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Abstract

Automated software verification can prove the correctness of a program with respect to a

given specification and may be a valuable support in the difficult task of ensuring the quality

of large software systems. However, the automated verification of concurrent software can be

particularly challenging due to the vast complexity that non-deterministic scheduling causes.

This thesis is concerned with techniques that reduce the complexity of concurrent programs

in order to ease the verification task. We approach this problem from two orthogonal directions:

state space reduction and reduction of non-determinism in executions of concurrent programs.

Following the former direction, we present an algorithm for dynamic partial-order reduc-

tion, a state space reduction technique that avoids the verification of redundant executions.

Our algorithm, epor, eagerly creates schedules for program fragments. In comparison to

other dynamic partial-order reduction algorithms, it avoids redundant race and dependency

checks. Our experiments show that epor runs considerably faster than a state-of-the-art

algorithm, which allows in several cases to analyze programs with a higher number of threads

within a given timeout.

In the latter direction, we present a formal framework for using incomplete verification

results to extract safe schedulers. As incomplete verification results do not need to proof

the correctness of all possible executions of a program, their complexity can be significantly

lower than complete verification results. Hence, they can be faster obtained. We constrain

the scheduling of programs but not their inputs in order to preserve their full functionality.

In our framework, executions under the scheduling constraints of an incomplete verification

result are safe, deadlock-free, and fair. We instantiate our framework with the Impact model

checking algorithm and find in our evaluation that it can be used to model check programs

that are intractable for monolithic model checkers, synthesize synchronization via assume

statements, and guarantee fair executions.
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In order to safely execute a program within the set of executions covered by an incomplete

verification, scheduling needs to be constrained. We discuss how to extract and encode

schedules from incomplete verification results, for both finite and infinite executions, and

how to efficiently enforce scheduling constraints, both in terms of reducing the time to look

up permission of executing the next event and executing independent events concurrently

(by applying partial-order reduction).

A drawback of enforcing scheduling constraints is a potential overhead in the execution

time. However, in several cases, constrained executions turned out to be even faster than

unconstrained executions. Our experimental results show that iteratively relaxing a schedule

can significantly reduce this overhead. Hence, it is possible to adjust the incurred execution

time overhead in order to find a sweet spot with respect to the amount of effort for creating

schedules (i.e., the duration of verification). Interestingly, we found cases in which a much

earlier reduction of execution time overhead is obtained by choosing favorable scheduling

constraints, which suggests that execution time performance does not simply rely on the

number of scheduling constraints but to a large extend also on their structure.



Zusammenfassung

Automatisierte Softwareverifikation erlaubt es, die Korrektheit eines Programms in Bezug

auf eine gegebene Spezifikation zu beweisen und kann somit eine wertvolle Unterstützung bei

der schwierigen Aufgabe der Qualitätssicherung großer Softwaresysteme sein. Jedoch stellt die

zusätzliche Komplexität nichtdeterministischen Schedulings eine besondere Herausforderung

für die automatisierte Verifikation nebenläufiger Software dar.

Diese Dissertation befasst sich mit Techniken zur Reduktion der Komplexität nebenläufi-

ger Programme, um das Verifikationsproblem zu erleichtern. Wir erarbeiten dazu Lösungen

aus zwei unterschiedlichen Richtungen: Zustandsraumreduktion und Reduktion von Nichtde-

terminismus in Ausführungen nebenläufiger Programme.

Ersterer Richtung folgend stellen wir einen Algorithmus für Dynamic-Partial-Order-

Reduction vor, einer Zustandsraumreduktion, die die Verifikation redundanter Ausführungen

vermeidet. Unser Algorithmus, epor, erzeugt begierig (eager) Schedules für Programmfrag-

mente. Im Vergleich zu anderen Algorithmen für Dydamic-Partial-Order-Reduction vermeidet

er redundante Race- und Abhängigkeitstests. Unsere Experimente zeigen, dass epor deutlich

schneller als ein bekannter und aktueller Algorithmus läuft, was in mehreren Fällen die

Verifikation von Programmen mit mehr Threads innerhalb einer gegebenen Zeit erlaubt.

In letzterer Richtung stellen wir ein formales Framework zur Nutzung von unvollständi-

gen Verifikationsergebnissen zur Erstellung von sicheren Schedules vor. Da unvollständige

Verifikationsergebnisse nicht die Korrektheit aller möglichen Ausführungen eines Programms

beweisen müssen, kann ihre Komplexität deutlich niedriger als bei vollständigen Verifikati-

onsergebnissen sein. Dadurch können sie sehr viel schneller generiert werden. Wir schränken

das Scheduling von Programmen ein, jedoch nicht ihre Eingabe, um ihre Funktionalität zu

erhalten. In unserem Framework sind Ausführungen innerhalb den Schedulingbeschränkun-

gen eines unvollständigen Verifikationsergebnisses sicher (safe), deadlockfrei und fair. Wir
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instantiieren unser Framework mit dem Impact Model-Checking-Algorithmus und zeigen

in unserer Evaluation, dass es genutzt werden kann um Programme zu verifizieren, die

nicht durch monolithisches Model-Checking handhabbar sind, um Synchronisation durch

assume-Statements zu synthetisieren und um faire Ausführungen zu garantieren.

Um ein Programm sicher innerhalb der durch ein unvollständiges Verifikationsergebnis-

ses abgedeckten Ausführungen auszuführen, muss das Scheduling beschränkt werden. Wir

diskutieren, wie aus unvollständigen Verifikationsergebnissen Schedules extrahiert und enco-

diert werden können, sowohl für endliche als auch für unendliche Ausführungen. Zusätzlich

diskutieren wir, wie Schedulingbeschränkungen effizient umgesetzt werden können, sowohl

im Hinblick auf ein schnelles Nachschlagen der Erlaubnis, das nächste Event auszuführen,

als auch auf die nebenläufige Ausführung unabhängiger Events (durch die Anwendung von

Partial-Order-Reduction).

Ein Nachteil der Umsetzung von Schedulingbeschränkungen ist ein potenzieller Overhead

in der Ausführungsdauer, jedoch erwiesen sich beschränkte Ausführungen in mehreren Fällen

sogar als schneller als unbeschränkte Ausführungen. Unsere experimentellen Ergebnisse

zeigen, dass das iterative Lockern von Schedulingbeschränkungen den Overhead in der

Ausführungsdauer reduzieren kann. Daher ist es möglich, den erlittenen Overhead anzupassen,

sodass ein optimaler Bereich im Hinblick auf die zur Erzeugung der Schedules nötigen Zeit

(also die Dauer der Verifikation) gefunden wird. Interessanterweise zeigen sich Fälle, in denen

durch die Wahl geeigneter Schedules der Overhead bereits viel früher reduziert werden kann,

was nahelegt, dass die Ausführungsgeschwindigkeit nicht einfach nur von der Anzahl an

Schedulingbeschränkungen abhängt, sondern zu einem großen Teil auch von deren Struktur.
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Chapter 1

Introduction

Software verification can prove the correctness of a program with respect to a given specification, or

property. This feature may be a valuable support in the difficult task of ensuring the quality of large

software systems, especially when the verification is automated and carried out by a machine. However,

limits on both the capabilities and scalability of software verification make it hard to implement feasible

verification approaches. A particular challenge is the complexity of concurrent software that is executed

non-deterministically.

This thesis is concerned with techniques that reduce the complexity of concurrent programs in order

to ease the verification task. We approach this problem from two orthogonal directions: state space

reduction and reduction of non-determinism in executions of concurrent programs.

The former direction, state space reduction, reduces the subset of states of a program that has to be

checked during the verification process. The process of finding a solution to the verification problem is

simplified, which enables potentially faster verification or verification of otherwise intractable programs.

The latter direction reduces the non-determinism in executions of concurrent programs, not only

during the verification process but also during the usage of a program. By constraining the scheduling

of a concurrent program, non-determinism is reduced or even completely eliminated. In contrast to

state space reduction, the verification problem itself is simplified. The verification result gives fewer

guarantees but may be easier obtained.

In our contributions, we focus on automated verification (rather than interactive theorem proving),

model checking, verification of safety properties (rather than liveness properties), and an application to

multi-threaded programs with shared memory (rather than actor programs or distributed systems).

This chapter introduces the background and motivation of our contributions.
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CHAPTER 1. INTRODUCTION 2

1.1 Concurrency

Concurrent programs consist of several entities which interact through shared resources. Depending on the

context, entities may be processes, threads, or actors. Shared resources may be shared memory, message

passing communication, synchronization primitives, or inter-process communication. Concurrency may

considerably increase a program’s complexity and induce particular issues such as undesirable non-

deterministic behavior, difficult allocation of shared resources, deadlocks, and starvation. Additionally,

non-deterministic behavior may impede detection and reproduction of defects. Hence, concurrency

makes support for software quality assurance more desirable and challenging at the same time.

In the context of concurrency, the state space explosion problem [Val96] describes the fact that

the state space of a concurrent system grows exponentially with the number of processes (or actors)

the system is comprised of and with the length of executions. State space explosion occurs when the

ordering between processes is non-deterministic. For example, the scheduling of many general purpose

operating systems is non-deterministic in that the order of memory accesses of different processes and

threads (as well as messages between them) cannot be foreseen prior to an execution.

An interleaving semantics simplifies the behavior of a concurrent program such that in every

execution, any two events cannot occur at the same time but happen before and after each other,

respectively. Hence, executions in an interleaving semantics correspond to a linearly ordered sequence.

A generalization of interleaving semantics without this simplification is true concurrency. In this thesis,

we use an interleaving semantics to model concurrent programs under non-deterministic scheduling, as

it provides a sufficient level of detail for general purpose multi-core architectures and is commonly used

in related literature. A comparison of interleaving and true concurrency semantics is provided by Priese

and Wimmel [PW98].

Under an interleaving semantics, a program with n threads that execute m1, . . . ,mn events, respec-

tively, has (a maximum of) (
∑

m1,...,mn)!∏
m1!,...,mn!

interleavings. Consider, for instance, a program with two

threads. The number of interleavings grows already over 1029, cf. Figure 1.1, when each thread executes

only 50 events. Consequently, the state space can be prohibitively large even for a program of moderate

size. Decades of research have been conducted on making verification of concurrent systems feasible, yet

concurrency still poses a considerable hurdle.
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Figure 1.1: Number of interleavings of two threads

1.2 Model checking

A major technique for automated software verification is model checking, an approach to systematically

explore all reachable states of a program in order to prove its correctness. While other techniques

such as static analyses, abstract interpretation, type systems, and theorem provers may be valuable

to prove the correctness of programs, model checking allows both a fully automated analysis and an

expressiveness at least as high as other automated techniques. Nonetheless, model checking techniques

may well combine state space exploration with other program analysis techniques. In this thesis, we

deal with fully automated software verification and therefore focus on model checking.

Properties to be verified can be classified into safety and liveness properties. Intuitively, safety

properties state that an undesirable state will never be reached and can be refuted by a finite execution

leading to such a state. Hence, safety properties can be reduced to a reachability problem of an error

state. Liveness properties, on the other hand, state that some desirable event will eventually happen and

can only be refuted by an infinite execution. Many interesting properties of programs, such as memory

safety, deadlock-freedom, exception-freedom, and satisfaction of all assertions in a program, are safety

properties. In this thesis, we deal with the verification of safety properties, although we also consider

the concept of fairness, i.e., a balanced allocation of resources to threads, which is a liveness property.

Since the introduction of bounded (symbolic) model checking (BMC) [BCCZ99, CBRZ01], state



CHAPTER 1. INTRODUCTION 4

representations in propositional logic, ready to be processed by an automated satisfiability checker, or SAT

solver, have been widely used for model checking. The combination of abstraction refinement [LPJ+96,

Par97, PH98] with the use of spurious counterexamples to guide the refinement yielded counter example

guided abstraction refinement (CEGAR) [Kur94, BS93, CGJ+03]. Intuitively, information extracted

from a spurious counter example, which shows a property violation but does not correspond to an

execution, is used to refine the current symbolic description without loosing too much abstraction.

Based on a SAT representation, McMillan introduced Craig interpolation [Cra57] in model check-

ing [McM03] to find invariants describing safe, reachable states. Similar to CEGAR with interpolants,

an approach for infinite state programs that uses interpolants of spurious counter examples, called lazy

abstraction with interpolants, was introduced later [McM06].

Bradley introduced a SAT-based approach, IC3 [Bra11], that, instead of unrolling the transition

relation, incrementally strengthens the property to be proven. For the verification of software, the

use of satisfiability modulo theories (SMT) [CGS10] instead of (or in combination with) a SAT solver

contributed to transfers of model checking approaches for finite state systems (modeling hardware) to

infinite state systems (modeling software), e.g., by Cimatti for IC3 [CG12].

As noted above, model checkers for concurrent programs have to handle, in addition to common hurdles

with model checking for sequential programs, the state space explosion problem due to non-deterministic

scheduling. Several techniques have been proposed for this purpose, many of which handle concurrency

explicitly. Notable examples include extensions of lazy abstraction with interpolants [WKO13] and

IC3 [GLW16] for concurrent programs. An alternative approach is sequentialization [LR09, LMP09],

which transforms a concurrent program into a sequential program that simulates all (or a chosen subset)

of the interleavings of the original program. After sequentialization, a model checker for sequential

programs can be used. Most model checkers for concurrent programs apply state space reduction, as

discussed below, in order to mitigate the state space explosion problem.

The complexity of the verification problem poses such a serious challenge that model checkers

commonly fail to prove the correctness of a program, which typically manifests in a diverging run of

the model checker. At this point, it is unclear whether the program under analysis is correct and

the time spent on model checking is wasted. Conditional model checking, introduced by Beyer et

al. [BHKW12], tries to make use of such failed verification attempts by reusing information from an

incomplete verification result as a starting point for an other model checker. By repeatedly model

checking the same program, each time with more initial information about already checked states, it

is possible to verify programs which cannot not be handled by the same model checker monolithically.

In the same spirit of making use of incomplete verification attempts, we propose an iterative model
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checking approach. Advancing even further in this direction, we show how such intermediate verification

results can be useful even if no eventual complete verification result is produced.

1.3 State space reduction

State space reduction is a prominent approach to state space explosion due to concurrency. Its goal is

to identify a subset of the reachable states to be explored such that correctness of all reachable states

can still be proven. An early state space reduction approach was introduced by Lipton [Lip75]. Lipton’s

reduction tries to identify left and right movers, statements that can be executed as an atomic sequence

of statements such that the program semantics is not changed with respect to an interesting property.

Exploration of executions that interleave atomic statement sequences can be skipped.

Generalizing left and right movers, trace theory by Mazurkiewicz [Maz86, Maz95] laid a foundation

for state space reductions with the concept of dependency between events and equivalence between

executions. Equivalence classes are called traces and are characterized by a partial order between the

events of their executions. Only if two events are dependent, the order of their execution can be observed,

whence switching the order of two adjacent, independent events yields an equivalent execution.

Partial-order reduction (POR) [God96] is prominently used for verification of concurrent systems.

It makes use of trace theory by focusing the exploration to one representative of each trace. Many

enhancements and applications of POR have been presented, of which we mention only the most relevant

for this thesis.

A major step in the development of POR techniques was the introduction of dynamic partial-order

reduction (DPOR) [FG05]. Instead of a static dependency relation that is sound in all states of a

program, a dynamic dependency relation between events is used which may depend on the current state.

This finer-grained dependency relation may avoid the exploration of redundant executions. Besides many

other POR approaches based on DPOR, Cartesian partial-order reduction [GFYS07] stands out in that

in a single step of the exploration algorithm, a sequence, instead of a single event, is explored. Further

notable POR approaches in the succession of DPOR include source-DPOR and optimal-DPOR [AAJS14].

The former algorithm has been shown to perform a considerably higher reduction than the original

DPOR algorithm. The latter algorithm, optimal-DPOR, provides the guaranty that no more than one

representative per trace is explored, however may be slower than source-DPOR because of additional

bookkeeping of already explored event sequences.

While POR is widely adopted in model checking tools, it is not sufficient to eliminate the state space

explosion problem for many interesting programs. In particular, the state space of a program may still
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be exponentially large after reduction. Thus, it is desirable to ease the verification problem beyond

POR.

1.4 Restricting non-determinism of schedulers

Restricting a non-deterministic scheduler has been approached from two perspectives: with the goal of

easing verification, at the cost of potentially missing incorrect executions, and with the goal of executing

a concurrent program fully or partially deterministically. Context bounding [QR05] limits the number of

context switches, i.e., switches between distinct threads, for each execution to a given bound. Executions

with more context switches may occur but are not explored during verification. This focus on executions

with few context switches has proven to be beneficial to find counter examples to the correctness of

a program and has accordingly been used in several BMC approaches, e.g., [RG05, MQ07, FIP13].

However, none of these approaches enforces the context bound during the execution of a program, which

prevents the verification from proving the correctness of a program under a non-deterministic scheduler.

Reducing the non-determinism of scheduling during execution, in contrast, is the goal of deterministic

multi-threading (DMT) [OAA09] and related approaches. Several variants have been proposed that

either guarantee a deterministic execution or that the execution will follow one of a small set of schedules.

The obtained determinism or stability in occurring schedules eases concurrency testing, as failures are

easier to reproduce and the probability of detecting a bug during testing is increased.

In case of full determinism, DMT guarantees that for every possible input, a deterministic schedule

is executed. However, it is in general unknown whether executing a program under a given input will

trigger a known or a new schedule. Indeed, it is possible to observe very different schedules for similar

inputs and executing a program with deterministic scheduling may not even reduce the set of possible

schedules. With the incentive that concurrency testing and verification benefit all the more from DMT

if the set of possible schedules is small, schedule memoization by Cui et al. [CWTY10] was introduced

by Cui, et al. Schedule memoization stores a set of schedules for selected inputs and attempts to keep

schedules for new inputs similar to a stored schedule. Still, a guarantee that a similar schedule is

possible for any new input cannot be given. A first step towards a set of a priori known schedules for

all inputs was presented by Bergan, Ceze, and Grossman [BCG13]. Their approach generates a set of

input-covering schedules, to which a program can be restricted to for any input. Some limitations still

exist, for instance that the set of input-covering schedules may be much larger than necessary and that

programs may not contain unprotected races. Nevertheless, we believe that this direction is promising

and explore further opportunities in this thesis.
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1.5 Contributions

The following contributions are contained within this thesis.

Efficiency for DPOR algorithms (Chapter 3) As described in Section 1.3, dependency between

events of a concurrent program is a central concept for POR. Especially in DPOR algorithms,

checks for dependency between two events in a given state are a common operation and responsible

for a large share of the execution time of a DPOR algorithm. We show that avoiding redundant

dependency checks may considerably accelerate a DPOR algorithm. We implement our approach

by modifying the existing source DPOR algorithm (sdpor) [AAJS14]. sdpor has been shown to

be more efficient than other proposed DPOR algorithms, i.e., for a given program, its execution

time is shorter than that of other DPOR algorithms. Our experiments compare our algorithm,

Eager POR (epor), to sdpor and show that epor’s time savings allow to verify programs that

cannot be verified under sdpor within a large time limit.

Iterative model checking and use of incomplete verification results (Chapter 4) As noted

before, the state of the art in model checking for concurrent programs is unsatisfactory in that

many interesting programs cannot be handled by current model checking tools. We propose an

iterative model checking approach that makes use of incomplete verification results. Each iteration

solves the given verification problem under certain scheduling constraints in order to reduce

its complexity. The result of each iteration is a correctness proof under the current scheduling

constraints or a counter example to the property. Consequently, from the first iteration result on,

the verifier produces useful information, whereas a monolithic approach would waste resources if it

fails to prove correctness under arbitrary scheduling.

We provide a formal framework within which we propose general requirements on useful, incomplete

verification results. We design an iterative model checking algorithm and implement it in the

Impara tool [WKO13]. Our experiments in several case studies show that our approach can be

used to:

• model check programs that are intractable for monolithic model checkers

• safely execute a program, given the scheduling constraints of an incomplete verification result

and even in the presence of unsafe executions

• synthesize synchronization given a specification on correct synchronization (via assume state-

ments inserted into the program) and

• guarantee fair executions.
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Enforcement of scheduling constraints for safe execution of concurrent programs (Chap-

ter 5) In order to use scheduling constraints extracted from incomplete verification results to

safely execute a program, it is necessary to enforce these constraints, e.g., by modifying the

operating system scheduler or by modifying the program. Ideally, such modifications should not

force the program into a strictly sequential execution, which would foil any benefit of concurrency.

Furthermore, such modification may introduce a considerable execution time overhead, which may

be crucial to the applicability of schedule enforcement.

We show that scheduling constraints extracted from incomplete verification results can be trans-

formed into schedules that allow a concurrent execution of events. We design two types of schedules,

for finite and infinite executions, respectively. Through applying POR on the given scheduling

constraints, an ordering between events is only enforced where their dependency indicates that a

different ordering may deviate from the program behavior described by an incomplete verification

result. We implement both types of schedule enforcement and evaluate the execution time overhead

on several benchmark programs. While the execution time overhead may be considerable, we

propose several optimizations so that constrained executions show a much smaller overhead and in

several cases are even faster than unconstrained executions.
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1.6 Previous publications

Parts of this thesis have been published in the following articles. Material from these publications has

been, partly verbatim, used in this thesis.

1. [MSB+16]

Patrick Metzler, Habib Saissi, Péter Bokor, Robin Hesse, and Neeraj Suri.

Efficient verification of program fragments: Eager POR.

Automated Technology for Verification and Analysis – 14th International Symposium, ATVA,

2016.

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-

3-319-46520-3_24.

This article presents the POR algorithm and related findings of Chapter 3.

2. [MSBS17]

Patrick Metzler, Habib Saissi, Péter Bokor, and Neeraj Suri.

Quick verification of concurrent programs by iteratively relaxed scheduling.

Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering,

ASE, 2017.

This article presents our concept of iteratively verifying and executing concurrent programs, shown

here in Chapter 4.

3. [MSBS18]

Patrick Metzler, Habib Saissi, Péter Bokor, and Neeraj Suri.

Safe execution of concurrent programs by enforcement of scheduling constraints.

CoRR, abs/1809.01955, 2018, updated 2020, https://arxiv.org/abs/1809.01955.

This article presents our approach to the enforcement of scheduling constraints for concurrent

programs, shown here in Chapter 5.

http://link.springer.com/chapter/10.1007%2F978-3-319-46520-3_24
http://link.springer.com/chapter/10.1007%2F978-3-319-46520-3_24
https://arxiv.org/abs/1809.01955
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4. [MSW19]

Patrick Metzler, Neeraj Suri, and Georg Weissenbacher.

Extracting Safe Thread Schedules from Incomplete Model Checking Results.

Proceedings of the 26th International SPIN Symposium on Model Checking of Software, 2019.

This article presents an iterative model checking approach for concurrent programs. Its findings

occur in Chapter 4 as well as in Section 5.2.

5. [MSW20]

Patrick Metzler, Neeraj Suri and Georg Weissenbacher.

Extracting Safe Thread Schedules from Incomplete Model Checking Results.

International Journal on Software Tools for Technology Transfer, STTT, 2020.

This article is an extended version of our SPIN 2019 article [MSW19].



Chapter 2

System Model

We model multi-threaded programs with shared memory. Unless otherwise stated, program input may

be non-deterministic and executions may be infinite. A program P consists of a set T of threads, a set

S of states (including the initial state sinit), a set Q of (program) variables, a set L of local locations to

describe control flow locations of threads, and the error location lerror :

Definition 1 (program). A program is a tuple P = (T , S, sinit , Q, L, lerror), where S is the (potentially

infinite) set of states, sinit ∈ S is the unique initial state, Q is the set of variables, L is the set of local

locations, lerror is the unique error location, and T is a finite, totally-ordered set of threads T .

States comprise an interpretation of the program variables and a global (control flow) location, which

in turn consists of one local location per thread:

Definition 2 (location, state). The set of local locations is partitioned into a set of local locations

LT for each thread T . A global location l ∈ L|T | is a tuple of one local location for each thread, i.e.,

l ∈ LT1 × . . .× LTn .

A state s ∈ S is composed of a global location l(s) and an interpretation of the variables Q, which

maps variables to values.

We assume that the location of the initial state is not the error location, i.e., l(sinit) 6= lerror . We

write s(v) for the value of variable v in state s. We write lT (s) for the local location of thread T at state

s and lT for the local location of thread T in the global location l. Since local locations are disjoint,

we also write l(s) for lT (s) if T is clear from the context. The variables Q are partitioned into a set of

global variables and a set of local variables for each thread. We write QT for the union of the global

variables and the local variables of thread T .

11
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1 initially:
2 empty buffer of size N
3 count = 0
4 mutex = 0
5 thread T1:
6 while true:
7 produce()
8 thread T2:
9 while true:

10 consume()

11 produce:
12 lock(mutex)
13 if count < N:
14 put item
15 count += 1
16 unlock(mutex)
17 consume:
18 lock(mutex)
19 if count > 0:
20 remove item
21 count −= 1
22 unlock(mutex)

Figure 2.1: Producer-consumer problem

Each thread is associated with a local transition relation between states, where it cannot change

variable values or local locations of other threads. The global transition relation is the union of the local

transition relations:

Definition 3 (global and local transition relation). The global transition relation RG of a program

is partitioned into a local transition relation RT ⊆ S × S for each thread T ∈ T . A thread may not

change the local location and local variables of other threads, i.e., for all q ∈ Q \QT , for all s, s′ ∈ S

with RT (s, s′), and for all threads T ′ 6= T , we require that s(q) = s′(q) and lT ′(s) = lT ′(s′).

A local transition relation consists of single transitions, which have a distinct local location as a

source and a distinct local location as a destination. Intuitively, a control flow branching is modeled by

multiple transitions and a statement without a control flow branching is modeled by a single transition.

For example, lock(mutex) in line 12 in Figure 2.1 can be modeled by a single transition R12,13 from

location 12 to 13 and the following if statement can be modeled by two transitions R13,14 and R13,16,

one from location 13 to 14 and one from 13 to 16.

The guard of a transition R, intuitively, is satisfied by a state s with the local source location of R if

and only if there exists a state that can be reached from s through R:

Definition 4 (transition, guard). A thread’s local transition relation RT is partitioned into (local)

transitions Rl,l′ ⊆ RT such that for all states s, s′:

Rl,l′(s, s′)⇔ (RT (s, s′) ∧ l = lT (s) ∧ l′ = lT (s′))

The guard of a transition R, written Guard(R), encodes the predicate ∃s′. R(s, s′).

For example, the guard of transition R13,14 from location 13 to 14 in Figure 2.1 is

Guard(R13,14) = (count < N).
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We write F (Q) for the set of all first order formulae over the variables Q and optional additional

interpreted symbols. A state formula is a formula φ ∈ F (Q), i.e., encodes all states s in which φ(s)

evaluates to true. We assume that each transition R can be represented by a transition formula R1 ∧R2

such that R1 ∈ F (Q) represents the guard Guard(R) and R2 ∈ F (Q ∪ Q′) represents the relation

between state and successor state.

A transition R, respectively its thread T , is active at a given local location l, intuitively, if R models

the statement at l. R, respectively T , is enabled at a given state s if R is active at lT (s) and s satisfies

the guard of R.

Definition 5 (active and enabled transition). Let Rl,l′ be a transition of a thread T . Rl,l′ is active at

local location l (in states s with lT (s) = l). Rl,l′ is enabled in those states s that satisfy lT (s) = l and

Guard(Rl,l′). We require that there exists at most one enabled transition for a given thread and state.

We write Transitions(lT ) := {Rl,l′ ⊆ RT : l = lT } for the set of active transitions of T at lT . We

write Next-Transition(s, T ) for the (unique) enabled transition of T in s if it exists and otherwise

Next-Transition(s, T ) = ⊥. For a state s, we write enabled(s) =
⋃
T∈T Next-Transition(s, T ) for the set

of enabled transitions of all threads in s.

While Next-Transition(s, T ) = R is unique (if it exists), there may exist multiple successor states s′

with R(s, s′) and the program input decides which successor state to take.

Definition 6 (branching transition). A transition Rl,l′ is branching if there exist states s, s1, s2 such

that s1 6= s2, Rl,l′(s, s1), and Rl,l′′(s, s2) for some transition Rl,l′′ of the same thread.

A branching transition may represent a control flow branching or, in the presence of program input,

a non-deterministic assignment to a variable.

Executions are sequences of states, interleaved with threads. Safety properties can be encoded

directly into a program (via the error location) so that executions satisfy the safety property if and only

if they are safe. To simplify the presentation and without loss of generality, we assume that only a single

error location exists. Multiple error locations can be modeled by a single error location and additional

transitions to this location.

Definition 7 (execution). An execution τ of a program is a sequence s0, T1, s1, . . . such that s0 is the

initial state of the program and for every adjacent triple (si, Ti+1, si+1) in the sequence, si and si+1 are

related by the local transition relation of Ti+1. If τ is finite, it is of the form τ = s0, T1, s1, . . . , Tn, sn

and additionally enabled(sn) = ∅ holds. An execution is safe if it does not reach the error location, i.e.,

l(si) 6= lerror for 0 ≤ i ≤ n.



CHAPTER 2. SYSTEM MODEL 14

An execution prefix is a finite prefix of an execution that has a state as its last element, written

τ ′ < τ .

Deadlocks are states with active transitions but without enabled transitions, i.e., intuitively, the

program has not terminated (as active transitions exist) but all threads are blocked.

Definition 8 (deadlock). A deadlock is a state s with
⋃
T∈T Transitions(lT (s)) 6= ∅ ∧ enabled(s) = ∅.

As deadlocks are prominent issues in concurrent programming, we assume that deadlocks are always

undesirable, whether or not they are explicitly marked as errors by the safety property. In order to

simplify the presentation when discussing the fairness of executions, we assume in Chapter 4 that there

are no finite, desired, executions, i.e., all finite executions lead to a deadlock. In other words, we assume

that there exists an active (but not necessarily enabled) transition in all states (this transition can

be a dummy transition if a program intentionally terminates). In contrast, in Chapter 3, we discuss

only terminating programs whose executions can end in both deadlock and non-deadlock states but are

always finite.

Deadlocks may only arise through blocking transitions such as a lock acquisition of an already taken

lock.

Definition 9 (blocking transitions). T may block at a location lT if there exist states s, s′ with this

location lT = lT (s) = lT (s′) such that T has an enabled transition at s but no enabled transition at s′,

i.e., Next-Transition(s, T ) 6= ⊥ ∧Next-Transition(s′, T ) = ⊥.

For example, Thread 1 blocks at line 12 in Figure 2.1 in states where the lock is already taken.

We assume that for each thread T , all locations at which T may block are marked with a predicate

may-block(lT ). It is permitted to overapproximate the predicate, at the expense of performance, i.e.,

we require that for all pairs (lT , T ) which may block that may-block(lT ) holds but not the converse.

Furthermore, we assume that threads do not block at control flow branchings, i.e., for all threads T

and locations l with may-block(lT ), |Transitions(lT )| = 1. This requirement can easily be satisfied by

splitting transitions that model both a lock acquisition and a control flow branching into two separate

transitions.

Fairness assures that in infinite executions, every thread has a chance to eventually make progress.

Beyond deadlocks, we assume that unfair executions are undesirable. We use the concept of (strong)

fairness [BK08].

Definition 10 (fair execution). An execution τ is fair if every thread that is enabled infinitely often

along τ is scheduled infinitely often along τ . We write Fair-Executions(P ) for the fair executions of a

program P .
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Intuitively, non-determinism can arise through scheduling of threads and through (non-deterministic)

inputs, which can be modeled as multiple transitions of a thread that are enabled at a state. A scheduler

can resolve the former kind of non-determinism. Intuitively, given an execution prefix s0, T1, . . . , Tn, sn,

a scheduler chooses the thread that is to be executed in state sn, unless no thread is enabled in sn.

Definition 11 (scheduler). A scheduler ζ of a program P is a function ζ : (S ×T )∗ × S → (T ∪ {⊥})

such that for all sequences τ = s0, T1, . . . , Tn, sn, ζ chooses a thread that is enabled at sn if such a thread

exists, i.e., enabled(sn) 6= ∅ ⇒ Next-Transition(sn, ζ(τ)) 6= ⊥.

We write Schedulers(P ) for the set of all schedulers of P . We write Executions(P, ζ) for the set

of all executions τ = s0, T1, s1, . . . of P such that for each adjacent triple (si, Ti+1, si+1), Ti+1 =

ζ(s0, T1, . . . , si). If τ = s0, T1, . . . , Tn, sn is finite, additionally enabled(sn) = ∅ must hold.

For example, consider an execution prefix of the program of Figure 2.1 where, beginning in the initial

state, T1 executes produce() and lock(mutex) followed by T2, which executes consume() and lock(mutex) (we

do not model while true by its own transition):

sinit , T1, s1, T1, s2, T2, s3, T2, s4

A scheduler must select T1 rather than T2 after this execution prefix since in s4, the lock is held by T1

and enabledT2(s5) = ∅.

Definition 12 (deadlock-free and fair scheduler). A scheduler ζ for a program P is deadlock-free,

written deadlock-free(ζ), if no execution in Executions(P, ζ) reaches a deadlock and ζ is fair if all

executions in Executions(P, ζ) are fair, i.e., Executions(P, ζ) ⊆ Fair-Executions(P ).

It is important to note that unless the program is in a terminal state (no transitions are enabled), a

scheduler must schedule a thread that has an enabled transition in that state. A scheduler is deadlock-

free if it can always find a deadlock-free execution, even if the program shows executions that reach a

deadlock.

Program inputs, the latter source of non-determinism, are modeled as follows. A program has an

input alphabet X and each input symbol ι ∈ X makes transitions deterministic, i.e., for each transition

R, there exists a function Rι : S → S such that for all states s at which R is enabled, Rι(s) = s′ for

some s′ with R(s, s′). Non-deterministic input, or, more generally, influence from the environment, can

be modeled by an input (as a dual concept to schedulers), defined as follows.

Definition 13 (input). An input is a function χ : (S × T )∗ → X, which chooses an input symbol

depending on the current execution prefix.
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In conjunction, an input and a scheduler render a program completely deterministic: the execution

of P under input χ and scheduler ζ is the unique execution s0, T1, s1, . . . ∈ Executions(P, ζ) such that

for all adjacent triples (si, Ti+1, si+1), for Next-Transition(si, T ) = a, and for χ(s0, T1, . . . , si, Ti+1) = ι,

si+1 = aι(si).

As transitions may occur repeatedly in a single execution, it is convenient to refer to the occurrence

of a transition, called an event. An event consists of the thread that executes it and a counter that

specifies the number of events the same thread has executed before in the same execution.

Definition 14 (event sequence). The event sequence ρ of an execution or execution prefix τ =

s0, T1, s1, T2, s2, . . . is defined as ρ := (T1, k1)(T2, k2) . . ., where ki is the number of occurrences of Ti
in T1T2 . . .. We also write ρ(τ) for ρ. If τ is an execution (rather than an execution prefix), ρ(τ) is

maximal.

We write length(ρ) for the length of an event sequence ρ. For ei = (Ti, ki), we define tid(ei) = Ti.

The empty sequence is denoted by ε. Concatenation of a sequence ρ with another sequence ρ′ or an

element e is written as ρ · ρ′ and ρ · e, respectively.

POR uses Mazurkiewicz equivalence [Maz86, God95] to identify equivalent executions of which

only one needs to be explored. Equivalence classes are called (Mazurkiewicz) traces. Mazurkiewicz

equivalence is defined with respect to a dependency relation on transitions. Intuitively, a dependency

relation is required to mark two transitions as dependent if their ordering in executions influences some

local state or whether one of the two transitions is enabled. For example, a common approach is to

mark two transitions as dependent if they are from the same thread or they access the same global

variable and at least one of the transitions modifies its value. It is safe to overapproximate a dependency

relation, i.e., marking transitions as dependent although they could safely marked as independent as

well does not yield incorrect POR results. However, the induced equivalence classes may be smaller and

may result in a less effective POR.

Definition 15 (dependency relation [God95]). A dependency relation ∦ is a reflexive, symmetric relation

on transitions such that for any two threads T1, T2 and any two transitions R1 ∈ RT1 and R2 ∈ RT2 , R1

and R2 may only be independent if R1 does neither enable nor disable R2 and they are commutative, i.e.:

• ∀ι1, ι2 ∈ X.∀s ∈ S.R1, R2 ∈ enabled(s)⇒ Rι11 (Rι22 (s)) = Rι12 (Rι21 (s))

• ∀ι ∈ X.∀s ∈ S.R1 ∈ enabled(s)⇒ (R2 ∈ enabled(s)⇔ R2 ∈ enabled(Rι1(s)))

We write R1 ∦ R2 if R1 and R2 are dependent and R1 ‖ R2 if they are independent. We assume

that for all programs, an arbitrary dependency relation ∦ is given. In practice, it is common to consider
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two transitions dependent if they are from distinct threads and access the same global variable such

that at least one access modifies the variable. In order to simplify the detection of dependencies, the set

of possibly accessed variables of a transition can be overapproximated without loosing correctness.

Given a dependency relation, we can define Mazurkiewicz equivalence. Intuitively, two executions τ ,

τ ′ are (Mazurkiewicz) equivalent if τ ′ can be obtained from τ by repeatedly swapping two adjacent,

independent transitions.

Definition 16 (Mazurkiewicz equivalence). Mazurkiewicz equivalence is the smallest reflexive, symmet-

ric, and transitive relation ' on executions such that for all executions τ = s0, T1, s1, T2, s2, . . . sn and

τ ′ of the form

τ ′ = s′0, T1, s
′
1, . . . , s

′
i, Ti+2, s

′
i+1, Ti+1, s

′
i+2, Ti+3, s

′
i+3, . . . , s

′
n

(Ti+1 and Ti+2 are swapped)

with Next-Transition(si, Ti+1) ‖ Next-Transition(si+1, Ti+2), τ ' τ ′.

Two event sequences ρ(τ), ρ(τ ′) are (Mazurkiewicz) equivalent if their corresponding executions τ ,

τ ′ are equivalent.

The states occurring in τ may differ from those in τ ′, however, it is guaranteed that under the

same input, the values of local and global variables of each thread T , VT , are equal in the states of τ

and τ ′ [God96].

Terminating Programs For our contributions to dynamic partial-order reduction in Chapter 3, we

assume that programs always terminate (all executions are finite) and all information about program

input is given, intuitively, only in the initial state and executions do not depend on input symbols. This

setting is common in related work on dynamic partial-order reduction [God97, FG05, AAJS14].

As executions do not depend on program inputs, all transitions are functions independent of

input symbols. For an execution τ = s0, T1, s1, . . . , Tn, sn and its corresponding event sequence ρ =

(T1, k1) . . . (Tn, kn), each event ei corresponds to a unique, functional transition Rρ(ei) = Ri. The

property of branching directly propagates from a transition to all its events: an event ei is branching

if Rρ(ei) is branching. As transitions are functions independent of input, we write Ri(si−1) = si or

si−1
Ri−−→ si. Whenever Rρ(ei) = Rl,l′ we write lρ(ei) := l for the initial location of Rl,l′ .

If there exist states s1, . . . , sn and transitions R1, . . . , Rn−1 such that s1
R1−−→ s2 . . . sn−1

Rn−1−−−→ sn,

and ρ is the corresponding event sequence, ρ is a feasible event sequence at s1. If s1 = sinit, sn is

denoted by sρ. The set of feasible event sequences at sρ is denoted by feasible(ρ).
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The program order of a program models its control flow. We define the program order as a relation

PO ⊆ RG × RG and require that (Rl1,l2 , Rl3,l4) ∈ PO whenever l2 = l3 (which implies that both

transitions are from the same thread). For an event sequence ρ = e1 . . . en ∈ feasible(ε), we define that

ei <
ρ
PO ej whenever i < j and (Rρ(e1), Rρ(e2)) ∈ PO (<ρPO is a partial order on the events of ρ).

As we extend sdpor by Abdulla et al [AAJS14] in Chapter 3, we adapt their definition of happens-

before relations. A notable difference is that we define the ordering of events of the same thread

separately as program orders.

Definition 17 (happens-before relation [AAJS14]). For all execution prefixes τ , a happens-before

relation assigns a partial order <ρ to the corresponding event sequence ρ(τ) = e1, . . . , en. <ρ is a partial

order on the events of ρ such that

• ei <
ρ ej only if i < j

• For any prefix τ ′ = s0, T1, . . . , si of τ and any transitions ej , ek, j ≤ i, k ≤ i, we have ej <ρ ek if

and only if ej <ρ
′
ek.

• Any event sequence ρ′ which is a linearization of <ρ is assigned the same partial order <ρ=<ρ′ .

• For any two execution prefixes τ = s0, . . . , sn and τ ′ = s′0, . . . , s
′
n with <ρ(τ)=<ρ(τ ′), we have

sn = s′n.

• For any sequences ρ, ρ′, ρ′′ such that ρ · ρ′′ is an event sequence, we have <ρ=<ρ′ if and only if

<ρ·ρ
′′=<ρ′·ρ′′ .

• Let ρ′ = e1, . . . , en−1, e
′, e′′ be an alternative event sequence. If en−1 <

ρ en and en−1 6<ρ
′
e′ then

en−1 <
ρ′ e′′.

• Evens of the same thread are not related: tid(ei) = tid(ej)⇒ ei 6<ρ ej.

A happens-before relation satisfies the requirements on dependency relations in the sense that for two

transitions R1 and R2 of an execution with event sequence ρ such that e1 and e2 are the corresponding

events and e1 appears before e2 in ρ, R1 ∦ R2 ⇒ e1 <
ρ e2 ∨ e1 <

ρ
PO e2. Correspondingly, in Chapter 3,

we use happens-before relations as a basis for Mazurkiewicz equivalence so that for all event sequences

ρ, ρ′, we have ρ ' ρ′ ⇔<ρ=<ρ′ ∧ <ρPO=<ρ
′

PO.

For an event sequence ρ ∈ feasible(ε) with postfix ρ2 = e1 . . . en (ρ = ρ1 · ρ2), we write <ρ1,ρ2 for the

happens-before relation of ρ2 after ρ1: <ρ1,ρ2= {(e1, e2) ∈<ρ: e1 ∈ ρ2}. Similarly, we write <ρ1,ρ2
PO for

the program order of ρ2 after ρ1: <ρ1,ρ2
PO = {(e1, e2) ∈<ρPO: e1 ∈ ρ2}.
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In addition to happens-before relations, we adapt the definition of reversible races by Abdulla et al.

Intuitively, two events e, e′ in an event sequence constitute a reversible race if there exists an equivalent

sequence in which e and e′ are adjacent and dependent.

Definition 18 (reversible race [AAJS14]). Let ρ = e1 . . . en ∈ feasible(ε) be an event sequence. Two

events ei, ej of ρ constitute a reversible race, written ei -ρ ej, if

ei <
ρ ej ∧ ∀i < k < j.((ei 6<ρ ek ∧ ei 6<ρPO ek) ∨ (ek 6<ρ ej ∧ ek 6<ρPO ej))

∧Rρ(ej) ∈ enabled(e1 . . . ei−1ek1 . . . ekm(sinit)),

where ek1 . . . ekm is the sequence ei+1 . . . ej−1 with all events e removed that satisfy

e 6<ρ ej ∧ e 6<ρPO ej.



Chapter 3

Using Program Sections for Efficient

Dynamic Partial-Order Reduction

The effectiveness of POR approaches relies on the precision of the dependency relation. In the original

POR approaches, dependencies are calculated statically leading to an inaccurate over-approximation.

Dynamic partial order reduction approaches [FG05, GFYS07, AAJS14] tighten the precision of the

dependency relation by considering only dependencies occurring at runtime, leading to a less redundant

exploration.

While exploring the state space of a program, dynamic POR algorithms identify pairs of dependent

events which additionally need to be explored in reversed order so that all Mazurkiewicz traces are

covered. Such pairs of events constitute a reversible race [AAJS14]. In order to detect all reversible races

of a program, a dynamic POR algorithm checks for each event whether it constitutes a race with any

previous event in the current path. During each such race check, the algorithm needs (often multiple

times) to check whether two events are dependent. Therefore, dependency checks constitute a large part

of any dynamic POR algorithm’s runtime overhead.

In this chapter, we present Eager POR (epor), an optimization of dynamic POR algorithms such

as sdpor [AAJS14] that significantly reduces the number of dependency checks. epor eagerly creates

schedules to bundle dependency checks for sequences of events instead of checking dependencies in

every visited state. These sequences, called sections, correspond to program fragments of one or more

statements of each thread. By checking races in a section only once, many additional race checks and

dependency checks can be avoided. A new constraint system-based representation of Mazurkiewicz

traces ensures that all reversible races inside a section are explored in both orderings. As a result, epor

20
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1 Thread 1:
2 e1: write x

3 Thread 2:
4 e2: read x

5 Thread 3:
6 e3: read x

Figure 3.1: Readers-writers benchmark with one writer and two readers.

requires significantly fewer dependency checks compared to other DPOR algorithms where dependencies

are checked after the execution of every event.

3.1 Motivating example

As a motivating example, consider the Readers-Writers benchmark in Figure 3.1 (also used in [AAJS14,

FG05]). Thread 1 writes to the shared variable x (e1), Threads 2 and 3 read from x (e2 and e3). The

dynamic dependencies for all executions are

D = {(e1, e2), (e2, e1), (e1, e3), (e3, e1)},

as the operations e2 and e3 are commutative (do not constitute a race), while both e1, e2 and e1, e3 are

non-commutative, (constitute a race).

Our approach is based on the observation that the set of all Mazurkiewicz traces of program fragments

as in the Readers-writers example can be calculated without exploring any program states and checking

for races between operations only once. The program of Figure 3.1 has 4 (Mazurkiewicz) traces and the

dynamic POR algorithm sdpor [AAJS14] explores one execution per trace. Each execution consists

of 3 events, hence sdpor performs 3 race checks per execution (each time an operation is appended

to the current partial execution, a check is performed whether the current operation constitutes a

race with any previous operation of the current partial execution). Each race check consists of several

dependency checks (in order to decide whether e1 and e2 constitute a race, pairwise dependencies need

to be determined for all events that occur between e1 and e2). In total, sdpor performs 12 race checks

and 25 dependency checks.

By exploiting the fact that all executions consist of the same operations and contain the same races,

it is possible to reduce the number of race checks to 3 and the number of dependency checks to 8: after

exploring an arbitrary execution of the program, we know that each execution consists of e1, e2, and e3

and contains the races (e1, e2), (e1, e3) (either in this or in reversed order), which can be determined using

3 race checks. We construct four partial orders {(e1, e2), (e1, e3)}, {(e2, e1), (e1, e3)}, {(e1, e2), (e3, e1)},

and {(e2, e1), (e3, e1)}, which correspond to the four traces of the program. By computing a linear
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1 Thread 0:
2 e00: y := 0
3 e01: x[y] := 1

4 Thread 1:
5 e10: if x[0] = 0
6 e11: then z := 1

7 Thread 2:
8 e20: y := 1

Figure 3.2: A program with branchings.

extension of each partial order, we obtain an execution of each trace. In Section 3.2.1, we explain how

to generalize this idea to systems with dynamic dependencies.

3.2 Constraint system-based POR

3.2.1 Exploring programs in sections

Requirements for Sections

As described in our motivating example (Section 3.1), epor requires only 3 instead of 12 race detections

and only 8 instead of 25 dependency checks when exploring the Readers-Writers program. This reduction

is possible because two conditions are met: every event sequence of maximal length feasible at the

initial state of Readers-Writers contains the same events and dependencies do not depend on states (it

is possible to precisely calculate all dependencies statically).

In order to generalize our approach to arbitrary programs, we identify program fragments called

sections where a generalization of these two conditions hold:

(A) Every execution of the section contains the same set of events and these events correspond to the

same program locations.

(B) Dependencies inside the section are the same among any execution of the section, modulo the

ordering of dependent events (hence, it is possible to precisely calculate all dependencies of the

section with the information given at the first state of the section).

Once all traces for a section are explored, epor performs the same race checks as sdpor in order to

find races between events inside the current section and events preceding the current section.

Throughout this section, we use the program of Figure 3.2 as an example to explain conditions (A)

and (B). Here, three threads work on the shared variables x, y, and z, where x is an array of length two.

Statements are labeled with events e00, e01, e10, e11, e20, meaning that the execution of a statement is

modeled by the event it is labeled with. Events e00, e01, and e10 constitute a section. Including e11 in

the same section would violate condition (A) and including e20 would violate condition (B), as detailed

below.
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In order to meet condition (A), we have to ensure that the same set of events occurs, no matter how

the section is executed. Different events may occur when a section contains a control flow branching so

that both branches are reachable and yield a different number of events. Hence, we want to ensure that

such two branches are assigned to separate sections. Formally, we require that for any branching event e

in a section of some event sequence ρ ∈ feasible(ε), all program order successor events e′ (e <ρPO e′) are

not contained in the same section as e.

For example, in any event sequence ρ ∈ feasible(ε) of the program in Figure 3.2, event e11 cannot be

part of the same section as e10 because e10 is a branching event and e11 is a program order successor of

e10, i.e., e10 <
ρ
PO e11.

As long as a section does not contain any branching event and one of its program order successors,

condition (A) is satisfied. To illustrate this, assume that there exists an event sequence ρ ∈ feasible(ε),

in which we swap two events of different threads in the last section of ρ, yielding ρ′. Assume that ρ′

does not correspond to an execution, i.e., there exists an event in ρ′ that cannot be executed because no

enabled transition is available for the given thread. Let e be the first of any such events and let R be

the transition Rρ(e) that corresponds to e in ρ. Since threads may not block by assumption, R can only

be disabled because no transition that enables it is executed in ρ′. Hence, there must exist a program

predecessor e′ of e such that e′ occurs between the swapped events and e. Both e and e′ lie in the same

section, thus the above requirement is violated.

A section satisfies condition (B) if the dependencies inside the section can be determined at the

first state of the section. This condition holds if swapping two dependent events inside a section does

not influence whether following events are dependent. We characterize such a pair of dependent events

that influences following dependencies as hiding dependency so that the absence of hiding dependencies

implies (B). Let ρ0 ∈ feasible(ε) be an event sequence with a reversible race e1 -ρ0 e2. Then there exists

an equivalent event sequence ρ = ρ1 · e1 · e2 · ρ2. Let ρ′ = ρ1 · e2 · e1 · ρ2 be ρ with the race reversed. e1

and e2 form a hiding dependency, written e1
∗−→ρ e2, if:

• ρ′ is feasible at the initial state, i.e., ρ′ ∈ feasible(ε), and

• there exist e, e′ such that e and e′ have the same initial location in both ρ and ρ′, i.e., lρ(e) = lρ′(e)

and lρ(e′) = lρ′(e′), and

• e and e′ are happens-before related in e1 · e2 · ρ2 after ρ1, i.e., e <ρ1,e1·e2·ρ2 e′, and

• e and e′ are not happens-before related in e2 · e1 · ρ2 after ρ1, i.e., e 6<ρ1,e2·e1·ρ2 e′

In the example of Figure 3.2, event e20 cannot be in the same section as event e00 because they
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constitute a hiding dependency: the order in which e00 and e20 are executed influences the fact whether

e01 and e10 are dependent and constitute a race.

A section which contains no hiding dependency trivially satisfies condition (B). Although dependencies

inside of sections have to be independent of states inside the section, dynamic information about

dependencies that is known at the beginning of a section can be accounted for. Therefore, epor makes

use of all dynamic dependency information just as sdpor.

Implementing Section Construction

In order to implement an algorithm that relies on sections, it is desirable to determine where the next

section ends with only small overhead. Therefore, we use two static checks which detect branching

transitions (in order to ensure condition (A)) and hiding dependencies (in order to ensure condition (B)).

A transition Rl,l′ is conservatively marked as branching whenever there exists another transition

Rl,l′′ with l′ 6= l′′. This classification corresponds to marking all transitions that model a branching

statement as a branching transition, where a branching statement is a statement with multiple program

order successors, e.g., a conditional jump, an if-then-else construct, or a loop. This over-approximates

the set of all branching transitions (for example, a conditional jump with an unsatisfiable condition

would still be classified as a branching transition).

We prepare the check whether two events may form a hiding dependency by a static dependency

analysis. For each transition R, we calculate the set of program variables that can influence which

variables are accessed by R. For each such variable, all transitions writing to the variable are marked as

potentially influencing the set of variables accessed by R.

Constructing Mazurkiewicz Traces

Once the events and races of a section are known (e.g., by executing an arbitrary interleaving until

the end of the current section), it is possible to calculate the Mazurkiewicz traces of all alternative

executions of the section without calculating any further program states as follows. A Mazurkiewicz

trace can be calculated by constructing a directed graph with events as nodes and an edge between two

events e and e′ whenever e should occur before e′ in all representatives of the Mazurkiewicz trace. If the

resulting graph is acyclic, it induces a partial order that directly corresponds to a Mazurkiewicz trace

and any of its linear extensions is a representative of the Mazurkiewicz trace. Otherwise, the graph

contains a cycle and there exists no execution that obeys the ordering of the graph.

For the example of Figure 3.2, we start by calculating a Mazurkiewicz trace of the section containing

e00, e01, and e10. We calculate the Mazurkiewicz trace where e01 occurs before e10 by defining the
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following graph:
e00 e01 e10

po dep

The edge (e00, e01) represents the program order of Thread 1 and the edge (e01, e10) represents the

(only) race of the section. Because the graph is acyclic, there exists a linear extension of the induced

partial order, e00e01e10, and we found a Mazurkiewicz trace of the program. By swapping the direction

of the edge (e01, e10), we obtain a graph for another Mazurkiewicz trace where the race e01 -e00e01e10 e10

is reversed. We do not swap the edge (e00, e01) because it represents the program order, which is obeyed

by all executions.

A linear extension of the induced partial order can be constructed in linear time w.r.t. the number

of nodes by iteratively removing a minimal node (a node with no incoming edge) and all its outgoing

edges [PR94]. If no minimal node is found, the graph is cyclic.

By calculating Mazurkiewicz traces as described, it is possible to construct representatives of all

Mazurkiewicz traces “in advance”, i.e., without performing any (typically expensive) program state

computations.

3.2.2 Formal foundations of trace construction

This section formalizes the notions introduced in Section 3.2.1 and details how epor constructs

Mazurkiewicz traces from a given event sequence.

Section 3.2.1 describes sections as program fragments and specifies two conditions (A) and (B) they

have to satisfy in order to support our POR algorithm. We model a section as the set of event sequences

that correspond to an execution of the program fragment of the section. We write section(ρ), where ρ is

feasible at sinit, for the set of event sequences that are feasible at sρ and include exactly those events

that model the statements of a section. Formally, section(ρ) includes all event sequences ρ′ = e1 . . . ek

that are feasible at sρ and satisfy (where conditions (A) and (B) have been introduced informally in

Section 3.2.1):

(A): For each branching event e in ρ′, no event in program order with e follows e in ρ′: ∀1 ≤ i ≤

k. branching(ei)⇒ ∀i < j ≤ k. ei 6<ρ,ρ
′

PO ej and

(B): ρ′ contains no hiding dependency: ∀1 ≤ i ≤ k. ∀i < j ≤ k.¬ei
∗−→ρ·ρ′ ej and

• maximality: There is no event e such that ρ′ · e satisfies the above requirements.

For some section(ρ), a POR algorithm ideally explores only a subset section-rep(ρ) ⊆ section(ρ)

that contains exactly one representative of each Mazurkiewicz trace of the event sequences in section(ρ).



CHAPTER 3. DYNAMIC PARTIAL-ORDER REDUCTION 26

In order to formalize the generation of section-rep(ρ), we introduce trace constraint systems. Each

satisfiable trace constraint system corresponds to a fragment of a Mazurkiewicz trace. The constraints

of a trace constraint system in conjunction with the program order specify the fragment’s partial order

of events. By reversing those constraints, it is possible to reverse races and thereby generate all event

sequences of section-rep(ρ) for some ρ.

Formally, a trace constraint system is a tuple c = (A,Cvar , Cfixed) where

• A = {e1, . . . , ek} is a set of events.

• Cvar ∈ A×A is a set of variable constraints of c.

• Cfixed ∈ A×A is a set of fixed constraints of c.

Whenever, for two event sequences ρ ∈ feasible(ε), ρ′ = e1 . . . en ∈ feasible(ρ), we have

• A = {e1, . . . , en},

• Cvar =<ρ,ρ′ , and

• Cfixed =<ρ,ρ
′

PO ,

we call c the trace constraint system of ρ′ at sρ and write c = CS(ρ, ρ′).

Given a state sρ for some event sequence ρ, one can construct an event sequence ρ′ from section(ρ)

by starting with ρ′ = ε and iteratively adding events for enabled transitions at sρ·ρ′ until adding another

event would violate one of the conditions (A) and (B). All remaining event sequences of section-rep(ρ)

can subsequently be constructed by the use of trace constraint systems as follows. First, the trace

constraint system CS(ρ, ρ′) that corresponds to the trace of ρ′ is constructed. Subsequently, all trace

constraint systems which are equal to CS(ρ, ρ′) except for one or more reversed variable constraints are

constructed. The set of these constraint systems is called traces(ρ) and defined as (given ρ′ as described

above)
traces(ρ) := {(A,Cvar , Cfixed) : A = {e : e ∈ ρ′}

∧ Cfixed =<ρ,ρ
′

PO

∧ ∀e1, e2 ∈ A. e1 <
ρ,ρ′ e2 ⇔ (Cvar(e1, e2) ∨ Cvar(e2, e1))}.

A solution ρ of a trace constraint system c = (A,Cvar , Cfixed), written ρ ∈ solutions(c), is an event

sequence that (1) obeys the variable constraints in Cvar , and (2) obeys the fixed constraints in Cfixed.

Formally, we require for ρ = e1, . . . , en that ∀1 ≤ i ≤ n.∀i ≤ j ≤ n.¬Cvar(e2, e1) ∧ ¬Cfixed(e2, e1).

We call c satisfiable if a solution of c exists. A solution of a satisfiable trace constraint system c can

be constructed in linear time with respect to the number of events that are contained in c. For example,
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create a linear extension of the partial order induced by the union of Cvar and Cfixed in c. If this union

contains cycles, c is not satisfiable, which is easily detected by a linear extension algorithm.

Using the notion of traces(ρ), one can construct section-rep(ρ) as a set that contains exactly one

solution of each satisfiable trace constraint system in traces(ρ). As each trace constraint system in

traces(ρ) is unique, only one representative of each trace of section(ρ) is constructed, enabling an optimal

POR exploration. Correctness of section-based exploration is provided by the following theorem; given

an event sequence ρ′ ∈ section(ρ), there exists a constraint system c ∈ traces(ρ) whose solutions are

equivalent to ρ′.

Theorem 1 (Correctness of section-based exploration).

∀ρ ∈ feasible(ε).∀ρ′ ∈ section(ρ).∃c ∈ traces(ρ).∀ρ′′ ∈ solutions(c). ρ′′ ' ρ′

Proof. Let ρ ∈ feasible(ε), ρ′, ρ′′ ∈ section(ρ). Because of condition (A) in the definition of section(),

ρ′ and ρ′′ correspond to the same transitions (correspond to the same control flow) (1). Because of

condition (B) in the definition of section(), the same data dependencies appear in ρ′ and ρ′′ (2). Let

traces(ρ) be calculated on the basis of CS(ρ′); by definition, all constraint systems in traces(ρ) contain

exactly the events of ρ′ and contain exactly one constraint for each dependency in <ρ,ρ′ . Additionally,

there exists a constraint system in traces(ρ) for every ordering of races in ρ′. Hence, and because of (1)

and (2), there exists some c ∈ traces(ρ) whose constraints correspond to the ordering of races in ρ′′. By

the definition of solutions(), all event sequences ρ′′′ ∈ solutions(c) are linear extensions of the partial

order induced by the constraints of c and the program order for dom(ρ′). Hence, ρ′′′ ' ρ′′.

3.2.3 The Eager POR algorithm

This section introduces our dynamic POR algorithm epor. It is an extension of the sdpor Algo-

rithm [AAJS14]. Instead of exploring single events at each recursive call, epor creates schedules for

sections of the program under analysis. If no schedule is currently present, epor creates new schedules

for all event sequences in the section starting at the current state. If a schedule is present, it is used to

guide the exploration. Checks for races inside a section are only performed once when schedules are

created; checks for races between an event before the current section and an event inside the current

section are still performed at every recursive call in order to ensure correctness.

As epor is based on sdpor, we repeat basic definitions from sdpor’s pseudo

code [AAJS14]. Let ρ ∈ feasible(ε) be a feasible event sequence. The next event of a thread T

at state sρ is denoted by nextρ(T ) and ρ · T denotes ρ · nextρ(T ). For two threads T1, T2 with

e1 = nextρ(T1), e2 = nextρ(T2), we write ρ � T1♦T2 to denote that e1 and e2 are independent af-
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Algorithm 1: The epor algorithm
Initially : Explore(ε, 0)
Data: sleep := ∅, backtrack := ∅, schedule := λρ.∅

1 Function Explore(ρ, sec-start)
2 if (enabled(ρ) \ sleep(ρ)) = ∅ then
3 return
4 if schedule(ρ) = ∅ then
5 sec-start := length(ρ)
6 Fill_Schedule(ρ)
7 Done := ∅
8 while ∃T ∈ (schedule(ρ) \Done) do
9 Race_Detection(ρ, sec-start, T)

10 sleep(ρ) := {T ′ ∈ sleep(ρ) : ρ � T♦T ′}
11 Explore(ρ·T , sec-start)
12 add T to Done
13 add T to sleep(ρ)
14 while ∃T ∈ (backtrack(ρ) \ sleep(ρ)) do
15 sec-start := length(ρ)
16 Race_Detection(ρ, sec-start, T)
17 sleep(ρ) := {T ′ ∈ sleep(ρ) : ρ � T♦T ′}
18 Explore(ρ·T , sec-start)
19 add T to sleep(ρ)

20 Function Fill_Schedule(ρ)
21 foreach ρ1 ∈ section-rep(ρ) do
22 foreach prefix ρ2 = e1 . . . en of ρ1 do
23 T := tid(en)
24 add T to schedule(ρ · ρ2)
25 sleep(ρ · ρ2) :=

{T ′ ∈ sleep(ρ · ρ2) : ρ � T♦T ′}

26 Function Race_Detection(ρ, sec-start, T)
27 let ρ′ be the prefix of ρ of length sec-start
28 foreach e ∈ ρ′ with e -ρ·T nextρ(T ) do
29 ρ1 := pre(ρ, e)
30 ρ2 := notdep(ρ, e) · T
31 if Iρ1 (ρ2) ∩ backtrack(ρ1) = ∅ then
32 add some T ′ ∈ Iρ1 (ρ2) to backtrack(ρ1)

ter ρ, i.e., e1 6<ρ·e1·e2 e2 ∧ e1 6<ρ·e1·e2,PO e2. Overloading the notation enabled(), we define enabled(ρ) =

{T : Next-Transition(sρ, T ) 6= ⊥}. For ρ′ ∈ feasible(ρ), we define T ∈ Iρ(ρ′) ⇔ ∃ρ′′. ρ · ρ′ ' ρ · T · ρ′′.

For event e in ρ, pre(ρ, e) denotes the prefix of ρ up to but not including e and notdep(ρ, e) denotes the

subsequence of ρ that contains all events that occur after e in ρ but are not dependent with e in ρ.

The epor algorithm is shown as Algorithm 1. The main routine Explore(ρ, sec-start) takes as

arguments an event sequence ρ that identifies the current state of the program and an integer sec-start

that identifies the index in ρ at which the last section of ρ starts. The initial call is Explore(ε, 0) so

that the exploration starts at the initial state. epor uses three global variables sleep, backtrack, and

schedule, which map an event sequence to a set of threads. For some event sequence ρ feasible at the

initial state, sleep(ρ) corresponds to the sleep set at state sρ, backtrack(ρ) holds threads whose events

need to be explored at state sρ in order to reverse races between two events of different sections, and

schedule(ρ) holds threads which are scheduled at state sρ in order to explore a section.

At some call Explore(ρ, sec-start), epor first checks whether a deadlock is reached or ρ is sleep

set-blocked (line 2). Subsequently, if no schedule for the current state is present, the subroutine

Fill_Schedule() calculates section-rep(ρ) (as described in Section 3.2.2) and corresponding schedules

(lines 4–6).

The loop in lines 8–13 explores any events of threads that are scheduled for the current state in

order to explore a section. The subroutine Race_Detection() checks whether there are reversible races

between an event before the start of the current section (as specified in variable sec-start) and an event

inside the current section. This avoids race checks between two events that are both inside the current
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section. For every reversible race that is found, the reversed race is scheduled for later exploration just

as in the sdpor algorithm.

Finally, the loop in lines 14–19 explores any events of threads that have been scheduled for the

current state in order to reverse a race. Before the race check, the marker for the start of the current

section is updated so that all reversible races in the current event sequence are found.

Correctness

epor is correct in the sense that for every execution of a given program, it explores a representative of

the corresponding Mazurkiewicz trace.

Theorem 2 (Correctness of epor). ∀ρ ∈ feasible(ε).∀ρ1 ∈ feasible(ρ). ρ1 is maximal⇒

∃ρ2. ρ2 ' ρ1∧ Explore(ρ, length(ρ)) calls Explore(ρ · ρ2, ·), i.e., ρ2 is explored

Proof. In this proof, we use the ordering ∝, where ρ1 ∝ ρ2 if Explore(ρ1, ·) returned before Explore(ρ2,

·) (as in [AAJS14]).

We have to prove that for all ρ ∈ feasible(ε) and all maximal ρ1 ∈ feasible(ρ), there exists ρ2 ' ρ1

such that Explore(ρ, length(ρ)) calls Explore(ρ2, ·). Proof by induction on ρ, ordered by ∝.

Base case: Explore(ρ, ·) does not recursively call Explore(·, ·). Explore(ρ, ·) returns either in

line 2 or at the end of the function. In the former case, enabled(ρ) \ sleep(ρ) = ∅. By the correctness

of sdpor, no further event needs to be explored. In the latter case, schedule(ρ) \ Done = ∅. As no

recursive call is performed, the loop body is never executed and Fill_Schedule(ρ) has been executed

but has not added any threads to schedule(ρ). Hence, feasible(ρ) = ∅.

Inductive step: induction hypothesis: ∀ρ′ ∈ feasible(ε). ρ′ ∝ ρ⇒ ∀ρ′1 ∈ feasible(ρ′).

ρ′1 is maximal⇒ ∃ρ′2. ρ′2 ' ρ′1 ∧ ρ′2 is explored

Proof by contradiction. Let explored be the set of all explored threads at ρ, i.e., explored := {T :

Explore(ρ · T , ·) has been called by Explore(ρ, ·)}.

Assume that there exists a maximal ρ1 ∈ feasible(ρ) such that for all T ∈ explored and for all

ρ2 ∈ feasible(ρ · nextρ(T )) that are explored, ρ · ρ1 6' ρ · T · ρ2, i.e., no event sequence equivalent to ρ · ρ1

is explored. Then there exists a race ei -ρ·T ·ρ2 ej that distinguishes ρ · ρ1 and ρ · T · ρ2 (both ei and ej
do not occur in ρ). By the induction hypothesis, ei cannot occur in ρ2, hence, ei = nextρ(T ).

Case (1): ei and ej belong to different sections. Hence, a recursive call with ρ · T has been made by

Explore(ρ, ·) and we have ρ · T ∝ ρ. When ej was selected for exploration, the race detection in lines 9

or 16 must have checked ei and ej for a race, as they lie in different sections (Race_Detection(ρ ·T · . . .,

sec-start, T ′) has been called with sec-start ≥ length(ρ · T ) and T ′ = tid(ej)). By the correctness of
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sdpor and as epor uses the same race detection in case (1), there exists T ′′ ∈ backtrack(ρ) \ sleep(ρ)

that reverses the race ei -ρ·T ·ρ2 ej by the end of the race detection. All threads in backtrack(ρ)\ sleep(ρ)

are explored in Explore(ρ, ·). Contradiction.

Case (2): ei and ej belong to the same section section(ρ′) for some ρ′. By the definition of Fill_-

Schedule(), section-rep(ρ′) is explored. By Theorem 1, section-rep(ρ′) contains a representative of

every trace in section(ρ′) and the race ei -ρ·T ·ρ2 ej is reversed. Contradiction.

3.3 Implementation and evaluation

We implemented epor and sdpor in the Python programming language and ran it on multiple benchmark

programs that are written in a simple imperative programming language where threads communicate

over shared memory. We used sequential consistency as a memory model, which corresponds to total

program orders. Two events are data dependent if one of the events writes to a memory location the

other event either reads from or writes to. All experiments were run on 8 Intel i7-4790 CPUs at 3.60GHz

with 16 GB main memory. Software material for reproduction of these experiments is available [Met20].

We use the runtime and the number of dependency checks as main metrics for the comparison of

epor and sdpor. A dependency check determines whether two events are in the dynamic dependency

relation of the current program and is often performed several times in order to determine whether two

events constitute a reversible race. The complete results can be found in Appendix A. A missing runtime

indicates that the corresponding algorithm did not terminate for the given benchmark configuration

within 35000 seconds (∼ 9.7 hours) or required more than 16 GB of memory.

In Table 3.1, we present results for four benchmarks which have previously been used to evaluate

dynamic POR algorithms. The Readers-Writers, Indexer, and Last Zero benchmarks are used in [AAJS14]

to evaluate sdpor; the Shared Pointer benchmark is borrowed from [GFYS07]. The Readers-Writers (N)

benchmark contains a single writer and N − 1 readers. The Indexer (N) benchmark consists of N

threads that write to a shared hash table. It is the only benchmark presented here that contains hiding

dependencies. The scheduling of an execution influences the control flow behavior. The parameter of the

Indexer benchmark specifies the number of threads. The Last Zero (N) benchmark consists of N − 1

threads that update a shared array and an additional threads that reads the same array. Again, the

scheduling of an execution influences the control flow behavior. The Shared Pointer (N) benchmark

consists of two equal threads which execute a loop N times, followed by an update of the respective

other’s threads pointer.

In all four benchmarks, epor shows a speed-up over sdpor for the highest parameter. The number
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Table 3.1: Comparison of epor and sdpor on four well-known benchmarks.

Benchmark Algorithm Time (s) Traces Dep. Checks Speedup(%)

Readers-Writers (9) sdpor 0.668 256 60885 —
Readers-Writers (9) epor 0.400 256 3204 40.1
Readers-Writers (20) sdpor 6874.472 524288 1570045995 —
Readers-Writers (20) epor 2728.742 524288 17827145 60.3

Indexer (12) sdpor 0.413 8 27072 —
Indexer (12) epor 0.284 8 19325 31.2
Indexer (16) sdpor 13060.033 32768 1345407904 —
Indexer (16) epor 7998.984 32805 466384458 38.8

Last Zero (6) sdpor 0.911 96 66384 —
Last Zero (6) epor 0.724 96 29570 20.5
Last Zero (16) sdpor not terminating within 35000 s / 16 GB
Last Zero (16) epor 18408.671 262144 7232899654 —

Shared Pointer (50) sdpor 32.529 101 14074966 —
Shared Pointer (50) epor 17.398 101 11459539 46.5
Shared Pointer (100) sdpor 238.968 201 192707828 —
Shared Pointer (100) epor 170.762 201 154590222 28.5

1 Thread TID:
2 x[(TID+1)%l] := x[TID]

Figure 3.3 (a) Ring

1 Thread TID:
2 if x[TID] == 0 then
3 x[(TID+1)%l] := 1
4 if x[TID] == 0 then
5 x[(TID+1)%l] := 1

Figure 3.3 (b) Branching

1 Thread TID:
2 x[(TID+1)%l] := x[TID]
3 x[(TID+1)%l] := x[TID]

Figure 3.3 (c) Ring Extended

Figure 3.3: Three artificial benchmarks (x is a global array of length l, a is a local variable. Each program
statement is executed atomically.)

of dependency checks is always lower for epor than for sdpor (except for Indexer (11), where no races

occur), while the number of explored maximal event sequences is equal between epor and sdpor for all

configurations.

In order to investigate the performance of epor in special cases, we have designed two artificial

benchmarks Ring and Branching, which are depicted in Figure 3.3b and 3.3a. They loosely resemble

the communication of threads which communicate in a ring, for example as in a ring election protocol.

Every line is executed atomically. The Branching benchmark consists of two branching statements

and two assignments; whether the assignments are executed depends on the scheduling of a particular

execution. In the Ring benchmark, each thread likewise communicates with its next thread, but without

control flow branchings. The Ring benchmark is similar to the Readers-Writers benchmark, but shows a

higher number of dependencies, as each thread is both reading and writing. Selected results for these

two benchmarks are depicted in Table 3.2.
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Table 3.2: Comparison of epor and sdpor on two simple benchmarks.

Benchmark Algorithm Time (s) Traces Dep. Checks Speedup(%)

Ring (17) sdpor 5984.174 131070 734642101 —
Ring (17) epor 538.031 131070 2096753 91.0
Ring (19) sdpor not terminating within 35000 s / 16 GB
Ring (19) epor 2884.695 524286 8653144 —

Branching (5) sdpor 1.180 311 145186 —
Branching (5) epor 1.045 311 114640 11.4
Branching (11) sdpor 19068.490 318363 2200202598 —
Branching (11) epor 8220.448 318978 1343673801 56.9

For the Ring and Branching benchmarks, epor requires considerably less dependency checks than

sdpor for all configurations. The number of explored traces is equal for epor and sdpor except for

the Branching benchmark with 9 to 11 threads. The speed-up of epor over sdpor is very prominent

for the Ring benchmark; sdpor does not terminate for 19 threads. Equally significantly, epor requires

several orders of magnitude less dependency checks than sdpor. For the Branching benchmark, epor

still shows a considerable speed-up over sdpor, however, the saving in terms of dependency checks is

lower than for the Ring benchmark.

Less Unsatisfiable Trace Constraint Systems

Interestingly, epor shows a much higher runtime overhead than sdpor for a slightly changed Ring

benchmark as depicted in Figure 3.3c (Ring Extended). Here, each thread repeats its assignment so

that the program order is not empty as opposed to the Ring benchmark.

As will be detailed later, epor (in its original form) does not scale as well for this benchmark as

for the benchmarks previously presented. We explain this by the fact that epor generates at most 2

unsatisfiable trace constraint systems for the previous benchmarks while the number of unsatisfiable

trace constraint systems for the Ring Extended benchmark increases with the number of threads. These

additional unsatisfiable constraint systems occur due to the dependency structure of the Ring Extended

benchmark. Each thread consists of two transitions, which model its two assignments. Each of these

transitions depends on both transitions of the previous thread and additionally on both transitions of

the next thread. Consequently, when combining the constraints of a trace constraint system for the

Ring Extended benchmark with the program order between the two transitions of each thread, a cycle

occurs with considerably higher probability than it is the case for the Ring benchmark.

For program fragments with dense dependencies as in the Ring Extended benchmark, we propose an
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Table 3.3: Comparison of epor, epor-sh (short sections), and sdpor on the Ring Extended benchmark.

Benchmark Algorithm Time (s) Traces Dep. Checks Unsat. TCS Speedup(%)

Ring Extended (6) sdpor 70.729 38466 7537485 0 —
Ring Extended (6) epor 3412.561 38466 144095 16738750 -4724.8
Ring Extended (6) epor-sh 72.869 38466 6747840 126 -3.0
Ring Extended (8) sdpor 6552.194 1548546 806537903 0 —
Ring Extended (8) epor not terminating within 35000 s / 16 GB
Ring Extended (8) epor-sh 5061.882 1548546 720212287 510 22.7

alternative definition of sections in order to reduce the generation of unsatisfiable trace constraint systems.

Specifically, sections are shortened so that no trace constraint systems are generated whose constraints

show cycles due to a combination with the program order. We call these adapted sections short sections.

Cycles due to the program order can be avoided by permitting only one dependent event per thread

inside a single short section. Formally, we define short sections by adding the following constraint to

the definition of sections given in Section 3.2.2 such that all event sequences ρ′ = e1 . . . ek ∈ section(ρ)

additionally satisfy ∀ei, ej , em, en ∈ ρ. ei <ρ,ρ
′
ej ∧ em <ρ,ρ

′
en ∧ tid(ei) = tid(em)⇒ ei = em.

We have implemented the epor algorithm with short sections instead of sections, denoted by epor-sh,

and compare it with epor and sdpor on the Ring Extended benchmark. The observed numbers are

shown in Table 3.3. For 6 threads, epor-sh still shows a considerable number of unsatisfiable constraint

systems but reduces this number by more than 99% in comparison to epor with original sections. While

epor is more than 47 times slower than sdpor for 6 threads and does not terminate for 8 threads,

epor-sh is only slightly slower than sdpor for 6 threads and more than 22% faster than sdpor for 8

threads. Hence, the overhead of generating the remaining unsatisfiable trace constraint systems is still

small enough so that epor-sh outperforms sdpor. Appendix A shows the performance of epor-sh on

our remaining benchmarks.

In order to increase the robustness of epor, it is perceivable to dynamically adapt the section length

to the dependency structure of the program. Additionally, we expect that the number of generated

unsatisfiable trace constraint systems can be reduced by exploiting information about the infeasibility of

a constraint system to prevent the generation of further trace constraint systems that contain the same

cycle (with or without program order). Such optimizations would further improve the performance of

epor and epor-sh.



Chapter 4

Generating Safe Scheduling

Constraints by Iterative Model

Checking

This chapter presents the concept and formal foundation of our approach to guarantee safe executions

with only incomplete verification results. We investigate the necessary and desirable properties of

scheduling constraints that can be used for iterative model checking and safe executions of concurrent

programs. Furthermore, we introduce an iterative model checking approach that generates scheduling

constraints from incomplete verification results. The enforcement of scheduling constraints is discussed

in Chapter 5.

Under the premise that a complete verification of many realistic concurrent programs is infeasible,

or at least too slow to be carried out before the deployment of a program, we are interested in how

incomplete verification results can be used to safely execute a program at least under scheduling

constraints. If we accomplish to translate an incomplete verification result to scheduling constraints

which guide the scheduler so that unsafe states are avoided, we trade freedom of scheduling for a

facilitated verification process. Clearly, arbitrary scheduling constraints are not suitable, as, for example,

forcing a program into a deadlock may be safe but prevents further usage of the program.

Our framework is designed to make the amount of non-determinism and thereby the complexity of

the verification task adjustable by using incomplete verification results and reducing non-determinism

by dynamically constrained scheduling. In particular, instead of waiting for a complete verification,

34
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Verifier Unconstrained scheduling

Verify
program

If verification
terminates

Program
can be
safely
used

Figure 4.1 (a) Conventional

Verifier Constrained scheduling

Verify
program

Submit initial
constraints

Iteratively
update
constraints

If verification
terminates
Remove
constraints

Program
can be
safely
used

Figure 4.1 (b) With scheduling constraints

Figure 4.1: The program verification process (sequence diagram)

we propose to use incomplete verification results that guarantee program correctness under scheduling

constraints.

The conventional verification process can be summarized as follows:

1. Develop or update a program.

2. Verify the program.

3. In case the verification is successful, the program can be safely used under a non-deterministic

scheduler.

In case verification is successful, correctness is ensured for all feasible schedules of the program. This

guaranty comes at the price of a typically large verification delay because of exponentially many schedules

when unconstrained (non-deterministic) scheduling is used.

Instead of waiting until the program is completely verified, we propose to use a program under

scheduling constraints induced by an incomplete verification result. Specifically, our approach proceeds

as follows.

1. Develop or update a program.
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2. Start the verification of the program.

3. As soon as a suitable incomplete verification result is available, the program can be safely used

under the induced scheduling constraints.

4. If another suitable incomplete verification result becomes available, the scheduling constraints can

be updated.

5. If the verification completes, the scheduling constraints can be removed. Otherwise, the program

can still be safely used under the scheduling constraints.

An important requirement on incomplete verification results to be suitable for constrained scheduling

is that all program inputs must be covered, i.e., that the extracted scheduling constraints permit to

execute the program safely and without deadlock regardless of the current input. Meaningful intermediate

verification results either show a counter example for program correctness or guarantee correctness under

some feasible scheduling constraints. No additional constraints should be necessary such as constraints

about program inputs or execution length, as a program may not be fully operational under such

constraints. In particular, a correct schedule has to be known for each possible program input, even if

inputs are given interactively (during a program execution). We formally investigate such requirements

on incomplete verification results in Section 4.2.

The difference between conventional verification and IRS is illustrated in Figure 4.1. Conventionally,

the usage of a program is delayed until after the complete verification, which may even be infeasible.

Suitable incomplete verification results enable to reduce this delay at the expense of freedom in scheduling.

In case a complete verification of a program is infeasible, scheduling constraints extracted from incomplete

verification results enable a verification of the program in the first place. The enforcement of scheduling

constraints presumably incurs an overhead in execution time. In this case, the combination of several

incomplete verification results might be used to reduce this overhead. For example, the scheduling

constraints of several incomplete verification results can be compared and the one with the least overhead

can be used. If the scheduling constraints of several incomplete verification results overlap, the scheduling

constraints can be relaxed, which may reduce the overhead. When the overhead of enforcing scheduling

constraints can be reduced, it is possible to exploit the sweet spot between a short verification delay,

where only few incomplete verification results are necessary, and a low overhead, for which many

incomplete verification results might be necessary. In other words, our goal is to find as much incomplete

verification results as necessary for an acceptable execution time performance and no more incomplete

verification results than necessary in order to limit the verification delay.
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Besides finding an execution that can be enforced with a small execution time overhead, aspects

such as fairness may be important as well and scheduling constraints can be used to guarantee a safe

and fair execution (if such an execution is found by the verifier), so that no thread starves.

Furthermore, an interesting feature of scheduling constraints from incomplete verification results is

that an unsafe program can be safely used, as long as the verifier finds scheduling constraints that hide

the defect. The defect may either be corrected or left unchanged with scheduling constraints ensuring

that the defect does not manifest. In contrast, with conventional verification it is necessary to correct

the program before it can be safely used and the verification process is required to be restarted and

completed successfully.

Indeed, using incomplete verification results implies that the answer to the verification problem is

not either safe or unsafe anymore but may also be partially safe.

Examples for applications of scheduling constraints extracted from incomplete verification results

include:

1. A program that is infeasible to verify completely because of concurrency and the involved state

space complexity can be safely used.

2. Concurrent programs can be used in safety-critical environments, where a successful verification is

mandatory and prevents the use of arbitrary concurrent programs.

3. If a program update introduces a defect that occurs only under certain thread interleavings, the

program can be safely used under scheduling constraints that hide the defect.

4. More generally than 3, IVRs can be used to safely execute unsafe programs which are safe under at

least one scheduler. E.g., instead of programming synchronization explicitly, our model checking

algorithm can be used to synthesize synchronization so that all executions are safe. Information

on which synchronization is valid is specified via the property to be verified, e.g., by assertion

statements in the program.

5. The verification process can be stopped after a given time budget is exhausted. The best scheduling

constraints that are found until then are used.

6. Under a given budget of execution time performance (e.g., maximum execution time overhead

or responsiveness), scheduling constraints of incomplete verification results can continuously be

tested for their execution time performance. Once scheduling constraints are found under which

the program can be executed fast enough, verification can be stopped.
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1 initially:
2 empty buffer of size N
3 count = 0
4 mutex = 0
5

6 thread T1:
7 while true:
8 produce()
9

10 thread T2:
11 while true:
12 consume()

13 produce:
14 lock(mutex)
15 if count < N:
16 put item
17 count += 1
18 else:
19 error (overflow)
20 unlock(mutex)
21

22 consume:
23 lock(mutex)
24 if count > 0:
25 remove item
26 count −= 1
27 else:
28 error (underflow)
29 unlock(mutex)

Figure 4.2: An erroneous version of the producer-consumer problem

7. In addition to 6, the verification can be continued after the program is used. When faster scheduling

constraints are found, they can replace the current scheduling constraints under which the program

is used. With a suitable implementation, it is not necessary to update the program itself.

Our iterative model checking approach provides safety verification of potentially non-terminating

programs with a bounded number of threads, non-deterministic input, non-deterministic scheduling,

and shared memory. Each iteration produces an incomplete verification result (IVR) to prove the safety

of a program under a (semi-)deterministic scheduler. The scheduling constraints contained in an IVR

allow to safely execute the program under analysis, as discussed in Chapter 5, even if the underlying

operating system scheduler is non-deterministic.

We use the producer-consumer example from Figure 4.2 to explain our approach. The verifier

analyses an initial schedule, e.g., where threads T1 and T2 produce and consume in turns, and emits

an IVR R1, guaranteeing safe executions under this schedule. With its second IVR, the verifier might

verify the correctness of producing two items in a row and the scheduling constraints can be relaxed

accordingly. When the verifier hits an unsafe execution (the producer causes an overflow or the consumer

causes an underflow), it emits an unsafe IVR for debugging. If the verifier accomplishes to analyze all

possible executions of the program, it will report the final result partially safe, as the program can be

used safely under all inputs but unsafe executions exist. Had there been no unsafe or safe IVR, the final

result would be safe or unsafe, respectively.

This chapter shows how to instantiate our approach by answering the following questions:

1. Which state space abstractions are suitable for iterative model checking?
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Algorithm 2: IMC and IRS for a program P
Data: R – the current IVR, initially τ 7→ ∅ (no execution is permitted)
G – the current state of the verifier

1 Verifier:
2 while not finishedG (verification is not complete) do
3 R′ ← Model_Checking_Iteration(R)
4 if R′ contains an error path then
5 yield error path for debugging
6 if R′ is suitable for IRS then
7 update R based on R′

8 Execution environment:
9 set the current partial execution τ to the empty sequence

10 while P has not terminated do
11 choose some thread T from R(τ)
12 execute the next event of T
13 append T and the current state of P to τ

The abstraction should be able to represent non-terminating executions and facilitate the extraction

of schedules.

2. How to formalize and represent suitable IVRs?

IVRs should be as small as possible in order to allow short iterations, while they must be large

enough to guarantee fully functional executions under all possible program inputs. More precisely,

for every possible program input, an IVR must cover a program execution.

3. What are suitable model checking algorithms that can be adapted to produce IVRs?

A suitable algorithm should easily allow to select schedules for exploration.

4.1 Framework

We aim for a framework of iterative model checking (IMC) and iteratively relaxed scheduling (IRS) that

allows to the previously described reduction of verification complexity and execution under reduced

scheduling non-determinism. Algorithm 2 illustrates the composition of our framework. A verifier

performs IMC and reports incomplete verification results (IVRs). The scheduling constraints contained

in the current IVR are enforced by the execution environment, which performs IRS. In addition to

reporting IVRs for admissible executions, the verifier may report error paths for debugging purposes.

After an error path has been reported, the verification can be continued (even before the defect is

repaired) as long as the verifier ensures that no error path is contained in the current IVR used by

the execution environment. In order to prevent unnecessary assumptions on the verifier, we do not

require the use of a specific data structure such as a state graph. Instead, we only require that the

verifier maintains an internal state G that contains information on safe parts of the state space. We
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write finishedG for the condition that verification is complete. If no error path is found and finishedG

holds, a program is safe without scheduling constraints. Later, we will also use the predicate safeG(),

defined such that for all states s, safeG(s) guarantees that the error location is not reachable from s

(∀s, s′ ∈ S. safeG(s) ∧ RG(s, s′) ⇒ l(s′) 6= lerror). In other words, safeG(s) holds if the verification for

the subset of executions that start at s is complete and no error has been found among these executions.

During execution of a program, the IRS execution environment maintains that the current partial

execution τ adheres to the scheduling constraints represented by IVR R. An IVR is a function which

maps an execution prefix τ to a set of admissible threads.

In Algorithm 2, verifier and execution environment are executed concurrently. The execution

environment can be executed several times during a single run of the verifier. For example, it must be

possible to use the program, i.e., execute many steps of the execution environment after the verifier has

completed a single iteration and is not able to produce another IVR.

The execution environment of Algorithm 2 produces an interleaving of an admissible execution. For

an efficient enforcement of scheduling constraints with a low execution time overhead, it is possible to

relax this strict interleaving. Please refer to Section 5.1 for a discussion and a solution to this issue.

Algorithm 2 in line 6 checks whether the latest produced R′ is suitable for IRS. To define this

suitability is a main concern of this chapter and discussed in Section 4.2. In broad terms, an IVR should

either show an error path or permit only executions that are

• safe,

• deadlock-free, and

• in case of infinite executions, fair.

To permit only executions that are proven to be safe is our main goal. Therefore, only executions that

are explicitly permitted may be executed. Deadlock-freedom, however, is important as well in order to

ensure that a program can be fully used and IRS does not introduce new deadlocks, for example, because

a particular input has not been considered during verification and the execution environment does not

know how to safely continue the execution when this input occurs. Finally, fairness is important to make

use of all threads and avoid the starvation of a thread. How to generate IVRs is discussed in Section 4.4.

If it is possible to reduce the execution time overhead by relaxing scheduling constraints or by finding

new scheduling constraints that are faster to enforce, the overhead incurred by IRS can be adjusted:

the more schedulings are verified, the less overhead will occur. In this case, the sweet spot between a

short verification delay and a small execution time overhead can be found by continuously testing the
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1 initially:
2 empty buffer of size N
3 count = 0
4 mutex = 0
5 thread T1:
6 while true:
7 produce()
8 thread T2:
9 while true:

10 consume()

11 produce:
12 lock(mutex)
13 if count < N:
14 put item
15 count += 1
16 unlock(mutex)
17 consume:
18 lock(mutex)
19 if count > 0:
20 remove item
21 count −= 1
22 unlock(mutex)

Figure 4.3: Producer-consumer problem

execution time overhead with the current set of schedules found to be safe. As soon as the execution

time overhead is small enough (i.e., a “sufficient amount of non-determinism” is used), the program can

be used and verification can be stopped (i.e., no more than the “necessary amount of non-determinism”

is used). The issue of which scheduling constraints can be enforced with a low overhead and how an

execution environment can appropriately represent IVRs is discussed in Chapter 5.

4.2 Requirements on incomplete verification results

Our goal is to ease the verification task by producing incomplete verification results (IVRs) which prove

the program safety under reduced non-determinism, i.e., only for a certain scheduler. We only allow

“legitimate” restrictions of the scheduler that do not introduce deadlocks or exclude threads. Inputs

must not be restricted, since this might reduce functionality and result in unhandled inputs.

Hence, we define an IVR to be a function R that maps execution prefixes to sets of threads,

representing scheduling constraints. An IVR for the program from Figure 4.3, for instance, may output

{T1} in states with an empty buffer, meaning that only thread T1 may be scheduled here, and {T2}

otherwise, so that an item is produced if and only if the buffer is empty.

Definition 19 (incomplete verification result). An incomplete verification result (IVR) for a program

P is a function R : (S ×T )∗ × S → P(T ) that maps execution prefixes to sets of threads.

An IVR represents scheduling constraints. We write Schedulers(PR) for the set of schedulers

that enforce these scheduling constraints: for all ζR ∈ Schedulers(PR) and for all execution prefixes

τ = so, T1, s1, . . . , sn, we have ζR(τ) ∈ R(τ), i.e., R(τ) specifies a set of threads that are permitted to

be scheduled after τ , according to the scheduling constraints.

A scheduler enforces (the scheduling constraints of) an IVR R if ζR(τ) ∈ R(τ) for all execution
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RA is safe
⇑

RA is realizable
⇑

RA is deadlock-free
⇑

RA admits fairness
⇑

RA is fair

Figure 4.4: Properties of IVRs and their logical relation. ⇑ denotes logical implication.

prefixes τ . IVR R permits all executions possible under a scheduler that enforces R and we write

Executions(R) :=
⋃
ζR∈Schedulers(PR) Executions(P, ζR).

In order to describe useful IVRs, we define safe, realizable, deadlock-free, fairness-admitting, and fair

IVRs, where each property is implied by the following, cf. Figure 4.4.

Safety. An IVR R can either expose a defect in a program or guarantee that all permitted executions

are safe. Here, we are mainly concerned with the latter case. An IVR R is safe if all executions permitted

by R are safe.

Definition 20 (safe incomplete verification result). An IVR R is safe if all executions in Executions(R)

are safe.

An unsafe IVR permits an unsafe execution and is called a counterexample.

Completeness. To reduce the work for the model checker, a safe IVR R should ideally have to prove

the correctness of as few executions as possible. At the same time, it should cover sufficiently many

executions so that the program can be used without functional restrictions. For instance, the IVR

R(τ) := ∅, for all τ , is safe but not useful, as it does not permit any execution. Consequently, R should

permit at least one enabled transition, in all non-deadlock states, which is done by realizable IVRs.

Definition 21 (realizable incomplete verification result). A safe IVR is realizable if there exists a

scheduler that enforces R, i.e., Schedulers(PR) 6= ∅.

Furthermore, an IVR should never introduce a deadlock.

Definition 22 (deadlock-free incomplete verification result). A realizable IVR R is deadlock-free if

all schedulers which enforce R are deadlock-free, i.e., Schedulers(PR) 6= ∅ ∧ ∀τ ∈ Executions(PR).

deadlock-free(τ).
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Fairness. In general, we deem only fair executions desirable. The IVR R(τ) := {T1}, for instance, is

deadlock-free for the program of Figure 4.3 but useless, as no item is consumed. If a fair execution of

the program is possible under the constraints of a deadlock-free IVR, it admits fairness.

Definition 23 (incomplete verification result that admits fairness). A deadlock-free IVR R admits

fairness if there exists a fair scheduler ζ ∈ Schedulers(PR).

If a scheduler permits both fair and unfair executions, it might be difficult to guarantee fairness at

runtime. In such cases, a fair IVR can be used: A deadlock-free IVR R is fair if all schedulers enforcing

R are fair.

Definition 24 (fair incomplete verification result). A deadlock-free IVR R is fair if all schedulers

ζ ∈ Schedulers(PR) are fair.

Equivalently, the requirements on R can be defined by the following game: there are two players, the

scheduler player and the input player. Configurations are prefixes τ of executions. If τ is of the form

s0, T1, s1, . . . , Tn, sn, the scheduler player appends a thread T such that Next-Transition(sn, T ) 6= ⊥.

If τ is of the form s0, T1, s1, . . . , Tn, the input player appends a state sn such that R(sn−1, sn), where

R = Next-Transition(sn−1, T ). The scheduler player wins if an error-free terminal state that is not a

deadlock is reached or if the resulting execution is infinite and fair. The input player wins if an error

state or a deadlock is reached. R is fair if it corresponds to a winning strategy of the scheduler player.

4.3 Abstract reachability trees as incomplete verification re-

sults

In this section, we instantiate the notion of IVRs using abstract reachability trees (ARTs), which underlie

a range of software model checking tools [HJMS02, McM06, KW11, BK11] and have recently been

used for concurrent programs [WKO13]. We introduce criteria that identify ARTs which satisfy the

requirements on useful IVRs. An overview of the properties of ARTs and their relation to properties of

IVRs is given in Figure 4.5.

Due to the explicit representation of scheduling choices from the beginning of an execution up to an

(abstract) state, ARTs are well-suited to represent IVRs. Model checking algorithms based on ARTs

perform a path-wise exploration of program executions and represent the current state of the exploration

using a tree in which each node v corresponds to a set of states at a global location l(v). These states,

represented by a predicate φ(v), (safely) over-approximate the states reachable via the program path
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ART: IVR:

A is safe ⇒ RA is safe
⇑

⇑ RA is realizable
⇑

A is deadlock-free ⇒ RA is deadlock-free
⇑ ⇑

A admits fairness ⇒ RA admits fairness
⇑ ⇑

A is fair ⇒ RA is fair

Figure 4.5: Overview on the relationship between properties of IVRs and ARTs. ⇒ and ⇑ denote logical
implication.

from the root of the ART (ε) to v. Edges expanded at v correspond to transitions starting at l(v). A

node w may cover v (written v B w) if the states at w include all states at v (φ(v) ⇒ φ(w)); in this

case, v is covered (covered(v)) and its successors need not be further explored. (Intuitively, executions

reaching v are continued from w.) Formally, an ART is defined as follows:

Definition 25 (abstract reachability tree [McM06, WKO13]). An abstract reachability tree (ART) is a

tuple A = (V, ε,−→,B), where (V,−→) is a finite tree with root ε ∈ V and B⊆ V×V is a covering relation.

Nodes v are labeled with global control locations and state formulas, written l(v) and φ(v), respectively.

Edges (v, w) ∈−→ are labeled with a thread and a transition, written v T,R−−→ w.

For ease of notation, we do not distinguish between a transition and its transition formula. An ART

is well-labeled if:

• φ(ε) represents the initial state,

• for all states s, s′ and for all edges v
T,Rl,l′−−−−→ w in A : Rl,l′ ∈ RT ∧(φ(v)(s)∧Rl,l′(s, s′))⇒ φ(w)(s′),

and

• for every v, w with v B w: φ(v)⇒ φ(w) and ¬covered(w).

An incomplete ART Ap-c for the producer-consumer problem of Figure 4.2 is shown in Figure 4.6.

Nodes show the state formulas and edges are labeled with the thread and statement corresponding to

the transition. The dashed edge is a B-edge.

ART-induced schedulers. A well-labeled ART A directly corresponds to an IVR RA that simulates

an execution by traversing A . Before we define RA , we introduce a correspondence relation between

executions and paths in A .
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mutex = 0 ∧ count = 0

mutex = 0 ∧ count = 0

mutex = 1 ∧ count = 0

mutex = 1 ∧ count = 0

mutex = 1 ∧ count = 0

mutex = 1 ∧ count = 1

mutex = 0 ∧ count = 1

false

mutex = 0 ∧ count = 1

mutex = 1 ∧ count = 1

mutex = 1 ∧ count = 1

mutex = 1 ∧ count = 1

mutex = 1 ∧ count = 0

mutex = 0 ∧ count = 0

...

ε

v1

v2

v6

v12

...

T1: produce()

T1: lock(mutex)

T1: if (count<N)

T1: put item

T1: count+=1

T1: unlock(mutex)

T1: else

T2: consume()T1: produce()

T2: lock(mutex)

T2: if count> 0

T2: remove item

T2: count -= 1

T2: unlock(mutex)

T2: else

Figure 4.6: Extract of an ART for the program of Fig 4.2
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When a path reaches a covered node, we continue the path at the covering node, so that we can

match infinite executions. For a direct correspondence of an execution to such a path, we skip covered

nodes. Formally, for a path π along −→A and B edges, we write π̂, for the unique path along −→A edges

that results from replacing all v1
T,R−−→A v2 B v3 edges in π by v1

T,R−−→A v3. NB, π̂ is not necessarily a

path in A .

An execution τ = s0, T1, s1, . . . corresponds to a path π in A , written τ ∼ π, if for π̂ =

v0, T
′
1, R1, v1, . . . and for all i > 0: v0 = ε and Ti = T ′i and si � φ(vi) and Ri(si−1, si). For example, the

execution prefix

τ = s0, T1, s1, . . . , T1,︸ ︷︷ ︸
T1 scheduled 6 times

s6, T2, s7, . . . , T2,︸ ︷︷ ︸
T2 scheduled 6 times

s0

corresponds to the path in Ap-c from ε over v1, . . . , v12 back to ε. As only T1 is expanded at ε, RA p-c

allows only {T1} after τ .

Based on this correspondence relation, we define RA .

Definition 26 (incomplete verification result induced by an abstract reachability tree). The IVR RA

represented by a well-labeled abstract reachability tree A is defined as follows. Let τ = s0, T1, s1, . . . , sn

be an execution prefix. If A contains no path that corresponds to τ , RA (τ) := T (RA leaves the

schedules for this execution unconstrained). Otherwise, let π = v0, T
′
1, R1, v1, . . . , vn be the path in A

that corresponds to τ . RA (τ) := T ′ ⊆ T such that T ′ is the set of threads that are expanded at vn (in

case vn is covered by some node w, T ′ is the set of threads that are expanded at w).

Safety. An ART A is safe if whenever lT (v), for a node v of A , is the error location then φ(v) = false.

As only safe executions may correspond to a path in a safe ART (cf. Theorem 3.3 of [WKO13]), RA is

a safe IVR.

Completeness. In order to derive a deadlock-free IVR from a well-labeled ART A , we have to fully

expand at least one thread T at each node v that represents reachable states (where T is fully expanded

at v if v has an outgoing edge for every active transition of T at lT (v)). However, there may exist

reachable states s represented by φ(v) for which no transition of T is enabled (i.e., enabledT (s) = ∅). If

T is the only thread expanded at v, RA is not realizable. This situation can arise for locations l at

which T may block (marked with may-block(lT )).

Consequently, we introduce deadlock-free ARTs and require that whenever

may-block(lT (v)), φ(v) is strong enough to entail that the transitions R of T expanded at v (or at the

node covering v, respectively) are enabled. For instance, φ(v1) in Figure 4.6 proves the enabledness of
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T1 at v1, as φ(v1)⇒ mutex = 0 and lock(mutex) is enabled if mutex = 0.

Definition 27 (deadlock-free ART). A well-labeled, safe ART A is deadlock-free if each node v of A

is either covered or one thread T is fully expanded at v and for all edges w T,R−−→A w′ in A where R

may block, φ(w) can prove the feasibility of R, i.e.:

(∀v ∈ VA . covered(v) ∨ ∃T ∈ T .∀R ∈ Transitions(lT (v)).∃w ∈ VA . v
T,R−−→A w)

∧(∀v, w ∈ VA .∀T ∈ T .∀R ∈ Transitions(lT (v)). ((v T,R−−→A w ∧may-block(lT ))

⇒ (φ(v)⇒ Guard(R))))

The requirement φ(v) ⇒ Guard(R), i.e., to require that φ(v) can prove the feasibility of R, may

seem strong and an ART that satisfies this constraint difficult to construct. To limit the associated cost,

we require this feasibility check only for transitions that may block. Furthermore, in Appendix B.1, we

argue that such an ART is easy to construct for “reasonable” programs.

Lemma 1 (Deadlock-free ARTs and IVRs). For all deadlock-free ARTs A , RA is a deadlock-free

verification result.

Proof. Let RA be the IVR of a deadlock-free ART A . First, we construct a scheduler that enforces

RA , which proves that RA is realizable. Second, we show that all schedulers that enforce RA are

deadlock-free, which concludes the proof that RA is deadlock-free.

For arbitrary execution prefixes of the form τ = s0, T1, s1, . . . , sn, let T ′(τ) = RA (τ) ∩ {T ∈

T : Next-Transition(sn, T ) 6= ⊥}. Let ζ : (S × T )∗ × S → T be an arbitrary function such that

∀τ. ζ(τ) ⊆ T ′(τ) whenever T ′(τ) is not empty. (A description of how ζ can be constructed is given

by the definition of RA .) By construction, ζ enforces RA if ζ is a scheduler. We show that ζ is a

scheduler by contradiction. Assume that ζ is not a scheduler. Then there exists an execution prefix

τ = s0, T1, s1, . . . , sn such that ζ(τ) = T , Next-Transition(sn, T ) = ⊥ and enabled(sn) 6= ∅.

case τ does not correspond to a path in A : By the definition of RA , RA (τ) = T . By assump-

tion enabled(sn) 6= ∅, T ′ is not empty. By the construction of ζ, T ∈ T ′. Contradiction to

Next-Transition(sn, T ) = ⊥.

case τ corresponds to a path π = v0, T1, R1, v1, . . . , vn in A : By the construction of RA , T is ex-

panded at vn.

case may-block(lT (vn)): By the definition of may block, T has exactly one transition R active at

lT (vn). As A is deadlock-free, φ(vn)⇒ Guard(R). By assumption τ ∼ π, sn � φ(vn). Hence,
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sn � Guard(R) and R ∈ enabled(sn). Contradiction to enabled(sn) = ∅.

case not may-block(lT (vn)): By the definition of may block, Next-Transition(sn, T ) = R 6= ⊥ for

some transition R. Contradiction to Next-Transition(sn, T ) = ⊥.

It remains to show that all schedulers that enforce RA are deadlock-free. Let ζ be an arbitrary

scheduler that enforces RA . Assume that ζ is not deadlock-free. Then there exists an execution

τ = s0, T1, s1, . . . , sn ∈ Executions(P, ζ) such that sn is a deadlock, i.e., enabled(sn) = ∅ ∧ ∃T ∈

T .Transitions(lT (sn)) 6= ∅. As τ ∈ Executions(RA ), τ corresponds to a path π = v0, T1, R1, v1, . . . , vn

in A . Let T = ζ(τ). By choice of ζ, T is expanded at vn. With the same argument as above, in

case may-block(lT (vn)), we have φ(vn)⇒ Guard(R) for some transition R ∈ Transitions(lT (vn)) and a

contradiction to enabled(sn) = ∅ and in case not may-block(lT (vn)), we have Next-Transition(sn, T ) 6= ⊥

and a contradiction to Next-Transition(sn, T ) = ⊥.

Fairness. IVRs derived from deadlock-free ARTs do not necessarily admit fairness if the underlying

ART contains cycles (across B and −→ edges) that represent unfair executions. In order to make sure a

deadlock-free ART admits fairness, we implement a scheduler that allows A to schedule each thread

infinitely often (whenever it is enabled infinitely often) by requiring that every (B ∪ −→)-cycle is “fair”,

defined below. A (B ∪ −→A )-cycle is a simple cycle in the graph (VA ,B ∪ −→A ), i.e., a finite sequence

of nodes v1, . . . , vn such that:

• v1 = vn and, if n > 2, v1 6= v2

• vi 6= vj for all i, j ∈ {2, . . . , n− 1}, i 6= j

• vi B vi+1 or vi −→A vi+1 for all i ∈ {1, . . . , n− 1}

A deadlock-free ART admits fairness if every (B ∪ −→)-cycle contains, for every thread T that is

active at a node of the cycle, a node v such that T is expanded at v.

Definition 28 (ART admitting fairness). Let A = (VA ,B, ε,−→A ) be a deadlock-free ART. A admits

fairness if for every (B ∪ −→A )-cycle c:

∀T ∈ T . (∃v′ ∈ c.Transitions(lT (v′)) 6= ∅

⇒ ∃v ∈ c.∃w ∈ VA .∀R ∈ Transitions(lT (v)). v T,R−−→A w)

The following lemma shows that ARTs that admit fairness indeed fulfill the requirements of IVRs

that admit fairness.
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Lemma 2 (Fair ARTs and IVRs). For all ARTs A that admit fairness, RA is an incomplete verification

result that admits fairness.

Proof. We need to show that there exists a fair scheduler ζ that enforces an arbitrary ART A that

admits fairness. After constructing ζ, we show that ζ is fair by contradiction.

Let τ = s0, T1, s1, . . . , sn be an execution prefix and let π be a path such that τ corresponds to

π = v0, T1, . . . , vn. By γ(T ), we denote the number of occurrences of T in π. Let T ′ be the set of threads

that is both enabled at sn and permitted by A , i.e., T ′ = RA (τ) ∩ {T : Next-Transition(sn, T ) 6= ⊥}.

We let ζ schedule an arbitrary thread T ∈ T ′ such that no other thread in T ′ occurs less often in π,

i.e., ζ(τ) = T ∈ T ′ such that ∀T ′ ∈ T ′. γ(T ) ≤ γ(T ′). By Lemma 1 and as A admits fairness, ζ is

indeed a scheduler (T ′ is only empty when enabled(sn) is empty).

It remains to show that ζ is fair, i.e., that every execution scheduled by ζ is fair. Let τ be an

execution that is scheduled by ζ (τ is of the form τ = sinit , ζ(sinit), s1, . . .). If τ is finite, it is trivially

fair. Otherwise, assume that τ is not fair. Then there exists a thread T that is infinitely often enabled

in τ but does not occur in τ after some prefix of τ . Let π be a path in A such that τ corresponds to π.

Let vT be a node at which T is enabled and that occurs infinitely often in π. As A is finite and by

Lemma 5 (p. 119), there exists a cycle that contains vT such that π visits all nodes in this cycle infinitely

often. As A admits fairness, there exists v T,R−−→A v′ such that v is in this cycle and R ∈ enabled(s) for

all states s that correspond to v. As T is not scheduled in τ after some finite number i of steps, there

exist one or more other threads T ′ 6= T with v T ′−→A w for some w 6= v′ which are scheduled at v for all

steps k > i. Let t be the set of those threads T ′. By the construction of the scheduler, γ(T ′) ≤ γ(T ) for

all T ′ ∈ t. After only finitely many steps l, γ(T ) < γ(T ′) for all T ′ ∈ t (e.g., take l to be the product

of the maximum path length from v to v and the number
∑
T ′∈t 1 + γ(T )− γ(T ′) of required visits of

v). Hence, there exists a prefix of π of length l′ ≥ l in which v T−→A v′ is the last step, i.e., T has been

scheduled. Contradiction to the assumption that T is not scheduled after i steps in π.

Note that the expansion of a thread T at a node in a cycle of an ART that admits fairness does

not guarantee that the transition is part of the cycle. A slight modification of the fairness condition

for ARTs leads to a sufficient condition for ARTs as fair IVRs, as the following definition and lemma

show. The difference in the fairness condition is that all enabled threads are expanded within each

(B ∪ −→)-cycle c, which we denote by fair(c). The (B ∪ −→)-cycle shown in Figure 4.7, for instance, is

fair.
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T1: lock()

T1: unlock()

T2: lock()

T2: unlock()

︸ ︷︷ ︸
produce

1
item

consu
m

e
1

ite
m

︷ ︸︸
︷

Figure 4.7: A fair cycle for the program of Fig 4.2

Definition 29 (fair ART). Let A = (VA ,B, ε,−→A ) be a deadlock-free ART. A is fair if for every

(B ∪ −→A )-cycle c, fair(c), where:

fair(c) ≡ ∀T ∈ T . (∃v′ ∈ c.Transitions(l(v′))T 6= ∅

⇒ ∃v ∈ c.∃w ∈ c.∀R ∈ Transitions(l(v))T. v T,R−−→A w)

Note the difference between an ART that admits fairness and a fair ART (highlighted in the formula

above): the successor node w of v that guarantees that a thread can be scheduled is required to be

within the given cycle for fair ARTs.

Lemma 3 (Fair ARTs and IVRs). For all fair ARTs A , RA is a fair verification result.

Proof. Let A be a fair ART. By Lemma 1 and as A is deadlock-free, there exists a scheduler ζ that

enforces A . It remains to show that ζ is fair, which we prove by contradiction. Suppose that an unfair

execution τ is possible under ζ. There exists a thread T that is enabled infinitely often in τ but does

not occur in τ after a finite prefix. Let π be a path through A such that τ corresponds to π. As VA is

finite, there exists a node v that occurs infinitely often in π and at which T is enabled. By Lemma 5

(p. 119), v is part of a cycle of which all nodes occur infinitely often in π. By fairness, one edge in this

cycle is labeled with T . By the definition of ARTs ((VA ,−→A ) is a tree), this edge occurs infinitely often

in π. Contradiction.

Given an ART A that admits fairness, one can generate a fair ART A ′ such that Executions(RA ′) ⊆

Executions(RA ). An algorithm that generates A ′ is given as Algorithm 6 in Appendix B.3.
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Algorithm 3: Iterative Impact for concurrent programs: main procedure (based on [WKO13])
input :Program with threads T
intermediate outputs : fair ARTs A1 ⊆ A2 ⊆ . . . ⊆ An and unsafe ARTs
output : safe, partially safe, or unsafe

Data: A = (V, ε,−→,B) := ({ε}, ε, ∅, ∅), W := {ε}, I := {}

1 Function Main()
2 while true do
3 status := Iteration()
4 if status = no progress then
5 break
6 else if status = counterexample then
7 yield A as an unsafe IVR
8 else
9 A ′ := Remove_Error_Paths(A )

10 yield A ′ as a safe IVR
11 if A is safe then
12 return safe
13 else if Remove_Error_Paths(A ) admits fairness then
14 return partially-safe
15 else
16 return unsafe

17 Function Iteration()
18 W := New_Schedule_Start()
19 if W = ∅ then
20 return no progress
21 while W 6= ∅ do
22 select and remove v from W
23 Close(v)
24 if v not covered then
25 status := Refine (v)
26 if status = counterexample then
27 return counterexample
28 status := Check_Enabledness(v)
29 if status = no progress then
30 return no progress
31 Expand (v)
32 return progress

33 Function Expand(v)
34 T := Schedule_Thread (v)
35 Expand_Thread (T , v)

36 Function Check_Enabledness(v)

37 π := v0
T1,R1−−−−→ v1 . . .

Tn,Rn−−−−−→ vn
path from ε to v

38 if not may-block(l(vn−1))T_n then
39 return progress
40 if R1 ∧ . . . ∧ Rn−1 ∧ ¬Guard(Rn) is unsat then
41 φ(v) := φ(v) ∧Guard(Rn)
42 else
43 return Backtrack(v)

44 Function Close(v)
45 for all uncovered nodes w that have been created

before v do
46 if l(w) = l(v) ∧ (φ(v)⇒ φ(w))

∧∀c ∈ CA (v, w). fair(c) then
47 B:=B ∪{(v, w)}
48 B:=B \{(x, y) : y is a descendant of v}

49 for T with v T−→ v′ and not w T−→ w′ do
50 add (v, T ) to I

51 Function Backtrack(v)

52 π := v0
T1,R1−−−−→ v1 . . .

Tn,Rn−−−−−→ vn path from ε to v
53 i := n− 1
54 while i ≥ 0 do
55 if ∃T, v′i. vi

T−→ v′i /∈ A
∧(Skip(vi, T) = false) then

56 add vi
T−→ v′i to A

57 W := W ∪ {v′i}

58 prune
Ti+2,Ri+2−−−−−−−−→ vi+3 . . .

. . .
Tn,Rn−−−−−→ vn from A

59 φ(vi+1) := false
60 return progress
61 i := i− 1
62 return no progress

4.4 Iterative model checking

A suitable algorithm for our framework must generate fair IVRs. We use model checking based on

ARTs (cf. Section 4.3), which allows us to check infinite executions and explicitly represent scheduling.

Nevertheless, other program analysis techniques such as symbolic execution are also suitable to generate

IVRs. Our algorithm (Algorithm 3) constitutes an iterative extension of the Impact algorithm [McM06]

for concurrent programs [WKO13]. We choose Impact as a base for our algorithm because it has

an available implementation for multi-threaded programs, which we use to evaluate our approach in

Section 4.5.

Impact generates an ART by path-wise unwinding the transitions of a program. Once an error

location is reached at a node v, Impact checks whether the path π from the ART’s root to v corresponds

to a feasible execution. If this is the case, a property violation is reported; otherwise, the node labeling is
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strengthened via interpolation. Thereby, a well-labeled ART is maintained. Once the ART is complete,

its node labeling provides a safety proof for the program.

To build an ART as in the producer-consumer example of Figure 4.6, Impact starts by constructing

the root node ε with φ(ε) = true and l(ε) = (8, 12), where we indicate locations by line numbers in

Figure 4.2. Initially, mutex = 0, count = 0, and the buffer size is bound by an arbitrary constant N > 0.

Thread T1 is expanded by adding a node v1 with φ(v1) = true and l(v1) = (14, 12). From v1, thread T1

is expanded repeatedly until node v6 with φ(v6) = true and l(v6) = (8, 12) is produced. At this point,

all statements of the produce() procedure have been expanded once. As v6 has the same global location

as ε and φ(v6)⇒ φ(ε), a covering v6 B ε can be inserted. However, when the else branch of thread T1

at node v1 is expanded, a node verror labeled with the error location is added. In order to check the

feasibility of the error path ε −→ v1 −→ v2 −→ verror, Impact tries to find a sequence interpolant for:

count = 0 ∧ mutex = 0,

mutex′ = 1,

count ≥ N

As we assume that the buffer is never of size 0, i.e., N > 0,
∧
U is unsatisfiable and a possible sequence

interpolant is:

I0 ≡ true

I1 ≡ count = 0 ∧ mutex = 0

I2 ≡ count = 0 ∧ mutex′ = 1

I3 ≡ false

with:

I0 ∧ count = 0 ∧ mutex = 0⇒ I1

I1 ∧ mutex′ = 1⇒ I2

I2 ∧ count ≥ N⇒ I3

Hence, verror can be labeled with false, so that the ART remains safe, and the preceding labels can

be updated to φ(ε) = φ(v1) = count = 0 ∧ mutex = 0 and φ(v2) = count = 0 ∧ mutex = 1. Due to the

relabeling, the covering v6 B ε has to be removed and v6 has to be expanded.
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When T2 has been expanded six times beginning at v6, a node v12 is added with l(v12) = (8, 12).

Impact applies a heuristic that attempts to introduce coverings eagerly, which results in a label

φ(v12) = mutex = 0∧ count = 0 and a covering v12 B ε can be added. With this covering, the current ART

is fair and can be used as an IVR. In contrast, Impact for concurrent programs would then continue to

explore additional interleavings by expanding, e.g., T2 at ε. A complete ART is found when both error

paths and all interleavings of produce() and consume() that respect the available buffer size N are explored.

Impact for concurrent programs does not terminate until such a complete ART is found and would not

terminate at all if the buffer size is unbounded. Our algorithm, however, is able to yield an fair IVR

each time a new interleaving has been explored.

In each iteration, our extended algorithm yields an IVR which is either unsafe (a counterexample) or

fair (can be used as scheduling constraints). If the algorithm terminates, it outputs “safe”, “partially

safe”, or “unsafe”, depending on whether the program is safe under all, some, or no schedulers. Procedure

Main() repeatedly calls Iteration() (line 3), which, intuitively, corresponds to an execution of the original

algorithm of [WKO13] under a deterministic scheduler. Iteration() (potentially) extends the ART A . If

no progress is made (A is unchanged), the algorithm terminates and reports “safe”, “partially safe”,

or “unsafe” (lines 12, 14, and 16). If Iteration() produces a counterexample A , the ART is yielded as

an intermediate output (line 7). Otherwise, Iteration() has found a new IVR, which is yielded as an

intermediate output (line 10). This IVR corresponds to A with all previously found counterexamples

removed, i.e., the largest fair ART that is a subgraph of A , denoted by Remove_Error_Paths().

Iteration() maintains a work list W of nodes v to be explored via Close(v), which tries to find (as

in [WKO13]) a node that covers v. In addition to the covering check of [WKO13], we check fairness,

i.e., a covering is only added if no unfair cycle arises, where CA (v, w) denotes all cycles that would be

closed by adding the edge v B w (line 46). If such a node w is found, any thread T that is expanded at

v but not at w (line 49) must not be skipped at w by POR. Instead of expanding T instantaneously

at w (as in [WKO13]), which would result in the exploration of two schedules in the same iteration,

T is added to the set I so that it can be explored in a subsequent iteration (for a different schedule).

If no covering node for v is found, the same refinement procedure as in [WKO13], extended with a

return value counterexample representing feasible error paths, is called (line 25). If the path to v is

not a feasible error path (line 28 of Algorithm 3), Check_Enabledness() performs a deadlock check by

testing whether the last transition that leads to v is enabled in all states represented by the predecessor

node. If not, deadlock-freedom is not guaranteed and Backtrack() tries to find a substitute node where

exploration can continue.
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T1 produce

T2 produce

T3 produce

T4 produce

T5 consume

T6 consume

T7 consume

T8 consume

Figure 4.8: First IVR for the producer-consumer problem (simplified)

The deterministic scheduler of Iteration() is controlled by New_Schedule_Start() and Schedule_-

Thread(). The former selects a set of initial nodes for the exploration (line 18 of Algorithm 3); the latter

decides which thread to expand at a given node (line 34). We use a simple heuristic that selects the

first (in breadth-first order) node which is not yet fully expanded and use a round-robin scheduler for

Schedule_Thread that switches to the next thread once a back jump occurs (e.g., the end of a loop body

is reached). Additionally, Schedule_Thread returns only threads that are necessary to expand at the

given node after POR (cf. Skip() [WKO13]). More elaborate heuristics are conceivable but out of the

scope of this thesis. An extended presentation of our algorithm is provided in Appendix B.4.

The correctness of Algorithm 3 w.r.t. safety follows from the correctness of [McM06]

and [WKO13]. Additionally, Algorithm 3 is also fair:

Theorem 3 (Fairness of iterative Impact). Whenever Algorithm 3 yields a safe ART A , A is fair.

Proof. By contradiction. Assume that Algorithm 3 returns a safe ART A = (VA , ε,−→A ,B) that is not

fair. By definition 29, A contains a (B ∪ −→A )-cycle c that does not satisfy fair(c). As (VA ,−→A ) is a

tree, the cycle contains a B edge. However, Algorithm 3 checks, in line 46, whether the candidate covering

would produce an unfair cycle. A B edge is only added if the resulting cycle is fair. Contradiction.
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1 initially:
2 empty buffer of size 1000
3 count = 0
4 mutex = 0
5

6 thread T1...4:
7 while true:
8 lock()
9 if count != 1000:

10 int return_value = produce()
11 assert(return_value != OVERFLOW);
12 unlock()
13

14 thread T5...8:
15 while true:
16 lock()
17 if top > 0:
18 return_value = consume();
19 assert(return_value != UNDERFLOW);
20 unlock()

Figure 4.9: A correct program for the producer-consumer problem with four producers and four
consumers

4.5 Evaluation

In five case studies, we evaluate our iterative model checking algorithm and scheduling based on IVRs.

We use the Impara model checker [WKO13], as it is the only available implementation of model checking

for non-terminating, multi-threaded programs based on a forward analysis on ARTs we have found.

Impara uses lazy abstraction with interpolants based on weakest preconditions. We extend the tool by

implementing our algorithm presented in Section 4.4. Impara accepts C programs as inputs, however,

some language features are not supported and we have rewritten programs accordingly.1 We refer to the

(non-iterative) Impara tool as Impara-C (for complete verification) and to our extension of Impara

with iterative model checking as Impara-IMC. All experiments have been executed on a 4-core Intel

Core i5-6500 CPU at 3.2GHz.

4.5.1 Infeasible complete verification

Even for a moderate number of threads, complete verification, i.e., verification of a program under

all possible schedules and inputs, may be infeasible. In particular, Impara-C times out (after 72 h)

on a corrected variant of the producer-consumer problem (Figure 4.9) with four producers and four
1E.g., Pthreads mutexes, some uses of the address-of operator, and reuse of the same function by several threads are not

supported. We solve these issues by rewriting our benchmark programs so that Impara handles them correctly and their
semantics is not changed. Our modifications to Impara, including two bug fixes, are available in the software material
published with this thesis [Met20].
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1 Thread T1:
2 while true:
3 lock(mutex1)
4 lock(mutex2)
5 execute_critical_section()
6 unlock(mutex2)
7 unlock(mutex1)

8 Thread T2:
9 while true:

10 lock(mutex2)
11 lock(mutex1)
12 execute_critical_section()
13 unlock(mutex2)
14 unlock(mutex1)

Figure 4.10: A program with a deadlock

consumers. Impara-IMC produces the first IVR R1 after 4:29:53 hours. A simplification of R1 is

depicted in Figure 4.8; it covers all executions in which the threads appear to execute their loop bodies

atomically in the order T1, T2, . . . , T8. While the main bottleneck for Impara-C is state explosion and

finding many coverings for different schedules, we observe that the main issue to produce R1 is to find a

single covering that comprises all threads, i.e., to find a fair cycle. The essential predicates that lead to

a fair cycle are:

count > 0, count + 1 > 0, count + 2 > 0, count + 3 > 0,
count 6= 1000, count 6= 999, count 6= 998, count 6= 997

The subsequent IVRs R2, . . . ,R8 are found much faster than the first IVR, after 19:31, 12:3, 6:13,

28:0, 9:25, 8:27, and 8:40 minutes. We stop the model checker after eight IVRs. According to our

implementation of New_Schedule_Start() in Algorithm 3, IVR Ri permits, in addition to all executions

permitted byRi−1, those executions in which the threads appear in the order Ti, T1, . . . , Ti−1, Ti+1, . . . , T8.

Hence, R8 gives the scheduler more freedom thanR1, which may result in a better execution performance,

e.g., because a producer which has its item available earlier does not have to wait for all previous

producers.

4.5.2 Deadlocks

A common issue with multi-threaded programs are deadlocks, which may occur when multiple mutexes

are acquired in a wrong order, as in the program in Figure 4.10, in which two threads use two mutexes

to protect their critical sections. A deadlock is reached, e.g., when T2 acquires mutex2 directly after T1

has acquired mutex1. A monolithic verification approach would try to verify one or more executions and,

as soon as a deadlock is found, report the execution that leads to the deadlock as a counterexample.

With manual intervention, this counterexample can be inspected in order to identify and fix the bug.

In contrast, Impara-IMC logs both safe and unsafe IVRs. The first IVR found in this example covers

all executions in which Threads 1 and 2 execute their loop bodies in turns, with Thread 1 beginning.

The corresponding program schedule consists of a single section schedule depicted in Figure 4.11. As
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T1:
lock(mutex1)

lock(mutex2)

execute_critical_section()

unlock(mutex2)

unlock(mutex1)

T2:
lock(mutex2)

lock(mutex1)

execute_critical_section()

unlock(mutex2)

unlock(mutex1)

Figure 4.11: Section schedule for the program of Figure 4.10

1 Threads
2 T1: while true: produce()
3 T2: while true: produce()
4 T3: while true: consume()
5 T4: while true: consume()

6 produce:
7 if buffer_is_not_full():
8 lock()
9 assert buffer_is_not_full()

10 add_item()
11 unlock()

12 consume:
13 if buffer_is_not_empty():
14 lock()
15 assert buffer_is_not_empty()
16 remove_item()
17 unlock()

Figure 4.12: The producer-consumer problem with a race condition

expected, executing the program with enforcing the first program schedule never leads to a deadlock.

Executing the uninstrumented program (without scheduling constraints) leads to a deadlock after only

a few hundred loop iterations. Hence, IMC enables to safely use the program deadlock-free and without

manual intervention.

4.5.3 Race conditions through erroneous synchronization

1

2

3

4

5

T1 produce

T2 produce

T3 consume

T4 consume

Figure 4.13: First IVR (simpli-
fied)

The program in Figure 4.12 shows a variant of the producer-consumer

problem with two producers and two consumers which uses erroneous

synchronization: both the produce and consume procedures check the

amount of free space without acquiring the mutex first. For example,

a buffer underflow occurs if the buffer contains only one item and the

two consumers concurrently find that the buffer is not empty; although

the buffer becomes empty after the first consumer has removed the

last item, the second consumer tries to remove another item.

The first IVR found by Impara-IMC is depicted simplified in Figure 4.13. The simplification merges

all individual edges of a procedure into a single edge, which is possible as Impara-IMC does not apply
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1 Variables:
2 int block
3 boolean busy
4 boolean inode
5 mutex m_inode
6 mutex m_busy
7 Initially: inode = busy

8 Thread T1:
9 while true:

10 lock(m_inode)
11 if not inode:
12 lock(m_busy)
13 busy := true
14 unlock(m_busy)
15 inode := true
16 block := 1
17 unlock(m_inode)

18 Thread T2:
19 while true:
20 lock(m_busy)
21 if not busy:
22 block := 0
23 unlock (m_busy)

24 Thread T3:
25 while true:
26 lock(m_inode)
27 lock(m_busy)
28 inode := false
29 busy := false
30 unlock(m_inode)
31 unlock(m_busy)

Figure 4.14: The file system benchmark

1 Thread T1:
2 while true:
3 if not inode:
4 busy := true
5 inode := true
6 atomic−begin
7 assume inode and busy
8 block := 1
9 atomic−end

10 Thread T2:
11 while true:
12 if not busy:
13 atomic−begin
14 assume not busy
15 block := 0
16 atomic−end

17 Thread T3:
18 while true:
19 atomic−begin
20 assume inode = busy
21 inode := false
22 busy := false
23 atomic−end

Figure 4.15 (a) The file system benchmark with synchronization constraints in assume
statements

1 Thread T ′
2:

2 while true:
3 atomic−begin
4 assume not busy
5 block := 0
6 atomic−end

Figure 4.15 (b) Thread
T ′

2: the if statement is
omitted

context switches inside of procedures during the first iteration. Since both procedures appear to be

executed atomically, no assertion violation is found during the first iteration. We ran the program with

a program schedule corresponding to the first IVR. As expected, we have not observed any assertion

violations.

4.5.4 Declarative synchronization

Figure 4.14 shows an extension of a benchmark used in [FFQ02], which is a simplified extract of the

multi-threaded Frangipani file system. The program uses a time-varying mutex: depending on the

current value of the busy bit, a disk block is protected by m_busy or m_inode. We want to evaluate whether

we can use Impara-IMC to generate safe program schedules even if all mutexes are (intentionally)

removed from the program.

For this purpose, we use a variant of the file system benchmark where all mutexes are removed and

synchronization constraints are declared as assume statements, shown in Figure 4.15a. It is sufficient to

assure for T1 that the block is written only if it is allocated, i.e., both inode and busy are true. For T2, it

is sufficient to assure that the block is only reset if it is not busy, i.e., busy = false. Finally, for T3, it is

necessary to assure that the block is deallocated only if it is already deallocated or fully allocated, i.e.,

inode = busy.
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Table 4.1: Experimental results (rounded to full seconds, TO: timeout)

Model checking
Benchmark Time 1st IVR Impara-C
prod.-cons. 1p 1c 1000b 2m 0 s TO (72h)
prod.-cons. 2p 2c 1000b 23m 47 s TO (72h)
prod.-cons. 4p 4c 1000b 4 h 29m 53 s TO (72h)
prod.-cons. 1p 1c 5b 2 s 2m 28 s
prod.-cons. 2p 2c 5b 18 s 1m 16 s
prod.-cons. 4p 4c 5b 2m 41 s 9m 44 s
double lock 1 ms 0s 0s
file system 0s 0s
barrier 1s 4m 14s

Running Impara-IMC on the file system benchmark without mutexes yields a first program schedule

that schedules T1, T2, T3 repeatedly in this order, according to our simple heuristic for an initial IVR.

However, although all executions permitted by this schedule are fair, the if-condition of T2 always

evaluates to false and T2 never performs useful work. To obtain a more useful schedule, we inform the

model checker that the (omitted) else-branch of Thread T2 is not useful. We encode this information by

inserting else: assume false. After simplifying the code, we obtain T ′2 as depicted in Figure 4.15b. For the

updated code, Impara-IMC yields a first scheduler that schedules T3 before T2 before T1, so that all

threads perform useful work.

4.5.5 Verification time

We evaluate the verification time by running Impara-IMC and Impara-C on four correct benchmark

programs. For Impara-IMC, we report the time necessary to generate the first IVR. We use a timeout

of 72 hours. As Table 4.1 shows, Impara-IMC finds the first IVR often much faster than or at least

as fast as it takes Impara-C for complete model checking; it can produce an IVR even for our largest

benchmarks, where Impara-C times out. For a buffer size of 5, Impara-C can verify the producer-

consumer benchmark even with eight threads but again, Impara-IMC is considerably faster in finding

the first IVR. Subsequent IVRs were generated considerably faster than the first IVR, which might be

caused by caching of facts in the model checker.



Chapter 5

Safe Execution of Multi-Threaded

Programs by Enforcement of

Scheduling Constraints

After Chapter 4 introduced the concept of iterative model checking and iteratively-relaxed scheduling

(IRS), and investigated how to generate suitable incomplete verification results (IVRs), i.e., the verifier

part of Algorithm 2, this chapter investigates the execution environment part, i.e., how to represent and

enforce scheduling constraints.

Initial experiments have shown that constraining scheduling may introduce considerable execution

time overhead. We reduce this overhead

• directly, by optimizing the enforcement so that a program is executed faster than under a naive

enforcement of the same scheduling constraints

• indirectly, by investigating how scheduling constraints can be relaxed (which would require to

verify additional states) to make their enforcement faster.

An IRS execution environment may be realized inside an application program or by modifying

the operating system. For example, in the former case, the program may be instrumented so that a

thread waits before memory accesses that are not yet permitted to occur, according to the scheduling

constraints. Even if the scheduler of the operating system is non-deterministic, the scheduling constraints

are enforced. In the latter case, it is conceivable to directly constraint the scheduler of the operating

60
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system to obtain an IRS execution environment and enforce schedules.

As in the related field of DMT, synchronization in addition to existing synchronization in a program

(e.g., mutexes, condition variables, barriers) is necessary to enforce scheduling constraints. Our experi-

ments confirm that constraining scheduling may introduce a considerable execution time overhead, in

extreme cases a 44-fold slowdown. A main concern for the practicality of IRS is to limit this overhead

depending on the requirements of a use case. We try to design IRS with a low overhead by addressing

several aspects: the amount of additional synchronization for schedule enforcement, storage and look-up

of scheduling constraints, and the effect of relaxing constraints on the execution time overhead. Opti-

mizations of schedule enforcement in these aspects provide potential to execute a program even faster

than with unconstrained scheduling and conventional synchronization, as our experiments show as well.

When implementing IRS, it is desirable to efficiently maintain and enforce scheduling constraints in

order to incur as little overhead as feasible over conventional program execution. We are aiming for an

suitable data structure to store, look up, and enforce scheduling constraints, that is, a schedule. We try

to optimize schedules with respect to:

• Low space requirement

• Fast look up

• Few and fast synchronization between threads for the enforcement of scheduling constraints

At the same time, the following issues should be considered:

• It should be possible to update scheduling constraints, e.g., to relax constraints after additional

states have been verified.

• Infinite executions and non-deterministic inputs should be supported.

• Where possible POR should be applied.

Several possibilities for storing scheduling constraints are possible: a set of schedules can be maintained

where each schedule describes a permissible execution; in order to avoid storing redundant schedules,

POR may be used to store one schedule for each permissible Mazurkiewicz equivalence class. However,

a suitable formulation of POR that supports non-deterministic inputs has to be found. Furthermore, it

may be advantageous to store all scheduling constraints in a single data structure. Nevertheless, care

has to be taken that the overall size of scheduling constraints is feasible, as even after POR, the number

of schedules may be exponentially large. A particular challenge is to represent schedules for infinite
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executions, especially when using POR, as all applications of POR are, to the best of our knowledge,

designed for finite executions.

In order to permit a quick look-up of which events may be scheduled next during an execution, a set

of unordered schedules seems inefficient. An ordering based on common prefixes seems advantageous,

potentially merging all schedules into a single schedule valid for multiple Mazurkiewicz equivalence

classes.

Besides reducing the space requirement of scheduling constraints, POR may also help to avoid

superfluous synchronization when enforcing a schedule. For example, constraints can be stored in

a vector clock [Mat89]. Finally, the implementation of synchronization has a large influence on the

execution time performance of a program under schedule enforcement. For example, busy-waiting

is typically much faster than lock-based synchronization, however only as long as the number of

simultaneously waiting threads does not exceed the number of available hardware cores.

We proceed stepwise to design an enforcement scheme for scheduling constraints: Section 5.1 discusses

schedule enforcement of finite executions or execution fragments. Section 5.2 extends this approach to

infinite executions.

5.1 Finite executions

5.1.1 Symbolic traces for terminating executions

The general IRS algorithm from Section 4.1 (Algorithm 2) maintains a set of admissible traces and

controls the scheduling of a given program such that at any time, the current partial execution adheres to

some admissible trace. As more and more schedules or symbolic traces are proven to be correct, they are

added to the set of admissible traces. This representation of scheduling constraints has an exponential

space requirement and it seems impractical to store all symbolic traces for large programs. Similarly,

when permission for an event is checked, the look-up time is exponential if no further structure is given

to the set of admissible traces. Unfoldings have been applied for model checking both Petri nets [McM92]

and concurrent programs [KSH12, RSSK15, SRDK17]. By unfoldings, it is possible to represent all

executions of a concurrent program in a single data structure, which is more space-efficient than storing

a set of all symbolic traces since each event occurs only once in an unfolding. Looking up an event in

an unfolding is faster than searching in an unstructured set of symbolic traces, as well. However, the

size of an unfolding can still grow quickly (exponentially in the worst case) with an increasing number

of threads [KSH15]. The space efficiency of verification based on a depth-first search is lost. Hence,
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unfoldings are not directly suitable to store scheduling constraints for practical programs. In order to

implement IRS, we address the problem of space complexity by using trace prefixes. If all admissible

Mazurkiewicz traces or executions are stored in order to express scheduling constraints, so that each

time a new execution has been verified and is permitted, more space is required. In contrast, trace

prefixes can be used as scheduling constraints such that when new executions are permitted, constraints

may be removed and less space is required. However, the use of trace prefixes requires the verifier to

explore symbolic traces in a depth-first manner. More freedom can be given to the verifier by extending

trace prefixes to partial unfoldings, at the price of a higher space requirement.

Our tests of several IRS implementations confirmed that as expected, inter-thread synchronization

incurs a major part of execution time overhead of IRS over unconstrained scheduling. In order to reduce

the execution time overhead caused by synchronization between threads, it is crucial to omit such

synchronization in case an event needs not to be scheduled after an event from an other thread. The

IRS algorithm presented in this section achieves this by executing several events without intermediate

synchronization, as is detailed below. Besides reducing the amount of inter-thread synchronization,

execution time overhead can be considerably reduced by reducing the duration of a single synchronization,

for example by using lock-free synchronization instead of locks. We discuss this matter in Section 5.1.5.

In the following, we state our system model and present the IRS algorithm, proving correctness and

deadlock-freedom of the algorithm.

5.1.2 Generalizing Mazurkiewicz equivalence

Given a dependency relation on events, Mazurkiewicz equivalence [Maz86, Maz95] guarantees that all

equivalent executions reach the same final state and visit the same intermediate local states [God96].

However, a Mazurkiewicz equivalence class, or Mazurkiewicz trace, is not directly suitable to encode

a schedule for IRS: two executions that follow different control flow paths or receive different (non-

deterministic) inputs could be non-equivalent, while we aim for a representation that describes all

executions permitted by an IVR (cf. Section 4.2). At the same time, we would like to use POR, hence

Mazurkiewicz equivalence, to avoid unnecessary synchronization between events. Our solution is a

generalization of Mazurkiewicz traces, called symbolic traces, defined below.

The happens-before relation of one or more executions is represented by a symbolic trace graph as a

triple o = (Eo, Co,→o) such that

• Eo is a set of events,

• Co ⊆ F (Q) is a set of state predicates, and
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• →o⊆ Eo×Co×Eo is a partial order labeled with path constraints, which expresses a happens-before

relation.

As an auxiliary function, we introduce remove(e, o), which removes event e from symbolic trace

graph o. Formally, remove(e, (Eo, Co,→o)) = (E′o, C ′o,→′o) such that

• E′o = Eo \ e,

• →′o= {(e1, c, e2) ∈→o: e1 6= e ∧ e2 6= e}, and

• C ′o = {c : (_, c,_) ∈→′o}.

A finite execution τ = s0T1s1 . . . Tnsn with event sequence ρ = e1 . . . en adheres to the happens-before

relation of a symbolic trace graph o = (Eo, Co,→o), written τ 4 o, if ρ is empty, or

• e1 ∈ Eo,

• ∀(e, c, e′) ∈→o. e
′ = e1 ⇒ s0 2 c and

• (s1T2s2 . . . sn) 4 remove(e1, o).

If ρ additionally contains exactly the events of Eo (Eo = {e : e ∈ ρ}), we write τ ≈ o. Execution τ

is called a linearization of o. A symbolic trace graph o corresponds to (the scheduling constraints of)

an IVR R (cf. Section 4.2), if the linearizations of o are exactly the executions permitted by R, i.e.,

Executions(R) = {τ ∈ Executions(P ) : τ ≈ o}.

Based on symbolic trace graphs and their correspondence to happens-before relations of executions,

we define symbolic traces, as a generalization of Mazurkiewicz traces. Intuitively, a symbolic trace

contains scheduling information for all possible program inputs and represents all executions of a program

with matching scheduling.

Definition 30. A symbolic trace is a symbolic trace graph o that corresponds to some deadlock-free

IVR.

A trace prefix is a symbolic trace, except that we do not require its linearizations to be complete

executions. Formally, a symbolic trace graph o1 = (E1, C1,→1) is a trace prefix of a symbolic trace

o2 = (E2, C2,→2), written o1 < o2, if E1 ( E2∧ →1= {(e1, c, e2) ∈→2: e1, e2 ∈ E1} ∧ ∀e1 →2 e2. e1 /∈

E1 ⇒ e2 /∈ E1.

Example 1. A symbolic trace for the program of Figure 5.1, is given in Figure 5.2. The program

consists of two threads, T1 and T2. Each thread is given a pointer as input and increments the value at
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1 T1:
2 input: int ∗x
3 local: int a
4 a := ∗x
5 ∗x := a + 1
6 assert ∗x == a + 1

7 T2:
8 input: int ∗y
9 local: int b

10 b := ∗y
11 ∗y := b + 1

Figure 5.1: Example program.

(T1, 0) : read x

(T1, 1) : write x

(T1, 2) : read x

(T2, 0) : read y

(T2, 1) : write y

[x==y]

[x==y]

Figure 5.2: Example symbolic trace for the program of Figure 5.1. In all executions that adhere to this
symbolic trace, the assertion in line 6 of thread T1 is not violated. (Transitive edges are omitted.)

the pointer’s target, mistakenly without synchronization. Thread T1 asserts that the target of x indeed

holds the intended value. In case the pointers x and y point to different memory locations, the threads

do not interfere with each other and the assertion holds. Otherwise, dependent accesses occur and the

assertion does not hold under every possible ordering of events. The symbolic trace in Figure 5.2 ensures

that the assertion holds in all executions that adhere to the symbolic trace. Nodes correspond to events

and are labeled with the corresponding memory access for clarity. Edges between events of the same

thread represent the thread’s program order; edges between events of different threads represent scheduling

constraints. Since dependencies between T1 and T2 occur only if the pointer targets match, x==y, the

scheduling constraints are labeled with this condition.

Whether an execution τ = s0T1s1 . . . Tnsn adheres to the scheduling constraints of a symbolic trace

graph, τ 4 o, can be checked as follows. Let ρ = e1 . . . en be the event sequence of τ . If ρ is empty,

τ 4 o holds. Intuitively, that ρ is empty means that it does not contain any events that can violate

any constraint given by o. If ρ is not empty, check whether e1 has an incoming edge in o whose state

predicate is satisfied by s0. If this is the case, τ 4 o is not satisfied. Otherwise, e1 can be safely executed.

Recursively check whether s1 . . . Tnsn 4 remove(e1, o).
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Algorithm 4: IRS with trace prefixes and execution of sequences without synchronization
Data: oadm – the current admissible trace prefix

1 Initialization:
2 initialize oadm to an arbitrary, deadlock-free admissible trace prefix for program P
3 initialize internal verification status G such that safeG(oadm)

4 Verifier:
5 while not finishedG do
6 do next verification step and update G
7 if ∃o′ < oadm . deadlock-freeG(o′) then
8 oadm ← o′

9 Execution environment:
10 set the current execution τ to the empty sequence
11 while P has not terminated do
12 choose some sequence τ ′ from free(τ, oadm)
13 execute τ ′

14 append τ ′ to τ

5.1.3 Algorithm

The general IRS algorithm from Section 4.1 requires a synchronization between individual threads and

the IRS execution environment after each event in order to check compliance of the current execution

with a previously verified trace. Additionally, it stores all current admissible traces explicitly, which

increases space requirements and look-up times as the verification advances. With Algorithm 4, we

present an IRS algorithm that can be efficiently implemented. It addresses both previously described

issues by the use of trace prefixes as scheduling constraints and allowing threads to run uninterrupted

for multiple memory events whenever scheduling constraints do not require synchronization.

In order to simplify the presentation, it is assumed that the IRS execution environment enforces

sequential consistency independently from scheduling constraints. For platforms where this incurs a

considerable slowdown, scheduling of events of the same thread can be relaxed by considering intra-thread

scheduling constraints.

Do not synchronize already reversed races. By using trace prefixes as scheduling constraints,

it is possible to avoid synchronization before events when every possible continuation of the current

execution is proven to be error-free. The corresponding part in an admissible trace does not have to be

enforced and scheduling constraints can be removed.

Instead of managing a set of admissible traces, Algorithm 4 uses a single trace as the current

admissible trace prefix. Every event that occurs in this prefix has to be executed according to its partial

order, however every additional event may be executed without synchronization. Once the verifier has

collected enough information about correct executions of the program, the admissible trace prefix is

updated.

As soon as all events of a safe admissible trace prefix have been executed via an execution prefix,
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all continuations of τ must not reach an unsafe state. Formally, we define safety for admissible trace

prefixes as possible.

Definition 31 (safe admissible trace prefix). Given the verification status G of a verifier, a trace

prefix o is a safe admissible trace prefix, written safeG(o), if for all executions τ = s0T1s1 . . . sn,

(τ ≈ o⇒ safeG(sn)) ∧ (τ 4 o⇒ l(sn) 6= lerror).

Similarly, we require a guaranty about the absence of deadlocks for admissible trace prefixes.

Whenever an execution prefix is covered by a safe admissible trace prefix, no deadlock should be

reachable from this execution prefix. Whenever an execution prefix adheres to a safe admissible trace

prefix, there should exist an event that does not need to wait for an other event.

Definition 32 (deadlock-free admissible trace prefix). Given the verification status G of a verifier,

a safe admissible trace prefix is deadlock-free, written deadlock-freeG(o), if for all execution prefixes

τ = s0T1s1 . . . sn, τ ≈ o implies that no deadlock can be reached from sn and τ 4 o implies that

∃e ∈ o.∀e′ c−→o e. sn � c⇒ tid(e′) = tid(e).

The current admissible trace prefix oadm is updated by shortening it, i.e., by removing constraints at

the end of its happens-before relation. Formally, a new admissible trace prefix o′ is required to satisfy

o′ < oadm. On a more abstract level, the verifier finds an initial, complete, and correct symbolic trace o

of the program and generates a sequence o > o1 > . . . > on of subsequent trace prefixes such that for all

1 ≤ i ≤ n, safeG(oi).

A verifier can update a trace prefix o as follows. Each edge (e1, e2) with tid(e1) 6= tid(e2) in o is

interpreted as a scheduling constraint that requires e2 to be executed after e1. Updates of trace prefixes

remove scheduling constraints. Let o′ be o with e1, e2, and all their successors (w.r.t. the happens-before

relation) removed. It is safe to remove the scheduling constraint (e1, e2) if all states s that are reachable

by a linearization of o′ are safe, i.e., safeG(s). Depending on the verification approach used, it may be

more efficient to delay the removal of (e1, e2) until it occurs at an end of o, w.r.t. the happens-before

relation, i.e., no event happens after e2 that has an incoming or outgoing edge with an event from an

other thread.

In the worst case, even if scheduling constraint (e1, e2) is at the end of a trace prefix, the verifier

has to prove safety for exponentially many states before (e1, e2) can be safely removed. On the one

hand, this complexity is a general limitation of IRS. On the other hand, the duty of the verifier can be

reduced exponentially by adding only one scheduling constraint, which may reduce the verification delay

considerably.
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In order to use the optimization of trace prefixes, we extend the definition of adherence to a symbolic

trace graph as follows. A finite execution τ = s0T1s1 . . . Tnsn with event sequence ρ = e1 . . . en is covered

by a symbolic trace graph o, written τ - o, if:

• τ 4 o or

• ∃τ ′ < τ. τ ′ ≈ o

In other words, if a prefix τ ′ < τ adheres to o and contains exactly the events of o, all continuations of

τ ′ are covered by o. By our safety requirement for trace prefixes, it is safe to use - instead of 4.

Do not preempt minimal events. In addition to the use of trace prefixes, Algorithm 4 omits

synchronization before events that do not have to occur second in a race, i.e., events that do not have a

predecessor in oadm from a different thread.

The execution environment of Algorithm 4 reduces the number of synchronizations by permitting a

sequence of events, potentially from multiple threads, between two synchronizations. This sequence is

chosen from the set free(τ, o) as a continuation of the current execution τ that adheres to o or contains

only synchronization-free events. To simplify the presentation of Algorithm 4, we include the previously

described optimization using trace prefixes in the definition of free(τ, o).

Definition 33. Given an execution prefix τ1 = s0T1s1 . . . Tnsn and a symbolic trace graph, the set of

synchronization-free event sequences, free(τ1, o), is defined as those execution fragments τ2 that induce a

(feasible) execution prefix τ1 · τ2 and either is covered by o or consist only of unconstrained events, i.e.,

free(τ1, o) := {τ2 : ∃τ ∈ Executions(P ). τ1 · τ2 < τ ∧ (τ1 · τ2 - o ∨ ∀e ∈ ρ(τ2).∀e′ ∈ o. e′ c−→o e ∧ sn � c⇒

tid(e′) = tid(e))}.

Nota bene, as described in Section 4.1, verifier and execution environment are executed concurrently

such that the execution environment can be executed several times during a single run of the verifier.

5.1.4 Correctness and deadlock-freedom

An IRS algorithm is correct if only safe executions can occur under its execution environment. The

following theorem provides correctness of Algorithm 4.

Theorem 4 (Correctness of IRS). Whenever an execution τ = s0T1s1 . . . Tnsn has been executed by

Algorithm 4, all visited states are error-free, i.e., ∀0 ≤ i ≤ n. error_free(si).
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Proof. Let τ = s0T1s1 . . . Tnsn be an execution or execution prefix executed by Algorithm 4, let oadm be

the current admissible trace prefix, and G the current verifier state. Induction on the number of steps of

the execution environment, i.e., the number of times a sequence from free() has been executed. Base

case: zero steps have been executed. As the initial state is always safe, all visited states are error-free.

Inductive case: n steps have been executed. The result of the previous n− 1 steps is an execution prefix

τ1 Let sk be the state reached after executing τ1. By induction hypothesis, all states visited by τ1 are

error-free. If the admissible trace prefix oadm has been updated by some o′adm since the last execution

step, this also holds for o′adm since o′adm < oadm is required. It remains to show that the sequence τ2
from free(τ1, o), such that τ = τ1 · τ2, does not visit an error state.

Case distinction according to the definition of free().

1. There exists a prefix τ ′ = s0T1s1 . . . Tksk of τ such that τ ′ ≈ oadm.

Algorithm 4 in line 7 ensures that safeG(oadm). The verifier guarantees that safeG(sk), hence all

states visited by τ2 are error-free.

2. All events of ρ(τ2) are synchronization-free, i.e., ∀e ∈ ρ(τ2).∀e′ ∈ o. e′ c−→o e ∧ sn � c⇒ tid(e′) =

tid(e).

τ1 · τ2 4 o, hence the verifier guarantees that all states visited by τ2 are error-free.

In addition to correctness, an important requirement is that a program is never completely blocked

by scheduling constraints (provided that at least one correct execution exists). The following deadlock-

freedom theorem guarantees that this cannot happen with Algorithm 4.

Theorem 5 (Deadlock-freedom of IRS). Whenever an execution or execution prefix τ has been executed

by Algorithm 4 with a deadlock-free admissible trace prefix oadm, either the program has terminated or

free(τ, oadm) is not empty.

Proof. Analogous to the correctness proof, the definition of deadlock-free admissible trace prefixes

guarantees that no deadlock can be reached (for τ - oadm) or that free(τ, oadm) is not empty (for

τ 4 oadm).
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1 %20 = call i32 @getThreadId(%"class.benchmark::WorkerThread"∗ %this)
2 %21 = alloca i32
3 store i32 %20, i32∗ %21
4 %22 = load i32, i32∗ %21
5 %23 = bitcast i32∗ %17 to i8∗
6 call void @before_memory_access(i32 %22, i8∗ %23, i64 4, i32 1)
7 %24 = cmpxchg i32∗ %17, i32 0, i32 %19 seq_cst seq_cst
8 call void @after_memory_access(i32 %22)

Listing 5.1: A global memory access (cmpxchg) after inserting callbacks directly before and after.

5.1.5 Experimental evaluation

Implementation

We have implemented Algorithm 4 in an IRS prototype. This prototype handles C and C++ programs

translated to LLVM-IR. The LLVM-IR code is instrumented via the LLVM compiler infrastructure [LLV]

in order to enforce an admissible trace prefix whenever the program is executed. The IRS execution

environment is realized completely inside the instrumented application program and does not depend

on any modifications of the operating system or assumptions on the used scheduler. Via a standard

dependency analysis the prototype identifies all dependent memory accesses, which are memory accesses

that either directly access global memory or may influence the result of an other global memory access.

Scheduling constraints are enforced by callbacks directly before each dependent memory access that check

whether this memory access is currently permitted. Callbacks directly after each dependent memory

access communicate to other threads that the memory access has been performed. Memory fences inside

these callbacks ensure sequential consistency, as assumed by our presentation in Section 5.1.3. Before

each instrumented memory access, a thread checks whether an event of an other thread has to occur

before its own upcoming event via a look-up in a global vector clock. Busy waiting is performed until

the current thread is permitted to continue. After the memory access, the callback signals that the

memory access is completed by updating the global vector clock. In contrast to earlier versions of our

prototype, no thread is added to the program.

Listing 5.1 shows an example application of our instrumentation. Identifiers have been renamed

for easier readability. Only line 7 (containing the compare-and-swap instruction cmpxchg) is contained

in the original program. All additional lines are added by our instrumentation. Initially, a custom,

deterministic thread ID is obtained. Afterwards, thread ID, memory location and whether the access

can modify the memory are reported by callback before_memory_access to the library, where the event

is recorded. After the memory access, callback after_memory_access signals that the memory access is

completed.

When testing several alternatives of implementing schedule enforcement, we observed that, as ex-
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Figure 5.3: Execution time overhead of IRS relative to uninstrumented benchmarks for decreasing
numbers of scheduling constraints (two-threaded benchmarks)

pected, lock-based implementations of waiting for other threads’ events is much slower than busy waiting.

A disadvantage of busy waiting is CPU consumption during waiting, which can reduce performance

when more threads are active than hardware cores are available. We expect that improvements over

our current, simple scheme of busy-waiting for permissions can be made by the use of a more advanced

combination of busy waiting with lock-based synchronization or scheduler interaction (e.g., the POSIX

sched_yield() system call). Additionally, we tested an implementation that uses a loadable kernel module

to communicate with the Linux scheduler. Whenever an event is not yet permitted to be executed,

the corresponding task’s state is set to TASK_WAIT and only restored once the event is permitted. This

design circumvents the additional CPU consumption of busy waiting. However, additional overhead

appears because the current program counter of each thread has to be communicated to the loadable

kernel module. In our tests, this design showed only an advantage if most events were constrained, i.e.,

the likelihood that an event has to wait is high.

Evaluation

Enforcing scheduling constraints in order to disable schedules outside of a given admissible trace is likely

to incur execution time overhead (here: simply overhead) in comparison to plain program executions
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(without IRS). A crucial factor for the applicability of IRS in practice is how scheduling constraints in

IRS influence this overhead, which we evaluate on several benchmark programs. The main goal of this

evaluation is to investigate whether, for a given admissible trace and induced scheduling constraints,

relaxing those constraints reduces the overhead and, if this is the case, how fast. Additionally, we

investigate whether the selection of the initial and following admissible traces, i.e., the structure of the

admissible trace prefix, influences the overhead. Software material for reproduction of these experiments

is available [Met20].

Setup. All experiments have been conducted with our IRS implementation described in Section 5.1.5.

The hardware used is an Intel Core i5-6500 CPU at 3.20GHz with four cores running Linux 4.8.0. Each

benchmark is run with and without instrumentation by our prototype. The instrumented version is run

in several configurations, with a decreasing amount of scheduling constraints. The initial number of

scheduling constraints and the number of scheduling constraints that can be removed in one step, and

thereby the number of configurations per benchmark, vary as the number of conflicting memory accesses

varies among benchmarks. Each configuration is run 1000 times. We report the median execution

time and overhead relative to the unmodified benchmark. Detailed measurement results are shown in

Appendix C.

Benchmark set 1. The first set of benchmarks are concurrent programs from the SV-COMP

benchmark suite [SVC] and the POR literature (Shared Pointer, [GFYS07]). We chose these benchmarks

because they are well-studied verification problems and contain a high amount of concurrent interaction,

which is expected to highlight performance issues of IRS. All benchmarks contain two threads. The

corresponding results are shown in Figure 5.3. For these benchmarks, IRS produces a maximum overhead

of 22%, which is much less than we expected and might be already an acceptable overhead for certain

applications. For all benchmarks, the overhead is reduced by relaxing scheduling constraints, albeit in

some cases, a significant reduction occurs only at the last reduction step. In some cases, the overhead is

negative, i.e., the instrumented version of a benchmark executed faster than the plain benchmark. We

conjecture that both measurement noise as well as improved timing of cache operations due to a different

interleaving of memory operations may be relevant for this effect, as already noted by Olszewski et

al. [OAA09]. Similarly, an increased overhead after removing scheduling constraints could be caused in

such a way. Overall, both the initial overhead and the amount of reductions are lower than we expected.

Benchmark set 2. Since we expected a higher overhead, we conduct the same experiment on two

benchmarks from the POR literature (Indexer [FG05] with 15 threads and Last Zero [AAJS14] with

16 threads), where we expect a higher overhead as a larger amount of threads and dependencies result

in a higher amount of scheduling constraints. Figure 5.4 shows the corresponding results. Indeed, for



CHAPTER 5. ENFORCEMENT OF SCHEDULING CONSTRAINTS 73

1

10

100

0%20%40%60%80%100%

R
el
at
iv
e
ex
ec
ut
io
n
tim

e
(lo

g.
sc
al
e)

Scheduling constraints

Indexer
Indexer-Opt

Last Zero
Last Zero-Opt

uninstrumented

Figure 5.4: Execution time overhead of IRS relative to uninstrumented benchmarks for decreasing
numbers of scheduling constraints (many-threaded benchmarks)

the Indexer and Last Zero benchmarks, the overhead is much higher. Interestingly, the overhead for

Indexer abruptly decreases from 1904% to 61% at the transition from 3 to 2 scheduling constraints.

We explain this observation by the fact that the permitted trace prefix with 3 scheduling constraints

requires 3 threads to wait, while after removing 1 scheduling constraint, only 2 threads have to wait.

Since our implementation uses busy waiting, many concurrently waiting threads may prevent threads

that are not required to wait from quickly proceeding.

Structure of scheduling constraints. An interesting question is whether the overhead can be

reduced by choosing a different trace prefix with roughly the same amount of scheduling constraints.

Interestingly, we have found optimized trace prefixes for both Indexer and Last Zero that indeed show a

drastically reduced overhead with the same or even more scheduling constraints. The corresponding

results are depicted as Indexer-Opt and Last Zero-Opt in Figure 5.4. For Indexer, we found that choosing

a trace prefix that requires less threads to wait can be executed faster. Figure 5.5 shows two alternative

trace prefixes for Indexer. Nodes represent events and edges a happens-before relation. The nodes

of even-indexed threads are shown in gray and events of the same thread are arranged vertically one

below the other. Figure 5.5a shows one of the slower trace prefixes, where many threads wait rarely,

and Figure 5.5b shows one of the faster (optimized) trace prefixes, where few threads wait often. For
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Figure 5.5 (a) Many threads wait rarely Figure 5.5 (b) Few threads wait often (optimized)

Figure 5.5: Trace prefixes for Indexer (threads with only conflict-free events are omitted)

the former trace prefix, 16 Mazurkiewicz traces, for the latter trace prefix, only 8 Mazurkiewicz traces

have to be verified. Although more scheduling constraints are enforced, the program execution is faster

with the latter trace prefix. While we optimize trace prefixes manually, it is conceivable that verifiers

can prioritize faster trace prefixes automatically, e.g., by applying a heuristic or by testing few traces

and comparing their overhead. Such a prioritization resembles the effects of ordering heuristics on the

performance of POR algorithms studied by Lauterburg et al. [LKMA10]. For Last Zero, our original

trace prefixes require the second event of a worker thread to wait for the first event of the next worker

thread. By letting threads wait already before their first events, the program execution is drastically

accelerated already for 100% scheduling constraints, i.e., when only a single Mazurkiewicz trace is

verified.

Summary. Our results show that relaxing scheduling constraints can reduce the overhead for all

benchmarks. For example, after verifying only 8 of 4096 Mazurkiewicz traces of Indexer, the overhead is

reduced from 2841% to 48%. However, in other cases, the execution time may not decrease considerably

until a large part of all scheduling constraints have been removed. In yet other cases, the overhead is

reduced considerably by removing a single scheduling constraint, while it does not change considerably

before and after this step. Besides the number of scheduling constraints, the choice of the permissible

trace prefix, i.e., the structure of the induced scheduling constraints, may have a large influence on

the overhead. These observations suggest that a sensible selection of an initial symbolic trace during

verification can considerably improve the execution time performance of a program that is executed

with IRS. Comparing our current results for Indexer and Last Zero to earlier experiments with a less

optimized schedule enforcement [MSBS17], we see a considerable speed-up when optimized trace prefixes

are used.
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5.2 Infinite executions

5.2.1 Program schedules for non-terminating executions

In order to support non-terminating programs, we extend our approach from Section 5.1 to schedules

for infinite executions. Based on ARTs, we introduce finite schedules that represent infinite executions

by the use of the covering relation found by the model checker. Therefore, our approach is suitable for

verifiers that produce IVRs based on ARTs (cf. Section 4.3), while IVRs of a different format may have

to be adapted.

The scheduling constraints of a safe IVR RA can be enforced by a scheduler that traverses the

nodes of A according to the current state of execution and schedules some thread that owns an edge at

the current node. However, such a naive enforcement would result in a strictly sequential execution of

transitions and would foil any benefit of concurrency. In addition to the support of infinite executions,

we aim for few necessary synchronizations between threads.

To enable parallel executions, we introduce program schedules that relax the scheduling constraints

by means of partial-order reduction (POR). Note that this application of POR concerns the enforcement

of scheduling constraints and occurs in addition to POR applied by our model checking algorithm when

constructing an ART (cf. Section 4.4). Nevertheless, dependency information that is used for POR

during model checking can be reused so that redundant computations are avoided.

Our goal is to permit the parallel execution of independent transitions (in different threads) whose

order does not affect the outcome of the execution represented by A (i.e., the resulting executions are

Mazurkiewicz-equivalent). Using traditional POR to construct such scheduling constraints poses two

challenges: 1. Executions may be infinite, but we need a finite representation of scheduling constraints.

2. The control flow of an execution may be unpredictable, i.e., it is a priori unclear which scheduling

constraints will apply. We solve issue 1 by partitioning ARTs into sections and associate a finite schedule

with every section. To address issue 2, we require that sections do not contain branchings (control flow

and non-deterministic transitions).

Consider the program and corresponding ART in Figure 5.6a. The if statement of T1 is modeled as a

separate read transition followed by a branching at node v4. We define three section paths:

π1 := ε −→ v1 −→ v2 −→ v3 −→ v4

π2 := v4 −→ v5 −→ v7 −→ ε

π3 := v4 −→ v6 −→ ε
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1 Variables:
2 int x, y, z
3 Thread T1:
4 while true:
5 x := 1
6 if z = 0:
7 y := 1
8 Thread T2:
9 while true:

10 y := 0
11 x := 0

ε

v1

v2

v3

v4

v5 v6

v7

T1: x:=1

T1: read z

T2: y:=0

T2: x:=0

T1: if z=0 T1: else

T1: y:=1

Figure 5.6 (a) A Program with a fair ART

T1:

e1 , x := 1

e2 , read z

T2:

e3 , y := 0

e4 , x := 0

Figure 5.6 (b) The section schedule for the section
path π1 from ε to v4

ε

v3

σ1, true

σ2, z = 0 σ3, z 6= 0

Figure 5.6 (c) A corresponding program schedule

After π1 has been executed, a scheduler can distinguish the cases y = 0 and y 6= 0 and schedule π2 or π3

accordingly.

Formally, we define branching nodes and section paths as follows.

Definition 34 (branching node). A node v in an ART A represents a branching, written branching(v), if

a single thread has at least two outgoing edges at v, i.e., ∃T ∈ T .∃w,w′ ∈ VA . w 6= w′∧v T−→ w∧v T−→ w′.

For an optimized partial-order reduction, successor nodes v with φ(v) ≡ false can be discarded.

A section path v1
R1−−→ . . .

Rn−−→ vn+1 corresponds to a branching-free path in an ART whose first

transition may be guarded. A section path follows −→A edges, skipping covering edges B.

Definition 35 (section path). Given a node v of an ART A , a section path from v is a finite sequence

v0T0R0v1 . . . vn−1Tn−1Rn−1vn such that

• v0 = v

• ∀i ∈ {0, . . . , n− 1}. (vi
Ti,Ri−−−→A vi+1 ∨ (∃v′. vi

Ti−→A v′ ∧ (v′, vi+1) ∈B))

• ∀i ∈ {1, . . . , n− 1}.¬branching(vi)
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We write v π−→A w if there exists a section path π from v to w in A . Analogous to event sequences

of executions, we define event sequences of section paths.

Definition 36 (event sequence of a section path). The event sequence of a section path v0T0R0v1 . . .

. . . vn−1Tn−1Rn−1vn is defined as (T0, k0) . . . (Tn−1, kn−1), where ki is the number of occurrences of Ti
in T0 . . . Ti−1.

The Section schedule of a section path describes the Mazurkiewicz equivalence class of all executions

that follow the section path and hence the same control flow.

Definition 37 (section schedule). The section schedule of a section path

v0T0R0v1 . . . vn−1Tn−1Rn−1vn with event sequence e0 . . . en−1 is the smallest partial order σ = (Vσ,−→σ)

such that Vσ = {e0, . . . , en−1} and −→σ⊇ {(ei, ej) : i < j ∧Ri ∦ Rj}.

We write PO(A ) for the set of section schedules of A . Given a node v in an ART that admits

fairness and a section path π that starts at v, we write σ(π) for the (unique) section schedule of π.

The section schedule σ(π1) of π1 is depicted in Figure 5.6b. It consists of four events e1 , T1 : x:=1,

e2 , T1 : read z, e3 , T2 : y:=0, and e4 , T2 : x:=0. An arrow e→ e′ indicates that σ(π1) requires e to

occur before e′. Events of the same thread are ordered according to the program order of the respective

thread. Events e1 and e3 are from different threads and write to the same variable, whence they are

dependent and the section schedule needs to specify an ordering: e1 must occur before e3. Accordingly,

the complete section schedule is ({e1, e2, e3, e4}, {(e1, e2), (e3, e4), (e1, e3)}).

By the following lemma, an execution from a state corresponding to the first node of a section and

scheduled according to the respective section schedule will always lead to a state corresponding to the

last node of the section. For instance, the following execution fragments both lead from the initial state

to a state represented by v4 (s4, s
′
4 � φ(v4)), as e1 and e3 are independent and can be swapped:

sinit , T1, s1, T2, s2, T1, s3, T2, s4 ! e1, e3, e2, e4

sinit , T2, s
′
1, T1, s

′
2, T1, s

′
3, T2, s

′
4 ! e3, e1, e2, e4

Lemma 4 (Correctness of section schedules). Let A be a deadlock-free ART. Let τ = τ1 · τ2 be an

execution prefix such that τ1 corresponds to a path π1 in A to the first node of a section path π in A

and τ2 corresponds to a linear extension of a section schedule σ(π) for π. τ is equivalent to an execution

τ ′ = τ1 · τ ′2 that corresponds to π1 · π.

Proof. Let A be a deadlock-free ART. Let τ = τ1 · τ2 be an execution prefix such that τ1 corresponds



CHAPTER 5. ENFORCEMENT OF SCHEDULING CONSTRAINTS 78

to a path π1 in A to the first node of a section path π in A and τ2 corresponds to a linear extension of

a section schedule σ(π) for π.

By the definition of section paths, all linear extensions of σ(π) follow the same control flow and

contain the same transitions. By the definition of section schedules, σ(π) is the partial order that

describes the Mazurkiewicz trace of all executions that correspond to π. Hence, τ2 and all other execution

infixes τ ′2 that follow τ1 (τ1 · τ ′2 is an execution prefix) and correspond to a linear extension of σ(π) are

equivalent to each other [God96]. In particular, τ2 is equivalent to the execution infix τ ′2 that corresponds

to π. Hence, τ ′ := τ1 · τ ′2 corresponds to π1 · π and is equivalent to τ .

While section schedules represent scheduling constraints for execution fragments, we obtain scheduling

constraints for complete executions by connecting several section schedules into a program schedule. A

program schedule Σ is a labeled graph (VΣ, −→Σ). Each node v ∈ VΣ is a node from A and the start of

a section path π in A . Each edge is labeled with the section schedule of π and the guard Guard(R) of

the first transition R in π.

In order to guarantee that each execution that corresponds to a path in an ART A adheres to the

scheduling constraints of a program schedule Σ for A , we require that Σ contains a section schedule for

at least the initial node and all branching nodes of A . Furthermore, as A is deadlock-free, there exists

a thread T which is fully expanded at v in A and we require that Σ likewise has outgoing edges at v

labeled with T for each transition of T at v. Figure 5.6c shows a program schedule for our example

program.

Definition 38 (program schedule). Given an ART A that admits fairness with root ε, the program

schedule of A is a labeled graph Σ = (VΣ,−→Σ) such that:

• VΣ ⊆ VA (Σ’s nodes are a subset of A ’s nodes)

• ε ∈ VΣ ∧ {v ∈ VA : branching(v)} ⊆ VΣ (Σ contains A ’s initial node and all branching nodes)

• −→Σ⊆ VΣ × PO(A )×T ×F (Q)× VΣ (edges are labeled with a section schedule, a thread, and a

transition)

• ∀v ∈ VΣ.∃T ∈ T .∀R ∈ Transitions(lT (v)).∃u ∈ VA . v
T,R−−→A u ∧ ∃w ∈ VΣ.∃σ ∈ PO(A ).

v
σ,T,R−−−−→Σ w (every node v has an outgoing edge for each transition of a thread T expanded at v

in A and T is fully expanded in A )

• ∀(v, σ, T,R,w) ∈−→Σ.∃π. π = v0T0R0v1 . . . vn−1Tn−1Rn−1vn∧v
π−→A w∧σ(π) = σ∧T = T0∧R =

R0 (every edge corresponds to a section path in A that starts with the thread and transition of the

edge)
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Similar to schedulers induced by IVRs, a scheduler can enforce the scheduling constraints of a

program schedule by looking up a section schedule that matches the current execution prefix and

scheduling an event whose predecessors (according to the section schedule) have already been executed.

Hence, all independent events in a section can be executed concurrently without synchronization. All

events of a section schedule have to appear before the first event of the next section schedule is executed,

so that the states reached between sections correspond to nodes of the program schedule. For example,

the event T1 : y := 1 from section π2 must not occur in between events T1 : read z and T2 : y := 0 from

section π1. We formalize this requirement as follows.

Definition 39 (execution schedule). Given a (possibly infinite) path v1
σ1,T1,R1−−−−−−→ v2

σ2,T2,R2−−−−−−→ . . .

with σi = (Vi,−→i), i ≥ 1 in a program schedule, we define its execution schedule as the partial order

(V1 ] V2 ] . . . , (−→1 ] −→2 ] . . . ) ∪ V1 × V2 ∪ V2 × V3 ∪ . . . ), where ] denotes a disjoint union.

An execution τ adheres to the scheduling constraints of a program schedule Σ if τ is a linear extension

of the execution schedule of some path in Σ.

Definition 40 (semantics of program schedules). The semantics of a program schedule Σ is defined as

the set of all executions that are a linear extension of an execution schedule of a path in Σ.

Hence, a program schedule of an ART A that admits fairness permits exactly those executions

that correspond to a path in A (modulo Mazurkiewicz equivalence). In particular, as Mazurkiewicz

equivalence preserves safety properties [God96], only safe executions are permitted.

Theorem 6 (correctness of program schedules). Let A be an ART that admits fairness and Σ a program

schedule for A . All program executions that adhere to the scheduling constraints of Σ are equivalent to

an execution that corresponds to a path in A .

Proof. Let A be an ART that admits fairness, Σ a program schedule for A , and τ be an execution

that adheres to the scheduling constraints of Σ, i.e., all finite prefixes τ ′ of τ correspond to a path

πτ ′ = v0
σ0(π0)−−−−→Σ . . . vn

σn(πn)−−−−→Σ vn+1 in Σ. We show a slightly stronger statement: all finite prefixes τ ′

of τ are equivalent to an execution prefix that corresponds to the path π0 . . . πn in A .

Induction on the length of τ ′.

case τ ′ is empty: τ ′ corresponds to the empty path in A .

inductive case: Let πτ ′ = v0
σ0(π0)−−−−→Σ . . . vn

σn(πn)−−−−→Σ vn+1 be the path in Σ that τ ′ corresponds to.

Let τ ′ = x1x2 be partitioned so that x1 corresponds to the prefix v0 . . . vn in that path. Such a
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Algorithm 5: IVR induced by a program schedule Σ
input : s0T0 . . . sn, an execution prefix
output : a set of threads that is permitted to execute after the given execution prefix

Data: Σ, a program schedule
Data: σ, initially some section schedule such that ε σ−→Σ w for some w
Data: v := w
Data: i := 0

1 Function R(s0T0 . . . sn)
2 if n− i = |σ| then
3 i := n

4 choose σ,w s.t. v σ,T,R−−−−→Σ w and sn satisfies the guard of transition R
5 v := w

6 σ′ := σ with the events of Ti, . . . , Tn−1 removed
7 return min(σ′) (all threads that have no predecessors in σ)

partitioning exists, as by Definition 39, an event must occur after all events from the previous

section schedule and before all events from the following section schedule.

By the induction hypothesis, there exists an execution x≈1 that is equivalent to x1 and corresponds

to the path π0 . . . πn−1 in A . x2 is a linear extension of σ(πn). By Lemma 4, there exists x≈2 such

that x≈1 · x≈2 is equivalent to x1 · x2 and corresponds to π0 . . . πn.

Algorithm 5 shows how an IVR can be derived from a program schedule. The algorithm requires a

program schedule for the program under execution and maintains a current section schedule σ. Given

an execution prefix τ , it checks whether there are still events in σ that are not yet executed. If this is

not the case, the current section is reset to a section that is feasible in the current state. Afterwards,

those events that have already been executed are temporarily removed from σ and a thread is scheduled

that has no predecessors in σ after this removal.

5.2.2 Experimental evaluation

Implementation

To evaluate the enforcement of program schedules for infinite executions, we implement a custom (user

space) scheduler, similar to our implementation for finite executions.

In a first step, we automatically translate ARTs constructed by Impara-IMC to program schedules

encoded as vector clocks [Mat89]. To omit sections in the generated program schedule that would never

be executed and thereby reduce the size of the program schedule, we discard all paths in the ART that

lead only to nodes labeled with false. As we use only deadlock-free ARTs, an alternative, feasible path,

always exists. A given ART is traversed from the root. Recursively, we build section paths by traversing
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the graph until a branching node is reached. At the branching node, a fully expanded thread T is chosen.

The next sections are started at all child nodes of the branching node that are reached by a transition of

T . For each section, the section schedule is generated based on the dependency information of memory

accesses. Section schedules are represented by vector clocks. Additionally, each section schedule contains

a link to all possible successor sections, i.e., those sections that start at a direct successor node of the

current section. If there exist nodes v, w such that all possible paths between v and w are section paths

and correspond to pairwise equivalent executions, a single section path between v and w with relaxed

scheduling constraints is sufficient. In this case, no dependencies between memory events need to be

enforced. However, we use only the first IVR in our experiments (produced in a single iteration of

Algorithm 3), whence we do not evaluate this case.

Once all section schedules for the given ART are generated by enumerating all section schedules,

including link information about successor sections, and marking the initial section.

Second, we instrument the source code of benchmark programs manually with callbacks to our user

space scheduler and code for time measurement. The user space scheduler is implemented in C++11

and uses the C++ standard library for atomic memory operations. Program schedules are included as

header files. Every access to a non-thread-local, global variable (shared variable) is replaced by a C++

preprocessor macro that calls the user space scheduler, executes the original statement, and calls the user

space scheduler to notify that the statement has been executed. In our selection of benchmark programs,

we had to instrument assignments and if-then-else statements. In the case of control flow branchings

that depend on a shared variable, i.e., an if-then-else statement where the branching expression depends

on a shared variable, additional callbacks are necessary to notify the scheduler of the taken control flow

path.

To ensure that memory accesses enclosed by callbacks are indeed executed after the preceding

callback and before the succeeding callback, memory fences are used.

The result of steps one and two is a multi-threaded program that executes concurrent memory

accesses according to a given program schedule. Every execution of this program can be generated by

Algorithm 5. Nevertheless, threads are executed concurrently and only forced to execute sequentially

where required by the program schedule. Each time a thread T enters the callback preceding a memory

access, T looks up the current section schedule and program counters of the other threads. If the vector

clock of the section schedule, at the position of the current event of T , shows an event of an other thread

that has to occur first, T waits until this event has been executed. If no more events are required to

occur before the current event of T by the section schedule, T executes the current memory access and,

in the succeeding callback, updates its program counter so that the other threads are notified that T
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has executed another event.

In case all events of the current section have already been executed, T chooses the successor section

associated to its current event. Waiting for all threads to completely execute the current section before

switching to a successor section ensures that the program, at the end of each section, reaches a state

that is represented by a node in the program schedule (and thereby, in the ART generated by the model

checker). In case T has no successor section associated to its current event, T waits for an other thread

to choose the next section. In case the last node of the current section is a branching node, only the

thread with a control flow branching chooses the next section. In case T has a control flow branching at

the end of the last section, T chooses the successor section based on the taken control flow branch.

Thirdly, we instrument the benchmark programs with code for time measurement. Each thread

executes in an indefinite loop. Each time a thread has accomplished useful work in the current loop

iteration, e.g., producing or consuming an item, writing a block or inode, or executing the critical section,

it increments its performance counter. The main thread sleeps for 2 seconds, the time out duration, and

subsequently prints the sum of the performance counters of all threads and terminates the program.

Such a single run of a benchmark program is executed five times and we report the respective median

value of performance counter sums. All experiments have been executed on a 4-core Intel Core i5-6500

CPU at 3.2GHz.

While we manually instrumented the benchmark source code, an automated instrumentation is

well conceivable. Main tasks of such an automated instrumentation are to identify shared variables

and all points in the program, where dependent expressions are accessed. Relevant shared variables

can be either overapproximated so that all shared or global variables are included or found by a static

dependency analysis. Even if the variables to be instrumented are overapproximated, the expected

additional execution time overhead is small, as our experiments show: a callback to our scheduler is

fast if the current thread does not have to wait for other threads before executing the next variable

access. Expressions that depend on a shared variable can likewise be found by a static dependency

analysis. The automated instrumentation may of course be implemented on the level on the intermediate

representation of a compiler and does not have to be conducted on the source code level. Software

material for reproduction of these experiments is available [Met20].

Evaluation

Table 5.1 shows the performance impact of enforcing IVRs on several correct programs. Each program is

model-checked once until the first IVR (verification times are reported in Table 4.1). As a baseline, the

program is run without schedule enforcement (unconstrained). The first IVR is enforced without (Opt0),
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Table 5.1: Experimental results
Performance is measured in number of useful loop iterations (e.g., with a successful concurrent
access such as a produced item) within a time limit of 2 seconds.

Performance (higher is better)
Benchmark Opt0 Opt1 Opt2 Unconstr.
prod.-cons. 1p 1c 1000b 4 864 489 7 466 093 11 370 258 8 199 202
prod.-cons. 2p 2c 1000b 3 400 187 5 959 041 8 428 598 11 643 208
prod.-cons. 4p 4c 1000b 1 327 063 2 576 695 3 676 876 7 210 796
prod.-cons. 1p 1c 5b 4 945 116 7 075 596 12 372 817 7 915 465
prod.-cons. 2p 2c 5b 3 194 019 5 514 429 9 271 859 6 933 172
prod.-cons. 4p 4c 5b 1 345 991 2 465 108 3 392 111 3 240 136
double lock 1 ms 1845 1834 3217 1797
file system 3667 4877035 6705672 23822129
barrier 1238720 8285228 14586849 1077907

and with optimizations (Opt1, Opt2). Opt1 applies POR and omits operations on synchronization

objects (mutexes, barriers).1 Opt2 uses, in addition to Opt1, longer section schedules (by replicating a

section eight times) and stronger partial-order reduction that identifies independent accesses to distinct

indices of an array. Additionally, for the producer-consumer benchmark, we apply a compiler-like

optimization, removing and reordering events to reduce the number of constraints.2 Both Opt1 and

Opt2 enable the concurrent execution of more memory accesses, e.g., because the beginning of a critical

section can already be executed before a thread arrives at a constrained access that has to wait. The

schedules for each benchmark (Opt0–Opt2) are obtained from the first IVR. As all benchmarks use

unbounded loops, we measure the execution time performance by counting useful (i.e., with a successful

concurrent access such as a produced item) loop iterations and terminating the execution after 2 seconds.

At the example of a section schedule of the producer-consumer benchmark with two threads,

Figure 5.7a–5.7b illustrates the difference between optimizations. Figure 5.7a shows a section schedule

for Opt0. All shared memory events are executed strictly sequentially, as it is the case with unconstrained

executions: only the thread holding the lock is allowed to access shared memory. Opt1 removes the lock

operations while maintaining the same ordering of events. Opt2, cf. Figure 5.7b, relaxes the original

ordering, subsumes eight loop executions of both threads, and eliminates the redundant read event of

count.

In Figure 5.7b, when the consumer executes the scheduler callback before its first event (read count),

it looks up the constraint e01 → e10 and waits for the producer to finish event e01. When the producer in
1As enforcing an IVR is redundant to synchronization over existing mutexes and barriers, omitting them is safe.
2Opt2 follows a general algorithm, however, we do not automate our implementation of Opt2, as it would be a large

effort to implement compiler optimizations. Our implementation of Opt1 is automated.
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T1 (producer):

if (count < N)

local_count = count

buf[local_count + 1] = item

count = local_count + 1

e11 , lock

e12 , read count

e13 , read count

e14 , write buf

e15 , write count

e16 , unlock

T2 (consumer):

if (count > 0)

local_count = count

count = local_count − 1

item = buf[local_count − 1]

e21 , lock

e22 , read count

e23 , read count

e24 , write count

e25 , read buf

e26 , unlock

Figure 5.7 (a) Section schedule for the producer-consumer benchmark (Opt0)

T1 (producer):
local_count = count

count = local_count + 1

buf[local_count + 1] = item

local_count = count

count = local_count + 1

buf[local_count + 1] = item

e11 , read count

e12 , write count

e13 , write buf

e14 , read count

e15 , write count

e16 , write buf

T1 (producer):
local_count = count

count = local_count + 1

buf[local_count + 1] = item

local_count = count

count = local_count + 1

buf[local_count + 1] = item

e21 , read count

e22 , write count

e23 , write buf

e24 , read count

e25 , write count

e26 , write buf

Figure 5.7 (b) Section schedule for the producer-consumer benchmark (Opt2) – only the first two of eight loop
iterations are shown
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the callback after e01 has notified that e01 has been executed, the consumer continues and executes e10.

Similarly, the producer is permitted to execute e03 before e12 has been executed. Thus, the constrained

execution under the optimized schedule permits “more” concurrency (i.e., more events to be executed

concurrently) than the unconstrained execution with locks. For instance, the consumer is allowed to

read the counter already after the producer has written it and does not have to wait for the producer to

also write an item to the buffer.

We use the producer-consumer implementation (with correct synchronization and buffer sizes 5 and

1000) from SV-COMP [SVC] (stack_safe), modified with an unbounded loop and with 1, 2, and 4

producers and consumers. The double lock benchmark is a corrected version (lock operations in T2

reversed) of the deadlock benchmark (Section 4.5.2), where the critical section is simulated by sleeping

for 1 ms; the uncorrected version reached a deadlock after only 172 loop iterations. The file system

benchmark from SV-COMP (time_var_mutex_safe) is extended with a third thread and again with

unbounded loops as in Section 4.5.4. The barrier benchmark uses two barriers to implement ring

communication between threads.

Somewhat surprisingly, some benchmarks are slower when executed unconstrained. We conjecture

that this is caused by more memory accesses being executed in parallel under Opt2. In all but one

cases, Opt2 is considerably faster than Opt1, which is considerably faster than Opt0. The highest

overhead is observed for the file system benchmark, where Opt2 is about 3.5 times slower than the

unconstrained execution. We conjecture that the high overhead here stems from an unequal distribution

of loop iterations among threads, when executed unconstrained: the loop body of T2 was executed

nearly 100 times more frequently than T1, while it is shorter and probably faster. Opt0–Opt2 execute

all threads nearly balanced. In addition to the Pthreads barriers used in the barrier benchmark, we

tried a variant with busy waiting barriers, where the unconstrained execution showed a performance of

13 567 135, which is still slower than Opt2.

Comparing the results for the producer-consumer benchmark with a buffer size of 1000 to those

for a buffer size of 5, we observe that there is no considerable effect on Opt0–Opt2 but on most of the

unconstrained executions. This observation is comprehensible, as the first IVR does not make use of

more than at most four cells in the buffer (in case of four producers). The performance of unconstrained

executions decreases with a smaller buffer as the chance that the buffer is full and a producer has to

wait is higher. For all three configurations with a buffer size of 5, Opt2 shows the highest execution

time performance.

Even in repeated executions of the experiment, the unconstrained variant of double lock showed only

“starving” executions in the sense that the second thread was never able to acquire the mutexes before
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Table 5.2: Experimental performance results for pfscan

Execution time (s)
Schedule Constrained Unconstrained Relative
S1 3.34 3.25 1.03
S2 3.34 3.25 1.03
S3 3.6 3.25 1.10
S4 3.57 3.25 1.10

the timeout of 2 seconds. Hence, the constrained executions improve on the operating system scheduler

in terms of a balanced execution of all threads.

In order to compare to the enforcement of input-covering schedules [BCG13] (explained in Section 6),

we measure the overhead of our scheduler implementation on the pfscan benchmark used there. Pfscan

is a parallel implementation of grep and uses 1 producer and 2 consumer threads to distribute tasks,

consisting of reading and searching a file for a given query. As input, we use 8 files with 100MB of

random content each. We evaluate 4 different schedules3, which show an overhead between 3% and

10% (with Opt2). Hence, IVRs can perform much better than input-covering schedules (60% overhead

reported in [BCG13]).

Table 5.2 contains our experimental results for the pfscan benchmark. We use two worker threads in

addition to the main thread. The benchmark is executed with scheduling constraints of several program

schedules S1–4 (column two) and unconstrained (column three). Execution times are given in seconds.

The fourth column gives the relative execution time (overhead). In all constrained configurations,

operations on synchronization objects have been omitted (Opt1). S1, S2, and S3 are program schedules

as they can be produced during the first iteration of our model checking algorithm. Program schedule

S4 allows any interleaving of critical sections so that all executions of the unconstrained program are

matched. S1 and S2 contain sections that comprise both worker threads, while S3 and S4 contain only

single-threaded sections. S1 and S2 differ in the ordering of the worker threads.

S3 causes an overhead of 10% with respect to the unconstrained execution. Although S4 allows

any interleaving of critical sections, there remains an overhead of 10% caused by looking up section

schedules during the execution. S1 and S2 show only a small overhead of 3%. We conjecture that the

lower number of section schedule look-ups (compared to S3 and S4) is responsible for the considerably

lower overhead.

3As Impara cannot handle several features used by pfscan (such as condition variables, structs, and standard output),
we manually generate initial IVRs.
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Related work

Partial order reduction Partial order reduction (POR) (refer to, e.g., Godefroid [God96],

Baier [BK08], or Clarke [CGP01] for a basic overview) identifies equivalent executions based on the

dependencies between concurrent events. Properties that are compatible with POR, such as state reach-

ability, can be checked by exploring one representative of each execution equivalence class, which reduces

the verification complexity. This reduction does not restrict scheduling and is orthogonal to our approach

of reducing the verification complexity via scheduling constraints. Our first contribution addresses the

efficiency of POR algorithms by avoiding redundant dependencies. Furthermore, we combine both the

generation of scheduling constraints (cf. Chapter 4) and their enforcement (cf. Chapter 5) with POR to

increase the efficiency of our approach.

Static POR techniques use a static approximation of dependencies [Val89, GP93, Pel93, BKSS11].

While both static and dynamic POR algorithms can be augmented with section-based exploration as in

epor, we focus on dynamic dependency calculation, which drastically increases the state space reduction

for benchmarks such as Indexer.

Dynamic POR has been introduced by Flanagan and Godefroid [FG05]. Their algorithm dpor

computes a persistent set of events to explore in every visited state. Like many POR algorithms, dpor

has been combined with the sleep set technique [God90]. For every visited state, the corresponding

sleep set contains events whose exploration would be redundant and is avoided.

Abdulla, Aronis, Jonsson, and Sagonas have proposed two model checking algorithms based on

dpor [AAJS14], named sdpor and odpor, replacing persistent sets with source sets. In some cases,

the source set of a state is smaller than the smallest persistent set of this state, which improves the state

graph reduction. epor uses source sets in order to reverse races between sections but avoids redundant

87
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race checks and source set calculations inside of sections.

The odpor algorithm is an extension of sdpor that can increase the amount of state space

reduction for certain benchmarks, however adding runtime overhead that is not always compensated by

a higher state space reduction: for many benchmarks, sdpor is faster than odpor due to less runtime

overhead [AAJS14]. Consequently, we compare our algorithm epor to sdpor instead of odpor in order

to investigate whether even the lower runtime overhead of sdpor can be reduced.

cdpor by Gueta, Flanagan, Yahav, and Sagiv [GFYS07] handles sequences of events, similar to

epor and unlike dpor, sdpor, and odpor. However, cdpor explores only events of a single thread at

once, while epor handles events sequences of all threads and of varying length.

POR approaches for relaxed memory models have been proposed as well, e.g., [ZKW15]. Our system

model handles programs with relaxed memory models by using partial program orders. Symbolic model

checking (both bounded and unbounded) using POR has been addressed, e.g., in [KWG09, WKO13]. We

present epor as an improvement of dependency calculation in explicit-state dynamic POR algorithms

but do not see any fundamental difficulty in using it for symbolic POR.

Model checking Unbounded model checking [HJM04, WKO13, NFLP16, GLSW17] is a technique

to verify the correctness of potentially non-terminating programs. In our setting, we use algorithms that

represent the already explored state space and schedules by abstract reachability trees (ARTs) [HJMS02,

McM06, WKO13] and perform this exploration in a forward manner. Instead of discarding an ART

after an unsuccessful attempt to verify a program, we use the ART to extract safe schedules.

Conditional model checking [BHKW12] reuses arbitrary intermediate verification results. A sub-

sequent verification attempt focuses on states that are not yet proven to be safe by the intermediate

verification result. For example, multiple algorithms or configurations of algorithms can be used in

subsequent verification attempts to combine their strengths. In contrast to our approach, intermediate

verification results in the framework of conditional model checking are not guaranteed to prove the

safety of a program that is functional under all inputs and does not enforce the preconditions (e.g.,

scheduling constraints) of the intermediate result.

Reducing the complexity of scheduling Program analyses that use context bounding [QW04,

QR05, MQ07] consider only those executions of a program which contain only up to k context switches

between threads, for a typically small bound k. As with our model checking approach, the model

checking problem is eased, however, context bounding is limited to finite executions. While reachability

for concurrent, recursive programs is undecidable [Ram00], additionally bounding the number of context
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switches makes the problem decidable [QR05]. Context bounding may be used within our iterative

model checking algorithm (as long as executions are finite) as a policy that selects the next thread to be

expanded when constructing an ART. In this sense, context bounding is a special case of an exploration

policy for our algorithm. Similar to context bounding, a generally undecidable model checking problem

may become tractable when handled by our algorithm: if an IVR is found, the program can be safely

used even if the reachability problem is undecidable under unconstrained scheduling.

When applied with bounded model checking (BMC) for concurrency bug finding [RG05, CF11, MQ07,

LR09, ITF+14], context bounding focuses the search for erroneous schedules to those with few context

switches. Consequently, potential bugs are missed that manifest themselves only after more context

switches than the current bound. However, based on empirical results, Musuvathi and Qadeer argue that

a low context bound is sufficient to find many interesting bugs [MQ07]. They propose iterative context

bounding (ICB) as an extension to BMC: a program is iteratively checked with an increasing context

bound, similar to increasing the bound on execution lengths in BMC. Given limited resources (that

usually do not allow to search the complete state space of a program), ICB prioritizes schedules with few

context switches. As mentioned above, this search strategy of ICB could be used within our iterative

model checking algorithm. However, in contrast to bug finding based on BMC, our goal is a sound

program analysis (under scheduling constraints), i.e., a safety proof for complete, unbounded program

executions, which is not given, in general, by BMC. Another difference between context bounding in

bug finding and our model checking approach are guarantees about scheduling: when searching for

erroneous schedules, bug finding may use assumptions about the likelihood of schedules in order to

guide the search. However, any such assumptions are not enforced. Consequently, bug finding may

miss feasible executions of a program that contain, e.g., a bug that has not been found under context

bounding. In contrast, our algorithm produces enforceable scheduling constraints so that only checked

executions occur.

Sequentialized programs [QW04, LR09, FIP13, ITF+14, NFLP16, NSF+17] emulate the semantics

of a multi-threaded program, allowing tools for sequential programs to be used. The amount of possible

schedules is either not reduced at all or similar to context bounding.

Nguyen et al. [NSF+17] transform a concurrent program into several instances that show only a

reduced number of schedules, respectively. The technique of dividing a program into instances is based

on lazy sequentialization for BMC [FIP13]. The scheduling constraints for each instance follow a fixed

schema and need not necessarily be feasible. Hence, this approach of generating scheduling constraints

is not well suited to find a single feasible schedule, as in our approach, but rather are intended to cover

all schedulings up to given context bound. Each scheduling-constrained instance is checked individually



CHAPTER 6. RELATED WORK 90

by BMC with a context bound. Similar to our model checking approach, this decreases the complexity

of the model checking problem and improves bug finding. As only executions with a bounded length

and a bounded number context switches are checked, this approach is unsuitable for verification.

Quasi-static scheduling [LM87, CKL+05, DGTY10] has been proposed to find a static schedule that

is feasible for any dynamic program input, e.g., in the context of real-time scheduling. For example,

the shorter branch of a control flow branching can be padded to the length of the other branch so that

the length, or number of events, is the same regardless of the dynamic control flow branching. A static

schedule for the program fragment consisting of this control flow branching can allow the statically

known number of events so that it is feasible regardless of the dynamic choice. Such a schedule is

denoted as quasi-static. The problem of finding a quasi-static schedule can be extended with additional

requirements such as validity (a schedule must not prevent a program from terminating) and regularity

(the language of permitted executions must be regular, in the sense that each processor may occur only a

bounded number of times before all other processors occur) [DGTY10]. Such requirements are similar to

our requirement on IVRs (cf. Section 4.2). Quasi-static scheduling has been discussed for several models,

including processes communicating over a complete graph of buffers [DGTY10] and Petri nets [CKL+05].

We use similar requirements on schedules, but for multi-threaded programs with shared memory. Instead

of discussing the problem of quasi-static schedulability (i.e., the existence of a quasi-static schedule),

we are interested in finding a concrete schedule that can both be verified and enforced, representing

schedules (even for infinite executions), and enforcing schedules with concurrent computation (instead

of sequentializing the events of multiple threads). We are not aware of any combination of quasi-static

scheduling with model checking or other verification techniques.

Reducing the non-determinism due to weak memory models In addition to scheduling, a

source of non-determinism are relaxed memory models in modern architectures. Automated fence

insertion [FLM03, KVY10, AAC+12, AAC+13, LW13] transforms a program that is safe under sequential

consistency to a program that is also safe under weaker memory models. While the amount of non-

determinism in the ordering of events is reduced, non-determinism due to scheduling cannot be influenced.

The approach of Burckhardt and Musuvathi [BM08] monitors executions for violations of sequential

consistency but does not enforce it. Fang et al. [FLM03] present an automated memory fence insertion

technique to enforce SC using instrumentation at the source code level. In both cases, the program can

be safely verified under the assumption that SC holds with a reduced state space. Similarly to our model

checking approach, these approaches restrict the amount of non-determinism. However, in contrast to

our model checking approach, they are not able to dynamically adapt the amount of non-determinism
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and are restricted to non-determinism due to relaxed memory access.

Enforcement of (partly) deterministic scheduling Synchronization synthesis, for example pre-

sented by Gupta et al. [GHR+15], automatically inserts locks and other synchronization primitives that

are more powerful than fences in that also scheduler-related non-determinism can be eliminated. In

contrast to our approach of generating scheduling constraints, their synthesis cannot enforce arbitrary

scheduling constraints generated by a verifier. Additionally, their approach may introduce deadlocks

into a program [GHR+15], hence it is unsuitable for our model checking approach, where we have to

rely on the fact that a verified schedule does not limit the program’s functionality.

Deterministic multi-threading (DMT) [AWHF10, BAD+10, BCG13, CWG+11, CSL+13, LCB11,

MAB12, OAA09] limits the amount of non-determinism due to scheduling for multi-threaded programs.

Dthreads by Liu et al. [LCB11] adapts the interface of the multi-threading library Pthreads and

guarantees, for any given input, a deterministic execution. Dthreads interleaves parallel phases (in

which threads write only to a local copy of the shared memory) and sequential phases (in which

the local copies are merged). Dthreads cannot handle programs that bypass the Pthreads library by

synchronizing directly over shared memory [LCB11]. Such coarse-grained schedules that are based

on ordering constraints between synchronization primitives (locks, for instance), sometimes called

sync-schedules, can be enforced with a moderate execution time overhead, as demonstrated by Dthreads.

However, determinism is only guaranteed if a program is known to be race-free, i.e., does not contain

shared memory accesses without explicit synchronization. Since race conditions are a common defect in

concurrent programs, it is interesting to enforce determinism outside of explicit synchronization as well.

Potentially racy programs can be scheduled deterministically with fine-grained schedules on individual

memory accesses, sometimes called mem-schedules, however, with a considerably higher execution time

overhead []. Our program schedules are an instance of the latter class, hence executions are deterministic

even if a program is not race-free.

Cui et al. propose Peregrine [CWG+11], which reduces the high execution time overhead of mem-

schedules while scheduling even racy programs deterministically. Hybrid schedules are a combination

of sync-schedules and mem-schedules and use coarse-grained scheduling of synchronization primitives

when possible. Our implementation of IRS does not make use of such an optimization but can be

easily extended to avoid instrumentation in program fragments that are known to be protected by

synchronization. Our program schedules do already contain the information that events protected by

synchronization do not need additional scheduling, as this information is obtained from the dependency

analysis of POR. Optimizing our implementation and reducing the amount of instrumentation is likely
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to further reduce the execution time overhead of IRS.

In the subsequently presented Parrot framework [CSL+13], Cui et al. propose to combine DMT with

a model checker for bug-finding. Parts of a program that are manually marked as performance-critical

are executed non-deterministically and model checked to increase the confidence about their correctness.

Only the remaining parts of the program are executed deterministically, so that the overhead of additional

synchronization is reduced.

Instead of creating schedules ad hoc, as done by Dthreads, Schedule memoization [CWTY10] records

an initial set of executions and enforces schedules of these initial executions during subsequent executions

where these schedules are compatible. Schedules may be incompatible if an input is seen that leads to a

different schedule, in which case a new schedule is created ad hoc. Cui et al. argue that using similar

schedules for similar inputs is more valuable than completely deterministic schedules which may vary

greatly between two similar inputs. Our approach of IMC generates schedules via model checking and

guarantees that all possible inputs are covered. Hence, the stability of schedule memoization can be

provided by IMC as well, by using the same heuristic for all inputs.

In contrast to IRS, the above described DMT approaches do not provide any guarantees about which

schedule is enforced, for a particular input. Using these approaches to simplify program verification is

therefore impractical if many program inputs need to be covered. While we conjecture that some of the

former techniques can be extended to communicate a general scheduling policy that guides a verifier,

it is not directly clear how to do so. In contrast, IRS provides a formal interface that uses admissible

traces to communicate scheduling constraints. Additionally, the above described DMT approaches

do not allow to relax scheduling constraints during runtime, in contrast to IRS, which enables to

iteratively relax scheduling constraints and, provided that the program is eventually proven safe, remove

all scheduling constraints. On the implementation level, the approaches of [OAA09, LCB11, CSL+13]

(but not [BAD+10, CWG+11]) synchronize only at library calls (such as uses of Pthreads locks), which

improves execution time performance but may result in non-deterministic executions when global

memory is accessed (perhaps accidentally) directly, e.g., without lock protection. In contrast, our IRS

implementation schedules all accesses to shared variables, which we consider to be important, as the

task of verification is to guaranty a safe executions without the assumption that all memory accesses are

protected by synchronization.

We are aware of only one DMT approach that supports symbolic inputs [BCG13]. Similar to our

sections, bounded epochs describe infinite schedules as permutations of finite schedules. Via symbolic

execution, an input-covering set of schedules is generated, which contains a schedule for each permutation

of bounded epochs. As all permutations need to be analyzed (even if they are infeasible), state space
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explosion through concurrency is only partially avoided; indeed, the experimental evaluation shows

that the analysis is infeasible even for five threads when the program has many such permutations. In

contrast, we do not require race-freedom, use model checking, sections may contain multiple threads,

omit infeasible schedules, and allow a safe execution from the first schedule on, i.e., an IVR can be

considerably smaller than an input-covering set of schedules.

Deterministic concurrency requires a program to be deterministic regardless of scheduling. In [RVY13],

a deterministic variant of a concurrent program is synthesized based on constraints on conflicts learned

by abstract interpretation. In contrast to many DMT approaches, symbolic inputs are supported,

however, no verification of general safety properties is done and the degree of non-determinism is not

adjustable, in contrast to IVRs.



Chapter 7

Conclusion

This thesis presents a state space exploration algorithm for POR that improves the efficiency of

dependency checks by eager generation of schedules. Furthermore, we investigate iterative model

checking; we show how to generate incomplete verification results (IVRs) that guarantee safe executions

for a subset of possible schedulings. A framework to extract safe schedules from IVRs and enforce

such schedules during the execution of concurrent programs is presented in Chapter 3. We show how

deterministic fragments of programs and their executions, named sections can be identified, and use

them both for eager schedule creation in our state space exploration algorithm and to construct schedules

from IVRs for infinite executions.

Our POR algorithm, epor, eagerly creates schedules for sections, i.e., program fragments. In

comparison to known dynamic POR algorithms, it avoids redundant race and dependency checks. Our

experiments compare our algorithm to the most efficient POR algorithm we are aware of, sdpor, and

show that epor runs considerably faster than sdpor, which allows in several cases to analyze programs

with a higher number of threads within a given timeout.

In Chapter 4, we present a formal framework for using IVRs to extract safe schedulers. We discuss

why it is legitimate to constrain scheduling (in contrast to inputs) and formulate general requirements

a model checker has to satisfy in our framework. Executions under the scheduling constraints of an

IVR are safe, deadlock-free, and fair. We instantiate our framework with the Impact model checking

algorithm and find in our evaluation that it can be used to model check programs that are intractable

for monolithic model checkers, synthesize synchronization via assume statements, and guarantee fair

executions.

Iteratively Relaxed Scheduling (cf. Chapter 5) enables to enforce the scheduling constraints of an

94
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IVR. We discuss how to extract and encode schedules from IVRs, for both finite and infinite executions,

and how to efficiently implement the enforcement of scheduling constraints, both in terms of reducing the

time to look up permission of executing the next event and executing independent events concurrently

(by applying POR).

A drawback of enforcing IVRs is a potential execution time overhead, however, in several cases,

constrained executions turned out to be even faster than unconstrained executions. Our experimental

results show that iteratively relaxing a schedule can reduce execution time overhead. Thereby, we

give evidence that IRS indeed allows to adjust the incurred execution time overhead in order to find a

sweet spot with respect to the amount of effort for creating schedules (i.e., the duration of verification).

Interestingly, we found cases in which a much earlier reduction of execution time overhead is obtained

by choosing favorable scheduling constraints, which suggests that execution time performance does not

simply rely on the number of scheduling constraints but to a large extend also on their structure.

Future directions We deem several aspects of our work worth being explored beyond the scope of

this thesis.

Concerning section-based exploration for POR, we use sections of maximal length, i.e., if the current

section can be extended by another event such that the section criteria (the section contains no branching

event and its successor and no hiding dependency), it is extended. However, not adding an event to a

section does not violate correctness. Using sections of variable length allows to choose the next thread

to explore more freely. Potentially, this additional flexibility leads to a faster exploration and there

exists a tradeoff between long sections and flexibility in choosing the next thread.

We expect that IMC and IRS can be especially useful to allow the use of concurrent programs in

safety-critical situations that currently allow only sequential programs because concurrent programs with

conventional, non-deterministic scheduling are too complex to be verified. Hence, an interesting question

is to evaluate IMC and IRS in such a scenario and investigate the amount of additional concurrency and

reduced execution time in comparison to a sequential program.

Our setup for evaluating IMC can be improved by extending the C programming language subset

that is supported by the model checker. Furthermore, the model checker could be extended to use

interpolants other than weakest precondition interpolants. With this optimization, interpolants are

expected to be found faster and hence, fair cycles could be generated faster.

As described in Section 5.1.5, we tested an IRS implementation that schedules threads directly from

within the kernel. However, system calls from the threads of the scheduled program to the kernel module

are necessary to notify the IRS scheduler of the current program counter values of threads. An IRS
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scheduler that obtains this information directly, without system calls, is expected to incur a considerably

lower execution time overhead.

A further improvement of IRS, similar to hybrid schedules [CWG+11], is conceivable to reduce the

execution time overhead for programs with existing synchronization such as locks. Whenever an access

of shared memory is statically known to be never required to wait for an other memory access, its

instrumentation can be omitted. For example, memory accesses between a lock acquire and a lock

release operation of the same lock may be amenable to this optimization.
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Appendix A

Eager POR: Detailed Experimental

Results

The following table shows our complete experiment results for detailed reference. All benchmarks

are parametric, where the parameter specifies the number of threads, except for the Shared Pointer

benchmark, where it specifies the number of loop iterations. epor and epor-sh refer to our algorithm

with sections as defined in Section 3.2.2 and short sections as defined in 3.3. Column Unsat. TCS

refers to the number of unsatisfiable trace constraint systems generated by epor and epor-sh; column

Speedup refers to the percentage-wise time saving over sdpor.

Benchmark Algorithm Time(s) Traces Dep. Checks Race Checks Unsat. TCS Speedup(%)

Readers-Writers (2) sdpor 0.001 2 3 2 0 0
Readers-Writers (2) epor-sh 0.001 2 2 1 0 0.0
Readers-Writers (2) epor 0.001 2 2 1 0 0.0
Readers-Writers (3) sdpor 0.002 4 28 12 0 0
Readers-Writers (3) epor-sh 0.002 4 10 3 0 0.0
Readers-Writers (3) epor 0.002 4 10 3 0 0.0
Readers-Writers (4) sdpor 0.005 8 148 47 0 0
Readers-Writers (4) epor-sh 0.005 8 33 6 0 0.0
Readers-Writers (4) epor 0.005 8 33 6 0 0.0
Readers-Writers (5) sdpor 0.015 16 607 153 0 0
Readers-Writers (5) epor-sh 0.012 16 92 10 0 20.0
Readers-Writers (5) epor 0.012 16 92 10 0 20.0
Readers-Writers (6) sdpor 0.041 32 2155 449 0 0
Readers-Writers (6) epor-sh 0.030 32 236 15 0 26.8
Readers-Writers (6) epor 0.030 32 236 15 0 26.8

Continued on next page
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Benchmark Algorithm Time(s) Traces Dep. Checks Race Checks Unsat. TCS Speedup(%)

Readers-Writers (7) sdpor 0.109 64 6969 1233 0 0
Readers-Writers (7) epor-sh 0.072 64 578 21 0 33.9
Readers-Writers (7) epor 0.072 64 578 21 0 33.9
Readers-Writers (8) sdpor 0.274 128 21107 3233 0 0
Readers-Writers (8) epor-sh 0.172 128 1375 28 0 37.2
Readers-Writers (8) epor 0.170 128 1375 28 0 38.0
Readers-Writers (9) sdpor 0.668 256 60885 8193 0 0
Readers-Writers (9) epor-sh 0.403 256 3204 36 0 39.7
Readers-Writers (9) epor 0.400 256 3204 36 0 40.1
Readers-Writers (10) sdpor 1.627 512 169111 20225 0 0
Readers-Writers (10) epor-sh 0.934 512 7346 45 0 42.6
Readers-Writers (10) epor 0.936 512 7346 45 0 42.5
Readers-Writers (11) sdpor 3.907 1024 455705 48897 0 0
Readers-Writers (11) epor-sh 2.145 1024 16618 55 0 45.1
Readers-Writers (11) epor 2.125 1024 16618 55 0 45.6
Readers-Writers (12) sdpor 9.231 2048 1197851 116225 0 0
Readers-Writers (12) epor-sh 4.853 2048 37165 66 0 47.4
Readers-Writers (12) epor 4.799 2048 37165 66 0 48.0
Readers-Writers (13) sdpor 21.675 4096 3083805 272385 0 0
Readers-Writers (13) epor-sh 10.840 4096 82300 78 0 50.0
Readers-Writers (13) epor 10.741 4096 82300 78 0 50.4
Readers-Writers (14) sdpor 50.985 8192 7799839 630785 0 0
Readers-Writers (14) epor-sh 24.221 8192 180696 91 0 52.5
Readers-Writers (14) epor 24.299 8192 180696 91 0 52.3
Readers-Writers (15) sdpor 116.479 16384 19429409 1445889 0 0
Readers-Writers (15) epor-sh 54.318 16384 393794 105 0 53.4
Readers-Writers (15) epor 54.015 16384 393794 105 0 53.6
Readers-Writers (16) sdpor 268.414 32768 47759395 3284993 0 0
Readers-Writers (16) epor-sh 121.130 32768 852667 120 0 54.9
Readers-Writers (16) epor 119.901 32768 852667 120 0 55.3
Readers-Writers (17) sdpor 608.308 65536 116031525 7405569 0 0
Readers-Writers (17) epor-sh 264.130 65536 1835844 136 0 56.6
Readers-Writers (17) epor 262.993 65536 1835844 136 0 56.8
Readers-Writers (18) sdpor 1361.840 131072 278986791 16580609 0 0
Readers-Writers (18) epor-sh 582.379 131072 3933150 153 0 57.2
Readers-Writers (18) epor 579.521 131072 3933150 153 0 57.4
Readers-Writers (19) sdpor 3076.191 262144 664600617 36896769 0 0
Readers-Writers (19) epor-sh 1264.264 262144 8389770 171 0 58.9
Readers-Writers (19) epor 1256.383 262144 8389770 171 0 59.2
Readers-Writers (20) sdpor 6874.472 524288 1570045995 81657857 0 0
Readers-Writers (20) epor-sh 2738.353 524288 17827145 190 0 60.2
Readers-Writers (20) epor 2728.742 524288 17827145 190 0 60.3

Indexer (11) sdpor 0.015 1 880 946 0 0
Indexer (11) epor-sh 0.025 1 880 946 0 -66.7
Indexer (11) epor 0.026 1 880 946 0 -73.3

Continued on next page
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Benchmark Algorithm Time(s) Traces Dep. Checks Race Checks Unsat. TCS Speedup(%)

Indexer (12) sdpor 0.413 8 27072 12825 0 0
Indexer (12) epor-sh 0.274 8 19325 7961 0 33.7
Indexer (12) epor 0.284 8 19325 7961 0 31.2
Indexer (13) sdpor 4.181 64 485600 106214 0 0
Indexer (13) epor-sh 3.367 64 239590 74980 0 19.5
Indexer (13) epor 3.506 64 239590 74980 0 16.1
Indexer (14) sdpor 49.120 512 5279831 1177634 0 0
Indexer (14) epor-sh 42.644 512 2812237 795788 0 13.2
Indexer (14) epor 44.144 512 2812237 795788 0 10.1
Indexer (15) sdpor 766.280 4096 79436769 16007293 0 0
Indexer (15) epor-sh 556.283 4096 35103635 9347279 0 27.4
Indexer (15) epor 576.093 4096 35103635 9347279 0 24.8
Indexer (16) sdpor 13060.033 32768 1345407904 251890633 0 0
Indexer (16) epor-sh 7485.608 32805 466384458 116349641 0 42.7
Indexer (16) epor 7998.984 32805 466384458 116349641 0 38.8

Last Zero (2) sdpor 0.002 2 9 13 0 0
Last Zero (2) epor-sh 0.003 2 13 13 0 -50.0
Last Zero (2) epor 0.003 2 8 10 0 -50.0
Last Zero (3) sdpor 0.013 6 197 128 0 0
Last Zero (3) epor-sh 0.024 6 125 116 0 -84.6
Last Zero (3) epor 0.012 6 80 84 0 7.7
Last Zero (4) sdpor 0.068 16 2065 709 0 0
Last Zero (4) epor-sh 0.044 16 800 579 0 35.3
Last Zero (4) epor 0.070 16 676 479 0 -2.9
Last Zero (5) sdpor 0.255 40 13613 2791 0 0
Last Zero (5) epor-sh 0.173 40 4279 2371 0 32.2
Last Zero (5) epor 0.195 40 4976 2120 0 23.5
Last Zero (6) sdpor 0.911 96 66384 10275 0 0
Last Zero (6) epor-sh 0.633 96 19645 8480 0 30.5
Last Zero (6) epor 0.724 96 29570 7885 0 20.5
Last Zero (7) sdpor 3.018 224 274999 33881 0 0
Last Zero (7) epor-sh 2.142 224 79578 27720 0 29.0
Last Zero (7) epor 2.517 224 147844 26234 0 16.6
Last Zero (8) sdpor 9.206 512 1109904 97439 0 0
Last Zero (8) epor-sh 6.975 512 294877 85185 0 24.2
Last Zero (8) epor 8.339 512 647298 80647 0 9.4
Last Zero (9) sdpor 22.350 1152 3836659 306046 0 0
Last Zero (9) epor-sh 33.547 1152 1464128 314042 0 -50.1
Last Zero (9) epor 33.950 1152 2884130 310058 0 -51.9
Last Zero (10) sdpor 108.007 2560 15149844 1160330 0 0
Last Zero (10) epor-sh 94.648 2560 5405445 923038 0 12.4
Last Zero (10) epor 95.582 2578 11544604 1015493 0 11.5
Last Zero (11) sdpor 264.036 5632 51558504 3325567 0 0
Last Zero (11) epor-sh 197.799 5632 16019928 2410338 0 25.1
Last Zero (11) epor 257.922 5632 40368624 2649056 0 2.3

Continued on next page
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Benchmark Algorithm Time(s) Traces Dep. Checks Race Checks Unsat. TCS Speedup(%)

Last Zero (12) sdpor 821.374 12288 175535648 9951180 0 0
Last Zero (12) epor-sh 480.859 12288 41678637 5885987 0 41.5
Last Zero (12) epor 705.437 12288 125302898 5950551 0 14.1
Last Zero (13) sdpor 2160.776 26624 565002531 29044732 0 0
Last Zero (13) epor-sh 1361.417 26624 111575184 14917085 0 37.0
Last Zero (13) epor 1441.852 26624 347226642 11989526 0 33.3
Last Zero (14) sdpor 8138.822 57344 1744754931 78289802 0 0
Last Zero (14) epor-sh 3372.409 57344 300987594 37479306 0 58.6
Last Zero (14) epor 3421.276 57344 1005154306 29966707 0 58.0
Last Zero (15) sdpor 17441.597 122880 4019531983 230194076 0 0
Last Zero (15) epor-sh 6026.374 122880 514821851 93547034 0 65.4
Last Zero (15) epor 6703.371 122880 1896719286 73740996 0 61.6
Last Zero (16) sdpor
Last Zero (16) epor-sh 19144.029 262144 1934932782 239409835 0 —
Last Zero (16) epor 18408.671 262144 7232899654 179027187 0 —

Shared Pointer (10) sdpor 0.480 21 80395 32777 0 0
Shared Pointer (10) epor-sh 0.896 21 61207 33655 0 -86.7
Shared Pointer (10) epor 0.535 21 60546 33025 0 -11.5
Shared Pointer (20) sdpor 2.123 41 661981 225737 0 0
Shared Pointer (20) epor-sh 4.226 41 528044 229295 0 -99.1
Shared Pointer (20) epor 2.968 41 525351 226835 0 -39.8
Shared Pointer (30) sdpor 7.837 61 2374011 722897 0 0
Shared Pointer (30) epor-sh 14.770 61 1932212 730935 0 -88.5
Shared Pointer (30) epor 8.047 61 1923801 725445 0 -2.7
Shared Pointer (40) sdpor 17.013 81 6201931 1668257 0 0
Shared Pointer (40) epor-sh 37.533 81 5060976 1682575 0 -120.6
Shared Pointer (40) epor 13.508 81 5042257 1672855 0 20.6
Shared Pointer (50) sdpor 32.529 101 14074966 3205817 0 0
Shared Pointer (50) epor-sh 125.372 101 11494347 3228215 0 -285.4
Shared Pointer (50) epor 17.398 101 11459539 3213065 0 46.5
Shared Pointer (60) sdpor 52.435 121 27575051 5479577 0 0
Shared Pointer (60) epor-sh 219.720 121 22323086 5511855 0 -319.0
Shared Pointer (60) epor 43.751 121 22263258 5490075 0 16.6
Shared Pointer (70) sdpor 84.797 141 49302287 8633537 0 0
Shared Pointer (70) epor-sh 370.194 141 39524860 8677495 0 -336.6
Shared Pointer (70) epor 64.530 141 39430039 8647885 0 23.9
Shared Pointer (80) sdpor 84.948 161 83360055 12811697 0 0
Shared Pointer (80) epor-sh 458.459 161 66218755 12869135 0 -439.7
Shared Pointer (80) epor 95.521 161 66076608 12830495 0 -12.4
Shared Pointer (90) sdpor 143.694 181 128693768 18158057 0 0
Shared Pointer (90) epor-sh 919.317 181 102871367 18230775 0 -539.8
Shared Pointer (90) epor 132.781 181 102676446 18181905 0 7.6
Shared Pointer (100) sdpor 238.968 201 192707828 24816617 0 0
Shared Pointer (100) epor-sh 1531.204 201 154847568 24906415 0 -540.8
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Benchmark Algorithm Time(s) Traces Dep. Checks Race Checks Unsat. TCS Speedup(%)

Shared Pointer (100) epor 170.762 201 154590222 24846115 0 28.5

Ring (2) sdpor 0.002 2 3 2 0 0
Ring (2) epor-sh 0.001 2 2 1 0 50.0
Ring (2) epor 0.001 2 2 1 0 50.0
Ring (3) sdpor 0.008 6 39 18 0 0
Ring (3) epor-sh 0.005 6 11 3 2 37.5
Ring (3) epor 0.005 6 11 3 2 37.5
Ring (4) sdpor 0.018 14 247 80 0 0
Ring (4) epor-sh 0.022 14 43 6 2 -22.2
Ring (4) epor 0.017 14 43 6 2 5.6
Ring (5) sdpor 0.064 30 1231 275 0 0
Ring (5) epor-sh 0.045 30 139 10 2 29.7
Ring (5) epor 0.047 30 139 10 2 26.6
Ring (6) sdpor 0.168 62 4932 813 0 0
Ring (6) epor-sh 0.118 62 397 15 2 29.8
Ring (6) epor 0.121 62 397 15 2 28.0
Ring (7) sdpor 0.459 126 17742 2283 0 0
Ring (7) epor-sh 0.226 126 1038 21 2 50.8
Ring (7) epor 0.298 126 1038 21 2 35.1
Ring (8) sdpor 1.297 254 59947 6275 0 0
Ring (8) epor-sh 0.382 254 2540 28 2 70.5
Ring (8) epor 0.710 254 2540 28 2 45.3
Ring (9) sdpor 3.530 510 191381 17288 0 0
Ring (9) epor-sh 0.877 510 5577 36 2 75.2
Ring (9) epor 1.635 510 5577 36 2 53.7
Ring (10) sdpor 8.967 1022 543438 44107 0 0
Ring (10) epor-sh 3.418 1022 12281 45 2 61.9
Ring (10) epor 2.919 1022 12281 45 2 67.4
Ring (11) sdpor 23.903 2046 1551020 116202 0 0
Ring (11) epor-sh 8.452 2046 27769 55 2 64.6
Ring (11) epor 6.020 2046 27769 55 2 74.8
Ring (12) sdpor 57.755 4094 4498596 299602 0 0
Ring (12) epor-sh 18.373 4094 61507 66 2 68.2
Ring (12) epor 17.331 4094 61507 66 2 70.0
Ring (13) sdpor 153.056 8190 12342751 752788 0 0
Ring (13) epor-sh 34.668 8190 127345 78 2 77.3
Ring (13) epor 40.175 8190 127345 78 2 73.8
Ring (14) sdpor 307.406 16382 36655573 2172569 0 0
Ring (14) epor-sh 65.806 16382 261835 91 2 78.6
Ring (14) epor 60.154 16382 261835 91 2 80.4
Ring (15) sdpor 731.446 32766 105588804 5623429 0 0
Ring (15) epor-sh 143.513 32766 534423 105 2 80.4
Ring (15) epor 145.635 32766 534423 105 2 80.1
Ring (16) sdpor 1782.207 65534 278381118 13318473 0 0
Ring (16) epor-sh 327.465 65534 1084045 120 2 81.6
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Benchmark Algorithm Time(s) Traces Dep. Checks Race Checks Unsat. TCS Speedup(%)

Ring (16) epor 327.977 65534 1084045 120 2 81.6
Ring (17) sdpor 5984.174 131070 734642101 35656128 0 0
Ring (17) epor-sh 708.740 131070 2096753 136 2 88.2
Ring (17) epor 538.031 131070 2096753 136 2 91.0
Ring (18) sdpor
Ring (18) epor-sh 1542.738 262142 4167297 153 2 —
Ring (18) epor 1062.553 262142 4167297 153 2 —
Ring (19) sdpor
Ring (19) epor-sh 3359.111 524286 8653144 171 2 —
Ring (19) epor 2884.695 524286 8653144 171 2 —
Ring (20) sdpor
Ring (20) epor-sh 4454.283 1048574 9495364 190 2 —
Ring (20) epor 4442.308 1048574 9495364 190 2 —
Ring (21) sdpor
Ring (21) epor-sh 13158.802 2097150 28329284 210 2 —
Ring (21) epor 13084.234 2097150 28329284 210 2 —

Branching (2) sdpor 0.009 11 181 155 0 0
Branching (2) epor-sh 0.009 11 174 147 0 0.0
Branching (2) epor 0.008 11 142 124 1 11.1
Branching (3) sdpor 0.046 28 3169 1105 0 0
Branching (3) epor-sh 0.055 28 2679 1124 0 -19.6
Branching (3) epor 0.046 28 2206 943 1 0.0
Branching (4) sdpor 0.268 103 24945 6933 0 0
Branching (4) epor-sh 0.308 103 21967 6960 0 -14.9
Branching (4) epor 0.233 103 17296 5617 1 13.1
Branching (5) sdpor 1.180 311 145186 32384 0 0
Branching (5) epor-sh 1.458 311 143461 34068 0 -23.6
Branching (5) epor 1.045 311 114640 26926 1 11.4
Branching (6) sdpor 5.600 1010 796033 155629 0 0
Branching (6) epor-sh 6.679 1010 809098 156745 0 -19.3
Branching (6) epor 4.512 1010 645243 120540 1 19.4
Branching (7) sdpor 23.737 3165 3963738 665731 0 0
Branching (7) epor-sh 29.320 3165 4153755 677854 0 -23.5
Branching (7) epor 18.819 3165 3332731 505448 1 20.7
Branching (8) sdpor 111.485 10063 19677616 3051999 0 0
Branching (8) epor-sh 124.574 10063 19995225 2827886 0 -11.7
Branching (8) epor 76.783 10063 16091273 2042519 1 31.1
Branching (9) sdpor 588.386 31780 102640823 15619776 0 0
Branching (9) epor-sh 835.651 31775 106250930 17043326 0 -42.0
Branching (9) epor 444.051 30921 68635810 11463305 1 24.5
Branching (10) sdpor 3107.106 100651 516099474 79852841 0 0
Branching (10) epor-sh 3832.897 100327 530295199 73161559 0 -23.4
Branching (10) epor 1964.219 99920 325828401 48463434 1 36.8
Branching (11) sdpor 19068.490 318363 2200202598 358100829 0 0
Branching (11) epor-sh 21970.231 316881 2091377423 284175909 0 -15.2

Continued on next page
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Benchmark Algorithm Time(s) Traces Dep. Checks Race Checks Unsat. TCS Speedup(%)

Branching (11) epor 8220.448 318978 1343673801 179170034 1 56.9

Ring Extended (2) sdpor 0.003 6 41 34 0 0
Ring Extended (2) epor-sh 0.004 6 38 29 0 -33.3
Ring Extended (2) epor 0.004 6 9 6 10 -33.3
Ring Extended (3) sdpor 0.050 90 2264 1029 0 0
Ring Extended (3) epor-sh 0.047 72 1553 663 14 6.0
Ring Extended (3) epor 0.365 90 126 15 4006 -630.0
Ring Extended (4) sdpor 0.692 786 44477 14734 0 0
Ring Extended (4) epor-sh 0.737 786 39708 12722 30 -6.5
Ring Extended (4) epor 7.826 786 1632 28 64750 -1030.9
Ring Extended (5) sdpor 7.497 5730 631224 156322 0 0
Ring Extended (5) epor-sh 7.754 5730 565678 138590 62 -3.4
Ring Extended (5) epor 164.094 5730 16734 45 1042846 -2088.8
Ring Extended (6) sdpor 70.729 38466 7537485 1427204 0 0
Ring Extended (6) epor-sh 72.869 38466 6747840 1285045 126 -3.0
Ring Extended (6) epor 3412.561 38466 144095 66 16738750 -4724.8
Ring Extended (7) sdpor 608.836 247170 81503018 11900225 0 0
Ring Extended (7) epor-sh 622.568 247170 72416459 10706749 254 -2.3
Ring Extended (7) epor
Ring Extended (8) sdpor 6552.194 1548546 806537903 94539059 0 0
Ring Extended (8) epor-sh 5061.882 1548546 720212287 83761394 510 22.7
Ring Extended (8) epor



Appendix B

IMC: Additional Material

B.1 Enabled threads

An ART A may contain an edge v T,R−−→ w such that transition R is enabled in some state s �

φ(v) ∧ l()(s) = l()(v) but disabled in some state s′ � φ(v) ∧ l()(s) = l()(v). This may pose a problem

when the goal is to construct an ART that admits fairness, as Definition 28 requires an edge v T,R−−→ w

that is enabled in all states that correspond to v, for every cycle and thread that is enabled in that cycle.

We argue that the situation above cannot occur, even when constructing an ART with the conventional

Impact algorithm for concurrent programs [WKO13], if programs make only “reasonable” use of locks,

as described below.

We restrict programs such that whether a transition is enabled in a state s may only depend on the

global location l(s) of s but not on the variable valuation of s. Formally:

∀T ∈ T .∃f : (T × L)→ {0, 1}.∀s. (Next-Transition(s, T ) 6= ⊥ ⇔ f(l(s), T ) = 1)

For such programs, every transition R with an edge v T,R−−→ w in a well-labeled ART is trivially enabled

in all states s � φ(v) ∧ l()(s) = l()(v). In the following, we argue that such programs are sufficient to

express “reasonable” uses of locks.

We assume that there exists a synchronization primitive lock(l) that acquires the lock l if it is free and

otherwise lets the executing thread wait until l is free. A thread is disabled when its next statement is

lock(l) for a lock l that is not free. Furthermore, we assume that lock is the only primitive in the targeted

programming language that can disable threads (other synchronization constructs can be built using
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lock).

Consider a program P that, for every lock statement stmt that occurs in P , always executes stmt

with the same lock. P satisfies (B.1). On the other hand, consider a program P ′ that maintains an

array of locks locks = [l_1, l_2, \dotsc, l_n] and contains a statement lock(locks[∗]) that tries to acquire a

non-deterministically chosen lock. P ′ does not satisfy (B.1).

A pattern that violates (B.1) may be translated so that a unique lock is used at a given program

location as follows. A program fragment (where l is a local variable)

1 l = locks[∗];
2 lock(l);
3 critical_section();
4 unlock(l);

is translated to:

1 l = locks[∗];
2 switch l:
3 case l_1:
4 lock(l_1);
5 critical_section_1();
6 unlock(l_1);
7 case l_2:
8 lock(l_2);
9 critical_section_2();

10 unlock(l_2);
11 ...
12 case l_n:
13 lock(l_n);
14 critical_section_n();
15 unlock(l_n);

This transformation leads to a linear blow up in program size. However, we assume that practical

programs which violate (B.1) are rare and call programs on which above transformation does not

critically increase program size programs with a “reasonable” use of locks. For such programs, an ART

that is an incomplete product of the conventional Impact algorithm for concurrent programs can be

easily extended to an ART that admits fairness.
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B.2 Auxiliary lemmas

The following lemma is used in the proofs of Lemma 2 and 3. It states that for every node v of a finite

graph that is visited infinitely often in a path, this path also visits infinitely often all nodes of a cycle

that contains v.

Lemma 5 (Completely visited cycles). Let G = (V,−→) be a directed, finite graph. For all infinite paths

π ∈ V ω through G and for all nodes v ∈ V that occur infinitely often in π, there exists a projection

π′ ⊆ π such that π′ = πωv and πv is a cycle that contains v, i.e., there exists a cycle πv in G that contains

v such that by removing nodes from π, we obtain a path π′ = πωv that visits all nodes of πv infinitely

often.

Proof. Let G, π, v be as in the lemma. π has the form π0 ◦ v ◦ π1 ◦ v ◦ π2 ◦ v · · · with v /∈ πi, i ≥ 0. For

all i ≥ 1, v ◦ πi ◦ v is a closed walk, which can be shortened to a cycle v ◦ π′i ◦ v. As there are only

finitely many cycles in G (V is finite), there exists a cycle v ◦ π′i1 ◦ v that is repeated infinitely often

in the sequence π0 ◦ v ◦ π′1 ◦ v ◦ π′2 ◦ v · · ·, i.e., π′i1 = π′i2 = π′i3 = · · · for an infinite sequence of indices

i1 < i2 < i3 < · · ·. Let πv = v ◦ πi1 . We have that π′ = πωv is a projection of π and πv is a cycle that

contains v.

B.3 Transformation of fair ARTs to independently fair ARTs

Given a fair, well-labeled, safe ART A , Algorithm 6 generates an independently fair ART A ′ such that

Executions(RA ′) ⊆ Executions(RA ).

Algorithm 6: Transformation of fair ARTs to independently fair ARTs
input : fair ART A
output : independently-fair ART A ′ with Executions(RA ′ ) ⊆ Executions(RA )

Data: A ′ := ∅, W := ε

1 while ∃v ∈ W do
2 remove v from W

3 if v can be independently-fair covered by some node w ∈ A ′ then
4 add {v B w} to A ′

5 continue
6 else if v is part of a (BA ∪ −→A )-cycle v . . . wv that is not independently fair then
7 add {v −→ . . . −→ w} as fresh nodes to A ′

8 set v to an exit node of the cycle that has not yet been expanded
9 add {w −→ . . . −→ v} to A ′

10 add {v −→ v′ : v −→A v′} to A ′

11 add {v B v′ : v BA v′} to A ′

12 add {v′ : v −→A v′ ∨ v BA v′} to W
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B.4 Iterative Impact for concurrent programs

This section provides additional details for our iterative model checking algorithm presented in Section 4.4.

Algorithm 7: Iterative Impact for concurrent programs (additional functions)
continued :

1 Function Refine(v)
2 if l(v) 6= lerror or φ(v) ≡ false then
3 return
4 π := v0, . . . , vn path from ε to v
5 if path formula of π has interpolant A0, . . . , An then
6 for i = 0 . . . n do
7 φ := A−i

i

8 if φ(vi) 2 φ then
9 W := W ∪ {w : w B vi}

10 B:=B \{(w, vi) : w B vi}
11 φ(vi) := φ(vi) ∧ φ
12 for w ∈ V such that v is a descendant of w do
13 Close (w)
14 else
15 return counterexample

16 Function Expand_Thread(T , v)
17 for Rl,l′ ∈ Transitions(lT (v)) do
18 w := fresh node
19 l(w) := l(v)[T 7→ l′]
20 φ(w) := True
21 W := W ∪ {w}
22 V := V ∪ {w}
23 −→:=−→ ∪{(v, T,R,w)}

24 Function Skip(v, T )
25 if (v, T ) ∈ I then
26 return false
27 else

28 choose unique T ′, R′ such that u T ′,R′−−−−→ v

29 return (T < T ′ ∧ (Transitions(v)T ‖ {a′})) ∧ ¬Loop(u, T ′)

30 Function Schedule_Thread (v)
31 let Rn be the transition of thread Tn by which v is reached
32 if Rn represents a back jump then
33 T := Tn + 1 mod |T |
34 else
35 T := Tn
36 while Skip (v, T ) do
37 T := T + 1 mod |T |
38 return T

In order to represent a path of length n as a formula, we define n fresh copies of the set of variable

symbols, denoted by Q1, . . . , Qn, such that Q1 is equal to the previously defined copy Q′ for transition

formulae. The path formula of a path π = v0
T0,R0−−−−→A . . .

Tn−1,Rn−1−−−−−−−→A vn in an ART A is the formula

φ(v0) ∧R0 ∧R1
1 ∧ · · · ∧Rn−1

n−1 ∈ F (Q ∪Q′ ∪Q1 ∪ · · · ∪Qn), where Rii, 1 ≤ i ≤ (n− 1) is obtained from

Ri ∈ F (Q∪Q′) by substituting the variable symbols inQ andQ′ with their corresponding copies ofQi and

Qi+1, respectively. We write A−i for some formula A to reverse this substitution, i.e., A = (Ai)−i. This

notation is used in Algorithm 7 to construct a sequent interpolant A0, . . . , An ∈ F (Q∪Q′∪Q1∪· · ·∪Qn)

for a path formula and extract state formulas A−ii ∈ F (Q).
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We use the set I to record cases in which POR would hide a transition w T−→ w′ after adding a covering

(v, w) ∈ covering(). The original approach by Wachter et al. [WKO13] of immediately expanding a

thread after adding such a covering does not suite our iterative variant of the algorithm, as this approach

could explore more than one schedule in a single iteration. Instead of immediately exploring w T−→ w′,

we record this transition in I and prevent the procedure Skip() from skipping it (i.e., applying POR).



Appendix C

IRS: Detailed Experimental Results

The following table shows our detailed measurement results. The columns contain the benchmark name

(-opt means with optimized trace prefixes), the number of constraints in the respective trace prefix, the

mean execution time in µs and the execution time overhead compared to the uninstrumented benchmark

version.

Benchmark Constraints Time Overhead%

bigshot 1 124 5%

bigshot 0 121 3%

dekker 2 115 4%

dekker 1 114 3%

dekker 0 113 2%

fibonacci 98 176 13%

fibonacci 44 169 9%

fibonacci 24 181 12%

fibonacci 0 166 6%

lamport 16 123 12%

lamport 15 123 12%

lamport 10 124 13%

lamport 7 124 13%

Continued on next page
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Continued from previous page

Benchmark Constraints Time Overhead%

lamport 6 124 13%

lamport 4 123 12%

lamport 2 123 12%

lamport 1 124 13%

lamport 0 113 3%

peterson 28 124 8%

peterson 24 125 9%

peterson 22 122 6%

peterson 1 123 7%

peterson 0 113 -2%

shared pointer 3 135 22%

shared pointer 2 134 21%

shared pointer 1 133 20%

shared pointer 0 115 4%

indexer(15) 12 7538 2692%

indexer(15) 8 7603 2716%

indexer(15) 4 6793 2416%

indexer(15) 3 5412 1904%

indexer(15) 2 435 61%

indexer(15) 1 299 11%

indexer(15) 0 235 -13%

last zero(16) 15 10664 4288%

last zero(16) 8 5286 2075%

last zero(16) 5 492 102%

last zero(16) 1 263 8%

last zero(16) 0 230 -5%

indexer(15)-opt 12 5558 2841%

indexer(15)-opt 9 279 48%

Continued on next page
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Benchmark Constraints Time Overhead%

indexer(15)-opt 6 257 36%

indexer(15)-opt 0 215 14%

last zero(16)-opt 15 378 94%

last zero(16)-opt 8 269 38%

last zero(16)-opt 5 253 30%

last zero(16)-opt 1 250 28%

last zero(16)-opt 0 223 14%


