call master public key and
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master secret key of the TEE. The TEE functionality has two enclave operations:
install and resume.

o TEE.install(): The operation TEE.install takes as input a program p which
is then stored under an enclave identifier eid. The output of TEE.install is
the identifier eid and the master public key mpk.

« TEE.resume(eid, f, in): The second enclave operation TEE.resume executes
the program stored inside an enclave. It takes as input an enclave identifier
eid, a function f and the function input in. The output of TEE.resume
is the result out of the program execution and a quote p over the tuple
(eid, p, out). Since we only consider one instance E of the specific program
p, we will simplify the resume command [out, o] := TEE.resume(eid, f, in)
and write:

[out, o] :== E.f(in)

For every attestable TEE there must exist a function vrfyQuote(mpk, p, out, o)
which on input of a correct quote p outputs 1, if and only if out was outputted
by an enclave with master public key mpk and which indeed loaded p. Again, we
assume that the adversary cannot forge a quote such that the function vrfyQuote()
outputs 1. For more information on how this verification of the attestation is done
in practice, we refer the reader to [159].

6.3 Security Properties

In this section we present the underlying security goals of FASTKITTEN. We need
to consider malicious participants, a malicious operator, or any combination of
both. In general the protocol’s security must hold even if only a single party is
honest. A formal definition and proof can be found in Section 6.5.

For FASTKITTEN we informally state the three security properties correctness,
fairness and operator balance security. Intuitively, correctness states that in case
all parties behave honestly (including the operator), every party P; € P outputs
the correct result and earns the amount of coins she is supposed to get according
to the correct contract execution. The fairness property guarantees that if at least
one party P; € P is honest, then (i) either the protocol correctly completes an
execution of the contract, (ii) the contract execution does not start and all honest
parties get the locked coins back, or (iii) the contract execution is aborted, all
honest parties get their invested coins back, and at least one corrupt party gets
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punished. Finally, the operator balance security property says that in case the
operator behaves honestly, he cannot lose money.

Theorem 3 (Informal statement). The protocol gssrxirrex @S defined in Sec-
tion 6.4 satisfies correctness, fairness and operator balance security property.

Proving the fairness property is the most challenging part of the proof. We need
to show how honest parties reach consensus on the result of the execution and prove
that coins are always distributed between parties according to this result (even if
malicious parties collude with the operator). In order to prove the operator balance
security, we show that an honest operator has always enough time to publish a
valid output transaction which pays him back his deposit, before the time-locked
penalty transaction can be posted on the blockchain.

On the security of TEEs. FASTKITTEN’s design depends on a TEE to ensure its
confidentiality and integrity. Our design is TEE-agnostic, even if our implementa-
tion is based on Intel SGX. Recent research showed that the security and privacy
guarantees of SGX can be affected by memory-corruption vulnerabilities [25], ar-
chitectural [34] and micro-architectural side-channel attacks [180]. We assume that
the operator Q has full control over the machine and consequently can execute ar-
bitrary code with supervisor privileges. While memory corruption vulnerabilities
can exist in the enclave code, a malicious operator must exploit such vulnerabili-
ties through the standard interface between the host process and the enclave. For
the enclave code, we assume a common code-reuse defense such as control-flow
integrity (CFT) [77, 36], or fine-grained code randomization [60, 128] to be in place
and active. Architectural side-channel attacks, e.g., based on caches, can expose
access patterns [34] from SGX enclaves (and therefore our FASTKITTEN proto-
type). However, this prompted the community to develop a number of software
mitigations [173, 92, 51, 33, 172] and new hardware-based solutions [153, 57, 94].
Microarchitectural side-channel attacks like Foreshadow [180] can extract plain-
text data and effectively undermine the attestation process FASTKITTEN relies
on, leaking secrets and enabling the enclave to run a different application than
agreed on by the parties; however, the vulnerability enabling Foreshadow was
already patched by Intel [101]. Since existing defenses already target SGX vul-
nerabilities and since FASTKITTEN’s design is TEE agnostic (i.e., it can also be
implemented using ARM TrustZone or next-generation TEEs), we consider mit-
igating side-channel leakage as an orthogonal problem and out of scope for this
work.
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Adversary model. For our protocol we consider a byzantine adversary [127],
which means that corrupted parties can behave arbitrarily. In particular, this
includes aborting the execution, dropping messages, and changing their inputs
and outputs even if it means that they will lose money. FASTKITTEN is secure
even if n parties are corrupt — in particular this includes the two cases where only
the operator is honest, and only one party is honest but the operator is corrupt.
We show that no honest party will loose coins, a corrupt party will be penalized
and that no adversary can tamper with the result of the contract execution. While
we prove security in this very strong adversarial model, we additionally observe
that incentive-driven parties (i.e., parties that aim at maximizing their financial
profits) will behave honestly, which significantly boosts efficiency of our scheme.

6.4 The FastKitten Protocol

In this section, we give a more detailed description of our protocol, which includes
the specification of the protocol run by O and honest parties Py, ..., P,, all trans-
actions, and a description of the enclave program FASTKITTEN. The interaction
between Q,P;, and the blockchain is depicted in Figure 6.2.

The FASTKITTEN protocol proceeds in three phases. During the setup phase,
the contract is installed in the enclave, attested, and all parties deposit their coins.
Then the round execution follows for all m rounds of the interactive contract. When
the contract execution aborts or finishes, the protocol enters the finalize phase. We
now explain all phases and the detailed protocol steps for all involved parties and
the operator Q in depth. The detailed interactions as well as the subprocedure
of the parties and the operator are displayed in Figure 6.2 and the FASTKITTEN
enclave program prg is displayed below. Overall the protocol requires six different
types of transactions.

6.4.1 Setup Phase

In the setup phase, each party P; first runs the Initialize subprocedure to generate
its key pairs and gets the latest block b.,, which serves as a genesis block or
checkpoint of the protocol. Then P; sends the set of parties P, the b, and the
contract C' to the operator Q. Upon receiving the initial values from all n parties, Q
runs the subprocedure InitEnclave to initialize the trusted execution of the enclave
program prk (P, C, k,bep) where k is the security parameter of the scheme. This
security parameter x also determines the values for the timeout period of ¢, and
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Party P2C(C,S;) Party QB¢ TEE(1%)

InitEnclave

: (cp, bep) := BC.getLast()

: Let mpk be the public key of the enclave
Erk := TEE.install(prx (C, P, &, bep))
: [(pkp,0), 0] := Erk.genKeys()

: BC.post(txq)

wait until txg is confirmed & times

: (71,b) := BC.getAll(cp)

cpi=T71

: [(txp,0), ] := Erk.Qdep(b)

: Send (mpk, pk 1, 0, txp, ) to P;

: goto LoadDepositP

Initialize

1: (cp, bep) := BC.getlLast()
2: Send (P, C, bep) to Q

© 0N DU AW

VerfyEnclave

—
(=]

—
—

1: if (mpk, pk,,0,txp, 0) was not received or
vrfyQuote(mpk, pri (C, P, K, bep), (Pk 1, 0), 0)
# 1 or Vrfy(mpk; pk,0) #1 then

2: Terminate and output setupFail

3: else BC.post(tx;)

LoadDepositP

wait until block 7

(72, b) := BC.getAll(71)
[(outc,0), ] := Erk.Pdep(b)
if outc = txou then

=W

5: goto Finalize
6: else
7 Send (outc, o) to P;
Roundlnput; 8: goto (ExecuteTEE;)
1: if Vrfy(pk r; (outc,j);0) # 1 then abort
2: else Send (in; ;, Sign(ski; ini ;)) t
else Send (in;,j, Sign(sks; ini ;) to Q ExecuteTEE;

: for each i € [n] do
if Vrfy(pk;; ing, s;)) = 1 then

1
WhenChallenged 2
3 add (ing,j), si)) to T
4

; l(ﬁ’tb)f) Z B.C(')iitl‘agst()) c by then else BC.post(txchal (4, j, outc))
3: ;h.alz S’ljg’n(ch’ Zvnqj P ‘ 5: if |Z| = n then goto step 14
4- BC.post(txresp,(i, j;J'inf,,,', o) 6: wait until txcha is confirmed 2k + § times
7: (13, b) := BC.getAll(2)
8: for each tx.sp € b do
WhenFinal 9 if Vrfy(pk,;ini, s;)) = 1 then

10: add (in(w), SL)) to Z

11: if |Z] < n then

12: [tXout; -] := Erk.errorProof(b)
13: goto Finalize()

14: [(outc,0), ] := Erk.round(j,T)
15: if outc = txour then

16: goto Finalize()

17: else

18: Send (outc, o) to P;

19: goto (ExecuteTEE); 1

1: (¢,b) := BC.getLast()
2: if txout(J, d, outc) € by then
3: Terminate and output outc

WhenTimeout

1: (¢,b) := BC.getLast()

2: if ¢ = Tfina then

BC.post(txp)

(Tﬁnalyb) = BCgetAII(Tl)

if 3 € [n] such that tx; ¢ b then
Terminate and output setupFail

else
Terminate and output abort

Finalize

1: BC.post(txout)

® = O Uk w

Figure 6.2: Protocol FASTKITTEN. Direct black arrows indicate communication
between the parties and Q, gray dashed arrows indicate reading from
the blockchain and gray double arrows posting on the blockchain.
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FastKitten enclave program prk(P,C,K,bcp)

The execution of ppk is initialized with the secret key msk, the set of parties (where
every P; € P is identified by its key pk;), a contract C, a security parameter x (which
also defines the waiting period ¢ and confirm period k) and a checkpoint bep. Internally
it stores the contract state and the status flag s initially set to state = () and s = Sgenkeys-

function genKeys()

1: if 8 # Sgenkeys then abort

2: store (skr,pkrp) := Gen(1%)
3: set 1= sQdep

4: return pkp, Sign(msk; pkp)

function Qdep(b)

1. if s # sqdep Or Extends(bep, b) # 1 or Pos(b,txg) > |b| — k then abort

2: set s := Spdep
3: set bep := last block of b
4: return txp

function Pdep(b)

[

if s # spgep Or Extends(bep, b) # 1 then abort
set J: =10
for : € P do

l; = POS(b,tXl‘)

if £; <6 and ¢; < |b| — k then add ¢ to J
if J = [n] then

$ 1= Sround1

bep := b.last

return 0, Sign(sk7; 0, bep)
else

§ 1= Sterminated
return txout(J, ¢, setupFail)

——
L - B~

function round(j, (iny,01) ..., (ing, o))

1: if s # round; or for any i € [n] : Vrfy(pk;; in;, s;) # 1 then abort
2. (outc,state’, d) := C(state, in)

3: if state’ # L then

4 8 1= Sroundj+1

5: state := state’

6: return (outc, Sign(skr; (outc, j)))
7. else

8 § = Sterminated

9 return txeut([n], d, outc)

function errorProof(j, b)

o

if s # Sroundj Or Extends(bep, b) # 1 then abort

Let o := Sign(skr; (outc, j))
J = [n]
for i € P do

if Pos(b, txchal (%, j, outc, o)) < |b| —§ — k then
if Pos(b, txresp (i, j, in, o) > |b| — k then
delete i from J
else if Vrfy(pk;;in,o) # 1 then
delete i from J
§ = Sterminated
if J # [n] then
return txout(J, c, abort)

o
= e B

Jun
N
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the confirmation constant k. This ensures that all parties and the TEE agree on
these fixed values. Once ppk is installed in the enclave, it generates key pairs for
the protocol execution and, in particular, the blockchain public key pk;’. Now,
Q can make its deposit transaction txg which assigns ¢ coins to the enclave public
key (cf. Figure 6.3a). Let block counter 71 denote the time when this transaction

Q’s Deposit Transaction txg P;i’s Deposit Transaction tx;
tx.Input:  Some unspent tx from Q tx.Input:  Some unspent tx from P;
tx.Output:  Assign ¢ coins to TEE tx.Output:  Assign ¢; coins to TEE
(a) Q’s deposit of ¢ coins (b) Pi’s deposit of ¢; coins

Figure 6.3: Deposit transactions issued by the operator Q during the Setup phase.

has been included and confirmed in the blockchain. @ loads all blocks from cp
to 7; as evidence to the enclave. If this evidence is correct, the execution of prg
function Qdep outputs a penalty transaction tx, as depicted in Figure 6.4. This
transaction will only be valid after timeout 7, (after which the protocol must be
terminated) has passed and pays out the ¢ coins of Q’s deposit transaction txg
to the parties Py,...,P,. This transaction is used whenever the protocol does
not finish before the final timeout 7gna, which equals (3 4+ 2m) x A blocks after
the protocol start (recall the time model of Section 3.4).58 Q sends the penalty

Penalty Transaction tx,

tx.Input:  Q’s Deposit Transaction txg
For all i € [n]:
tx.Output;:  Assign ¢; coins to P;

tx.Time: Spendable after Tgnal

Figure 6.4: Penalty transactions issued by the enclave during the setup.

transaction to all parties Py, ..., P,, who run subprocedure VerfyEnclave. A party
will only proceed if it received this penalty transaction from ©Q during the setup
and verified that the program prx (P, C, K, by) is installed in the enclave (through
the attestation process). Only if all checks pass, it creates and publishes its deposit
transaction tx;(cf. Figure 6.3b). After time m < 71, Q executes LoadDepositP and

"For simplicity we omit here, that the enclave might use different key pairs for signing transac-
tions and messages

8The definition of T¢na guarantees that even if the execution is delayed in every round, an honest
operator will not be penalized.
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again provides the block evidence to the enclave execution of ppk. If all parties
published the deposit transactions, the first-round execution starts. Otherwise, the
enclave proceeds to the finalize phase and outputs a refund transaction txeu (7, ©)
that returns the deposit back to honest users and Q, where T' C P is the set of
all parties that submitted the deposit transaction until time 75. Note that the
internal state of the contract execution is maintained by the ppx program inside
the enclave. This guarantees that the contract is not executed on an outdated
state.

6.4.2 Round Computation Phase

When the protocol arrives in the round computation phase, Q sends the authen-
ticated output of the enclave to every party P; and requests input for the next
round. Each party P; runs the round algorithm. Internally it verifies whether the
input request came from the enclave by verifying the attached signature. Then
it generates and signs its round input and sends it to Q. While P; waits for the
next round, Q verifies all received inputs and their signatures in the ExecuteTEE
subprocedure. All inputs of the parties P; that responded with correctly signed
round inputs, are sorted in the round input set I. Once all parties sent their in-
puts, Q triggers the execution of the contract in the enclave. Let us emphasize
that in this simplified description of our protocol, we do not focus on the privacy
aspect. Hence, we omit that all round inputs to the contract could be encrypted
with the public key of the enclave. In this case, the trusted enclave execution
needs to decrypt them before it evaluates the contract on them. See Section 6.7.1
for more details.

Note that the operator Q@ may be malicious and refrain from requesting a party
P; for the input to a round computation. Instead, Q@ may pretend that it actually
did not receive any input from the party P;. On the other hand, one can imagine a
scenario where Q is behaving honestly, but the party P; is dishonest and does not
send the correctly signed round input to Q. Note that the program prk cannot
distinguish between these two cases without additional information. We will next
show how an honest Q can generate a proof to attribute the malicious behavior
to P;. If it is not able to generate this proof within some time, the enclave will
penalize Q instead. First, @ has to publish a challenge transaction txc,,, which
includes the signed output of the previous step. txcha spends a tiny amount p of
coins from Q and assign them to party P,°.

9Cryptocurrencies like Bitcoin allow transactions with very small denominations (e.g., fractions
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Transaction txch, (7, j, outc, o) Transaction tXesp(i, j, in, o3)
tx.Data: Store 1, j, outc, o tx.Data: Store 1, j, in, o;
tx.Input: Some unspent tx from Q tx.Input:  txchal (7, j, state)
tx.Output:  Assign u coins to P; tx.Output:  Assign u coins to Q
(a) Q’s challenge transaction (b) P;’s response transaction

Figure 6.5: Challenge response transactions for the ¢-th round.

Once tXcha is included in the blockchain, party P; can read the correct output
information from the transaction. The party should respond with txesp, Which
includes its signed round input. tx.s, spends the txch, and assigns the p coins
back to Q. The action of P; is depicted via the WhenChallenged subprocedure. If
the party P; fails to post tx,es, on the blockchain, Q can feed proof about this into
the TEE and the computation aborts while P; is monetarily penalized. If instead
P; responds, Q will take the correct input information from the transaction and
give it to the TEE which will execute the next round of the contract. If some party
does not send the response after it was challenged within d blocks, Q can prove this
misbehavior to the FASTKITTEN program, by providing the blockchain evidence of
the challenge-response transcript. If the enclave program identifies a cheating party
via this evidence, it proceeds to the finalize phase. Otherwise, if all the parties’
inputs were received with authentication (possibly after the challenge-response
phase), Q instructs the enclave to execute the contract on the accumulated input.
The result of the contract execution is the output outo, the updated state state,
and a coin distribution denoted by d. If state equals L, the contract execution is
finished, and the protocol proceeds to the finalize phase. Otherwise, FASTKITTEN
internally stores the state and outputs outc to O, who sends this output to all
parties and waits for next round inputs.

6.4.3 Finalize Phase

In the finalize phase, the enclave publishes a final output transaction tx,, which
distributes the coins back to all honest parties (cf. Figure 6.6). It is parameterized
by a set of parties to receive coins J, a final coin distribution € and a final state
outc. The transaction txou(J, €, outc), spends all deposit transactions tx; for all
1 € J and Q’s deposit transaction txg. It includes the outs in the data field
and assigns ¢ coins back to Q and e; coins to party P;, for every i € J. Let us

of cents).
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Output Transaction tx.,:(J, €, outc)

tx.Data: Store outc

tx.Input:  Deposit Transactions txg, {tx; }icy

tx.Outputy: ¢ coins to Q
For all 7 € J:
tx.Output;+1: e; coins to P;

Figure 6.6: Output transaction issued by the FASTKITTEN enclave.

note that J = [n| implies correct protocol termination. If J # [n], then some
party misbehaved and the protocol failed. Either a party did not make a deposit
in the setup phase (signaled by outs = setupFuail) or some party aborted in the
round computation phase (signaled by outc = abort). In both cases, all other
parties get their initial deposits back. Note, that if a party P; is caught cheating
by the TEE, it will lose its deposit. Q now has to publish this transaction to
get his coins before time 74,5 and by that also distributes coins and reveals oute
to honest parties. The participants need to continually monitor the blockchain
for transactions that challenge them or indicate the final output. When they see
a challenge transaction, they respond as described above. If they see an output
transaction, they know the protocol execution ended and output the final contract
output according to subroutine WhenFinal.

6.5 Security Evaluation

In this section, we informally argue how FASTKITTEN fulfills the security prop-
erties proposed in Section 6.3. For a full proof, we refer the reader to [59]. Here
we just outline the main ideas and challenges of the proof. The formal security
statement that we prove in [59] is as follows:

Theorem 3 (Formal statement). Let (Gen,Sign, Vrfy) be a signature scheme that
is existentially unforgeable under chosen message attack, a trusted execution en-
vironment emulating the TEE ideal functionality (as modeled in Sec. 6.2.2) and
a blockchain emulating the BC ideal functionality (as modeled in Sec. 6.2.1), the
protocol Tpasrirreny @S defined in Section 6.4 satisfies the properties correctness,
fairness, and operator balance security property.

Let us now take a closer look at these properties.
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Correctness. The FAIRSWAP protocol is correct if in case where all parties are
honest and follow the protocol description, the contract will execute correctly with
output out and the coin distribution out will be enforced. In order to formally
prove this property, we first need to define what it means to have evaluated the
contract correctly. For this reason, we specify an evaluation algorithm that applies
the inputs of all contract participants on the state of a contract to receive a new
state [59]. Then we can show correctness through the following steps.

1. All honest parties will agree on the same contract C' during setup. If the
operator honestly follows the protocol, all parties will lock their coins during
the setup, and the protocol proceeds to the round computation phase.

2. All parties will send their inputs, and the operator will evaluate the contract
C inside the enclave. If all parties follow the protocol, the new state of the
contract after every round will always be equal to the one that the ideal
evaluation algorithm would compute.

3. An honest operator will enforce the final output (outc, L,d) by publish-
ing the output transaction tx.u (P, d, outs). This transaction will rightfully
distribute d to each party.

Together these steps ensure correctness, i.e., that a contract C' is executed correctly
and enforced on-chain if all parties, including the operator are honest.

Operator balance security. This property ensures that no operator who behaves
honestly and follows the protocol description will lose money. In order to show
operator balance security, we show that an honest O can always get his coins back
before the penalty transaction becomes valid and can appear on the blockchain.
This means the TEE will always output an output transaction in time which pays
g coins back to Q.

If all parties are honest, the output transaction will ensure that the operator gets
his funds back (cf. correctness). But the more interesting case is if the operator is
honest, but the parties are not. If at least one of them does not cooperate in the
setup phase, e.g., because he does not agree on the contract C', the enclave aborts
the contract execution. Because an honest operator will have locked the required
balance, the enclave outputs a refund transaction, that allows Q to claim his
entire deposit back. This will happen at the end of the setup phase, so the refund
transaction will never be valid. Next, we consider the scenario where potentially
malicious parties act honestly during the setup phase but start misbehaving in
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the round computation phase. For every party that does not follow the protocol
execution, the operator might need to challenge the parties” input. If during any
round, a party does not send the required inputs, the operator can prove this fact
to the enclave. In this case, the contract execution stops, and the operator can
always enforce the refund transaction before the penalty transaction gets valid.
Therefore, in all cases, an honest operator will receive his locked coins back.

Fairness. The fairness property guarantees that if at least one party is honest,
one of the following three cases is guaranteed to happen:

Case 1: Either the protocol correctly completes the contract execution, and the
contract output is enforced. The operator will get his deposit back.

Case 2: All honest parties (including the operator) output setupFail and get their
invested coins back.

Case 3: All honest parties output abort and get their invested coins back, and
at least one misbehaving party gets punished.

Case 1 occurs in the honest case, and the correctness property guarantees that
transaction tx,, is published by Q. We additionally show that an honest party
outputs out ¢ {setupFuail,abort} only if a transaction tx.u(J, €, out) was published
on the blockchain. Since this transaction spends the deposit transactions, which
can only be spent once, all honest parties will reach a consensus on the output
value out. We conclude the proof for case 1 by showing that out and the final coin
distribution € has to be equal to the correct result of the contract execution.

Our proof strategy for cases 2 and 3 of the fairness property is to first prove
that if at least one honest party outputs setupFail or abort, then all parties output
setupFail or abort respectively. Case 2 is enforced by the fact that if one party
outputs setupFail, either the operator sends the refund transaction by the end of
the setup phase, or the penalty transaction is invoked. As both transactions refund
any possible deposits, all honest parties that sent a deposit will stay financially
neutral and also output setupFuail. If any party never deposited coins, its financial
neutrality is ensured, and it will terminate with the result setupFail.

The proof for case 3 is identical, except for that we consider the parties’ output
abort and the possible public transactions are either the penalty transaction or
the error proof transaction txeu(J, c, abort). Additionally, we need to show that
at least one malicious party that does not get its funds back. This is either the
operator, who loses his deposit through the penalty transaction or one malicious
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party which did not send inputs. By definition of the function errorProof(j,b) and
the unforgeability of the underlying signature scheme, the enclave will only output
this transaction if misbehavior happened and also ensure that the responsible party
is punished.

6.6 Implementation and Performance

We also implemented the FASTKITTEN protocol for the Bitcoin blockchain over
an Intel SGX enclave. We refer the reader to [59] for a full specification of the
implementation details and design choices and only provide a high-level overview
of the main challenges and its performance here.

6.6.1 Implementation Challenges

Running code inside a TEE enclave is less efficient than the straightforward execu-
tion on a “normal” device. Therefore we try to keep the code of the FASTKITTEN
enclave as efficient as possible. Here we discuss how we process the interaction
between the TEE and the blockchain and how we deal with contracts that do not
halt.

Blockchain Verification

One challenge for the implementation of the FASTKITTEN enclave inside the TEE
is a correct but efficient block verification. As running the TEE as a Bitcoin full
node is neither efficient nor necessary for the protocol, we needed to specify the
most minimalistic requirements for secure verification.

One measure to simplify the execution is defining a custom genesis block for the
protocol execution. If we let all parties reach consensus on this block, and at least
one party is honest, this block is a valid and confirmed block of the chain but also
not too far in the past to make verification of follow up blocks much faster. If
a malicious operator proposed an insecure genesis block, an honest party would
not accept it, and the protocol would not start. Additionally, the verification of
blocks can be sped up by letting the TEE store the latest accepted block-hashes
such that at any later point, it only has to verify the correctness of new blocks.

Another measure to simplify the block validation is the fact that often, the TEE
does not need to verify all transactions inside a block but only some information.
In the setup and the finalization phase, it needs to check the integrity of blocks
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it gets from the operator and verify if a specific expected transaction is inside it.
Thus, it is sufficient to verify that these transactions are part of a valid block —
without downloading entire blocks, which can be done efficiently using simplified
payment verification (SPV).

However, SPV libraries can only prove that a transaction is part of a block on the
blockchain, but they cannot prove that a transaction is not part of any block. As
required by the challenge-response case, we added an alternative verification mode
that fully downloads every block that could potentially contain the transaction
and checks whether it appears in any of those blocks. This verification algorithm
is slower and less efficient, but it is only required during the response verification,
which happens only in the pessimistic case and at most once. In measurements,
we estimated the time for the verification of a single block to be around 5 seconds
inside an Intel SGX [59].

Denial of Service Protection

The FASTKITTEN protocol assumes immediate contract execution meaning that
the execution of a contract inside a TEE takes no time. For most practical con-
tracts, this simplifying assumption is reasonable since executing a simple contract
function inside a TEE is much faster than waiting for it to be evaluated on-chain.
However, this is not true when considering arbitrary contracts which might poten-
tially contain endless loops. Moreover, the halting problem states that it is impos-
sible to predict if a certain algorithm will halt within a certain number of steps. A
simple protection against endless loops and denial-of-service attacks is letting the
enclave monitor the execution of the smart contract and terminate execution if the
number of execution steps exceeds a predefined limit. If the contract execution
is aborted due to an execution timeout, the enclave signs an output transaction
tXout, Which returns deposited coins back to parties and to the operator.

6.6.2 Performance

Let us now take a look at FASTKITTEN’s performance. We describe the number of
transactions, the deposits, and the number of rounds for every phase. We assume
that it takes one round to send direct messages and up to A rounds for interactions
with the blockchain (cf. Section 3.4). Note that it is only an upper bound, and the
rounds can and will most likely take less time. We also analyze the fees for every
step, where the overview of the transaction fees for the FASTKITTEN transactions
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can be found in Table 6.2. Recall, that we consider an exchange rate of 7951.95
and a transaction fee of 15 satoshi per byte (cf. Section 3.1.3).

Size Fees
Transaction [Bytes] | [satoshi] ‘ [BTC] ‘ [EUR]
Deposit (txg, tx;) 250 3750 0.0000375 0.30
Penalty (tx,) 504 7560 0.0000756 0.60
Challenge (tXchal) 293 4395 0.00004395 0.35
Response (tXresp) 266 3990 0.0000399 0.32
Output (tXout) 1986 29790 0.0002979 2.37

Table 6.2: Estimated fees for a typical deposit transaction and the FASTKITTEN
transactions.

During the setup phase, each party P; deposits ¢; coins, and the operator needs
to deposit an amount };cp, ¢; which equals the sum of all other deposits from P
together. To post the deposit transactions txi,...tx, and txg, a total of n + 1
transactions are necessary. However, as all parties can send their deposits simul-
taneously, the setup phase takes 2A 4 2 rounds in the optimistic case, additionally
to the time necessary for the attestation process (from which we abstract in the
protocol description). During the setup phase, every party approximately pays
0.30 euros in fees.

During the round computation phase, in the optimistic case, FASTKITTEN can
operate completely off-chain without any blockchain interaction. In the best case,
this phase takes 2m rounds, one for sending the input and one for the output for
an m-round contract. In the pessimistic case, any user might withhold their input
in any given round or the operator challenges parties. If this (pessimistic) case
occurs, the challenge-response procedure requires transactions also in the round
computation phase. In the worst-case scenario, this happens in every round for
every party and which can lead to 2nm additional transactions and execution time
of up to 2mA rounds. We note however, that as no party would benefit from this
scenario it is a highly unlikely case, when rational parties are considered. The value
of coins which are sent in every transaction is very low, so the main overhead of
this procedure are the transaction fees (approx. 35 euro cent per transaction) and
delays.

In the finalize phase, FASTKITTEN requires one additional payout transaction
tXout to settle money distribution among the parties. The transaction fee is paid by
the operator, and its size can vary depending on the use case. For a poker game,
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The output is roughly 1986 Bytes, which results in fees over 2 euros. The operator
will most likely add these costs to his fees (we discuss this in more detail in the
next section). In case the operator misbehaves and does not/ cannot finish the
contract evaluation inside the enclave, the penalty transaction tx, becomes valid
after at most Thna = (3 + 2m)A rounds. This means the protocol will take in the
worst case 2+ (5 + 2m)A rounds. The fees for the penalty transaction (0.6 euros)
need to be paid by one of the users. When no measure to share the costs is in
place, this fee will be carried by one of the honest parties, as all of them would
submit the transaction but only one of them will be included in the blockchain.

6.7 Discussion and Extensions

In order to explain and analyze the FASTKITTEN protocol, we presented the basic
protocol version, which includes the essential building blocks required to guarantee
security. Depending on the use case, one might be interested in further properties.
Possible extensions discussed in this section include the option to pay the operator
for his service, protect the operator against TEE faults, hide the contract output
from Q or eavesdroppers and allow cross-currency smart contracts.

6.7.1 Privacy

As mentioned in the introduction, traditional smart contracts cannot preserve the
privacy of user inputs and thus always leak internal data to the public. In con-
trast to common smart contract technologies, the FASTKITTEN protocol supports
privacy-preserving smart contracts as proposed in Hawk [120]. This requires pri-
vate contract state to hide the internal execution of the contract and input privacy,
which means that no party (including the operator) sees any other parties’ round
input before sending its own. It is straightforward to see that FASTKITTEN has
a secret state since it is stored and maintained inside the enclave. Input privacy
can easily be achieved by encrypting all inputs with the public key of the enclave.
This guarantees that only the FASTKITTEN execution facility and the party itself
knows the inputs. If required, FASTKITTEN could also be extended to support
privacy of outputs from the contract to the parties by letting the enclave encrypt
the individual outputs with the parties’ public keys. But this additional layer
should only be used when the contract requires it since, in the worst case, this
increases the output complexity of the challenge and output transaction.
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6.7.2 Applications

FASTKITTEN allows running complex smart contracts on top of cryptocurrencies
that do not natively support such contracts, like Bitcoin. However, in contrast
to Turing-complete contract execution platforms like Ethereum, a secure off-chain
execution such as FASTKITTEN puts some restrictions on the contracts it can run:

o The number of parties interacting with the contract must be known at the
start of the protocol.

o It must be possible to estimate an upper bound on the number of rounds
and the maximum run time of any round.

All of these restrictions make FASTKITTEN contracts different from smart con-
tracts running on Ethereum itself. Other off-chain solutions (like state channels (cf
Section 3.3) come with similar caveats. By allowing additional blockchain interac-
tions, we could get around those restrictions, but we would lose efficiency in the
optimistic case (which is also similar to state channel constructions). FASTKIT-
TEN has important features that are supported by neither Bitcoin nor Ethereum —
FASTKITTEN allows private inputs and batched execution of user inputs. Overall,
this leads to cheaper, faster, and private contract execution than what is possible
with on-chain contracts in Ethereum. Below, we highlight these efficiency gains by
presenting four concrete use-cases in which FASTKITTEN outperforms contracts
run over Ethereum or in Ethereum state channels.

Lottery. A lottery contract takes coins from every involved party as input, and
randomly selects one winner, who gets all the coins. The key challenge for such a
contract is to generate randomness to select the winner in a fair way. In Ethereum
or Bitcoin the randomness is computed from user inputs through an expensive
commit-reveal scheme [147]. In FASTKITTEN , all parties can immediately send
their random inputs to the enclave, which will securely determine a winner. Hence,
we reduce the round complexity from O(logn) [147] to O(1).

Auctions. Another interesting use-case for smart contracts are auctions, where
parties place bids on how much they are willing to pay, and the contract determines
the final price. In a straightforward auction, the bids can be public, but more fair
versions, like second bid auctions, require the users not to learn the other bids
before they place their own. The privacy features of FASTKITTEN can be used
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to reduce the round complexity for such auctions, which would otherwise require
complex cryptographic protocols [83].

Rock-paper-scissors. We implemented the popular two-party game rock-paper-
scissors to show the feasibility of FASTKITTEN contracts. Again, the privacy fea-
tures allow one match to be executed in a single round, which would have required
at least three rounds in Ethereum. The pure execution time in the optimistic case,
excluding delays due to human reaction times, is 12ms for one round (averaged
over 100 matches). This demonstrates that off-chain protocols, like FASTKITTEN
, are highly efficient when the same set of parties wants to run complex contracts
(like multiple matches of a game).

Poker. We also implemented a Texas Hold’em Poker game, to prove that multi-
party contracts which inherently require multiple rounds can also be efficiently
executed in FASTKITTEN . In our implementation, each player starts with an
equal deposit and participates in (at least one) initial betting round. The cards
are shuffled and distributed privately by the enclave. As the game proceeds, the
enclave determines and reveals the winner, and correctly distributes the chips of
the current pot. The game continues until only one player remains. We measured
50 matches between 10 players resulting in an average time of 45ms per match
(multiple betting rounds are included in each match). The run time was measured
starting from the moment all deposits are committed to the blockchain (details on
the exact measurements and analysis can be found in [59]).

6.7.3 Fees for the Operator

The owner of the TEE provides a service to the users who want to run a smart
contract, and, naturally, he wants to be paid for it. In addition to the costs of
buying, maintaining, and running the trusted hardware, he also needs to block
the security deposit ¢ for the duration of the protocol. While the security of
FASTKITTEN ensures that he will never lose this money, he still cannot use it
for other purposes. The goal of the operator-fees is to make both investments
attractive for Q. We assume that the operator will be paid ¢ coins for each
protocol round for each party. Since the maximum number of rounds m is fixed
at the protocol start, Q will receive £ X n x m coins if the protocol succeeds (even
if the contract terminated in less than m rounds). If the operator proves to the
TEE in round x that another party did not respond to the round challenge, he
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will only receive a fee for the passed x number of rounds (namely £ x x x n). This
pay-per-round model ensures that the operator does not have any incentive to
end the protocol too early. If the protocol setup does not succeed or the operator
cheats, he will not receive any coins. The extended protocol with operator fees
requires each party to lock ¢; +m x & coins and the operator needs to level this
investment with gc; +m x & coins.

6.7.4 Incentive-driven Adversary

While this work does not include game-theoretic analysis of the designed protocols,
we can still highlight the effects that the protocol design can have on incentive-
driven adversaries. The ideal outcome of a formal analysis is that the expensive
pessimistic protocol case will never occur. Hence, if the setup phase completes
successfully, then the result of the protocol is a correct contract execution. To
understand the incentive mechanics that are in place to prevent the pessimistic
case let us take a closer look on the implications for misbehaving parties. When
the operator cheats, he is punished by loosing all his security deposits. This is a
strong incentive for him to follow the protocol. If the protocol aborts due to a
missing input of a misbehaving party, this party will loose its coins. This again, is
by definition of incentive-driven parties, against their interest. Even when multiple
parties cheat, there is still a chance that any one of them will be punished. Even
preventing the challenge-response procedure is incentivized when we consider the
fees for posting transactions on the blockchain. These additional incentives enforce
fast and protocol compliant behavior of the parties, when their only goal is to
maximize their financial gain. However, if the main goal of an attacker is to hurt
honest parties or enforce a certain smart contract outcome, his incentives are less
easy to analyze.

6.7.5 Fault Tolerance

In order to ensure that the execution of the smart contract can proceed even in
the presence of software or hardware faults, the enclave can save a snapshot of
the current state in an encrypted format, e.g., after every round of inputs. This
encrypted state would be sent to the operator and stored on redundant storage.
If the enclave fails, the operator can instantiate a new enclave, which will restart
the computation, starting from the encrypted snapshot. If the TEE uses SGX,
snapshots will leverage SGX’s sealing functionality [100] to protect the data from
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the operator while making it available to future enclave instances.

6.7.6 Multi-Currency Contracts

FASTKITTEN requires from the underlying blockchain technology that transac-
tions can contain additional data and can be time-locked. Any blockchain like
Bitcoin, Ethereum, Lightcoin, and many others that allow these transaction types
can be used for the FASTKITTEN protocol. With some minor modifications,
FASTKITTEN can even support contracts that can be funded via multiple differ-
ent currencies. This allows parties that own coins in different currencies to still
execute a contract (play a game) together. The main modification to the FASTKIT-
TEN protocol is that the operator and the enclave need to simultaneously handle
multiple blockchains. In particular, for each of the considered currencies, Q needs
to deposit the sum of all coins that were deposited by parties in that currency.
This is in order to guarantee that if the operator cheats, players get back their
invested coins in the correct currency. In addition, the operator is obliged to chal-
lenge each party via its blockchain. If the execution completes (or the operator
proves to the enclave that one of the players cheated), the enclave signs one output
transaction for each of the currencies. While this extension adds complexity to
the enclave program and leads to more transactions and thus transaction-fees, the
overall deposit amount stays identical to the single blockchain use case.!® The
complete design and proof of correctness of a cross-ledger FASTKITTEN is left to
future work.

10This solution assumes that any party can receive coins in any of the considered currencies.
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In this thesis, we discussed three optimistic protocols for increasing blockchain
scalability. All three protocols take the off-chain approach, in which transactions
and contract evaluations are processed locally on the devices of the protocol par-
ticipants instead of globally on the blockchain. The motivation behind all three
protocols is to increase execution speed and reduce the costs of different blockchain
applications.

All proposed protocols, PERUN, FAIRSWAP, and FASTKITTEN, guarantee that
no coins can be stolen from honest parties. To achieve this, each party has to
lock the required amount of coins on the blockchain at the protocol start and,
in particular, before sending off-chain transactions. At the end of the protocol
execution, the funds are unlocked and redistributed according to the rules of the
protocol. All protocols have a fixed runtime (measured in rounds) to ensure that
honest parties reliably know the point in time when they are able to claim back
their locked coins.

To guarantee that no coins can get stolen, we analyzed and proved the security
of the protocols. At the same time, we aim to build cost- and time-efficient pro-
tocols. For this purpose, we consider different cases of (mis-)behaving parties. In
particular, the optimistic case that occurs if all parties behave honestly and the
pessimistic case! that occurs if at least one of the participants starts to deviate
from the honest behavior. In the optimistic case, the protocols proceed off-chain
until the final payout needs to be enforced. This case is both the cheapest and
fastest possible outcome of the protocol. If an honest party realizes that another
party misbehaves, i.e., deviates from honest behavior, it starts a dispute. The
parties have no chance to resolve such a disagreement off-chain. Therefore they
need the blockchain as a trusted judge that solves the dispute (based on the rules
of the protocol and the inputs of the disagreeing parties). This scenario can, in
the very worst case, be slower and more expensive then the direct on-chain evalua-
tion. But we showed for each protocol that no party can (financially) benefit from

'In fact, there could be more than one pessimistic case, but we only consider the worst possible
scenario here.
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misbehaving in any way. Therefore, we assume that usually, parties will behave
honestly to avoid transaction fees in the dispute procedure.

For all three protocols, we analyzed the security through precise cryptographic
proofs and evaluated their efficiency through a proof-of-concept implementation
and benchmarks.

In the PERUN protocol (cf. Chapter 4), we only focus on payments and show
that a single on-chain setup with a hub suffices to support off-chain payments be-
tween many users. We presented the concept of virtual payment channels, which
can be built on top of two ledger channels. While the concept of payment channels
was already known, the novelty of this construction is the introduction of virtual
channels that can be opened and closed off-chain (in the optimistic case). In con-
trast to existing proposals of payment routing, virtual channels have the advantage
that they support payments without interaction with the intermediary, that con-
nects the two ledger channels. We evaluated the security of the PERUN protocol
in the UC framework and showed that it satisfies an idealized protocol version (cf.
Section 4.3). In particular, it guarantees that all parties agree off-chain about the
current state of the channels and that no coins can be stolen or lost.

In two extensions to the PERUN paper [69], the concept of virtual channels was
also applied to off-chain smart contract execution between two parties [71] and
n parties [68]. The result is a complex framework that does not only scale pay-
ment systems but also the execution of complex contracts. However, as malicious
parties could always potentially force the on-chain evaluation, this system only
scales contracts that can already be run in cryptocurrencies like Ethereum. The
FAIRSWAP and FASTKITTEN protocols support contracts with features that go
beyond this case. In fact, we showed how powerful complex functions could be
evaluated off-chain where even in the pessimistic case, the on-chain computation
stays small.

The FAIRSWAP protocol (cf. Chapter 5) allows the fair sale of very large digital
goods or witness x, where a smart contract acts as a judge and verifies their cor-
rectness using concise proofs of misbehavior. These proofs are short statements
that are generated by the receiver if the witness x does not satisfy a (potentially
very complex) verification circuit ¢. An advantage of the FAIRSWAP protocol is
that it supports very large witnesses x and highly complex functions ¢. In fact,
it even supports files so large that storing them in Ethereum could exceed the gas
limit of blocks in the blockchain. Therefore FAIRSWAP is able to support applica-
tions that would otherwise be infeasible on Ethereum. We show that the protocol
terminates in at most 5A rounds (where A is the blockchain delay) and that the
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costs can be kept very low, both in the optimistic but also in the pessimistic case.

FAIRSWAP is focused on the evaluation of a single function between two partici-
pants, the FASTKITTEN protocol takes a more general approach. It utilizes a single
TEE to support the efficient off-chain evaluation of generic smart contract between
a fixed set of parties. In Chapter 6, we have shown that such efficient off-chain
smart contracts are even possible using only standard transactions by combining
blockchain technology with trusted hardware. We constructed the FASTKITTEN
protocol, a Bitcoin compatible smart contract execution framework which sup-
ports efficient multi-round contracts. We show that the system is highly practical
as it enables real-time application scenarios, like interactive online gaming, with
millisecond round latencies between participants (in the optimistic case). We show
that the protocol achieves a high level of security for the protocol participants as
well as the operator of the TEE. Additionally, we discuss multiple extensions to
our protocol, such as adding output privacy or operator fees, which enrich the set
of features provided by our system.

While PERUN and FAIRSWAP require a more advanced scripting language, i.e.,
smart contracts, FASTKITTEN runs on top of standard blockchain instructions
as provided by Bitcoin. Nevertheless, all three protocols are blockchain agnostic,
which means they are not specifically built for these two cryptocurrencies but
can be supported by any permissioned or permissionless blockchain with similar
features. In particular, we abstract from the exact specification of a blockchain and
rely only upon the blockchain assumption, which states that the underlying ledger
provides liveliness and consistency (cf. Section 3.4). In particular, we assume that
the blockchain does not get forked or congested longer than A rounds) to prevent
that transactions of honest parties get accepted. It is possible to mitigate the risk
of forks and congestion by using high transaction fees by default and set a very
long timeout parameter (A). However, both measures make our protocols less
efficient. In practice, it might make sense to try a more dynamic approach, i.e.,
increase transaction fees and timelock parameters ad-hoc, e.g., when blockchain
congestion occurs. It might also be useful to adapt these measures based on the
overall transaction amounts. If the protocol only considers a few euros, many users
might want to risk the trade-off of reduced security for higher efficiency. But if
many thousand euros are at stake, a timeout of a few hours up to a day is a small
price to pay for strong security.

Future Work One further research directions is a detailed analysis of the privacy
of the presented schemes. It would be interesting to understand if PERUN and
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FAIRSWAP could be extended to provide privacy of transactions towards third par-
ties or intermediaries. However, even defining privacy is non-trivial for corrupted
parties, as participants need full knowledge of the values. Another interesting open
question is whether the presented techniques could also work on privacy-preserving
blockchain technologies and help these platforms to scale securely.

Another promising research direction is to investigate how the scaling effect can
be amplified even further. As this work focuses on increasing the scalability on the
application layer only, it does not analyze the scaling effect of running the protocols
on top of consensus-layer scaling techniques. Additionally, different application-
layer techniques could be combined, e.g., to reduce the collateral costs or gas
fees. While this looks like a promising solution to reach much higher scalability, it
remains to show how these changes impact the protocols’ security.

All three presented protocols could also benefit from additional game-theoretic
analysis. Research on the strategies of incentive-driven adversaries can lead to a
better understanding of the protocols’ economic security. Identifying dominant
strategies would also help in estimating the execution costs for the protocols.
As the optimal outcome would be that the equilibrium of each protocol is the
optimistic case, a detailed analysis can help identify further incentive mechanisms
for a fast and cheap protocol evaluation.

In summary, all three presented protocols improve blockchain scalability by
scaling the applications that run on top of them. FAIRSWAP and PERUN have
both been analyzed and extended by follow up works. The protocols discussed in
this thesis show that off-chain protocols are a promising research direction, and
further results in this area are required to make blockchain technology suitable for
mass adoption.
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