
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 1

A Systematic Literature Review and
Meta-analysis on Cross Project Defect

Prediction
Seyedrebvar Hosseini, Burak Turhan, Member, IEEE, and Dimuthu Gunarathna

Abstract—Background: Cross project defect prediction (CPDP) recently gained considerable attention, yet there are no systematic
efforts to analyse existing empirical evidence. Objective: To synthesise literature to understand the state-of-the-art in CPDP with
respect to metrics, models, data approaches, datasets and associated performances. Further, we aim to assess the performance of
CPDP vs. within project DP models. Method: We conducted a systematic literature review. Results from primary studies are
synthesised (thematic, meta-analysis) to answer research questions. Results: We identified 30 primary studies passing quality
assessment. Performance measures, except precision, vary with the choice of metrics. Recall, precision, f-measure, and AUC are the
most common measures. Models based on Nearest-Neighbour and Decision Tree tend to perform well in CPDP, whereas the popular
naı̈ve Bayes yield average performance. Performance of ensembles varies greatly across f-measure and AUC. Data approaches
address CPDP challenges using row/column processing, which improve CPDP in terms of recall at the cost of precision. This is
observed in multiple occasions including the meta-analysis of CPDP vs. WPDP. NASA and Jureczko datasets seem to favour CPDP
over WPDP more frequently. Conclusion: CPDP is still a challenge and requires more research before trustworthy applications can
take place. We provide guidelines for further research.

Index Terms—Defect Prediction, Fault Prediction, Cross Project, Systematic Literature Review, Meta-analysis, Within Project

F

1 INTRODUCTION

In the realm of software quality control, defect prediction
in general and cross project defect prediction in particular,
have attracted a lot of attention. The principle of defect
prediction is to learn a model (supervised or unsupervised)
from a corpus of data (e.g., static code features, churn
data, defect information) and apply the model to new and
unseen data. The training data can be from the same project,
i.e., within project defect prediction (WPDP) or (the major-
ity or the entirety) from other projects, i.e., cross project
defect prediction (CPDP). The goals of defect prediction
are to identify the faulty units of code, to estimate the
number of remaining defects in the system, to track and
locate faulty changes, classes, functions or statements, for
optimal use of the available quality assurance resources.
Defect prediction, however, is not just limited to prediction
making process. Specifically, studying defect prediction is a
reasonable choice for training young researchers in software
analytics, and defect prediction concepts can be applied to
many other areas in software engineering [98], [99]. While
these in vitro benefits are acknowledged by the community,
the limited amount of in vivo applications is the major source
of criticism for defect prediction research [97].

The lack of, and the difficulty of collecting and organ-
ising, defect related data is one of the reasons why com-

• S. Hosseini and D. Gunarathna are with the M3S, Faculty of Information
Technology and Electrical Engineering, University of Oulu, Oulu, Fin-
land.
E-mail: rebvar@oulu.fi, dimuthugunarathna@gmail.com

• B. Turhan is with the Department of Computer Science, Brunel University
London, London, UK.
E-mail: burak.turhan@brunel.ac.uk

Manuscript received April 19, 20XX; revised August 26, 20XX.

panies do not consider using defect prediction in practice
[84] - this is also why researchers usually conduct in vitro
studies. In such circumstances, CPDP is a viable option for
companies such that it requires minimum effort for data
collection, which can be a long and tedious process for
the alternative case of setting up local repositories, from
their side. Another reason for using cross project data as
Kitchenham et al. asserted (originally for effort estimation,
but true for defect prediction as well), is the change of
practices in companies over time which could make the local
data collection less important, because the existing practices
might not be representative anymore [80]. On the other
hand, the key premise of CPDP is to learn from data from a
set of projects and then to apply resulting models to another
set of projects [82], [84]. Therefore, in presence of relevant
data from other projects, including open source ecosystems,
CPDP has a great practical potential for in vivo applications.
The prediction outcomes with data from other projects can
be of great value as even a tiny decrease in the bug rates
(through early and automated detection of defects) can lead
to significant financial savings in terms of quality assurance
costs [84], as opposed to exponential growth in repair costs
and damages [81], [84] as a result of failure to discover bugs
in a timely manner.

Examples of in vivo CPDP studies for commer-
cial/proprietary systems already exist in the literature, re-
vealing the potential of cross project defect prediction. For
example, Turhan et al. [83], [84] and Misirli et al. [91] were
able to use the data collected from very different domains
for predicting defects across projects, e.g., aerospace to
telecommunication and white-goods, and reported reduced
inspection efforts by 72% [91]. Their results, even though not

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362649881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 2

as accurate as the within project predictions, demonstrated
the applicability of CPDP in practical ways. In addition,
experiments by Zimmerman et al. [82] revealed extensive
insights as well as challenges for CPDP. They investigated
CPDP in a large scale study on 12 projects from both open
and closed source domains. Their 622 pairwise predictions
resulted in only 21 successful cases (precision, recall and
accuracy all higher than or equal to 0.75), i.e., 3.4% suc-
cess rate. Their experiments demonstrated that CPDP is
not necessarily bi-directional/symmetrical. Particularly, the
predictor trained with Mozilla Firefox was able to predict
defects of Internet Explorer with acceptable performance,
while the results did not hold when the prediction direction
was reversed. More broadly, and despite the low overall
success rate, they observed that the open source projects
were more successful in predicting closed source software
than the other way around [82].

The increased interest toward CPDP also resulted in a
growing number of publications on the topic. However,
there is no up-to-date comprehensive picture of the current
state of CPDP research. Studies in this area do not always
agree in their conclusions, especially when it comes to
the performance in comparison with WPDP. While some
studies favour WPDP (e.g [S15], [S39]), others make a case in
favour of CPDP (e.g [S1], [S3], [S5], [S11], [S23], [S40], [S41]).
Moreover, the role of the numerous proposed approaches
in these disagreements is not clear due to varying settings
across studies. In other words, it is not possible to have a
clear view of the current status of research in CPDP (and
vs. WPDP) based on individual and isolated studies, unless
they are systematically synthesised.

The aforementioned reasons indicate a need, and moti-
vate us, to conduct a systematic literature review (SLR) and
a formal meta-analysis to summarise the empirical evidence
on CPDP literature.

1.1 Prior Research
To the best of our knowledge, there does not exist any
SLRs and formal meta-analysis on CPDP, however, three
secondary studies have already been performed on defect
prediction [1], [3], [5]. In this section, we discuss these
studies in comparison with our review to highlight our
differences.

The first one by Fenton and Neil [5] covered defect
prediction studies up to 1999 and provided a critique of
the field with an emphasis on good and bad practices in
statistical data analysis, though their review did not follow a
systematic approach. In 2009, Catal and Diri [3] conducted a
systematic review of software fault prediction studies. While
Catal and Diri’s review provided a conceptual classification
of the frequency of metrics, methods and datasets used,
it lacks a (qualitative or quantitative) synthesis of primary
studies, hence one should consider it more of a systematic
mapping study than a literature review [2]. The most recent
and comprehensive review by Hall et al. [1] has investigated
how model performance is affected by the context, inde-
pendent variables and the modelling techniques in defect
prediction with a synthesis of existing work from 2000 to
2010.

All three previous reviews have performed their analysis
in the broader area of defect prediction and none have

specifically addressed CPDP. Many CPDP publications are
not included in earlier reviews, given the field’s relatively
short history. For example, of the 30 primary studies that
passed quality assessment in this review, only 4 were
published before 2010, which is the last year covered by
the latest secondary study. Given the practical implications
discussed in the earlier section, this certainly points to a
niche in research, justifying our motivation to conduct this
SLR.

Further, CPDP poses unique learning challenges as op-
posed to WPDP. Specifically, CPDP is an instance of transfer
learning problem in the broader area of machine learning
where additional challenges associated with learning from
different/heterogeneous data sources, i.e., under dataset
shift [13], becomes the main focus. As a result, rather than
mere applications of existing techniques, data manipulation
approaches become of utmost interest and importance in
CPDP settings. Due to their nature of inquiry, none of the
earlier secondary studies provided a view under the lens of
different data manipulation or learning approaches specific
to CPDP settings.

Finally, no formal meta-analysis has been considered by
previous SLRs due to the lack of a ’control’ group to bench-
mark with. In our case, synthesis of studies that compare
CPDP vs. WPDP, i.e., comparing the experimental group
CPDP with the control group WPDP, via a meta-analysis
is legitimate. Therefore, to facilitate the understanding and
use of CPDP, it is necessary to systematically summarise the
empirical evidence from existing studies in contrast with
WPDP. We should caution the reader that, different than the
systematic literature review part, our meta-analysis covers
only those studies that benchmark CPDP vs. WPDP, i.e., we
did not include pure CPDP or WPDP studies in the meta-
analysis.

In conducting and reporting our review, we follow the
reporting structure of Hall et al. [1] while setting the scope
on CPDP rather than defect prediction in general. We ex-
tend their approach by conducting meta-analysis using both
fixed and random effect models to investigate the relative
performances of CPDP and WPDP.

1.2 Research Goals

The objective of this study is to summarise, analyse and
assess the empirical evidence regarding metrics, modelling
techniques, different approaches and performance evalua-
tion criteria in the context of CPDP. Further, we want to
explore the relative performance of CPDP vs. Within Project
Defect Prediction (WPDP) models.

We defined five research questions to achieve these
goals. Table 1 shows those research questions and the moti-
vation behind each question.

1.3 Contributions

This SLR contributes to the existing literature in the follow-
ing ways:
• We identified a set of 46 primary studies related to

CPDP published until 2015. Community can use this
set as a starting point to conduct further research on
CPDP.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 3

TABLE 1
Research Questions

Research Question Motivation
RQ1. Which independent vari-
ables are used in CPDP and
how are their performances?

Different independent variables (metrics) have been used in the context of CPDP. Product, process
and object-oriented (OO) metrics are the most popular among them. One of the goals of this study
is to synthesise the metrics that are being used in CPDP based on the current knowledge. Also, the
performances of the models that use such metrics are compared, since although these comparisons are
sometimes performed within the context of individual studies, there does not exist any comprehensive
study that investigates which set of metrics performs the best in CPDP.

RQ2. Which modelling tech-
niques are used in CPDP and
how are their performances?

Different modelling techniques (Machine Learning and Regression) are used in the context of CPDP.
Logistic Regression (LR), naı̈ve Bayes (NB), Bayesian Networks (BN), Decision Tree (DTree) and Random
Forest (RF) are some of the popular techniques. The goal here is to determine which modelling
techniques are frequently used in CPDP and how they relatively perform.

RQ3. Which evaluation criteria
are used to measure the perfor-
mance of CPDP?

Most of the studies have used measures such as precision, recall and f-measure to report the performance
of the CPDP models. The aim of this question is to determine how CPDP models are evaluated.

RQ4. Which approaches
in CPDP yield better
performances?

Filtering, feature selection, and transfer learning are some of the techniques used by researchers to
achieve better CPDP performance. The aim of this question is to find and report such approaches.

RQ5. How is the performance
of CPDP models compared with
that of WPDP models?

The results of some studies suggest that CPDP models are able to achieve performance similar to that
of WPDP models and even in some cases they outperform WPDP [S5], [S40], [S41]. On the other hand,
some other studies present the evidence for the claim that CPDP under-performs WPDP [S20], [S39]. We
investigate this question as there is no clear consensus about the performance of CPDP models compared
with that of WPDP.

• We further provide a subset of 30 primary studies
which fulfilled the quality assessment criteria indicative
of a baseline rigour in their reporting. These studies
can act as a reliable basis for further comparisons and
benchmarks.

• We present a comprehensive qualitative and quanti-
tative synthesis reflecting the state-of-the-art in CPDP
with data extracted from those 30 high-rigour studies.
Our synthesis covers the following themes: metrics,
prediction models, different approaches and perfor-
mance evaluation in CPDP research.

• We present a meta-analysis to assess the relative perfor-
mances of CPDP vs. WPDP grouped per study, dataset
and prediction model. To increase the validity of the
meta-analysis, we use both fixed and random effects
analysis and account for the differences within and
between different studies.

• We provide guidelines and recommendations based on
our findings to support further research in the area.

2 RESEARCH METHODOLOGY

To achieve our research goals, we conducted a Systematic
Literature Review (SLR) following the guideline provided
by Kitchenham and Charters [36]. In addition to this guide-
line, we followed the structure of Hall et al. [1] for conduct-
ing the review and presenting the results. Particularly, we
used Hall et al.’s set of criteria (with slight modifications)
for inclusion/exclusion and quality assessment of defect
prediction studies with customisation for cross project de-
fect prediction context. All steps of our research are docu-
mented and the related data are available online for further
validation, exploration and replication. Scripts for the data
analysis part of this SLR are also available online as part of
the replication package for our SLR [100].

2.1 Selection of Primary Studies
A set of search strings were identified based on the research
questions. This set was refined by checking the title and

keywords of the relevant papers that were already known
to us. After considering the alternative spellings and
synonyms for the identified search strings, they were
combined using logical ANDs and ORs to create the
complete search term. We used the following search string:

(“cross-project” OR “cross project’ OR “multi-project”
OR “multi project” OR “multiple project” OR “cross-
company” OR “cross company” OR “mixed-project” OR
“mix-project” OR “mixed project” OR “mix project”) AND
(defect* OR fault* OR bug* OR error*) AND (predict* OR
estimat*) AND software

This search term was modified to suit the specific re-
quirements of different electronic databases. The complete
list of customised search terms is available in the online
appendix. We used ACM Digital Library, IEEExplore, ISI
Web of Science, Scopus and Google Scholar to search for
candidate primary studies. Search was performed on the
full text of the papers, if allowed by the digital library,
i.e., ACM Digital Library, IEEExplore, Google Scholar. For
Scopus and ISI Web of Science, the search was conducted on
title, abstract, and keywords. We conducted our search on
June 6th, 2015 and identified studies published up until that
date. After applying inclusion/exclusion criteria to digital
library search results (explained in the next section), we
used the resulting set as input for the snowballing process,
recommended by Wohlin [28], to identify additional studies
(with potential hits to papers published after the initial
search date). As per the guidelines provided by Wohlin, we
applied backward and forward snowballing iteratively until
no further papers for inclusion were detected [28].

2.2 Inclusion and Exclusion Criteria

Studies must report empirical CPDP research (learning and
prediction) to be included. These could involve experiments,
case studies, tool development and evaluation, novel model
developments, replications, new approaches to overcome

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 4

TABLE 2
Inclusion/Exclusion Criteria

Inclusion Criteria

1) The paper must be an empirical study about cross project defect
prediction - It must include models trained on data from a set
of projects and tested on different set of projects for the purpose
of predicting defects in a software unit.

2) The prediction outcome must contain defect related informa-
tion, including but not limited to defect labels (classification) or
defect numbers (regression).

3) The paper must be a peer reviewed full research paper pub-
lished in a conference proceedings or a journal.

Exclusion Criteria

1) Studies focusing on topics other than CPDP such as pure
WPDP, test-suite reduction, test-case prioritisation, code re-
views, inspections, recommendation systems, reliability mod-
elling, and correlational studies or recommendation systems
with no or limited prediction focus.

2) Conference version of a study that has an extended journal
version.

3) Grey Literature or not in English.

specific CPDP challenges, or proposing new datasets or
metrics, as long as a prediction and its evaluation is in-
volved. We consider predictions that are trained and tested
using data from different projects as cross project defect
prediction. Prediction outcome must include defect related
information, for example, defect labels, number of defects,
etc. Small proportion of within project data included in
the training process, i.e., mixed data predictions are also
acceptable as long as the focus of the study is to learn
from other projects. In addition, papers must be in English
and peer reviewed full conference/journal papers to be
included. This criteria is important due to use of Google
Scholar, which possibly could return low quality studies,
non-published manuscripts and grey literature. Only the
most comprehensive or the most recent version of repeated
studies are included [1], i.e., if a conference paper was
extended as a journal paper, only the extended journal
version was included. Examples are [85] by Turhan et al.
and [86] by Canfora et al. which are the earlier (excluded)
conference versions of their more recent (included) journal
papers, i.e., [S13] and [S11] respectively.

Correlational studies that investigate associations be-
tween metrics and defect related information, as well as
recommendations with no prediction, or prediction not as
their main focus, are excluded. For example, Menzies et
al. [51] mine rules in the form of (e.g., KLOC=1, NOC=2)
from instances in local (vs. global) clusters that minimise
the defect counts. The results reported in that paper are not
predictions, but rather should be read as “Modules with
KLOC=1 are more likely to be non-faulty, so if you can bring
all your code base to satisfy KLOC=1 rule, your defects
will be reduced”. Reported results are coverage of defects
by the rules in terms of the percentage of total defects in
modules that satisfy the rule over all defects. Hence, no
defect prediction involved. Further, studies are excluded
when they focus on tasks other than defect prediction, such
as test-suite reduction, test-case prioritisation, code reviews,
inspections, recommendation systems, and reliability mod-

elling. Studies which perform only WPDP predictions and
grey literature, e.g., theses, technical reports, practitioner
blogs, are excluded.

The inclusion and exclusion criteria, also summarised in
Table 2, were applied and piloted by two researchers start-
ing with the assessment of 15 randomly selected primary
studies from the initial set of identified papers. The reli-
ability of the inclusion/exclusion decisions was measured
using pairwise inter-rater reliability with Cohen’s Kappa
statistic [29]. The agreement rate in the pilot study was
“moderate” (0.59). The pilot study helped us to develop
a collective understanding of the inclusion and exclusion
criteria. Then, the assessment was performed for the full
list of the identified studies. The agreement rate in this
case was “substantial” (0.69). Disagreements were resolved
after discussions between the two researchers and in case a
consensus was not reached the third author was consulted
as a tie breaker.

2.3 Selection Results
Figure 1 illustrates the overview of the study selection
process. In total, 1889 studies were detected based on our
defined search terms. After discarding the duplicate studies,
962 of them were left for further assessment. Applying the
inclusion and exclusion criteria to the title and abstract of
each paper, decreased the pool of the papers for full-text
reading from 962 to 41 studies. These studies were read in
full and 29 fulfilled the inclusion criteria. Finally, 5 and 12
relevant primary studies were found using backward and
forward snowballing, respectively, resulting in 46 studies
to be included in this SLR. One might notice the high
number of studies discovered through snowballing method
in comparison with the total number of primary studies. The
reason for observing such results is due to the high number
of studies published in 2015 after the search was performed.
Specifically, 8 out of 12 papers discovered through forward
snowballing are published after the search date ([S37]–
[S44]), and during the pilot and protocol refinement phases.

2.4 Quality Assessment
The quality of each primary study was assessed based on a
quality checklist. The quality checklist questions were devel-
oped according to the suggestions given by Kitchenham and
Charters [36] and Hall et al. [1]. In fact, for the most part,
the checklist customised for defect prediction and defined
by Hall et al. [1] was used with slight modifications. The
goal of the quality assessment step is to extract the primary
studies with sufficient information suitable for analysis and
answering the defined research questions.

The assessment process was piloted by applying the
assessment criteria to a set of five randomly selected papers.
Two researchers were involved in the pilot study and the
assessment process was refined according to the results of
the pilot study. The resulting six stages of assessment criteria
are provided below.

Stage 1: Prediction. To be eligible, a study must report
the process of building a cross project defect prediction
model. Further, the prediction model must be trained and
tested on different (project) data and the labels of the test
data must not be used during the training of the model.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 5

Fig. 1. Selection of the primary studies

To summarise, the purpose of this stage is to double check
whether a paper reports a cross project prediction model or
not. If so, the details of the model building process will be
extracted in Stage 3.

Stage 2: Context. Sufficient context data must be re-
ported in a study as they are important for interpreting
the findings. Except for the maturity, similar contextual
criteria used by the Hall et al. [1] were utilised in this study.
Maturity was ignored as many of the studies are using the
NASA datasets for which no maturity information could be
found from MDP or PROMISE repositories. The details of
this stage are presented in Table 3.

Stage 3: Prediction Model Details. The details of the
prediction model are crucial for answering research ques-
tions RQ1 and RQ2. Independent and dependent variables,
their granularity, and the modelling technique(s) used to
build the model(s) must be reported clearly. Table 4 provides
details of this criteria.

Stage 4: Approach. To answer RQ4, it is necessary for
a study to clearly report utilised CP approaches. The CP
approach (for example NN-filtering, EM-clustering, transfer
learning, etc.) must be described in detail if a specific ap-
proach is taken into consideration by a study.

Stage 5: Data. The data and how they are acquired must
be reported in the study. The criteria for data are essential
for the reliability of the prediction models. Table 5 denotes
the criteria applied in this stage.

Stage 6: Predictive performance. Assessing the perfor-
mance of the prediction model is vital for validating the
model usefulness and making comparisons. Suitable per-
formance measures must be reported for both Categorical
and Continuous models. Note that analysis units can be
package, class, file, module, etc. To be able to answer RQ4,
the study must satisfy the criteria presented in Table 6.

The quality assessment checklist was independently ap-
plied to all 46 primary studies by two researchers. All
disagreements on the quality assessment results were dis-
cussed and a consensus was reached eventually. Few cases

where agreement could not be reached were sent to a third
researcher for further investigation. 11 studies did not meet
the quality assessment criteria (failed in one or more steps)
and this phase resulted in 35 studies to proceed with the
data extraction phase. Table 7 shows the studies that failed
at each quality assessment stage. Of the five studies failed
in stage 6, three did not report the predictive performance
values clearly. Further, five studies which passed the quality
assessment criteria were not included in the data extraction
process. These papers and the reason why they are excluded
can be found in Table 8. Therefore, 30 studies were included
for the data extraction phase. An overview of these studies
will be presented in later sections.

2.5 Data Extraction

The data extraction form was designed to collect the data
from primary studies and consequently, answering the re-
search questions. The data were extracted from all studies
that have passed the quality assessment criteria. The data
extraction process was piloted on a sample of five randomly
selected primary studies to assess the completeness and
usability of the data extraction form, as well as to guarantee
the consistency between the researchers. Two researchers
were involved in the pilot study and the structure of the
data extraction form was finalised accordingly. The studies
that had passed the quality assessment criteria were divided
between the researchers to extract data from each set of
papers independently. The extracted data for each study
were held in tables, i.e., an Excel sheet per study. All the
extracted data were inspected by a second researcher to
ensure the correctness of the extracted values. In addition,
we implemented automated scripts to check the consistency
of the entries in the data tables and the text of the primary
studies. Finally, the results were compiled into a single Excel
file for the data analysis phase.

The data extraction form consists of three parts; namely
context data, qualitative data, and quantitative data.

Context Data. Context of the study includes the de-
tails of the study such as the domain of the applications,
project/dataset names, project size, and sources of data.
The “aim of the study” field holds extra information about
the CPDP related challenges addressed in the study with
the explicit goal descriptions extracted from each (such as
“difference in the data distribution” or “class imbalance
problem”).

Qualitative Data. For each primary study, a short sum-
mary of the main findings and conclusions, reported by the
author(s), were extracted.

Quantitative Data. The quantitative data were extracted
for categorical and continuous cases separately based on
the granularity of the dependent variable. For those studies
reporting both categorical and continuous results, only the
set that presented the majority of the results was extracted.
For both categorical and continuous models, dependent
variable granularity, independent variable(s), performance
evaluation criteria, modelling technique(s), data set(s), and
performance values are extracted. In terms of notations,
used in the form, W and C are used respectively to rep-
resent the type of the prediction model within (usually as
benchmark), and cross (usually multiple models, one or

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 6

TABLE 3
Context Criteria

Criteria Definition
Source of the data The source must be reported. If the study has used publicly available datasets, the names and versions

of the datasets must be reported.
Size Size of the system being studied must be given. It could be in terms of KLOC, #classes, #Instances or an

indication to get an idea about the size of the system.
Application domain If the model used data from different systems, the application domain should be reported for the

majority.
Programming language The programming language(s) of the system being studied must be given.

TABLE 4
Prediction Model Details Criteria

Criteria Definition
Are the Independent variables
(metrics) clearly reported?

Independent variables used to build the model must be clearly defined (for example, Size and
Complexity, Object Oriented or Process metrics).

Is the dependent variable
clearly reported?

The model can predict whether the code unit is faulty or non-faulty (i.e., categorical dependent variable)
or predict the number of defects in a code unit (i.e., continuous dependent variable).

Is the granularity of the depen-
dent variable reported?

The granularity of the dependent variable (method, class, package, file, etc.) must be reported.

Is the modelling technique
clearly reported?

Statistical or machine learning modelling technique (e.g., naı̈ve Bayes, Logistic Regression, DTree,
Support Vector Machine, K-nearest neighbour etc.) approaches must be clearly stated.

TABLE 5
Data Criteria

Criteria Definition
Is the fault data extraction pro-
cess clear?

If the study has used private datasets, it is necessary to mention how data was extracted (for example
from the Version Control System of a software project). If the data is obtained from the publicly available
repositories (like PROMISE repository), the details of the datasets and the source(s) must be presented.

Is the metric extraction (Inde-
pendent variables) process ade-
quately described?

The process by which independent variables (metrics) are extracted must be stated (e.g tools used and
metric collection process). In the case of using publicly available datasets, reference for the data must be
presented.

TABLE 6
Predictive Performance Criteria

Criteria Definition
Is the performance evaluation
criteria used clearly reported?

The performance measure of the model must be reported. (for example the performance of categorical
models can be measured by confusion matrix or AUC and those for continuous models can be reported
in terms of regression error measures).

Has the predictive performance
values been clearly reported?

The predictive performance values must be clearly presented in terms of raw performance numbers,
means or medians.

TABLE 7
Results of applying the quality assessment criteria

Quality assessment stage Excluded studies
Stage 1: Prediction
Stage 2: Context [S6], [S32]
Stage 3: Model building [S28], [S36]
Stage 4: CP approach [S45]
Stage 5: Data
Stage 6: Predictive performance [S9], [S10], [S22], [S33], [S34]
Failed in more than one stages [S12]

more of which are the proposed approach by the study)
reported in the primary studies. The within/cross data ex-
traction process is similar to the Kitchenham et al.’s practice
in their two systematic review studies where they evaluate
within versus cross company effort estimation performances
[79], [80]. The performance values are recorded in terms of
original, average, and median values. In order to have a
more extensive analysis, additional performance values are
calculated whenever possible (e.g., F-Score from precision

TABLE 8
Additional excluded studies and the reasons for their exclusion

Paper identifier Reason for Exclusion
[S17], [S19], [S21] The performance values are given only in

the plots. The authors were contacted, but
no data was received.

[S29], [S30] The source of the papers is arXiv. These
two studies were kept in the list until the
analysis phase started. By that time they
were excluded from the list as they were not
published in a peer-reviewed source.

and recall). We used the guidelines provided by Hall et al.
and Bowes et al. [1], [42] for this purpose. These additional
values are estimates for the exact values whenever the
median and mean values are reported. The dataset (training
and/or test) used for the prediction (e.g Ant-1.7 → Camel-
1.6) are extracted whenever possible. Moreover, the CP data
approach and other additional information related to the
performance measures are also extracted.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 7

2.6 Data Analysis

There are many potential confounding factors that may
challenge and affect the results of the synthesis performed
in secondary studies. For example, in our case, these are
different defect prediction models build for addressing dif-
ferent aspects of CPDP and evaluated in different contexts.
It is useful to develop or follow heuristics to conduct data
analysis based on assumptions to provide insights, as op-
posed to doing nothing. It is, after all, one of the goals
of SLRs to find patterns in individual studies that hold
across different, and potentially confounding, settings. For
example, Kitchenham et al. reported on the merits of cross
vs. within company effort estimation studies [80], where one
acknowledges the contextual differences between included
studies in interpreting their results. Similarly, Hall et al.
combined data from individual defect prediction studies
and summarised them around identified themes. Hence,
as long the results are interpreted in the light of stated
limitations, they would be valid in their scope.

Therefore, acknowledging the potential threats associ-
ated, we have followed the practices of Hall et al. [1] for
data synthesis and analysis. Specifically, we collected and
combined the qualitative and quantitative data provided by
the primary studies as the basis for our data synthesis in
answering our research questions on the different themes re-
lated with CPDP studies. Hence, we caution the reader that
the results presented under each theme should be consid-
ered independent of others and not be taken as performance
comparison between two specific models. Rather, our results
for theme X should be interpreted with assuming that other
factors (themes) do not affect the outcome (directly or as
a result of interplay of many factors) or that their impact
is uniformly distributed across different studies cancelling
out a systematic bias. With this assumption, we report the
performance of CPDP, whenever applicable, in relation to
theme X , avoiding comparisons between specific models or
techniques, but rather highlighting trends.

In addition, we have performed a meta-analysis of CPDP
vs. WPDP, since we have dichotomies of treatments that
can be compared, similar to the meta-analysis of test-driven
development vs. other software development approaches
by Rafique and Misić [92]. Studies included in our meta-
analysis are a subset of primary studies. Specifically, our
meta-analysis includes those studies that passed the quality
assessment stage and if they reported results of experiments
that compare CPDP with WPDP. Similar to Kitchenham et
al., in comparing the two treatments we are only interested
in those studies that compare the treatments of interest [80],
i.e., CPDP vs. WPDP.

We did not replicate the proposed approaches/models
in the studies, as this is out of the scope of an SLR. For
example, to conduct an SLR in medicine, a research group
do not replicate the medical trials reported in primary
studies.

2.6.1 Performance Indicators

We mainly used violin plots [31] to illustrate the results
of our analysis centred around performance indicators. A
violin plot is similar to box plots, but more informative.
A box plot only shows the summary statistics such as

mean/median and inter-quartile ranges, while the violin
plot shows the full distribution of the data. The violin
plots were drawn only for categorical data. In the plots, the
solid horizontal lines indicate the mean of the values for
each case whereas the thin continuous lines represent the
median. Each case has a label assigned to it representing
the name for that particular case. For example, in the case
of learning techniques, NB, LR, SVM, etc. were used as the
labels for each technique in the plots1. Following each label,
the number of data points that were used to generate that
particular plot are noted in parenthesis. The plots in each
case are sorted based on the medians, as the median is less
sensitive to outliers. Like Hall et al. [1], we restricted each
case to have at least three data points to contribute to the
plots. The values reported by the continuous studies were
in terms of dissimilar performance measures and hence not
suitable for the violin plot.

There were no common set of performance measures
used by all of the categorical studies. Accordingly, and due
to the nature of our data, we did not perform any statistical
tests for comparing the results of different CPDP studies
or models. Instead, we grouped data from primary studies
according to different themes described in the following
sections. The violin plots simply show pooled performances
in relation to an investigated theme without considering
other confounding themes or factors that may affect the
performance. Despite its limitations, this is useful to identify
general patterns and potential research gaps [1]. Potential
threats associated with this approach are addressed in Sec-
tion 7. Therefore, the primary studies were synthesised in
relation to the certain factors such as independent vari-
ables, modelling techniques, and CPDP data approaches
whenever the same performance measures were used in the
studies.

The categorical studies have presented their CPDP pre-
dictive performance values in different forms. To be exact,
the studies have reported the values in terms of original,
average, and median values. Original values refer to the
predictions for which either no repetitions are required or
not performed. Randomness and aggregating the results
of multiple predictions in one value are common cases
where median and average values are reported. Eight of
the studies have reported average performance values ([S1],
[S5], [S14], [S18], [S23], [S25], [S26], [S40]). Another set of
eight studies have presented median performance values
([S3], [S11], [S13], [S20], [S27], [S37], [S43], [S44]). Thirteen
studies have presented original values ([S1], [S2], [S4], [S7],
[S8], [S15], [S16], [S24], [S35], [S39], [S41], [S42], [S46]).
Study [S1] has used multiple forms (average, original) in
its reporting. These distinctions are taken into consideration
when generating the violin plots.

Original values contribute to the median and average
plots as they are median and average of a sample with size
one. No weighting has been considered to distinguish the
original values from averages and medians. Further, due to
the high number of plots, only the plots for median cases
are presented in this paper. The online appendix provides
additional plots for the case of average values.

1. Please see Appendix A for a full list of the abbreviations used
throughout the paper

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 8

Based on the utilised performance measures, different
sets of plots were generated for comparisons. Plots were
drawn for f-measure, precision, recall, and AUC perfor-
mance metrics. These values were either reported in the
study or were calculated indirectly by us when possible.
Note that some studies have reported their performance
values in terms of multiple performance measures and they
appear in multiple plots (e.g [S25], [S39], [S40] have reported
AUC along with f-measure, precision, and recall).

In addition to the violin plots, we used tables for sum-
marising and presenting qualitative results.

2.6.2 Modelling Techniques

Different modelling techniques are extracted for each model
reported in the primary studies. These modelling techniques
are categorised as follows: Base learners (like naı̈ve Bayes,
Logistic Regression, etc.), optimisation techniques (e.g.,
Boosting [S18], [S26], [S42], [S44], Bagging [S42], Genetic
Programming [S14], MO-Optimisation [S11], Meta-Learner
[S5], [S8], [S42]), and other ensemble/composite algorithms
(e.g., [S4], [S43]). We present them in tabular form and their
performances with violin plots.

2.6.3 CPDP Approaches

CPDP approaches correspond to data processing approach
by each study and are presented in tabular form and in
violin plots. We discuss these in two categories: row (datum)
processing and column (feature) processing. These include
“filtering”, “data transformation”, “clustering”, “mixed
data”, “feature selection”, and “normalization” to name a
few. Primary studies usually use a combination of these
approaches. These approaches will be discussed in the next
section.

When a study reports multiple models with different
approaches, its relevant performance data rows are included
in the category of both approaches when plotting violin
plots. Likewise, if the proposed CPDP technique consists of
multiple approaches itself, the performance data rows are
included in the category of all the relevant approaches (e.g.,
DTB in [S18] is added to mixed data, filtering, re-weighting,
and re-sampling as it uses all of them).

2.6.4 Meta-analysis and Forest Plots

Meta-analysis and, specifically, both fixed and random effect
models are considered to compare the results of CPDP and
WPDP studies. Forest plots are used to demonstrate the
results of our meta-analysis visually. These comparisons
are performed for precision, recall, f-measure, and AUC
performance measures as they are among the top five fre-
quently used measures in the studies. In addition to the
traditional meta-analysis, where unit of analysis is each
study, we performed two additional analyses by setting the
unit of analysis to learners and datasets. These additional
analyses can provide useful insights on how CPDP (vs.
WPDP) behave on specific datasets and learners. Finally, we
included both fixed and random effect models, not only to
provide more validity and insight into the results, but also
to reveal possible sources of bias as will be explained in
Section 4

3 RESULTS

To start with an overview of primary studies, the majority
of the CPDP studies were published during the past five
years. Figure 2 shows the frequency of the papers published
each year. Figure 2 indicates that the interest toward CPDP
is growing. 43% of the studies are published in 2015, in-
dicating that more contemporary studies are included in
this SLR. Regarding the publication sources, the proportion
of primary studies published in journals (53%) are slightly
higher than those published in the conferences (47%), which
can be an indication of the maturity of research conducted
in this area.

Fig. 2. The rate of interest toward CPDP

Out of the total 30 primary studies, 28 use categorical
and the remaining two use continuous dependent variables.
This paper presents the results of the categorical studies in
depth (for details of the two continuous models, please see
the online appendix). For abbreviations used in this section,
please see Appendix A.

In the following we will present the results of our syn-
thesis based on different themes. We start each subsection
with a summary of the findings to provide an insight about
the results and then these summaries are expanded and
explained in detail.

3.1 Theme: Independent Variables

All performance measures vary in relation to the choice
of set of independent variables. Combinations of OO and
SCM as well as source code text metrics seem to provide
good median performances in CPDP. Process metrics on
the other hand, does not show the same premise. Table
9 provides a summary of independent variables used.

Many different sets of independent variables are used
in the primary studies. Categorical and continuous model
tables in the online appendix show the detailed list of
independent variables used in individual studies. Table 9
summarises the metric sets used in the categorical models.
As shown in the table, most studies use a combination
of different metric sets. SCM+LOC (879 data rows) and
OO+SCM+LOC (626 data rows), which are combinations of
single metric sets, are the most common.

Five studies ([S13], [S24], [S37], [S40], [S41]) use mul-
tiple combinations for model building. The reason for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
m
ed

ia
n
 f
-m

ea
su

re

p
ro
ce

ss
 (
2
2
0
)

p
ro
ce

ss
 (
2
2
0
)

oo
+
sc
m
+
p
ro
ce

ss
+
lo
c
(1
8
2
)

oo
+
sc
m
+
p
ro
ce

ss
+
lo
c
(1
8
2
)

oo
+
sc
m
+
lo
c
(1
2
2
)

oo
+
sc
m
+
lo
c
(1
2
2
)

oo
+
lo
c
(1
5
4
)

oo
+
lo
c
(1
5
4
)

so
u
rc
e
co

d
e
te
xt
 (
6
)

so
u
rc
e
co

d
e
te
xt
 (
6
)

sc
m
+
lo
c
(1
8
2
)

sc
m
+
lo
c
(1
8
2
)

oo
 (
1
2
)

oo
 (
1
2
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ed

ia
n
 r
ec

al
l

p
ro
ce

ss
 (
2
2
0
)

p
ro
ce

ss
 (
2
2
0
)

oo
 (
1
2
)

oo
 (
1
2
)

so
u
rc
e
co

d
e
te
xt
 (
6
)

so
u
rc
e
co

d
e
te
xt
 (
6
)

oo
+
sc
m
+
p
ro
ce

ss
+
lo
c
(3
8
)

oo
+
sc
m
+
p
ro
ce

ss
+
lo
c
(3
8
)

oo
+
sc
m
+
lo
c
(4
1
4
)

oo
+
sc
m
+
lo
c
(4
1
4
)

sc
m
+
lo
c
(1
9
0
)

sc
m
+
lo
c
(1
9
0
)

oo
+
lo
c
(1
5
4
)

oo
+
lo
c
(1
5
4
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ed

ia
n
 p
re
ci
si
on

oo
+
lo
c
(1
5
4
)

oo
+
lo
c
(1
5
4
)

oo
+
sc
m
+
p
ro
ce

ss
+
lo
c
(3
8
)

oo
+
sc
m
+
p
ro
ce

ss
+
lo
c
(3
8
)

p
ro
ce

ss
 (
2
2
0
)

p
ro
ce

ss
 (
2
2
0
)

sc
m
+
lo
c
(1
3
2
)

sc
m
+
lo
c
(1
3
2
)

oo
+
sc
m
+
lo
c
(4
2
)

oo
+
sc
m
+
lo
c
(4
2
)

so
u
rc
e
co

d
e
te
xt
 (
6
)

so
u
rc
e
co

d
e
te
xt
 (
6
)

oo
 (
1
2
)

oo
 (
1
2
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
e
d
ia
n
 a
u
c

o
o
+
sc
m
+
lo
c
(2
0
)

o
o
+
sc
m
+
lo
c
(2
0
)

fe
a
tu
re
 s
e
le
ct
io
n
 (
1
0
)

fe
a
tu
re
 s
e
le
ct
io
n
 (
1
0
)

p
ro
ce

ss
 (
2
2
0
)

p
ro
ce

ss
 (
2
2
0
)

o
o
+
sc
m
+
p
ro
ce

ss
+
lo
c
(1
0
)

o
o
+
sc
m
+
p
ro
ce

ss
+
lo
c
(1
0
)

sc
m
 (
4
2
)

sc
m
 (
4
2
)

sc
m
+
lo
c
(4
9
4
)

sc
m
+
lo
c
(4
9
4
)

o
o
+
lo
c
(1
0
0
)

o
o
+
lo
c
(1
0
0
)

Fig. 3. Median performance of different metric combinations: f-measure, recall, precision and AUC

having multiple combinations is due to the availability
of different set of features/metrics in the training and
test data sets for each model. For example [S41] uses
OO+SCM+Process+LOC for the models trained with the
AEEEM datasets and tests the model on SOFTLAB and
ReLink dataset suits for which a subset of SCM+LOC are
available. Also [S37] uses feature matching as a part of their
proposed approach, i.e., the heterogeneous defect prediction
model that can make predictions using training and test
datasets with different sets of metrics.

Five studies [S1], [S7], [S35], [S39], [S46] have used only
one set of metrics (OO, source code text, SCM or process
metrics). It is important to note that LOC is being used as a
part of the combinations in 23 of the studies. Likewise, SCM
and OO are used as a part of the metrics combinations in
more than half of the studies (21 and 17 respectively). Lastly,
two continuous model studies have mainly used Process

and OO metrics when constructing prediction models.

3.1.1 Performance in relation to independent variables

Figure 3 presents the violin plots for the performance trends
of the prediction models with respect to the independent
variables used in each study. The violin plots in this figure
are for median f-measure, precision, recall, and AUC values.

The plots show that the performance of the defect pre-
diction models vary in relation to the independent variables.
OO and SCM+LOC have the highest median values for f-
measure, while Process metrics has the lowest. Also based
on equal number of data points, SCM+LOC based models
tend to perform better than OO+SCM+Process+LOC in
terms of median f-measure. Even though Process metrics
could be useful, their combination with other metric sets
seems to decrease the performance of prediction models.
The study by Kamei et al. [S39] which uses process met-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 10

TABLE 9
Software metrics and studies

Type of metrics Studies #Predictions
Source code text [S1] 12
OO [S7], [S35] 24
SCM [S40], [S46] 43
Process [S39] 220
OO+LOC [S2], [S8], [S11] 254
SCM+LOC [S4], [S13]–[S16], [S20],

[S24]–[S26], [S37], [S41],
[S43]

879

OO+SCM+LOC [S3], [S5], [S13], [S18],
[S23], [S27], [S37], [S40],
[S42], [S44]

626

OO+SCM+Process+LOC [S24], [S37], [S41] 194
Multiple Combinations [S13], [S24], [S37], [S40],

[S41]

rics has contributed to these low performance values. OO
and OO+LOC as well as SCM+LOC have good perfor-
mance individually but not when combined, i.e., in Figure
3 OO+SCM+LOC appears to the left of all three of them.
One contributor to the good performance of OO+LOC in
this case could be its good recall performance. It has the
highest median recall value while having arguably the worst
precision. Source code text has a good performance and
it favours precision more than recall in comparison to the
other counterparts. In most cases, one can see a degree
of instability in the plots especially with respect to the
precision and recall.

In the AUC plot, OO+SCM+LOC has the lowest median
value; lower than Process metrics which has the lowest f-
measure and recall medians. Despite having the highest
median value, OO+LOC does not seem to be very stable in
comparison with the other metric suites. Finally, the stability
of SCM+LOC seems to be fine, considering the huge amount
of data contributing to it with respect to the other metric sets
in the plots.

3.2 Theme: Modelling Techniques

Almost all techniques are single objective. NB (43%) and
LR (32%) are the most widely used learning techniques
in CPDP. NN, SVM, and DTree based models achieve
the highest median f-measure in CPDP (≈ 0.5). Despite
its popularity, naı̈ve Bayes (NB) technique seems to have
an average performance. Performance of the ensembles
varies greatly when assessed by f-measure vs. AUC.
Table 10 shows the frequency of learners used in CPDP
studies.

Various modelling techniques have been used by the
categorical studies. The majority of studies have used only
base learners to build prediction models. There are few
studies which use various optimisation techniques on top
of the base learners. Table 10 shows the number of cases for
which the base learners are used as they are, the number
of cases where they are used in the context of an optimi-
sation/ensemble technique, and the studies in which they
appear (either as they are or in ensembles).

Naı̈ve Bayes (NB) is the most commonly used modelling
technique in the categorical studies (513 data rows in 12
studies). Logistic Regression (LR) is the next frequently used

modelling technique (455 data rows in 9 studies). Other
base learners such as Decision Tree (DTree), Support Vector
Machine (SVM), and Random Forests (RF) are also used
to build prediction models in a considerable number of
cases. Note also that these modelling techniques are being
used as the underlying learner for some of the optimisation
techniques as well. For example, 160 of the predictions in
the extracted data use boosting naı̈ve Bayes, a subset of the
184 cases for which NB is used in ensembles. LR has the
highest number of predictions when used in the context
of ensembles (344 data rows). Study [S4] has the highest
amount of contribution to the ensemble LR predictions by
providing 264 of 344 data rows.

Four studies have used the boosting approach in their
reported models ([S18], [S26], [S42], [S44]). Two of these
studies ([S18], [S44]) use NB and boosting as a part of their
proposed CPDP approaches. Zhang et al. [S42] build their
models with both NB and DTree and boosting. The study by
Ryu et al. [S26] considers the applicability of SVM learner
with boosting in the context of CPDP.

Among the selected studies, only two ([S11], [S14])
utilise a search based method to create a defect prediction
model. In [S14], a genetic programming method is proposed
in which optimal mathematical expressions that could best
fit the training data are sought for. Further, [S11] is the only
study which has proposed a search based multi-objective
approach (MODEP) to CPDP. They used NSGA-II algorithm
and targeted the cost effectiveness as their goal.

Some studies ([S4], [S5], [S8], [S42], [S43]) have used
other ensemble techniques in their experiments. The ensem-
ble of weak learners is used in [S4] to avoid over-fitting. In
[S8], the authors combine six different learning algorithms
using two underlying learning techniques, namely LR and
BN. They propose to use a meta-learner called Combined
Defect Predictor (CODEP) which creates a prediction model
from the prediction results of multiple other prediction
models. In a similar manner, Zhang et al. [S42] investigated
seven ensemble algorithms composed of various modelling
techniques, six of which are used to benchmark CODEP. In
[S5], the authors generate a meta learner model using the
decision tree learner based on the distributional character-
istics of the source and target datasets and the prediction
result from the source to the target (success, failure) from
another learner (Decision Table in this case). They use this
tree to predict the performance of prediction models trained
with a specific source set and tested on a particular target
set. Ryu et al. [S43] proposed a Hybrid Instance Selection
technique built on top of the Nearest-Neighbour algorithm
to capture the local knowledge in data by NN and the global
knowledge by NB.

3.2.1 Performance in relation to modelling techniques
Figure 4 shows the model performances in relation to the
modelling techniques. As per the f-measure plots, models
based on NN, SVM, and DTree seem to perform well while
the models using LR and RF do not seem to achieve overall
good performances. More notably, Simple NB performs as
good as most of the models, yet it is not among the top
three techniques with respect to the median values. The
performance in terms of precision and recall also confirm
this conclusion as NB achieves a medium performance for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 11

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

median f-measure

bagging dtree (10)

bagging dtree (10)

ensemble voting (10)

ensemble voting (10)

boosting nb (10)

boosting nb (10)

metalearner lr (10)

metalearner lr (10)

bagging nb (10)

bagging nb (10)

boosting dtree (10)

boosting dtree (10)

rf (238)

rf (238)

lr (233)

lr (233)

mo-optimization dtree (50)

mo-optimization dtree (50)

mo-optimization lr (50)

mo-optimization lr (50)

nb (81)

nb (81)

ensemble maxvoting (10)

ensemble maxvoting (10)

ar (10)

ar (10)

crm114 (6)

crm114 (6)

bn (7)

bn (7)

dt (9)

dt (9)

dtree (33)

dtree (33)

svm (15)

svm (15)

nn (76)

nn (76)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

median recall

rf (222)

rf (222)

lr (51)

lr (51)

crm114 (6)

crm114 (6)

ensemble nb (14)

ensemble nb (14)

svm (9)

svm (9)

nb (342)

nb (342)

ar (10)

ar (10)

dtree (33)

dtree (33)

nn (96)

nn (96)

bn (7)

bn (7)

dt (9)

dt (9)

boosting nb (135)

boosting nb (135)

mo-optimization lr (50)

mo-optimization lr (50)

mo-optimization dtree (50)

mo-optimization dtree (50)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

median precision

mo-optimization dtree (50)

mo-optimization dtree (50)

mo-optimization lr (50)

mo-optimization lr (50)

ar (10)

ar (10)

nb (81)

nb (81)

lr (51)

lr (51)

rf (222)

rf (222)

bn (7)

bn (7)

svm (9)

svm (9)

dt (9)

dt (9)

dtree (33)

dtree (33)

crm114 (6)

crm114 (6)

nn (76)

nn (76)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

median auc

bn (10)

bn (10)

ac (72)

ac (72)

rf (220)

rf (220)

nb (42)

nb (42)

lr (208)

lr (208)

dt (10)

dt (10)

ensemble lr (264)

ensemble lr (264)

adt (10)

adt (10)

rbf (10)

rbf (10)

mlp (10)

mlp (10)

mo-optimization dtree (10)

mo-optimization dtree (10)

mo-optimization lr (10)

mo-optimization lr (10)

metalearner lr (10)

metalearner lr (10)

metalearner bn (10)

metalearner bn (10)

Fi
g.

4.
Pe

rfo
rm

an
ce

of
th

e
m

od
el

lin
g

te
ch

ni
qu

es
:f

-m
ea

su
re

,r
ec

al
l,

pr
ec

is
io

n
an

d
AU

C

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 12

TABLE 10
Popularity of the modelling techniques

Learner #As is #Ensemble Studies
Naı̈ve Bayes 513 184 [S3], [S7], [S13], [S18], [S20], [S25], [S26], [S40], [S41], [S43], [S44], [S46]
Logistic Regression 455 344 [S3], [S4], [S8], [S11], [S15], [S24], [S35], [S37], [S41]
Random Forest 248 [S7], [S26], [S39], [S41], [S42]
Nearest Neighbour 102 [S7], [S27], [S41]
Association Classifier 72 [S16]
Decision Tree 43 102 [S2], [S3], [S7], [S11], [S26]
SVM 34 10 [S3], [S7], [S23], [S26], [S41]
Genetic Programming 21 [S14]
Decision Table 19 [S3], [S7], [S8]
Bayesian Net 17 10 [S3], [S8]
CRM 114 12 [S1]
Part 10 [S26]
ADT 10 [S8]
IBk 10 [S26]
RBF 10 [S8]
Max voting n/a 10 [S42]
MLP 10 [S8]
Association Rules 10 [S11]
Average Voting n/a 10 [S42]

both. While MO-optimisation models have very high recall
values, they lack the good precision and they seem to be
unstable as well. This instability in precision could be one
of the reasons for their overall unstable performance. They
have the highest median recall values while having the
lowest precision. Surprisingly, the ensembles under perform
most of the other counterparts in terms of f-measure, with
the catch that the relevant data mostly comes from only one
study ([S42]) for the majority of them.

The Meta-learner BN, proposed in [S8] has the highest
median AUC value. Beside that, its stability seems to be
much better than the other approaches in this category. The
authors claim that combining classifiers can improve the
prediction performance as in CODEPBayes, a meta-learner
on top of Bayesian Networks [S8]. This approach is fol-
lowed by Meta-learner LR, MO-Optimisation, and MLP. The
data for these meta-learners as well as MLP are coming
from one study [S8]. Later, [S42] assessed the usefulness
of Meta-learner LR with respect to alternative performance
measures, i.e., f-measure and Nof20 and concluded that its
performance is comparable to other composite algorithms
except for MAX voting. In their experiments, Max voting
significantly improved the performance of other composite
algorithms, one of which is Meta-learner LR (CODEPLogistic)
[S42]. These techniques are followed by RBF, ADT and
Ensemble LR. Ensemble techniques seem to affect the per-
formance of LR, one of the most common learning tech-
niques in the studies. LR is improved by both Ensemble LR
and Meta-learner LR according to the plots. The data for
Ensemble LR comes from the Ensemble of weak classifiers
model in [S4]. In contrast with f-measure results, ensembles
tend to improve CPDP according to the AUC plots.

To have a better understanding on how different learners
behave according to different performance measures, the
results for PF and Balance are also assessed. Similarly, NN
provides the best overall median balance value and the
lowest median PF confirming its good performance with
respect to multiple measures. Boosting has not improved
NB dramatically in terms of the median, but the stability is

improved. Of course one might notice a performance ceiling
with Boosting NB compared with NB as is, considering the
number of data points that contribute to them. Boosting
is related to both higher recall and higher Probability of
False alarm. In that sense, the performance of Boosting NB
is similar to the simple NB technique as it has the worst
median probability of false alarm, making it potentially less
suitable overall for building prediction models when the
precision of the model is targeted.

3.3 Theme: Performance Evaluation Criteria

No set of common measures is shared by all studies.
Recall (75%), probability of false alarm (43%), precision
(39%), f-measure (39%) and AUC (36%) are the most
frequently used measures, respectively. Table 11 shows all
performance measures reported in CPDP studies along
with their frequencies.

No common set of performance evaluation criteria is
used to gauge the performance of different CPDP mod-
els. Table 11 presents the most widely used performance
measures used in the categorical studies. Last column of
the table represents the studies in which the performance
measure is used. To be able to make the comparisons, ad-
ditional measures are calculated whenever possible. These
include the cases in which average and median values are
reported as well. For example in [S11], f-measure values are
calculated from the reported median recall and precision
values. Moreover, some of the less common performance
measures such as Overall Error Rate, G-mean, H-measure,
and cost related measures to mention some, are labeled as
miscellaneous in the table.

Even though most of the studies use multiple perfor-
mance evaluation measures, a few studies have used only
one ([S4], [S24], [S37], [S46]). Three of these studies have
used AUC and one study has used f-measure. A depiction
of the number of studies for each performance evaluation
measure is shown in Table 11. According to the table,
recall is the most commonly used performance measure (21

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 13

TABLE 11
The definition and usage of different performance measures across the categorical studies

Measure (#Studies) Description Definition Studies
Precision (11) The proportion of the predicted posi-

tive cases that were correct
TP

TP+FP
[S1]–[S3], [S5], [S7], [S11], [S15],
[S16], [S23], [S39], [S40]

Recall, pd (21) The proportion of positive cases that
were correctly identified

TP
TP+FN

[S1]–[S3], [S5], [S7], [S11], [S13]–
[S16], [S18], [S20], [S23], [S25]–
[S27], [S39]–[S41], [S43], [S44]

Accuracy (2) Proportion of correctly classified
units

TP+TN
TP+FP+TN+FN

[S1], [S16]

Probability of False
Alarm, pf (12)

Proportion of non-faulty units incor-
rectly classified as fault-prone

FP
FP+TN

[S7], [S13], [S14], [S18], [S20],
[S25]–[S27], [S40], [S41], [S43],
[S44]

AUC, Area Under
the Curve (10)

The area under the receiver operating
characteristics curve. Independent of
the cutoff value

[S4], [S8], [S11], [S16], [S25],
[S26], [S37], [S39], [S40], [S46]

F-measure (11) Harmonic mean of precision and re-
call

2×Precision×Recall
Precision+Recall

[S1], [S3], [S5], [S7], [S16], [S24],
[S25], [S39]–[S42]

G-measure (3) Harmonic mean of pd and (1-pf) 2×pd×(1−pf)
pd+(1−pf)

[S18], [S27], [S40]

Balance (4) The Euclidean distance from the (pd,
pf) point to (pd=1, pf=0) in the ROC
curve

1−
√

(0−pf)2+(1−pd)2√
2

[S13], [S20], [S43], [S44]

MCC (3) A compound measure considering all
true and false positives and negatives

TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

[S18], [S40], [S41]

Miscellaneous FN rate, G-mean, H-measure, Cost,
Hubert Stat. Procedure

N/A [S1], [S14], [S26], [S35], [S44]

studies) followed by the probability of false alarm, precision,
f-measure, and AUC.

Cost related measures such as inspection cost ([S8],
[S11]), cost effectiveness ([S42]), and expected cost of mis-
classification ([S14]) were used in multiple studies and their
importance were justified. The inspection cost is based on
LOC and is an approximation of the effort needed to analyse
the classified faulty units. On the other hand, cost effective-
ness deals with the number of faulty units detected when
inspecting first n% of lines of code. Finally, two continuous
models studies used Nagelkerke’s R2, precision, and RMSE
(Root Mean Square Error). The descriptions and definitions
of these measures can be found in the online appendix.

3.4 Theme: CPDP Approaches

In this section, an overview of the different approaches
in CPDP will be presented. Different studies have used
different processing methods to build their models. In the
following, these methods are presented.

3.4.1 Data Related Issues and Approaches

A summary of all observed issues with a mapping
to how they are addressed is provided in Table 12.
Among them, data heterogeneity is the most frequently
addressed CPDP specific issue (68% of studies), while
the remaining ones are not unique to CPDP, e.g., class
imbalance (25%), noise in data (7%), redundant (14 %),
or correlated features (14%).

The majority of the categorical studies have addressed
different data related issues such as data heterogeneity,
class imbalance, highly skewed data, etc. as a part of
their proposed approach. Table 12 describes these data
related issues and explains how they are addressed in
different studies. The last column of the table presents the

studies addressing each issue. If an approach in a study is
specifically named, the name is mentioned along with the
study. Three studies ([S1], [S7], [S46]) are absent from this
table as they have not addressed any issue in any of their
reported models.

Class imbalance. Usually, defects are not distributed
evenly and the number of defective modules is much less
compared to the non defective modules. This issue is called
the class imbalance problem [13]. Data imbalance greatly
impacts the performance of the classification models as
well as decreasing their generalisability [S44]. Learning
minority class is difficult when a classifier is trained on
imbalanced data [1]. Therefore, the classifier is skewed
toward the majority class resulting in a lower rate of
detection. This issue is addressed by several studies using
different methods such as data re-sampling(RS) ([S18],
[S26], [S39], [S44]), instance re-weighting(RW) ([S23], [S25]),
and selective learning strategy ([S43]).

Data heterogeneity. The similarity of source and target
data distributions is believed to have a large effect on the
outcome of predictions. This problem is sometimes referred
to as data heterogeneity in software projects ([S11], [S35],
[S37], [S41]). As expressed by Canfora et al. [S11], software
projects are often heterogeneous and they have different
software metric distributions. Moreover, heterogeneity is
believed to be affected by certain context factors such as
domain, size, and programming language to name some
[S15]. Many machine learning algorithms work well under
the assumption that source and target data are drawn
from the same distribution [33]. This assumption typically
holds for WPDP due to the nature of the data, but it
might not hold for CPDP [S24] and therefore, CPDP does
not necessarily work in all situations [S9], [S20]. Various

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 14

methods such as data transformation (DT), filtering (F),
feature matching, and normalization (N) are proposed in
studies to tackle the problem.

Highly skewed data. As presented in Table 12, few studies
have addressed the skewed data problem [S4], [S13], [S20],
[S43]. This issue is sometimes one of the contributors to
poor model performances [45]. Menzies et al. [41] pointed
out that spreading the skewness of the data evenly can
cause a significant improvement in the effectiveness of the
data mining models. Logarithmic transformation is used in
these studies for addressing the issue.

Irrelevant and redundant features. A set of studies ([S3],
[S15], [S37], [S42]) use feature selection (FS) technique to
identify and remove irrelevant and redundant features.
Reducing the dimensionality of the data, this process
improves the effectiveness of the learning algorithm [30].

Continuous data. The values of numerical features (integer
or real) or those taking on linearly ordered range of values
are considered as continuous features [34]. However, some
classification algorithms assume nominal feature spaces
during the learning process and hence, making these
algorithms inapplicable in some cases [46]. One approach
toward this problem is the discretization (D) process. This
approach was used by two studies [S16], [S25].

Privacy. The privacy issue arises when the confidentiality
of the data is a concern for the project owners. This issue
in turn causes the owners to rarely contribute to the pool
of available data even though such data might contribute
to further research efforts. Privacy is considered by Peters
et al. [S27] in the context of CPDP. They obfuscate the data
in order to hide the project details when they are shared
among multiple parties.

Collinearity among metrics. Collinearity and multi-
collinearity among independent variables might decrease
the effectiveness of the prediction models. This issue
happens when two or more independent variables are
strongly correlated. Calculating Pearson and Spearman
correlations are two of the most common ways of detecting
such issues. Dimensionality reduction and PCA [66]
(Principal Component Analysis) in particular are other
approaches to tackle strongly correlated features. PCA
is being used by [S31], [S33], [S34], [S36] in the primary
studies. In [S39] the authors remove highly correlated
metrics (Spearman ρ > 0.8) to deal with the problem of
collinearity.

Noise in data. Data instances with excessive deviation
from the acceptable range of the feature space are known as
outliers [30]. Classifiers trained on noisy data are expected
to be less accurate [47]. Two of the studies among the
others try to overcome this problem, one of which performs
outlier removal [S43] and the other does noise filtering [S27].

Aforementioned data issues are tackled by proposing
and using various data processing methods in the selected
set of categorical studies. We call these approaches col-

umn and row processing methods according to the way
they consume the raw data. The studies that deal with
features/metrics processing are members of the column
processing group (e.g., transfer learning, feature selection).
Likewise, the studies which perform data processing on
instances are considered in the row processing methods
group (e.g., filtering, data re-sampling). The categorisation
of the studies into column and row processing groups is
illustrated in Tables 13 and 15. Overviews of the most
common processing methods are presented in the following.

3.4.2 Column Processing Methods

Column processing techniques addressing data related
issues, and the studies they appear in, are listed in Table
13. Applying normalisation (29%) and log-filtering (25%)
to data features are frequent practices. Other transforma-
tions, listed in Table 14, mostly modify data features in
both training and test sets, to address data heterogeneity
issue.

Data transformation. As shown in the Table 13, transforma-
tion technique is used in several studies. The main premise
of Transfer learning in general and transformation in par-
ticular is to neutralise the effect of heterogeneity between
source and target data [S24] by extracting and learning
knowledge from a dataset and applying that knowledge
during the training and prediction processes. Table 14 shows
a list of the studies in this category.

Metric Compensation in [S2] adjusts target data by
considering the average values of the features for both
training and test datasets. The study conducted in 2013 by
Nam et al. [S24] proposed another transformation approach
called TCA+ which tries to make feature distributions in
source and target projects similar by transforming both
source and target data to the same latent feature space.
The universal defect prediction model proposed by Zhang
et al. [S40] offers a context-aware rank transformation to
address the difference in the distribution of the data. This
model is trained with a large set of diverse projects from
different contexts and the variations in the distribution of
metrics values are high. Another CPDP study [S41], utilises
an approach called Canonical Correlation Analysis (CCA)
which tries to build prediction models with datasets that
have different sets of metrics. They transform both training
and test datasets to a new feature space in a way that they
would have an equal number of features in the resulting
datasets. Cruz et al. [S35] use the information form Mylyn
dataset and apply a log transformation on the data.

Feature selection. Feature selection is another column
processing method used by few CPDP studies ([S3],
[S15], [S37], [S42]). In this case, features are the metrics
that are utilized to build defect prediction models. As
denoted by He et al. [S3], performing feature selection is
a sensible method to deal with large number of features.
This method identifies a subset of the features which can
possibly deliver better predictive performances. Feature
selection can be categorized into two groups: filters and
wrappers. With filters, irrelevant features are removed from
the feature set before it is used by a learning technique.
On the other hand, wrappers use the feedback from the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 15

TABLE 12
Data related issues and the proposed methodologies in CPDP

Issue How the issue is been addressed Studies
Class imbalance Re-sampling DTB [S18], VCB-SVM [S26], JIT [S39], TCSBoost [S44]

Re-Weighting [S23], TNB [S25], [S26], [S41], [S44]
Selective learning HISNN [S43]

Data heterogeneity Data Transformation Metric compensation [S2], TCA+ [S24], Log Transformation
[S35], Universal model [S40], CCA+ [S41]

Filtering NN-filter [S13], [S20], HISNN [S43], [S5], [S18], [S23], [S25],
[S27], [S41], [S44]

Normalization [S4], CODEP [S8], MODEP [S11], [S14], [S23], TCA+ [S24], VCB-
SVM [S26], CCA+ [S41] , TCSBoost [S44]

Metrics matching HDP [S37]
Clustering [S11], [S23]

High Skeweness Logarithmic transformation [S4], NN-filter [S13], [S20] , HISNN[S43],[S18], [S23], [S25], [S44]
Privacy Multi-party data sharing LACE 2 [S27]
Irrelevant and redundant features Feature selection TOP-K [S3], [S15], HDP [S37], Composites [S42]
Continuous data Discretization [S16], [S18]
Collinearity among metrics Remove highly correlated metrics JIT [S39]

Principal Component Analysis PCA [S31], [S33], [S34], [S36]
Noise in data Outlier removal HISNN [S43]

Noise filtering LACE 2 [S27]

TABLE 13
Column processing methods

Processing method Studies
Data Transformation [S2], [S24], [S35], [S40], [S41]
Feature selection [S3], [S15], [S37], [S42]
Normalization [S4], [S8], [S11], [S14], [S24], [S26], [S41], [S44]
Log-filter [S4], [S13], [S18], [S20], [S25], [S43], [S44]
Discretization [S16], [S25]

TABLE 14
Data transformation approaches

Data transformation approach Studies
Modify target data similar to source data [S2]
Modify both source and target data [S24], [S35], [S40], [S41]

learning algorithms to decide which feature(s) to include
in building a classification model [S3]. The authors in [S3]
recommended to use filtering approach, if the target is
to achieve high recall values. If both higher recall and
f-measure are required, their recommended approach is
TOP-K approach. Further, they suggested to use minimum
feature subset if appropriate precision or high f-measure
is required. Nam et al. [S37], have used various feature
selection approaches such as gain ratio, chi-square, relief-
F, and attribute significance evaluation. Their results
confirmed the usefulness of feature selection approaches
toward building better defect prediction models. Yu et al.
[S15] performed score test to select the best set of features.
Finally, the authors in [S42] mention the use of the feature
selection technique, but its details has not been reported.

Normalisation. As shown in Table 12, normalisation is being
widely used in CPDP. Two types of normalisation, namely
min-max and z-score, are commonly used of which z-score
normalisation is more popular.

Z =
X − µ
σ

(1)

Equation 1 shows the formal definition for z-score nor-

malization method. Here, µ and σ are the mean and stan-
dard deviation of X respectively. Study [S24] uses both z-
score and min-max normalizations. Min-Max is formally
defined using the following equation.

Xnew =
X −Xmin

Xmax −Xmin
(2)

Discretization. The number of feature values is one of
the contributors to the speed and effectiveness of different
machine learning algorithms [30]. As a solution, some
studies have used discretization, the process in which
the number of possible feature values are decreased for
continuous features [30]. Both [S16] and [S25] had used
Minimum Description Length (MDL)-based discretization
schema proposed by Irani et al. [34]. The supervised
discretization algorithm proposed by the same authors uses
entropy minimization heuristic for discretizing the range of
a continuous-valued features to multiple intervals.

Log-Filtering. To tackle the skewness in data, some studies
([S4], [S13], [S20], [S43]) have converted the feature values
by applying the logarithmic function to the original values.
The rationale behind this argument is that the distribution
of the log-transformed feature values better matches the
assumptions of the normal distribution [S20].

3.4.3 Row Processing Methods

Table 15 lists the row processing techniques, which tar-
gets data instances as opposed to data features, along
with the studies in which they appear. Filtering (36%)
is the most frequently used method to address data
heterogeneity via row processing.

Filtering. Turhan et al. [S20] proposed to use filtering
method for CPDP. The rationale behind filtering method is
that similar instances (according to the defined similarity
measure) can potentially be better predictors for a
corresponding test set. Therefore, they applied the k-
Nearest Neighbour (k-NN) algorithm to training dataset
in order to find the similar (relevant) instances for their

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 16

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ed
ia
n
f-m

ea
su
re

no
ne
 (2
62
)

no
ne
 (2
62
)

re
-w
ei
gh
tin
g
(3
6)

re
-w
ei
gh
tin
g
(3
6)

re
-s
am
pl
in
g
(1
10
)

re
-s
am
pl
in
g
(1
10
)

da
ta
 tr
an
sf
or
m
at
io
n
(2
64
)

da
ta
 tr
an
sf
or
m
at
io
n
(2
64
)

fe
at
ur
e
se
le
ct
io
n
(8
0)

fe
at
ur
e
se
le
ct
io
n
(8
0)

fil
te
rin
g
(3
6)

fil
te
rin
g
(3
6)

cl
us
te
rin
g
(1
0)

cl
us
te
rin
g
(1
0)

no
rm
al
iz
at
io
n
(3
26
)

no
rm
al
iz
at
io
n
(3
26
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ed

ia
n
re
ca
ll

no
ne

 (
19

6)

no
ne

 (
19

6)

pr
iv
ac
y
(2
0)

pr
iv
ac
y
(2
0)

no
rm

al
iz
at
io
n
(4
09

)

no
rm

al
iz
at
io
n
(4
09

)

re
-s
am

pl
in
g
(2
45

)

re
-s
am

pl
in
g
(2
45

)

cl
us
te
rin

g
(1
0)

cl
us
te
rin

g
(1
0)

da
ta
 t
ra
ns
fo
rm

at
io
n
(9
6)

da
ta
 t
ra
ns
fo
rm

at
io
n
(9
6)

fe
at
ur
e
se
le
ct
io
n
(4
0)

fe
at
ur
e
se
le
ct
io
n
(4
0)

m
ix
ed

 d
at
a
(3
62

)

m
ix
ed

 d
at
a
(3
62

)

fil
te
rin

g
(2
14

)

fil
te
rin

g
(2
14

)

re
-w
ei
gh

tin
g
(1
26

)

re
-w
ei
gh

tin
g
(1
26

)

lo
g-
fil
te
r
(1
71

)

lo
g-
fil
te
r
(1
71

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ed
ia
n
pr
ec
is
io
n

re
-w
ei
gh
tin
g
(3
6)

re
-w
ei
gh
tin
g
(3
6)

re
-s
am
pl
in
g
(1
10
)

re
-s
am
pl
in
g
(1
10
)

cl
us
te
rin
g
(1
0)

cl
us
te
rin
g
(1
0)

fil
te
rin
g
(3
6)

fil
te
rin
g
(3
6)

fe
at
ur
e
se
le
ct
io
n
(4
0)

fe
at
ur
e
se
le
ct
io
n
(4
0)

no
rm
al
iz
at
io
n
(1
84
)

no
rm
al
iz
at
io
n
(1
84
)

no
ne
 (1
96
)

no
ne
 (1
96
)

da
ta
 tr
an
sf
or
m
at
io
n
(9
6)

da
ta
 tr
an
sf
or
m
at
io
n
(9
6)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
e
d
ia
n
 a
u
c

d
is
cr
e
ti
za

ti
o
n
 (
7
2
)

d
is
cr
e
ti
za

ti
o
n
 (
7
2
)

re
-s
a
m
p
lin

g
 (
1
1
0
)

re
-s
a
m
p
lin

g
 (
1
1
0
)

n
o
n
e
 (
1
8
1
)

n
o
n
e
 (
1
8
1
)

fe
a
tu
re
 s
e
le
ct
io
n
 (
3
7
)

fe
a
tu
re
 s
e
le
ct
io
n
 (
3
7
)

lo
g
-f
ilt
e
r
(3
9
6
)

lo
g
-f
ilt
e
r
(3
9
6
)

n
o
rm

a
liz
a
ti
o
n
 (
4
9
6
)

n
o
rm

a
liz
a
ti
o
n
 (
4
9
6
)

Fig. 5. Performance of the individual data approaches: f-measure, recall, precision and AUC

TABLE 15
Row processing methods

Method Studies
Filtering [S5], [S13], [S18], [S20], [S23], [S25], [S27], [S41],

[S43], [S44]
Re-weighting [S18], [S23], [S25], [S26], [S41], [S44]
Re-sampling [S18], [S26], [S39], [S44]
Clustering [S11], [S23]
Privacy [S27]

test sets. They used Euclidean distance as the distance
measure and k = 10 as the number of neighbours for k-NN.
Later in 2013, they confirmed the usefulness of the filtering
method in CPDP [S13]. The relevancy filtering proposed
by Turhan et al. was able achieve high recall values while
also increasing PF. In other words, this filter favours recall
more than precision. Recently published study by Chen
et al. [S18] also takes advantage of filtering method to
avoid irrelevance instances in source dataset. A similar
filtering method was proposed by Peters et al. [S27]. In
this study, instead of using k=10 in NN-filter, “Best (K)”
procedure introduced by Kocaguneli et al. [48] was utilised
for determining k. HISNN [S43] also employs filtering to
further reduce pf and achieves higher pd values. In HISNN,
NN filtering based on a search ring of Min-Ham radius
around each test data instance was performed. He et al. [S5]

investigated the exhaustive dataset selection approach by
creating a metalearner from the results of a large number of
predictions (160K) and the distributional characteristics of
training and test datasets. The goal in their approach was
to filter out irrelevant datasets based on the distributional
characteristics so that the most suitable datasets are selected
during the training process.

Sampling/Re-sampling. Typically data sampling is referred
to as the process of modifying imbalanced datasets by
some mechanisms in order to achive a desired distribution
of data [25]. To that end, two sampling techniques are
commonly used: Over-sampling and under-sampling [26].
In over-sampling, the minority class samples are randomly
selected and their copies will be added to the original
dataset. Conversely, in under-sampling, the instances from
the majority class are randomly discarded to achieve
a balanced distribution [26]. Both over-sampling and
under-sampling methods are utilised in [S26] and [S44],
while [S18] uses over-sampling only and [S39] uses under-
sampling only. Synthetic minority over-sampling (SMOTE)
had been used in two CPDP studies [S18], [S44] as the
oversampling technique. SMOTE generates new artificial
minority class instances synthetically based on feature
similarities to deliver more balanced class distribution [27].
Tomek links introduced in [35] is the technique of choice for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 17

under-sampling in the study by Ryu et al. [S44].

Weighting/Re-weighting. Not all training data provide
the same level of information in the prediction process.
To increase the effect of particular instances on the overall
model, instances are weighted according to different
approaches. Weighting is also one of the methods of dealing
with imbalanced data. In this case, the minority class
instances are weighted in a way that a more balanced
distribution of data is achieved. Further, Re-sampling has
a close relationship with weighting. Two approaches are
mainly considered for data weighting. If the classifier of
choice supports instance weighting then weighting will be
handled by the classifier. An example is the weighted k-NN
classifier. Otherwise, one should re-sample the data, i.e.,
those instances with more weights could appear multiple
times or modified instances generated form them could
be added to the dataset. TNB in [S25], proposed to use
gravitational weighting approach toward the data and
modified NB learner to account for the assigned weights.
This approach was later utilized in multiple models in
the studies in either their proposed approach or in the
benchmark approaches [S18], [S26], [S41], [S44]. Equally
weighting the data from both classes was considered by
[S23]. In this method, the data is modified in a way that the
sum of the weights of the defect-prone instances is equal to
the sum of the weights for non defect prone instances.

Clustering. Different clustering algorithms at different
levels of granularity are used by some of the categorical
studies. Herbold [S23] used EM clustering in order to create
groups of characteristics vectors from the candidate source
and target data for source data selection that are located
in the same cluster as the target data. NN-clustering was
another approach utilized in [S23]. In this case, target data
similar to the source data were selected with favour to
distributional characteristics. In [S11], Canfora et al. used a
“local” predictor [51] based on association classification as
classifier and MDS as clustering algorithm which acts as a
benchmark for their MO prediction model.

While the above approaches are considered by some
studies, a group of them discarded the use of any particular
row processing methods. Both [S1] and [S7] investigate the
applicability of different types of metrics in CPDP. Source
code text in [S1] and OO metrics in [S7] were used to build
the CPDP models. Similarly [S46] also targets the metrics
used in CPDP, specifically focusing on design metrics which
can be collected in early development stages.

3.4.4 Other CPDP Approaches
The majority of the categorical studies have mentioned spe-
cific names for their proposed approaches such as TNB[S25],
DTB[S18], VCB-SVM[S26], and CODEP[S8]. However, not
all of these approaches manipulate the data. Moreover,
in the data oriented approaches, the models are usually
comprised of one or more data processing methods listed
in Tables 13 and 15.

We detected several approaches in categorical studies
as described earlier. We noticed that the majority of the
models were built as benchmark methods for the proposed

CPDP approach(es) in the primary studies. For example,
[S44] builds multiple prediction models using boosting and
re-sampling as benchmarks for their proposed transfer cost
sensitive boosting approach. Similarly in [S18], [S25], [S43]
simple NB model with log transformation was used as
benchmark for DTB, TNB, and HISNN respectively.

The majority of the studies (19 studies) present some
models without any data specific approach. Finally, one
study ([S27]) presents a data transformation approach that
targets privacy issues in the context of CPDP. Beside the
discussed approaches, three studies had reported the use
of mixed data [S13], [S18], [S44]. Additionally, one study
[S11] has used local methods (as a benchmark) proposed
by Menzies et al. [51]. These two approaches are described
briefly.

Mixed data. In the mixed data approach, CP data is
combined with a portion of WP data and the defect
prediction model is constructed on the new dataset [S13].
Turhan et al. [S13] evaluated the effects of mixed project
data on the prediction performances. They concluded
that, when limited project history data is available, defect
prediction models based on the mixed data are useful. More
specifically, they could perform even as good as full WP
models [S13] in some cases. DTB [S18] also uses CP data
mixed with 10% of available WC data. This approach trains
a predictor based on boosting and mixed cross and within
project data. Later, the usefulness of mixed data in the
presence of the class imbalance issue was explored by Ryu
et al. [S44]. During their experiments, the authors combined
five, ten, and 25 percent of WP data with CP data for model
construction and concluded that there is no significant
performance difference between using 25 and five percent
of WP data. In other words, the model with five percent of
WP data performs as good as the one using 25 percent [S44].

Local Methods. Menzies et al. [51] proposed to use local
models for defect prediction (and effort estimation). Before
making predictions, the training and test set instances are
clustered into n groups and the training instances belonging
to each group are used to extract rules which minimise the
defect numbers in each cluster. They concluded that the
results achieved by the local (cluster) models are typically
better than those from the global (cluster) models. The local
models approach is considered in [S11] as a benchmark
to their multi-objective approach. The data from the local
models benchmark appear under clustering category and
association rule learning technique as used in [S11].

3.4.5 Performance in relation to data approach

Data oriented approaches seem to improve f-measure
through improvements in recall with no visible trend
on precision. Higher end of the performance spectrum
always includes Normalisation as a data oriented ap-
proach, so it’s safe to recommend the use of Normalisa-
tion at least. In the lack of any data approach, e.g., using
data as is, one may expect low recall values, though
higher precision.

We assessed the impact of various data issues by in-
vestigating them in relation with the overall performances.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
m

ed
ia

n
f-
m

ea
su

re

D
T

(2
8)

D
T

(2
8)

N
on

e
(2

62
)

N
on

e
(2

62
)

R
W

 (
36

)

R
W

 (
36

)

R
S

(1
10

)

R
S

(1
10

)

FS
 (
80

)

FS
 (
80

)

F
(3

6)

F
(3

6)

D
T+

N
 (
23

6)

D
T+

N
 (
23

6)

C
+

N
 (
10

)

C
+

N
 (
10

)

N
 (
80

)

N
 (
80

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
e
d
ia
n
 r
e
c
a
ll

N
o
n
e
 (
1
9
6
)

N
o
n
e
 (
1
9
6
)

M
D
+
N
 (
9
0
)

M
D
+
N
 (
9
0
)

M
D
+
N
+
R
S
 (
4
5
)

M
D
+
N
+
R
S
 (
4
5
)

R
W
 (
3
6
)

R
W
 (
3
6
)

F
 (
5
0
)

F
 (
5
0
)

P
 (
1
0
)

P
 (
1
0
)

F
+
P
 (
1
0
)

F
+
P
 (
1
0
)

R
S
 (
1
1
0
)

R
S
 (
1
1
0
)

C
+
N
 (
1
0
)

C
+
N
 (
1
0
)

D
T
+
N
 (
9
4
)

D
T
+
N
 (
9
4
)

F
S
 (
4
0
)

F
S
 (
4
0
)

F
+
L
F
+
M
D
 (
1
3
7
)

F
+
L
F
+
M
D
 (
1
3
7
)

M
D
+
N
+
R
S
+
R
W
 (
9
0
)

M
D
+
N
+
R
S
+
R
W
 (
9
0
)

F
+
L
F
 (
1
7
)

F
+
L
F
 (
1
7
)

N
 (
8
0
)

N
 (
8
0
)

L
F
 (
1
7
)

L
F
 (
1
7
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ed

ia
n

pr
ec

is
io

n

RW
 (3

6)

RW
 (3

6)

RS
 (1

10
)

RS
 (1

10
)

C+
N
 (1

0)

C+
N
 (1

0)

F
(3

6)

F
(3

6)

FS
 (4

0)

FS
 (4

0)

D
T+

N
 (9

4)

D
T+

N
 (9

4)

N
on

e
(1

96
)

N
on

e
(1

96
)

N
 (8

0)

N
 (8

0)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
e
d
ia
n
 a
u
c

D
 (
7
2
)

D
 (
7
2
)

R
S
 (
1
1
0
)

R
S
 (
1
1
0
)

N
o
n
e
 (
1
8
1
)

N
o
n
e
 (
1
8
1
)

FS
 (
3
7
)

FS
 (
3
7
)

LF
+
N
 (
3
9
6
)

LF
+
N
 (
3
9
6
)

N
 (
1
0
0
)

N
 (
1
0
0
)

Fig. 6. Performance in relation to the combinations of the data approaches: f-measure, recall, precision and AUC

The results are illustrated in the violin plots in Figures
5 and 6. We investigated the performance in relation to
individual approaches as well as their combinations. In the
first case (see Figure 5), these individual approaches that
are either used independently or as a part of a combination
are considered. For the second part, the combinations of the
approaches as they are proposed in the studies are used (see
Figure 6).

According to the plots in Figure 5, Normalization (N) has
the highest median f-measure while its stability is not very
good. One might note the high number of values contribut-
ing to the plot for Normalization, potentially decreasing its
stability. Normalization is a very common technique among
the studies and hence the lack of stability was expected
to some extent. Clustering is next in line with respect
to f-measure with the lowest number of data points (10).
Filtering has a similar median value to the other two while
being more stable than Normalization. Re-sampling and Re-
weighting have the lowest median values among the data
approaches. The lowest median value belongs to none, the
case where no data approach is considered.

The recall plots reveal that most of the data approaches
are recall oriented. Using no data approach has the lowest
recall value while having the second best median precision.
Moreover, clustering seems to favour a balance between
precision and recall as in both cases, the performance is
medium to low but its f-measure performance is better than

most other approaches.
Considering the AUC values, normalization and log-

filter have the highest median performances. A medium
performance is achieved when no data approach is used
and according to the plots, this performance is better than
re-sampling and discretization.

The overall performances suggest that the use of data
approaches can potentially lead to better predictions in
most cases. To further investigate the relation of data ma-
nipulation in CPDP performance, we checked the different
combinations of them as used in different studies. Figure 6
illustrates the performance of different combinations used
in the studies.

In case of the f-measure plots, N (Normalization) has
the highest median performance. Other approaches are C+N
(Clustering+Normalization) followed by DT+N (Data Trans-
formation+Normalization) and F (Filtering). These three
combinations with respect to the median f-measure values,
all use Normalization in their settings which has also the
second best median recall performance among the different
data approach combinations.

We observed that the data approaches tend to favor re-
call more than precision. Not surprisingly, the lowest recall
performances happen when no data approach is considered
in this case as well. LF (Log-Filter) is used in three cases
among the top five recall plots. The combinations involving
MD (Mixed data) are present in both good and poor perfor-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 19

mances. In fact the two lowest data approach combinations
include MD in their settings.

The stability varies more in case of precision compared
with that of recall. Except for FS (Feature Selection), all
of the plots in the top half, including no data approach
at all, nearly cover the whole range. The low stability of
Normalisation with regard to f-measure is probably affected
by its bad stability in being precise. Meanwhile, Filtering (F)
and C+N seem to be more stable than the top three models
while having a similar median. The recall based nature of
data approaches is observed again in this set of plots as the
plots for no data approach have the second best median
precision and the worst median recall values.

Finally, in the case of AUCs, N and LF+N receive the
top places in the plot. It is important to note that while
N provides the best median value, its stability is not very
promising. It is also worth noting that using no data ap-
proach is not the worst case with respect to AUC.

3.5 Theme: Overall Paper Approach

We categorize the studies based on their main focus for
further analysis. Some of them optimize the learning tech-
niques while some other focus on manipulating the data.
Metrics are also another target for such models. The study
approaches are categorized as follows:

• Learner: The focus of this set of studies is on opti-
mising the learning approach and they usually present
sophisticated learning methods toward CPDP. Differ-
ent optimisation/ensemble techniques such Bagging,
Boosting, Voting, Meta-Learning, and other ensembles
are utilised in this category. Examples of this kind
are CODEP [S8], various ensembles in [S42], Multi-
objective Optimisation [S11], and ensemble of weak
classifiers [S4] among the others.

• Data: This set of studies propose to use rigorous meth-
ods toward modification or selection of data instances.
Dimensionality reduction in TCA+ [S25], mixed data
in [S13], exhaustive dataset selection in [S5], and the
Universal model in [S39] are some of the examples in
this category.

• Metric: Studies in this group focus on the metric sets
used in the model building. These studies argue that
certain kinds or sets of metrics provide more infor-
mation and, consequently, better performance can be
achieved by removing redundant features [S3], [S37],
or in some cases proposing new metric suites [S1].

Some studies use a combination of this three while the
overall focus of some studies is not clear. For example [S44]
proposes TCSBoost, a cost sensitive boosting approach that
utilizes mixed data in its settings. Therefore, the focus of
TCSBoost model is selected as Learner+Data. Examples of
studies with no clear focus are [S7], [S40], [S46] to mention
some. Additionally, multiple models in the categorical stud-
ies are presented (mostly as benchmarks for the proposed
methods) with no clear focus (e.g simple NB).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ed

ia
n
f-
m
ea

su
re

no
ne

 (
31

6)

no
ne

 (
31

6)

le
ar
ne

r
(1
70

)

le
ar
ne

r
(1
70

)

da
ta
 (
24

0)

da
ta
 (
24

0)

m
et
ri
c
(1
52

)

m
et
ri
c
(1
52

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
e
d
ia
n
 r
e
c
a
ll

n
o
n
e
 (
2
9
7
)

n
o
n
e
 (
2
9
7
)

d
a
ta
 (
3
4
8
)

d
a
ta
 (
3
4
8
)

m
e
tr
ic
 (
1
4
0
)

m
e
tr
ic
 (
1
4
0
)

le
a
rn
e
r+

d
a
ta
 (
1
3
5
)

le
a
rn
e
r+

d
a
ta
 (
1
3
5
)

le
a
rn
e
r
(1
1
4
)

le
a
rn
e
r
(1
1
4
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ed

ia
n
pr
ec

is
io
n

le
ar
ne

r
(1
00

)

le
ar
ne

r
(1
00

)

da
ta
 (
84

)

da
ta
 (
84

)

no
ne

 (
28

0)

no
ne

 (
28

0)

m
et
ri
c
(1
40

)

m
et
ri
c
(1
40

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ed

ian
 a
uc

no
ne

 (4
83

)

no
ne

 (4
83

)

m
et
ric

 (3
7)

m
et
ric

 (3
7)

lea
rn
er
 (3

76
)

lea
rn
er
 (3

76
)

Fig. 7. Performance in relation to the main paper approaches

3.5.1 Performance in relation to overall paper approach

Targeting learner, data and metric can potentially lead
to better predictions (in terms of f-measure, recall, AUC)
and more stable models (with regard to recall). However,
the most visible positive trend seems to be the case
where targeting learners tend to improve recall.

These information are collected from categorical studies
and their performances are presented in violin plots. Fig-
ure 7 represents the results of this categorization in the
extracted data. In general, it seems that having a CPDP
specific research focus on either category (learning, data,
and metric) can potentially lead to better predictions than
using black box learners with (row-wise or column-wise)
unprocessed data. Especially in the case of recall, this ap-
proaches can provide more stable models with significant
boosts in performances. The models focused on metrics
have higher median f-measure and precision values. Finally,
median AUC values show a similar trend, revealing that
focusing on different aspects of predictions for CPDP can
lead to better results, except for precision.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 20

TABLE 16
Datasets used in Studies

Study Open-Source Closed-Source/Student/Proprietary
[S1] JUR(Ant, Eclipse, Jedit, Lucene, Poi, Velocity, Xalan, Xerces)
[S2] Sakura, Jedit
[S3] JUR(Ant, Camel, Ivy, Jedit, Lucene, Poi, Synapse, Velocity, Xalan,

Xerces)
[S4] NASA-INDUSTRIAL(CM1, JM1, KC1, KC3, MC1, MC2, MW1, PC1,

PC2, PC3,PC4,PC5)
[S5] JUR(Ant, Camel, Ivy, Jedit, Lucene, Poi, Synapse, Velocity, Xalan,

Xerces)
[S6] Project A, Project B, Project C
[S7] Jedit NASA-INDUSTRIAL(KC1)
[S8] JUR(Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Tomcat, Xalan) JUR-PROPRIETARY(Prop-6)
[S9] Firefox, Eclipse, Derby, Tomcat MICROSOFT(Internet Explorer, DirectX, IIS, Clustering, Printing, File

System, Kernel, SQL Server 2005)
[S10] TurkCel, NASA-INDUSTRIAL(PC2, PC3, PC4, PC1, KC1, KC2, CM1,

KC3, MW1, MC2)
[S11] JUR(Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Tomcat, Xalan) JUR-PROPRIETARY(Prop-6)
[S12] PRJ1-PRJ5
[S13] JUR(Ant, Camel, Forest, Ivy, Jedit, Log4j Lucene, Pbeans, Poi, Synapse,

Tomcat, Velocity, Xalan, Xerces)
JUR-STUDENT(arc, berek, redaktor, nieruchomosci, pdftranslator,
serapion, skarbonka, sklebagd, termoproject, workflow, wspoma-
ganiepi), JUR-PROPRIETARY(Prop-1,Prop-2, Prop-3, Prop-4, Prop-5,
Prop-6), NASA-INDUSTRIAL(PC1, KC1, KC2, CM1, KC3,MW1, MC2),
SOFTLAB-INDUSTRIAL(AR3, AR4, AR5)

[S14] NASA-INDUSTRIAL(KC1, KC2, KC3, CM1, MW1, PC1, JM1)
[S15] SOFTLAB-INDUSTRIAL(AR1, AR3, AR4, AR5, AR6)
[S16] NASA-INDUSTRIAL(PC1, KC1, PC3, CM1, KC3, MW1, MC2, JM1,

KC4, MC1, PC2, PC4)
[S17] JUR(Ant, Camel, Ivy, Jedit, Lucene, Poi, Synapse, Velocity, Xalan,

Xerces)
[S18] JUR(Ant, Camel, Jedit, Log4j, Lucene, Poi, Synapse, Systemdata, Tom-

cat, Xalan, Xerces)
JUR-STUDENT(arc, elearn, redaktor), JUR-PROPRIETARY(Prop-6)

[S19] Jruby, ArgoUML, Eclipse
[S20] NASA-INDUSTRIAL(PC1, KC1, KC2, CM1, KC3, MW1, MC2),

SOFTLAB-INDUSTRIAL(AR3, AR4, AR5)
[S21] Axis2, CXF, Camel, Cayenne, Derby, Lucene, OpenEJB, Wicket, XecresJ
[S22] JUR(*) JUR-PROPRIETARY(*), JUR-STUDENT(*)
[S23] JUR(Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Tomcat, Veloc-

ity, Xalan, Xerces)
JUR-STUDENT(arc, redaktor)

[S24] RELINK(Apache HTTP Server, Safe, Zxing), AEEEM(Equinox, JDT
Core, Lucene, Mylyn, PDE UI)

[S25] NASA-INDUSTRIAL(PC1, KC1, KC2, KC3, CM1, MW1, MC2),
SOFTLAB-INDUSTRIAL(AR3, AR4, AR5)

[S26] NASA-INDUSTRIAL(PC1, KC1, KC2, KC3, CM1, MW1, MC2),
SOFTLAB-INDUSTRIAL(AR3, AR4, AR5)

[S27] JUR(Ant, Camel, Ivy, Jedit, Lucene, Poi, Synapse, Velocity, Xalan,
Xerces)

JUR-PROPRIETARY(Prop-1, Prop-2, Prop-3, Prop-4, Prop-5, Prop-6)

[S28] JUR(*) JUR-PROPRIETARY(*), JUR-STUDENT(*)
[S29] JUR(Ant, Camel, Xalan), RELINK(Apache HTTP Server, Safe, Zhing),

AEEEM(Equinox, JDT Core, Lucene, PDE UI, Mylyn)
[S30] JUR(Ant, Camel, Ivy, Jedit, Lucene, Poi, Synapse, Velocity, Xalan,

Xerces)
[S31] MICROSOFT(Windows XP SP1, Windows Server 2003)
[S32] PROPRIETARY(Sale System, CD Selection System)
[S33] Xpose, Jwriter
[S34] MICROSOFT(Internet Explorer, IIS, Process Messaging, DirectX, Net-

Meeting)
[S35] Mylyn, GMF STUDENT(ECS, BNS, CRS, FACS, ELCS)
[S36] NASA-INDUSRIAL(CM1, KC1, KC2, KC3, MC2, MW1, PC1)
[S37] AEEEM(Equinox, JDT Core, Lucene, Mylyn, PDE UI), RELINK(Apache

HTTP Server, Safe, Zxing), JUR(Ant, Camel, Poi, Tomcat, Velocity,
Xalan , Xerces)

JUR-STUDENT(arc, redaktor, skarbonka), NASA-INDUSTRIAL(CM1,
MW1, PC1, PC3, PC4), SOFTLAB-INDUSTRIAL(AR1, AR3, AR4, AR5,
AR6)

[S38] JUR(Ant, Camel, Forest, Jedit, Synapse) JUR-PROPRIETARY(Prop-1, Prop-2, Prop-3, Prop-4, Prop-5, Prop-6)
[S39] BugZilla, Columba, Gimp, JDT, Maven-2, Mozilla, Ruby on Rails, Perl,

Eclipse Platform, PostgreSQL, Rhino
[S40] AEEEM(JDT Core, Equinox, Lucene, Mylyn, PDE UI), Mockus(1385

open source projects from Google Code and SourceForge)
[S41] RELINK(Apache HTTP Server, Safe, Zxing), AEEEM(Equinox, JDT

Core, Lucene, Mylyn, PDE UI)
NASA-INDUSTRIAL(CM1, MW1, PC1), SOFTLAB-
INDUSTRIAL(AR3, AR4, AR5)

[S42] JUR(Ant, Camel, Ivy, Jedit, Lucene, Poi, Log4j, Tomcat, Xalan) JUR-PROPRIETARY(Prop-6)
[S43] NASA-INDUSTRIAL(CM1, KC1, KC2, KC3, MC2, MW1, PC1)
[S44] JUR(Ant, Camel, Jedit, Log4j, Lucene, Poi, Synapse, Systemdata, Tom-

cat, Xalan, Xerces)
JUR-STUDENT(arc, elearn, redaktor), JUR-PROPRIETARY(Prop-6)

[S45] NASA-INDUSTRIAL(KC2, KC3, CM1, MW1, MC2, PC1)
[S46] NASA-INDUSTRIAL(PC4, MC1, PC2, KC3, MW1, MC2, PC3)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 21

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ed

ian
 f-
m
ea

su
re

fil
e
lev

el
(5
22

)

fil
e
lev

el
(5
22

)

cla
ss
 le

ve
l (
29

4)

cla
ss
 le

ve
l (
29

4)

fu
nc

tio
n
lev

el
(6
2)

fu
nc

tio
n
lev

el
(6
2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ed

ian
 re

ca
ll

fil
e
lev

el
(3
28

)

fil
e
lev

el
(3
28

)

cla
ss
 le

ve
l (
58

6)

cla
ss
 le

ve
l (
58

6)

fu
nc

tio
n
lev

el
(1
20

)

fu
nc

tio
n
lev

el
(1
20

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ed

ian
 p
re
cis

ion

fil
e
lev

el
(3
28

)

fil
e
lev

el
(3
28

)

cla
ss
 le

ve
l (
21

4)

cla
ss
 le

ve
l (
21

4)

fu
nc

tio
n
lev

el
(6
2)

fu
nc

tio
n
lev

el
(6
2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ed

ian
 a
uc

fil
e
lev

el
(2
36

)

fil
e
lev

el
(2
36

)

fu
nc

tio
n
lev

el
(5
30

)

fu
nc

tio
n
lev

el
(5
30

)

cla
ss
 le

ve
l (
13

0)

cla
ss
 le

ve
l (
13

0)

Fig. 8. Performance in relation to the levels of granularity

3.6 Theme: Datasets and Levels of Granularity

Datasets form open source projects are dominant in
CPDP studies. The metrics and levels of granularity
vary among the datasets such as class, function, and file
levels. NASA (54%), Jureczko (65%), and Softlab (25%)
datasets are the most widely used datasets in CPDP
studies. Some of these datasets contain bug numbers,
which are usually converted to classes for the purpose
of binary classification.

In CPDP, a diverse range of datasets are used for build-
ing the models from different sources. Open source datasets
are the main contributors in this area, making the replica-
tions for such experiments much more easier. Moreover, the
maturity of the NASA datasets is not considered in our
study as many studies in this area are validating the pro-
posed models using them. Utilized datasets, their metrics
and their level of granularity is collected from the studies
and are subjected to our analysis. The utilised datasets by
the studies are summarized in Table 16. The table distin-
guishes among different kinds of datasets, i.e., open source,
industrial, student, and proprietary. The used datasets are
categorised based on their type and suit they belong to in the
table. The following is also a short summary of the datasets
from the studies which passed the quality assessment phase:

• NASA: NASA MDP datasets contain function/method
level software metrics for 13 NASA Software projects.

Of these 13 datasets, one is written in Java (KC3) and
the rest use C/C++. The defect rate in these datasets
ranges from 0.5% (in PC2) to 32.3% (in MC2). Addi-
tionally, the metrics in these datasets are not exactly
the same and some of them contain additional metrics.
For the datasets in this group, eight (CM1, KC3, MC2,
MW1, PC1, PC2, PC3, PC4) contain 40, two (MC1, PC5)
contain 39 and the other three (JM1, KC1, KC2) have
21 software metrics. One should note the two available
sources for these datasets, namely PROMISE and MDP.
More importantly, the data in these sources are not the
same and the datasets are different in terms of number
of features as well as the number of instances [49]. The
feature information provided in this study are based on
the datasets available from PROMISE repository. See
[49] for the detailed information regarding (the quality
of) these datasets.

• Jureczko (JUR): These suite contains 48 releases from
15 open source projects (Ant, Camel, Ckjm, Forrest,
Ivy, JEdit, Log4j, Lucene, PBeans, POI, Synapse, Tom-
cat, Velocity, Xalan, Xerces). Another 27 releases of 6
proprietary projects belong to this suit. All of these six
projects are developed by the same company. Finally,
17 academic projects, with one release each, also belong
to the same category. These projects are developed by
groups of students within a period of one year. Each
of these datasets contain 20 software metrics including
OO, SCM, and LOC. The metrics and defect informa-
tion are extracted using an extension of CKJM 2 and
BugInfo 3 tools.

• AEEEM: AEEEM suite is collected by D’Ambros [37]
and is comprised of metric and bug data from five open
source projects (JDT:Eclipse JDT core, PDE:Eclipse PDE
UI, EQ:Equinox Framework, Myl:Mylyn, Luc:Apache
Lucence). Each dataset contains 61 software metrics
including OO, previous defects, and change metrics. To
access these suite visit: http://bug.inf.usi.ch/

• ReLink: Three datasets are present in this group:
Apache HTTP Server, OpenIntents Safe, and ZXing.
These datasets contain 26 static code metrics and the
defect labels are manually verified after the automatic
detection. The suite is collected by Wu et al. [38] and
is publicly available: http://www.cse.ust.hk/{\sim}
scc/ReLink.htm.

• SoftLab: This collection contains five datasets (ar1, ar3,
ar4, ar5, ar6) donated by Softlab. These datasets contain
29 static code metrics as well as manually verified
defect labels for different systems. These datasets share
17 of their metrics with NASA datasets and usually
appear together in the studies [S20], [S24], [S26], [S37].

• Mockus: A subset of this suite is used in one study
[S40] for training their proposed universal model. Orig-
inally, the suite contains the defect data for about 235K
projects hosted on SourceForge and GoogleCode [39].
Of this huge set of datasets, 1385 were selected to train
the Universal model as many of these datasets were
either trivial or did not contain adequate data to be
considered for defect prediction.

2. http://gromit.iiar.pwr.wroc.pl/p\ inf/ckjm/
3. http://kenai.com/projects/buginfo

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 22

• Other suits: Study [S1] uses the source code text tokens
as independent variables and uses the dependent vari-
able information from Jureczko suite and Zimmerman
et al. [44]. Study [S2] extract 63 software metrics from
Sakura and JEdit editors using Understand tool for
C and Java 4. They use eight OO+LOC metrics for
their predictions. Study [S7] uses an extension of KC1
dataset for which object oriented metrics are computed.
Originally, the independent variables for this dataset
were at the function level. Study [S39] extracts and
uses the process metrics for multiple projects (Bugzilla
(BUG), Columba (COL), Gimp (GIP), Eclipse JDT (JDT),
Maven-2 (MAV), Mozilla (MOZ), Perl (PER), Eclipse,
Platform (PLA), PostgreSQL (POS), Ruby on Rails
(RUB), Rhino (RHI)).

Beside the datasets themselves, the level in which the
predictions are performed are captured for all studies. Three
levels of granularity were detected during the data extrac-
tion phase. Function level predictions are performed in the
case of most predictions on NASA and SOFTLAB datasets.
The information on most of these datasets are at the lowest
unit of code in their systems, i.e., functions. This level is finer
than the level of the Jureczko datasets, in which the class
level metrics are extracted. In this case, each instance in a
particular dataset represents a Java class. Additionally, some
of the studies [S13], [S37] perform predictions at multiple
levels of granularity such as function/class/file levels.

The datasets are of great importance when conducting
empirical research. In case of defect prediction, the general-
izability of the models is impacted greatly by the selection of
the datasets. One of the sources for the huge variance in the
stability of different learning techniques, data approaches,
etc. is probably the use of different sets of datasets that are
utilized for building prediction models in different studies.
Hence, various aspects of the datasets such as metrics used,
their distributional characteristics, and their level of gran-
ularity should be considered when making claims for the
usefulness of different benchmarks.

3.6.1 Performance in relation to levels of granularity
Performance of different models with respect to the degree
of details in granularity is illustrated in Figure 8. We observe
a consistent behaviour with respect to different levels of
granularity in terms of f-measure, precision, and recall. In
all three, function and file level predictions have the highest
and the lowest median values respectively. With respect to
AUC, the class level achieves the top median value while
the file level predictions still have the lowest. Except for
AUC, class level predictions have less stability as they cover
a higher range. With these in mind, one can argue that
function level predictions could potentially lead to better
performance while being more effective in practice.

4 CPDP VS. WPDP
To measure the effect and power of the proposed ap-
proaches, we collected both within and cross project data
for all the models that pass through our quality checklist.
Studies [S1]–[S3], [S7], [S11], [S13], [S15], [S16], [S20], [S24],

4. http://www.scitools.com/index.php

[S27], [S37], [S39], [S43], [S46] have compared the perfor-
mance of their proposed approach to that of WPDP (with
one or more of f-measure, recall, precision and AUC). Our
comparisons however are not limited to the proposed ap-
proaches in the studies as we have combined the data from
all of the reported models with enough information. We
need to point out that when we draw conclusions from the
results, we have to consider that the data for these models
always include those of proposed approaches, i.e, the best
CPDP models and approaches, while this is not the case
for the WPDP models. Usually, the simplest WPDP models
are considered in the studies when they act as benchmarks
for proposed CPDP approaches and no rigorous and so-
phisticated optimisation or data manipulation methods are
applied. This is also one more reason for including all of
the benchmark cross project approaches used for the sake of
comparisons in the studies.

Meta-analysis was employed to assess and compare the
performance of CPDP and WPDP as there is no clear picture
of how they perform against each other. Finally, we have
to consider the fact that no set of evaluation measures and
none of the types of reporting (median, average, original)
are shared among all of the studies that contribute to this
analysis. This is why multiple plots matching different
criteria are presented.

4.1 Meta-analysis

In its essence, a meta-analysis incorporates statistical ap-
proaches to combine multiple studies in an effort to in-
crease power over individual studies while improving the
estimates of the effect sizes and resolve uncertainties when
different studies disagree [50], [69], [76]. Therefore, it can
be interpreted as a statistical overview of the results from
multiple studies. Extraordinarily, very significant increases
in power are less likely in general and one could reasonably
expect that new methods will lead to modest improvements
in the majority of experiments. This, however, is not to
undermine the importance of these improvements. On the
contrary, these small steps can be extremely important and
provide significant benefits if applied under suitable circum-
stances. Perhaps the greatest advantage of using a meta-
analysis is its ability in generalising the results to a larger
population and proposing bigger pictures of the state for
the research target. Individual studies are often too small
for drawing reliable general conclusions. Combining the
results of multiple studies using meta-analysis technique
provides higher numbers of participants, less random error,
and narrower confidence intervals [75]–[77]. Consequently,
these factors could provide better evidence for verifying
the validity of a true effect and investigating its statistical
significance [78].

Having said these, meta-analysis have their downsides
as well. Such a case is the occasional failure of this method
to detect the source of bias. For example, meta-analysis
cannot correct the poor design and bias in the original
studies [70]. This has led to the use of different strategies
to include/exclude certain studies based on sets of defined
quality measures. However, using such filters could lead to
another probable level of bias, i.e., selection bias (subjectiv-
ity) into the method [71], [72].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 23

Nonetheless, the advantages are far more valuable than
these few downsides if the analyses are carried out and
interpreted carefully. For details on common criticisms of
meta-analysis, and how they are addressed, we refer the
reader to Borenstein’s book [96]. In software engineering,
Kitchenham et al. endorses the use of meta-analysis [95].
Examples of meta-analysis in software engineering include
investigations of test-driven development [92] and pair-
programming [94].

The first step in meta-analysis is to calculate the outcome
of interest and summary statistics for each individual study.
In the second stage, the calculated statistics are combined
to give an overall summary estimate. The weighted mean
difference technique is considered in this study as it is
one of the most popular techniques for meta-analysis with
continuous variables and the one that best fits our available
data [73], [74], [76]. In this approach, each study receives
a weight. The greater the weight awarded to a study, the
more it influences the overall estimate. Different weighting
models exist for meta-analysis, most notably, the inverse
variance method. The inverse variance method essentially
assigns higher weight to larger studies and less weight to
smaller studies. Alternatives, based on other factors such as
trial quality exist but such methods are rarely used and not
recommended [78].

4.2 Fixed and Random Effect Models

Two popular methods of performing meta-analysis are fixed
and random effect models [76]. The fixed effect model
assumes that the subjects share a common effect [76], [77].
In other words, it considers only one source of variability,
i.e., the within study error. As a result, the contribution of
each study is proportional to the amount of information
observed in that study. Consequently, this implies that the
differences among studies are solely due to sampling error,
i.e., by increasing the sample size it is likely that the effects
converge to one true effect [76], [77]. The assumption of
a common effect shared by the studies does not usually
hold. Therefore, the random effect model which considers
a second source of variability, i.e., the between study error,
is usually reported.

The random effect model is built on top of the results of
the fixed effect model. The description of the random effect
model and its procedures will be discussed after presenting
the required calculations for the fixed effect model. For
more detailed analysis and discussions, see [75]–[77].

Fixed effect model: To estimate the individual effect for a
specific study one needs to assess the difference between
the experimental and control groups. One popular method
of doing such comparisons is through the effect size calcu-
lations. The following equation is used to calculate Cohen’s
d:

cd =
Xe −Xc

stdpooled
(3)

Here, Xc and Xe are the means of the control and exper-
imental groups, respectively. stdpooled represents the pooled
standard deviation which can be calculated as follows:

stdpooled =

√
(ne − 1) ∗ (se)2 + (nc − 1) ∗ (sc)2

ne + nc − 2
(4)

Where sc, nc, se and ne are the standard deviation of
control group, number of subjects in the control group,
standard deviation of experimental group, and number of
subjects in the experimental group, respectively. Multiply-
ing Cohen’s d by Hedges’ correction factor (Eq. 5) will result
in Hedges’ d (Eq. 6):

J(m) = 1− 3

4m− 1
(5)

d = J(nc + ne − 2)× cd (6)

Having the effect size calculated, the confidence interval can
easily be estimated using the following equation:

d− Zα
2

√
v ≤ I ≤ d+ Zα

2

√
v (7)

In this equation d is the effect size for the individual
study and Zα

2
= 1.96 for α = 0.05. Further, v represents the

estimated variance which can be calculated as follows [50]:

v =
ne + nc
ne × nc

+
d2

2(ne + nc)
(8)

The following equation, calculates the overall effect:

d∗ =

∑
i wi × di∑

i wi
(9)

where wi is the weight assigned to study i and is equal to
the inverse of its observed variance:

wi =
1

vi
(10)

The variance for the overall effect, therefore, can be calcu-
lated as follows:

v∗ =
1∑
i wi

(11)

Finally, the confidence interval for the overall effect is:

d∗ − Zα
2

√
v∗ ≤ I ≤ d∗ + Zα

2

√
v∗ (12)

Random effect model: The fixed effect model relies on the
assumption that the true effect is shared among the studies.
This assumption, however, might not always be plausible.
Even though the studies for meta-analysis are usually simi-
lar when considered, there is generally no reason to assume
that they share a common effect. Therefore, rather than
one true effect, we assume the existence of a distribution
of true effects. The random effect model assumes that the
differences among individual effect sizes are due to sam-
pling error as well as other variables and factors that have
not been accounted for. The combined effect consequently,
cannot be represented as one, but instead is represented by
the mean of the population of true effects [76].

The calculations for the random effect model, involve
changing the weighting mechanism used by the fixed effect

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 24

model. Specifically, Q which represents the total variance,
and df , which represents the expected variance if all studies
have the same true effect need to be calculated first. The
difference, Q − df , is called the excess variance which after
transformation into the same scale as the within study
variance is denoted by τ2 (tau-squared). The Q statistic is
computed as follows:

Q =
∑
i

wi × (di − d∗) (13)

where wi = 1/vi, the inverse variance, is the weight
for individual effects in the fixed effect model. When the
only source of variance is the within study error, then the
expected value of Q would be the degrees of freedom (df)
where

df = #studies− 1 (14)

Consequently, the between studies variance, τ2, can be
calculated according to

τ2 =

Q−df
C if Q > df

0 if Q ≤ df
(15)

Where

C =
∑
i

wi −
∑

i wi
2∑

i wi
(16)

is the scaling factor for transformation into the same
scale as the within study error. Using τ2, the weights and
the overall effect can be calculated as follows:

w′i =
1

vi + τ2
(17)

d′∗ =

∑
i w
′
i × di∑
i w
′
i

(18)

Similar to the fixed effect model, the overall variance and
the 95% confidence interval could be computed as

v′∗ =
1∑
i w
′
i

(19)

d′∗ − Zα
2

√
v′∗ ≤ I ≤ d′∗ + Zα

2

√
v′∗ (20)

Finally, the one and two tailed p − value for random
effect model can be computed using z′∗ value and the
standard normal cumulative distribution function, φ(z) by
the following (similar for fixed effect using, d∗ and v∗):

z′∗ =
d′∗√
v′∗

(21)

p− value = 1− φ(z′∗) (22)

p− value = 2× (1− φ(|z′∗|)) (23)

Using the random effect model, it is expected to observe
changes in the fixed effect model by modifying the weights
to be more balanced. The location of the combined effect
could potentially change due to the weight updates. Finally,
the confidence interval for the combined effect is expected
to increase, which in turn might lead to a non-significant
overall effect (intersection with the y-axis or p−value ≥ α).

4.3 Meta-analysis Results

Very briefly, WPDP outperforms CPDP. CPDP challenges
WPDP only with respect to recall, but that is at the
cost of precision. This trend is hidden when checking
performance with the compound f-measure. NASA and
Jureczko datasets are likely to be involved in the perfor-
mance shift toward CPDP. Both fixed and random effect
meta-analysis models per study, learner and dataset
agree on the results for most cases (though not in 100%
agreement).

In practice, with well-defined questions, both fixed and
random effect models lead to very similar results and it
is recommended to perform and report both as a mea-
sure of robustness for the choice of statistical model [78].
Therefore, both fixed and random effect meta-analysis were
performed for studies, datasets, and learners, i.e., the dif-
ference between CPDP and WPDP was assessed among
the studies and further in relation to the datasets and
learners. Furthermore, multiple plots are prepared based on
the measures of performance (f-measure, precision, recall,
AUC). The results of our analysis are represented in Forest
Plots. Each contributing case in the forest plots appears
as a row in the plots (a study, a dataset or a learner
depending on the analysis category). The filled black box
in each row represents the weight of that particular instance
(study, dataset, learner) for the random effect model. The
centre of the box is where the mean is located. The fixed
effect weights for each instance are represented by unfilled
rectangles. When the boxes for the fixed effect weights
are not visible, they are covered by the boxes from the
random effect model. This can happen when the random
effect weights (for smaller instances) become larger or when
the weights from the two models are very close. The latter
occurs when the between study variance is very small or
when the two models match, i.e., τ2 = 0. The line on the
sides of each box are the 95% confidence interval associated
with each instance. The thin dashed line shows the line of no
effect for the random effect model, i.e., the average overall
random model effect size. Similarly, the thin red dotted line
represents the line of no effect for the fixed effect model.
The diamonds, their placements, and their sizes show the
state of the overall effect (filled black diamond for random
effect and the unfilled diamond below it for the fixed
effect model). An intersection between the y-axis and the
confidence interval for an instance shows a non-significant
difference. This is also the case for the overall effect and if a
diamond intersects with the y-axis, the overall performance
difference for that model won’t be statistically significant.
The p − values for significance and the 95% CI for both
models are also represented through summary statistics in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 25

1.0-1.0 2.0-2.0 3.0-3.0 4.0-4.0 5.0-5.0 6.0-6.0
Favors cross projectFavors within project Forest Plot for median f-measure

[S1] (11.83%)

[S2] (11.41%)

[S3] (13.26%)

[S7] (12.71%)

[S11] (13.5%)

[S15] (11.0%)

[S24] (12.92%)

[S39] (13.38%)

Random Effect (p-val=0.992)

95% CI=[-1.07 , 1.06] -0.006
(τ2=2.17, Q=149.87, p-val<0.001) Fixed Effect (p-val=0.495)

95% CI=[-0.14 , 0.29]0.074

1.0-1.0 2.0-2.0 3.0-3.0 4.0-4.0 5.0-5.0 6.0-6.0
Favors cross projectFavors within project Forest Plot for median recall

[S1] (7.76%)

[S2] (6.98%)

[S3] (10.13%)

[S7] (9.13%)

[S11] (10.46%)

[S13] (10.59%)

[S15] (7.13%)

[S20] (9.23%)

[S27] (9.27%)

[S39] (10.27%)

[S43] (9.03%)

Random Effect (p-val=0.394)

95% CI=[-0.35 , 0.88] 0.267
(τ2=0.91, Q=115.61, p-val<0.001) Fixed Effect (p-val<0.001)

95% CI=[0.26 , 0.59]0.426

1.0-1.0 2.0-2.0 3.0-3.0 4.0-4.0 5.0-5.0 6.0-6.0
Favors cross projectFavors within project Forest Plot for median precision

[S1] (3.3%)

[S2] (2.63%)

[S3] (29.81%)

[S7] (6.59%)

[S11] (33.3%)

[S15] (2.46%)

[S39] (21.9%)

Random Effect (p-val<0.001)
95% CI=[-0.77 , -0.36] -0.563
(τ2=0.00, Q=4.60, p-val=0.596) Fixed Effect (p-val<0.001)

95% CI=[-0.77 , -0.36]-0.563

1.0-1.0 2.0-2.0 3.0-3.0 4.0-4.0 5.0-5.0 6.0-6.0
Favors cross projectFavors within project Forest Plot for median auc

[S16] (28.05%)

[S37] (25.82%)

[S39] (26.12%)

[S46] (20.01%)

Random Effect (p-val=0.063)
95% CI=[-1.20 , 0.03] -0.582
(τ2=0.32, Q=19.59, p-val<0.001) Fixed Effect (p-val<0.001)

95% CI=[-0.80 , -0.35]-0.574

Fig. 9. Performance comparison between CPDP and WPDP across the
studies: f-measure, recall, precision and AUC

the left (random effect) and right (fixed effect) sides of the
plots. The placement of the boxes (for each instance) and the
diamond (for each model) in the left side is for performances
in favor of WPDP while the right side is for CPDP. The list of
the studies, datasets, or learners and their proportion of the
total weight (only for the random effect model) are shown
in the left side of each plot.

Figure 9 presents the plots for f-measure, recall, and
precision evaluation measures per study. With f-measure,
three studies ([S3], [S11], [S39]) present the evidence for a
significant difference between WPDP and CPDP while the
data from other studies do not show such differences. These
three studies have the highest contribution to the fixed effect
model, demonstrated by their effect box sizes. The overall
effect is very close to zero (-0.006) for random effect and very
small for the fixed effect (0.074), non of which are neither
significant nor large. The majority of the studies favour
WPDP over CPDP. The significant difference observed in
[S3] is the main reason for the big shift toward CPDP.

The fixed and random effect models do not agree on
the significance of the overall effect for recall. With ran-
dom effect, CPDP outperforms WPDP, but similar to the
median f-measure case, the performance difference is not
statistically significant (p = value = 0.394). The fixed
effect model, however, shows a significant difference toward
CPDP(p − value < 0.001). The between study variance,
denoted by τ2, causes the expansion of the CI for the
random effect model for both f-measure and recall (with
study [S3] as a potential reason). The good performance
of CPDP toward recall has been pointed out with results
from multiple studies [S11], [S20], [S26], [S44] as well as
our analyses in previous sections. A better WPDP perfor-
mance is observed when precision is considered. The fixed
and random effect models match one another in this case,
demonstrated by Q = 0, τ2 = 0 and p − value = 0.595, re-
jecting the heterogeneity. The precision performance except
in [S2] are toward WPDP. Finally, WPDP wins against CPDP
when AUC is considered but the diamond representing the
overall effect has an intersection with the y-axis in random
effect model, making the overall effect non-significant de-
spite the medium overall effect size The fixed effect model,
however, achieves a significant difference with AUC having
p− value < 0.001.

Forest plots for the comparison of CPDP and WPDP
considering the datasets are presented in Figures 10 and 11.
In terms of f-measure, beside the overall effect sizes, the
majority of the datasets favor WPDP over CPDP. Only three
datasets (Camel 1.6, MOZ, Sakura r1.3) are in favor of CPDP.
Recall with a much higher number of observations is signif-
icantly better with CPDP, however, the effect sizes are small
for both random and fixed effect models. Jureczko datasets
make up the majority of the datasets in favour of CPDP with
recall. The performance difference with precision is also
more vivid in this case. WPDP is significantly more precise
than CPDP and the achieved large effect size confirms this
finding as well. With AUC, most of the datasets have a
better prediction performance with WPDP. NASA datasets
are the only datasets in favor of CPDP in this case. In
particular, three NASA datasets (cm1, kc3,pc2) have better
AUC with CPDP in comparison with those gained from
WPDP. In general, NASA and Jureczko datasets have highly

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 26

1.0-1.0 2.0-2.0 3.0-3.0 4.0-4.0 5.0-5.0 6.0-6.0
Favors cross projectFavors within project Forest Plot for median f-measure

kc1 (4.98%)

ant-1.7 (5.7%)

camel-1.6 (4.65%)

ivy-2.0 (4.68%)

jedit-4.0 (6.23%)

jedit-4.2 (4.9%)

log4j-1.2 (5.06%)

lucene-2.4 (5.97%)

poi-3.0 (4.45%)

prop-6.0 (4.85%)

tomcat-6.0 (4.97%)

xalan-2.7 (4.96%)

jdt (4.75%)

bug (3.14%)

col (3.16%)

gip (3.05%)

mav (3.13%)

moz (3.23%)

per (3.17%)

pla (3.26%)

pos (3.15%)

rhi (3.09%)

rub (3.22%)

sakura-r1.3 (2.26%)

Random Effect (p-val<0.001)
95% CI=[-0.98 , -0.41] -0.693
(τ2=0.08, Q=27.66, p-val=0.229) Fixed Effect (p-val<0.001)

95% CI=[-0.95 , -0.44]-0.694

1.0-1.0 2.0-2.0 3.0-3.0 4.0-4.0 5.0-5.0 6.0-6.0
Favors cross projectFavors within project Forest Plot for median precision

kc1 (4.85%)

ant-1.7 (4.85%)

camel-1.6 (3.71%)

ivy-2.0 (3.35%)

jedit-4.0 (5.34%)

jedit-4.2 (4.79%)

log4j-1.2 (4.93%)

lucene-2.4 (4.97%)

poi-3.0 (4.59%)

prop-6.0 (4.71%)

tomcat-6.0 (3.62%)

xalan-2.7 (4.9%)

jdt (3.88%)

bug (3.87%)

col (3.85%)

gip (3.88%)

mav (3.82%)

moz (3.49%)

per (3.89%)

pla (3.87%)

pos (3.89%)

rhi (3.92%)

rub (3.91%)

sakura-r1.3 (3.12%)

Random Effect (p-val<0.001)
95% CI=[-1.54 , -0.71] -1.128
(τ2=0.58, Q=52.26, p-val<0.001) Fixed Effect (p-val<0.001)

95% CI=[-1.36 , -0.82]-1.086

1.0-1.0 2.0-2.0 3.0-3.0 4.0-4.0 5.0-5.0 6.0-6.0
Favors cross projectFavors within project Forest Plot for median recall

ar3 (1.66%)

ar4 (1.62%)

ar5 (1.66%)

cm1 (1.97%)

kc1 (3.87%)

kc2 (1.95%)

kc3 (1.93%)

mc2 (1.97%)

mw1 (1.83%)

pc1 (1.91%)

ant-1.7 (3.54%)

arc (0.91%)

berek (1.04%)

camel-1.6 (2.74%)

ivy-2.0 (3.07%)

jedit-4.0 (3.94%)

jedit-4.1 (1.15%)

jedit-4.2 (2.86%)

jedit-4.3 (0.96%)

log4j-1.2 (3.1%)

lucene-2.4 (3.77%)

nieruchomosci (0.97%)

pdftranslator (1.02%)

poi-3.0 (3.47%)

prop-1.0 (0.42%)

prop-2.0 (0.74%)

prop-3.0 (0.92%)

prop-4.0 (0.42%)

prop-5.0 (0.95%)

prop-6.0 (3.38%)

redaktor (1.03%)

serapion (1.04%)

skarbonka (0.97%)

sklebagd (1.04%)

student (0.97%)

synapse-1.2 (1.08%)

termoproject (1.03%)

tomcat-6.0 (3.07%)

velocity-1.6 (1.17%)

workflow (0.91%)

wspomaganiepi (1.03%)

xalan-2.6 (1.62%)

xalan-2.7 (3.06%)

xerces-1.3 (1.15%)

xerces-1.4 (1.0%)

jdt (1.75%)

bug (1.71%)

col (1.73%)

gip (1.7%)

mav (1.74%)

moz (1.7%)

per (1.72%)

pla (1.75%)

pos (1.75%)

rhi (1.67%)

rub (1.73%)

sakura-r1.3 (1.2%)

Random Effect (p-val=0.021)
95% CI=[0.04 , 0.46] 0.247
(τ2=0.11, Q=67.81, p-val=0.134) Fixed Effect (p-val=0.007)

95% CI=[0.07 , 0.44]0.255

Fig. 10. Performance comparison between CPDP and WPDP across different datasets: f-measure, recall and precision

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 27

1.0-1.0 2.0-2.0 3.0-3.0 4.0-4.0 5.0-5.0 6.0-6.0
Favors cross projectFavors within project Forest Plot for median auc

cm1 (5.35%)

kc3 (5.97%)

mc1 (5.95%)

mc2 (6.03%)

mw1 (6.2%)

pc1 (5.84%)

pc2 (6.03%)

pc3 (6.16%)

pc4 (5.56%)

jdt (4.37%)

bug (4.23%)

col (4.26%)

gip (4.21%)

mav (4.38%)

moz (4.26%)

per (4.25%)

pla (4.09%)

pos (4.35%)

rhi (4.3%)

rub (4.2%)

Random Effect (p-val<0.001)
95% CI=[-1.34 , -0.40] -0.872
(τ2=0.75, Q=59.02, p-val<0.001) Fixed Effect (p-val<0.001)

95% CI=[-0.92 , -0.40]-0.656

Fig. 11. Performance comparison between CPDP and WPDP across
different datasets: AUC

contributed to the performance shift toward CPDP. Further,
the share for some of these particular datasets is higher than
the rest of the datasets as they have been used and validated
in more studies. Fixed and random effect models are similar
in the case of datasets and they agree with each other beside
the differences in effect sizes and confidence intervals. The
overall effect sizes for precision and AUC are higher than
those of fixed effect model, but the confidence intervals are
wider as well. The effect size for recall has become smaller
in response to the more balanced weightings of the random
effect model and the confidence interval, similar to the other
measures is larger as well.

As another probable source of influence on the per-
formance difference between CPDP and WPDP, we have
evaluated the performances with respect to the learning
techniques. The forest plots in Figure 12 present the results
in this regard, extracted from the categorical studies. The
overall random model effect with f-measure, a medium
effect size, is toward CPDP but it is not significant. The
overall effect for the fixed effect model, however, is tiny
(-0.039) and not significant. The shift in location of the
overall effect is clearly caused by the high weights assigned
to the LR and RF learners, while the high performance
differences observed with different learners cause the wide
confidence interval for the overall random model effect.
CPDP achieves a significant medium to large effect size
for outperforming WPDP with respect to recall, as can be

1.0-1.0 2.0-2.0 3.0-3.0 4.0-4.0 5.0-5.0 6.0-6.0
Favors cross projectFavors within project Forest Plot for median f-measure

bn (10.15%)

crm114 (10.13%)

dt (10.85%)

dtree (13.14%)

lr (13.53%)

nb (11.37%)

nn (6.41%)

rf (13.23%)

svm (11.18%)

Random Effect (p-val=0.083)
95% CI=[-0.08 , 1.32] 0.619
(τ2=0.92, Q=75.49, p-val<0.001) Fixed Effect (p-val=0.699)

95% CI=[-0.24 , 0.16]-0.039

1.0-1.0 2.0-2.0 3.0-3.0 4.0-4.0 5.0-5.0 6.0-6.0
Favors cross projectFavors within project Forest Plot for median recall

bn (7.39%)

crm114 (8.19%)

dt (9.3%)

dtree (13.12%)

lr (13.11%)

nb (14.32%)

nn (11.46%)

rf (13.42%)

svm (9.69%)

Random Effect (p-val=0.001)
95% CI=[0.32 , 1.33] 0.827
(τ2=0.45, Q=54.01, p-val<0.001) Fixed Effect (p-val<0.001)

95% CI=[0.22 , 0.55]0.386

1.0-1.0 2.0-2.0 3.0-3.0 4.0-4.0 5.0-5.0 6.0-6.0
Favors cross projectFavors within project Forest Plot for median precision

bn (8.17%)

crm114 (5.73%)

dt (9.29%)

dtree (18.78%)

lr (17.63%)

nb (9.4%)

nn (2.15%)

rf (20.08%)

svm (8.77%)

Random Effect (p-val=0.009)
95% CI=[-0.70 , -0.10] -0.398
(τ2=0.07, Q=12.52, p-val=0.129) Fixed Effect (p-val<0.001)

95% CI=[-0.66 , -0.22]-0.438

1.0-1.0 2.0-2.0 3.0-3.0 4.0-4.0 5.0-5.0 6.0-6.0
Favors cross projectFavors within project Forest Plot for median auc

ac (24.42%)

lr (26.54%)

nb (22.28%)

rf (26.75%)

Random Effect (p-val=0.036)
95% CI=[-1.59 , -0.06] -0.822
(τ2=0.52, Q=21.51, p-val<0.001) Fixed Effect (p-val<0.001)

95% CI=[-1.10 , -0.55]-0.828

Fig. 12. Performance comparison between CPDP and WPDP with dif-
ferent learning techniques: f-measure, recall, precision and AUC

expected considering the observation that the majority of
the learners have a favourable CPDP recall performance. In

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 28

a case of disagreement and with similar situation to that
of f-measure, the very high (relative) weight assigned to a
single learner, NB in this case, has caused a large shift in
the location of the overall effect for the fixed effect model,
causing it to be tiny and insignificant (0.084). With precision
and AUC, WPDP is significantly better than CPDP while in
both cases, wider confidence intervals can be observed.

With respect to the f-measure of particular learning
techniques: SVM, DT, BN, CRM114, and DTree are in
favor of CPDP, while RF and LR prefer WPDP. NN and
NB are slightly better with WPDP but the difference is
less significant for them. A very similar pattern can be
observed for recall as well with the difference that LR is
now marginally pro recall. With respect to precision, as
expected based on the previous discussions, a significant
difference in favor of WPDP can be observed. Only two
techniques, i.e, BN and DT, are in favour of CPDP, neither
of which are significant individually. Conversely, three of
the learners achieve substantial effect sizes individually
in favor of WPDP. Finally, with AUC, only one learning
technique (LR) is in favor of CPDP and the rest are in favor
of WPDP, resulting in a medium to high overall effect size
toward WPDP.

5 DISCUSSION

By synthesizing both qualitative and quantitative data, this
section provides answers to our defined research ques-
tions. We follow a similar approach used by Hall et al. [1]
when discussing model performance in relation to certain
factors (e.g., independent variables, modeling techniques,
etc.). First, the performance within individual studies is
discussed. This helps to figure out the major predictive
performance impact within each particular study. Then, the
model performance across studies is discussed to get a
bigger picture of how well a model performs across studies.
A similar approach is considered for comparing WPDP and
CPDP performances.

5.1 Independent Variables in CPDP (RQ1)
The independent variables used in the categorical stud-
ies can be mainly categorized as traditional metrics (size
and complexity metrics), process metrics (code delta, code
churn), and Object-Oriented metrics. In addition to the
above three categories, one study uses text tokens extracted
from source code [S1].

Analysis of the model performance across the categori-
cal studies suggests that the combinations involving LOC,
OO, and SCM improve the predictive performance of their
respective models. Further, the analysis reveals that the
process metrics have a poor performance in comparison
with the previous categories. However, Kamei et al. [S39]
asserted that the defect prediction models built with process
metrics are more useful in comparison with the traditional
defect prediction models as they are done at a finer level of
granularity and the responsible developers for inspections
can be determined more rapidly. Their results showed that
WPDP models built with code changes outperform CPDP
counterparts in terms of AUC, precision, recall, and f-
measure.

CPDP models built with only OO metrics tends to per-
form better than the other CPDP models built with only
one set of metrics (e.g., only process metrics) in terms of f-
measure and precision. Source code text from [S1] also has
a comparable performance, but the evidence for it is not as
strong as of OO.

We observed that the models built upon the combination
of different independent variables perform the best. Watan-
abe et al. [S2] and Canfora et al. [S11] used OO and LOC.
The combination of OO, SCM and LOC is utilised by several
studies ([S3], [S5], [S23], [S40]). Further, Jing et al. [S41] used
the combination of OO, SCM, and process metrics along
with LOC. Moreover, OO+LOC, which has the top spot with
regard to recall, has the lowest median precision.

Finally, Zhang et al. [S40] showed that context factors
such as programming languages, the presence of issue track-
ing systems, the total number of commits, and the total
number of developers can further increase the predictive
performance of the models using only code and process
metrics.

5.2 Modeling Techniques in CPDP (RQ2)
Naı̈ve Bayes (NB) and Logistic Regression (LR) are the most
commonly used modeling techniques in CPDP. Most of the
studies have constructed multiple models with different
modeling techniques and their comparative performance
are reported. When considering individual studies, it is not
possible to see a clear picture of which modeling technique
performs the best in CPDP context. Singh et al. [S7] con-
cluded that J48 (a variant of C4.5 implemented in Java)
performs better than the other benchmark classifiers (NB,
SVM, RF, NN, and DT). Further, they revealed that NB
classifier favors CPDP over WPDP in terms of precision. He
et al. [S5] also reported that the best prediction results are
provided by J48. They later observed that simple classifiers
like NB could perform well in CPDP context with respect
to the overall performance [S3]. Additionally they asserted
that NB and BN are relatively stable in presence of different
metric sets in source and target data sets. Liu et al. [S14]
reported that GP-based models perform better than the non-
GP models. They presented these results by comparing GP-
based models against 17 non-GP models. Chen et al. [S18]
observed that DTB, which is based on NB and boosting,
improves CPDP performance by reducing negative samples
in CP data. VCB-SVM, a model based on SVM and boosting,
can better classify defect-prone code units by considering
the class imbalance issue [S26]. Similarly, better results were
observed by Ryu et al. [S44] with TCSBoost which uses NB
with boosting and utilizes mixed WP and CP data.

Detailed analysis of the categorical studies suggest that
the CPDP performance may associate with modeling tech-
nique used. As mentioned earlier, NN, SVM, and DTree
achieve the highest median f-measure performances and
they seem to be performing relatively well in CPDP context.
Moreover, base learners perform better with respect to f-
measure compared with the ensembles. Conversely, ensem-
bles seem to improve the performance of base learners in
terms of recall and AUC. Notably, standalone BN has the
lowest AUC while metalearner BN provides the highest.
Ensembles seem to improve LR as well in terms of AUC. De-
spite its complicated nature, RF classifier has a low median

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 29

performance with respect to multiple measures. Further, the
performance of NB is medium in terms of f-measures and
recall and medium to low with AUC and precision. LR has
a medium to low performance and is comparable or inferior
to NB while being more complicated.

5.3 Performance Evaluation in CPDP (RQ3)

Analysing performance evaluation criteria of 28 categorical
studies disclosed that the majority studies had computed
various compound performance measures using the confu-
sion matrix to evaluate the performance of their prediction
models. Few studies had employed only AUC to measure
the model performance ([S4], [S37], [S46]).

Almost all the studies construct single objective defect
prediction models. Single-objective defect prediction models
detect a set or a ranked list of likely fault-prone code units
[S11]. Multi-objective Defect Prediction, on the other hand,
targets multiple goals at once. MODEP [S11] uses a multi-
objective approach to target both cost and effectiveness.
MODEP tries to achieve a compromise between cost and
effectiveness. Therefore, software engineers can select pre-
dictors that achieve their desired level of compromise.

The majority of the studies had given some sort of justifi-
cation for selecting their particular set of measures. In some
studies, popularity is one of the reasons in that regard ([S5],
[S7], [S25], [S39], [S41], [S46]). Theoretical justifications are
another approach that some of the studies have taken into
consideration. Arguments such as being threshold sensitive
and biased against the class imbalance problem fit into this
category as well. A number of the studies have taken these
issues into account for not selecting precision and accuracy
[S13], [S20], [S25], [S27]. For example, [S20] had used recall,
probability of false alarms and balance and dismissed the
use of accuracy, mentioning that such measures are poor
indicators of performance considering the balance between
the defect prone and defect free classes, i.e., the class imbal-
ance [67]. AUC, on the other hand, is threshold insensitive
while not being influenced by the class imbalance issue. This
has justified the use of AUC in some of the studies either
individually [S4], [S37], [S46] or with other measures [S26].
The justifications for using particular performance measures
were collected when possible for the primary studies. A
summary of these justifications are presented in our online
appendix.

While the selected reporting measures by the studies
could provide some means of comparisons, the lack of
common measures make such tasks difficult or even im-
possible. Hall et al. [1] presented alternatives to be used
for reporting. They particularly suggested to report AUC
and confusion matrices and presented references for useful
means of reporting [1], [67], [68] (for confusion matrices).
Further, they recommended Average Relative Error (ARE)
for continuous studies [1]. The concern of using particular
performance evaluation measures in different contexts has
been raised by different studies [1], [67], a summary of
which is presented by Hall et al. [1]. For example, Menzies
et al. in [67] did not use precision and accuracy arguing that
they are poor performance indicators when the instances of
the target class are rare.

5.4 CPDP Approaches (RQ4)

A variety of approaches are proposed in CPDP, addressing
different data and learner related issues. Of those issues,
class imbalance and data heterogeneity are the most com-
monly investigated by the proposed models.

Approaches such as DTB [S18], VCB-SVM [S26], TCS-
Boost [S44], and JIT [S39] had used data re-sampling to deal
with the class imbalance issue.

NN-filter [S20] tries to come up with similar data to those
of the test set, resulting in a more suitable training dataset.
Transforming the data to make the data distributions more
similar is another approach considered by the categori-
cal studies. Approaches such as metric compensation [S2],
TCA+ [S24], Universal model [S40], CCA+ [S41] belong to
this category. LACE2 [S27] also fits into the data transforma-
tion category but its transformation is more focused on the
privacy issues rather than the performance.

Some approaches have used multiple methods in their
settings to achieve their desired goals. Turhan et al. [S13],
DTB [S18] and TCSBoost [S44] utilised mixed data to create
CPDP models.

Only one study [S23] in the included set uses clustering
in their proposed approach. Two methods are utilized to
find similar data in this case, namely NN and EM clustering.

Feature selection is also used by multiple studies [S3],
[S15], [S37], [S42]. Heterogeneous Defect Prediction (HDP)
approach proposed by Nam et al. [S37] uses feature selection
and feature matching in its defect prediction process.

Basic data processing methods such as data normaliza-
tion and logarithmic transformation had been used widely
in CPDP as they are believed to have positive effect on the
performance of CPDP.

Benchmark methods are also an interesting point to
stress out. Usually the proposed approaches are compared
with other well-studied methods in the literature. As such,
He et al. [S18] compared DTB with other famous approaches
in the CPDP such as TNB, NN-filtering, and mixed data ap-
proach. They stated that, DTB performs significantly better
than all the other counterparts statistically in terms of g-
measure. Similarly, in [S25], the predictive performance of
TNB is compared with NN-filtering approach, leading to
the conclusion that TNB outperforms filtering in terms of
AUC and f-measure.

Jing et al. [S41] had compared their proposed approach
(CCA+) with various state-of-the-art approaches such as
TCA+, NN-filtering, and TNB. Their experimental results
indicated that CCA+ is superior to the benchmark CCDP
methods in terms of three widely used measures namely
recall, pf, and f-measure.

Even though some studies have provided comparisons
with few CPDP approaches, there was no clear consensus on
which CPDP approach performs the best. Thorough analysis
of the model performance across studies suggest that the
performance of the model links to the data and overall paper
approaches used. More specifically, the general trend seems
to be the recall based nature of the data approaches. This
good recall based performance has probably contributed
more to the overall increase in f-measure performance when
data approaches are utilised. This can also be argued as the
data approaches do not seem to have a profound effect on

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 30

precision and using no data approach yields better precision
performances compared to the other counterparts.

5.5 CPDP vs. WPDP (RQ5)

We performed three sets of analysis for benchmarking the
performance of CPDP models against that of WPDP as
no general conclusion could be made by just considering
individual studies. Some studies support WPDP perfor-
mance (e.g [S15], [S39]) while another group make claims in
favor of CPDP (e.g [S1], [S3], [S5], [S11], [S23], [S40], [S41]).
These claims vary in terms of specific performance measures
(e.g., recall, AUC) or modeling technique (e.g., NB, J48) to
mention some.

He et al. [S5] asserted that source data from the same
project does not always lead to better prediction results
and CP data could potentially provide better predictive
performance results when the most suitable source datasets
could be determined. Herbold [S23] observed that the CPDP
performs better with recall, but it lacks the precision of
WPDP models. Similarly, Mizuno and Hirata [S1] revealed
that WPDP with source code text tokens as independent
variables achieves better precision compared with that of
CPDP models, but underperforms CPDP in terms of recall.

Zhang et al. [S40] observed that there are clear differ-
ences in the performance between the universal model and
WPDP models with all performance measures except AUC.
Specifically, the universal model yielded lower precision,
but achieved higher recall values. Further, they asserted
that the universal model is as effective as WPDP models
in terms of AUC. CCA+ [S41] not only considers the hetero-
geneity in the data but also obtains comparable prediction
results to WPDP. The results of the study conducted by
He et al. [S3] indicated that WPDP models capture higher
precision while CPDP models achieve better recall or f-
measure. Canfora et al. [S11] revealed that CP predictions
are worse than WP predictions in terms of precision and
recall. However, MODEP introduced by them achieved a
better cost-effectiveness compared with single-objective pre-
dictors trained with WP data.

We performed two sets of meta-analysis, i.e., fixed and
random effect models to investigate the relationships and
their directions between CPDP and WPDP. For each effect
model, we performed three sets of analysis targeting dif-
ferent aspects of the studies. Our first set of meta-analysis
grouped by primary studies revealed that CPDP could
achieve comparable performance to WPDP in terms of f-
measure. Even though the majority of the studies show a
positive effect for WPDP, the overall result is neither toward
CPDP nor WPDP and the difference is not significant. With
recall, CPDP achieves a better performance resulting in
a non-significant medium effect size with random effect
model and a small to medium effect size with fixed effect
model. Conversely, WPDP wins with precision both in terms
of number of studies and the overall effect. The random
and fixed effect models match in this case as the test for
heterogeneity is rejected (p − value = 0.596). The achieved
effects for precision are medium and significant in favor
of WPDP. Finally, despite having similar medium effect
sizes, the fixed and random effect models do not agree
on significance for AUC. The fixed effect model, clearly

impacted by [S39], shows significance (p − value < 0.001)
while the balanced weights and consequently, the wider
overall confidence interval for the random effect model
demonstrate insignificance (p = value = 0.063).

To reach a higher degree of confidence we conducted
further investigations on the factors that are likely to impact
the peformance differences. This time, we categorized the
collected data with respect to the datasets that are used. The
results in this case show better WPDP performance in terms
of precision and AUC and f-measure. With recall, CPDP
performs better than WPDP and the difference is significant.
Moreover, we observed that the main contributors to the
good results of CPDP are Jureczko datasets which tend to
improve recall.

The next set of analysis revealed a similar pattern with
precision and AUC, but the performance difference with f-
measure were not significant. We further observed that some
of the learning techniques might be more suitable for CPDP
in relation to different performance metrics. At the same
time, the fixed effect model results demonstrated different
outcomes with recall and the reason for the difference,
i.e., the higher assigned weights to the most widely used
learners, was detected as the reason behind the difference.

While the fixed and random effect models did not agree
on all cases, in summary, we observed the recall based
nature of CPDP with multiple sets of analysis. The con-
clusions of different studies about the precision and AUC
of WPDP models were confirmed as well. It is important
to remember that the best results of CPDP are included in
these comparisons while the results for WPDP are provided
as a part of the benchmark methods for the proposed CPDP
approaches. These WPDP models are usually built in sim-
pler manners, without much sophisticated approaches and
one could argue that, in practice, WPDP could outperform
CPDP with possibly even larger difference margins.

6 GUIDELINES AND RECOMMENDATIONS FOR FU-
TURE RESEARCH

The vast history of defect prediction has lead to proposal of
many theories, approaches, and models. Hall et al. [1] per-
formed a comprehensive systematic review on the subject.
Many of the proposed ideas have been adapted and applied
by CPDP branch despite its recent history. We summarized
the state of CPDP in this study. Below is a list of the
suggestions for future research.

6.1 On data quality and SZZ

As pointed out by Hall et al. [1], researchers should seriously
consider data quality for their research. As seen with our
list of primary studies, the majority of the datasets are quite
old and their quality and usefulness (e.g., NASA dataset)
are under question in two ways. The first issue, raised by
multiple studies [1], [40], [49] in this area, is the quality
of the datasets. This is stressed upon to such a degree by
Hall et al. [1] that they have failed almost every study that
experiment with NASA datasets in their quality assessment
stage (114 failed studies of which 58 use NASA datasets.
These 58 studies belong to a set of 62 papers in total,
which use NASA datasets meaning that only 4 passed the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 31

quality assessment stage). Another issue with these datasets
is the alignment of their practices with today’s development
practices, which make the data potentially irrelevant and,
if not selected/handled/treated carefully, even harmful. On
the quality issue, we strongly feel the need of performing
additional studies so as [60] to evaluate the validity of the
data in the first place.

In addition, the true origin of the bugs and the number of
bugs in each unit of interest in both code and change metric
datasets have potential for further research. The majority
of the datasets for CPDP and defect prediction in general
are generated through automated heuristic approaches such
as SZZ [61]. However, SZZ and its extensions [61]–[64],
for example, can not handle an entire line of bug fixing,
i.e., when bugs are fixed only by addition of new code (or
sometimes moving the code in the source files) [64]. This
is not to be interpreted as a recommendation to discard all
SZZ generated datasets, but rather a call for more research
effort for compiling better quality defect datasets.

Hence, the quality and representativeness of the
datasets and the process of mapping bugs to code units
needs better solutions and serious attention for the va-
lidity of future research. For reviewers of CPDP papers,
analysis of a conveniently random subset of datasets
should raise doubts.

6.2 On performance measures

Regarding the predictive performance, it is important to
report multiple performance measures to fully grasp the
nature and capabilities of the proposed models [1], espe-
cially with regard to compound measures such as f-measure.
Being a compound measure, f-measure can be misleading
in differentiating the differences across precision and recall.
Reporting base measures instead of compounds would help
computing additional measures in the future. Reporting
performance based on confusion matrices and AUC is also
a highly encouraged practise [1]. AUC is fundamentally
different from f-measure, recall and precision such that it
is threshold independent. Hall et al. [1] not only provided
suggestions for what to use, but they also warned the
researchers about the conclusion invalidity in case of using
inappropriate performance evaluation measures. Therefore,
the choice of evaluation measure should be thought out
carefully.

We observed that in most cases CPDP studies report
higher recall at the expense of lower precision (and this
insight is lost with f-measure). Ideally, defect prediction
models are decision support systems for the developer
or QA personnel, raising flags for potentially defective
cases. Herzig and Nagappan argue that practitioners prefer
precision over recall in their workflow [93]. For example,
practitioners will lose faith in a system that makes too many
false alarms and cause them extra work, whereas they will
trust a system with high precision even if it cannot detect all
cases.

Therefore, we recommend that future CPDP research
is benchmarked more on precision than recall, while
reporting AUC or base measures such as true/false pos-
itives/negatives.

6.3 On the use of statistical tests and effect sizes
Performing appropriate statistical tests and computing and
reporting relevant effect sizes would help in demonstrating
the validity of the conclusions. In our list of 46 primary
studies, 10 present effect sizes ([S3], [S13], [S18], [S22], [S26],
[S28], [S29], [S40], [S43], [S44]) three of which are published
by the same authors ([S26], [S43], [S44]). Before using a
statistical test and/or an effect size calculation method
however, one should investigate the possibility of using
them based on their assumptions. Using inappropriate tests
could lead to significance when there are none. Having
said these, it is important to consider the power of the
utilised tests when drawing conclusions. The less powerful
non-parametric tests could show lack of significance due to
their weaker power in comparison with parametric tests,
however, parametric tests require more assumptions, some
of which are violated in many experiments.

Different types of tests have been proposed and em-
ployed in software engineering, some of which are de-
scribed in [56]. While discussing the subject, one must
notice the possible disadvantages of using particular tests
despite their occasional usefulness. For example, while the
Friedman-Nemenyi test, used and encouraged in [7], [56]
provides useful insights, it can sometimes be confusing.
Specifically, the results of such tests should be interpreted
with caution as the ranking procedure does not differentiate
between a good performing approach that has a slightly
lower performance among the benchmarks on one hand,
and an absolute worst performing approach, not even close
to the other benchmarks in terms of performance, on the
other hand. Hence, the decision between a good and a bad
approach becomes more difficult with such tests.

Therefore, for the sake of simplicity and the big picture,
the use of Scott-Knott test [102], which groups the methods
into distinct classification ranks is encouraged. This test
does not suffer from the overlapping groups issue, which
is present in several other post hoc tests, one of which is
Nemenyi’s test.

Further, effect sizes like Cliff’s d [103] (which is a mea-
sure of how often values in one distribution are larger
than the values in a second distribution) are preferable
to parametric counterparts, since they do not require any
assumptions about the shape or spread of the distributions.
Finally, the non-parametric bootstrapping technique [104]
(estimation by measuring properties when sampling from
an approximating distribution) can be useful in the context
of (cross project) defect prediction.

While we are not the first to make this recommenda-
tion, we see that this issue is not considered as seriously as
it should. Therefore, we encourage further research, once
more, to choose statistical tests appropriate for the study
design rather than employing them based on their popu-
larity, to check and report on the underlying assumptions
of the statistical tests, and to report effect sizes.

6.4 On the lack of search based and multi-objective
methods for CPDP
Very few studies have focused on search based approaches
in CPDP. We observed that manipulating data can poten-
tially improve the performance as described earlier in the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 32

data approaches section. These approaches open new per-
spectives to search based methodologies for CPDP. Specif-
ically, we observed only one study [S11] with a multi-
objective approach. However, we rarely encounter single-
objective tasks in reality, something that is seldom targeted
by CPDP. As such, targeting multiple goals with potential
focus on data and learning technique optimisation would
probably be of great value and a step toward practical
applications for research in CPDP.

There is a research gap on search-based and multi-
objective methods for CPDP. We recommend further re-
search to exploit and fill this gap

6.5 On the use of metric sets as features

We observe that feature extraction is seldom used in CPDP
studies. Adapting and applying state of the art techniques in
feature extraction and applying the knowledge learnt from
the body of work on lower-dimensional manifolds, spectral
learning, and random projections may prove to be more
useful in building predictors [57]–[59]. Only a few studies
[52], [S3], [S15], [S37], [S40] (very limited in some) have
considered the feature and metric manipulation by means
of feature selection and obviously more research in the area
is required. Moreover, the feature manipulation approaches
can be used in multi-objective methods as one of the data
manipulation approaches as discussed earlier.

Most studies utilise software metrics without pre-
processing, e.g., feature selection/extraction, even though
the complex CPDP algorithms prevent reasoning based on
these metrics. There is a research gap on applying state of
the art feature extraction techniques and we recommend
further research to exploit and fill this gap

6.6 On tuning hyper-parameters of learners

We observed that almost all studies use the default options
set by the learning environments for setting the hyper-
parameters of learning techniques. A recent study [53] as-
serted that the majority of the most commonly used classi-
fiers require the setting of at least one parameter. Similar
observations are also presented in [1], [54], [55], raising
concerns regarding the usage of default parameter values,
which, if tuned properly, often lead to better performance.

We recommend that hyper-parameter tuning for exist-
ing and proposed approaches in CPDP research should
not be considered optional, but rather necessary.

6.7 On the lack of CPDP studies on commercial/closed
source systems

There are very few examples that demonstrate the applica-
bility of CPDP approaches in industrial settings. This lack
of demonstration of practical applications lead to concerns
regarding the actual value of CPDP. Applying the tech-
niques proposed in the literature to modern day software
systems especially on the proprietary and closed source
software could lead to further progresses in the field. The
majority of the studies have focused on open source data,
which, despite their great value, might not be representative
enough for the software industry as a whole.

While most of our recommendations target the rigour
of further studies, this one specifically calls for the need
for (industrial) relevance in CPDP studies that are per-
formed in real settings.

6.8 On unfair comparisons of CPDP vs. WPDP
One of the key promises of CPDP is its competitiveness with
WPDP, at least as a stop-gap measure. We observe that most
WPDP counterparts, which are benchmarked with CPDP
methods, usually employ the simplest form of learners.
On the other hand, the algorithmic complexity of CPDP
methods seems to be increasing with every new proposal.
These sophisticated methods are generally not applied to the
within project data as benchmarks. This is justifiable in the
sense that some of the approaches are specifically designed
for CPDP and can not be applied to WPDP. However, this
should not prevent/limit the researchers to compare their
proposed models to the state of the art in WPDP. Such
comparisons would show the real value of CPDP and its
current state. Further, it is of great value if the studies use
up-to-date and state of the art benchmarks in CPDP for
validation and demonstration of their proposed approaches.

Whenever a new technique is proposed for CPDP, we
recommend applying that new technique in a WPDP set-
ting as well, for fair benchmarking. If this is not possible,
a state-of-the-art WPDP counterpart, e.g., Random Forests,
with hyper-parameter tuning should be used. Further, a
comparison with a CPDP technique must be presented.

6.9 On the lack of replication packages
There are very few replication packages available for CPDP.
The replication packages not only allow researchers to val-
idate the results achieved by individual studies, but also
could lead to better and more powerful studies/approaches
as follow ups. The implementations may contain small
tweaks and details which sometimes are impossible to ex-
tract from the proposed algorithms presented in the pa-
pers. Documenting and presenting the code alongside the
presented algorithms as replication packages could resolve
confusions in this regard. The practice of sharing your data
and experiments has been recommended in the past [87],
[88] and such recommendations has lead to repositories
such as PROMISE Repository [89] and SeaCraft [90] among
others. In an ideal scenario, best way for technology transfer
is to provide tools that can work along with and integrate
into programming IDEs to provide insight for the devel-
oper/tester.

Further, the research on datasets, specifically compiling
new versions of the existing datasets, is encouraged as one
of the areas of interest for CPDP. As discussed earlier, the
defect datasets and their reliability can change over time,
as new defects affecting earlier versions of the software
systems are discovered. Different levels of granularity, other
types of metrics, other methods of blaming (code and data
flow), and datasets from different companies with different
practices are highly required.

Publish your scripts and data! We recommend reusable
scripts, and whenever possible, the data to be shared
whenever a new CPDP approach is proposed. This will
help further studies to easily include your technique as

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 33

benchmarks, improving the impact of your research. This
is also useful for the training of junior researchers.

6.10 On the lack of regression studies in CPDP

Very few studies have considered continuous models. In
our list of 30 primary studies which passed the quality
assessment phase, only two perform regression analysis to
predict for the number of defects in software units. We
are not sure as to why research chose to focus on binary
classification. Indeed, most defect datasets contain defect
counts, but these are converted to binary defect labels in
CPDP studies. With regression studies, broader decisions
on allocating QA resources can be taken.

There is a research gap on regression based methods
for CPDP. We recommend further research to exploit and
fill this gap

7 THREATS TO VALIDITY

It is important to clarify the possible threats that influence
the outcomes of our research. The following are the validity
threats identified during this SLR.

7.1 Publication Bias

Publication bias denotes the issue of publishing more pos-
itive results over negative results [36]. Literature reviews
on claims to support or reject a hypothesis will be biased
if the original literature is suffering from the publication
bias. While some preferences in publishing are useful (e.g.,
not publishing suspected flawed studies) a tendency toward
some outcomes rather than few others leads to biased
and possibly incorrect conclusions. Studies with significant
results might not always be better than the studies with
a null result with respect to quality of design. However,
statistically significant results have a much higher chance of
getting published.

7.2 Search Terms

Finding all relevant primary studies is always a challenge
in any SLR. To address this issue, a detailed search strategy
was prepared and presented in our study. Search string was
constructed with different terms identified by checking titles
and keywords from the relevant papers already known to
the authors. Alternative spellings and synonyms for search
terms were then added by consulting an expert in the area.
Search string was applied to the full text of the papers.
Moreover, the applicability of the search string was piloted
and the identified studies were compared with the list of
studies that were already known and the search string then
was altered accordingly. In addition to the automated search
in six electronic databases, additional search strategies, i.e.,
snowballing, was carried out to find other relevant studies
that might have been excluded. These procedures provided
a high confidence that the majority of the key studies were
identified.

7.3 Study Selection Bias

The study selection process was carried out in two phases.
In the first round, studies were excluded based on the
title and abstract independently by two researchers. The
pilot study of the selection process was conducted to
place a foundation for better understanding the inclu-
sion/exclusion criteria. Potential disagreements were re-
solved during the pilot study and inclusion/exclusion crite-
ria were refined. Inter-rater reliability was evaluated to mit-
igate the threat emerged from the researchers’ personal sub-
jective judgment. Agreement between the two researchers
was “substantial” for selecting relevant papers from the full
set of papers. The selection process was repeated until a full
agreement was achieved. When the researchers could not
make a decision about a particular study, a third researcher
was consulted. In the second phase, studies were excluded
based on the full text. Due to this well-established study
selection process, it is unlikely that any relevant studies
were missed.

7.4 Quality Assessment and Data Extraction

Two researchers independently investigated the quality of
each study. Quality assessment criteria were piloted and
modified based on the results from the pilot study. Inputs
from an expert were taken in the cases where the researchers
could not come to an agreement on a particular study.
Aforementioned actions mitigated the risk of missing any
relevant study. For data extraction, the studies were divided
between two researchers; each researcher extracted the data
from the relevant studies and the extracted data were re-
checked by the other researcher. Issues in data extraction
were discussed after the pilot data extraction and the re-
searchers were able to complete the data extraction process
following the refinement of the criteria. Extracted data were
then inspected by automated scripts to check the correctness
of the extracted values across the paper content, improving
the validity of our analysis.

7.5 Violin Plots

The number of data points included in our violin plots
to synthesise the primary studies varies and is limited to
what is reported in primary studies. The number of data
rows were also varied in the plots that are used to compare
performance in relation to various factors. For example,
during investigation of model performance in relation to
modelling techniques, RF plot was drawn using 238 data
rows while DT was created using only 9 data rows for f-
measure. This issue may potentially skew the results and
affect our conclusions. The medians of the data groups are
selected as the basis of our analysis. This is because no
formal statistical tests could be applied to our data when
they are grouped together based on different (individual)
themes. This point raises another potential threat about the
interacting factors involved in the models. Similar to [1],
we argue that limiting the analysis to single model factors,
despite their usefulness is simplistic. Hall et al. [1] argue
that the performance of the models could be impacted by
other sources , i.e., the combination of the involved factors
in the models are more important than any one of them

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 34

alone [1]. Additionally, the good behaviour of a single factor
in the context of other factors and their influence on it is
not investigated. Having said these, we tried to consider
methodological issues that are believed to have impact on
the performance [1] by performing additional comparisons
in two levels (aggregated and combinations) into the data
approaches which are heavily targeted by the studies.

7.6 Meta-analysis and Forest Plots
Similar to the case for the violin plots, the data contributing
to the forest plots are not just from the proposed approaches,
but the benchmarks also contribute to the data. As such, the
data and its size from different cases may vary highly. We
have to note that the data for CPDP contains the best of its
domain, while the best WP data is not usually presented
when the comparisons are made. To have a robust conclu-
sion, both fixed and random effect models were included
in our meta-analysis instead of reporting only one model.
Despite the disagreements in some cases, the results of
fixed and random effect models confirm one another in
the majority of cases, which is expected with well-defined
targets. The random effect model considers both within and
between study errors while the fixed effect model only deals
with the within study error. Inclusion of both models is a
step toward demonstrating the validity of our conclusions.
However, it is worth noting that these are parametric models
and their assumptions might not hold for highly skewed
data.

7.7 Data Quality
The quality of data for defect prediction is always a threat
to the validity of the conclusions [1], [40], [41], [43]. In
our study, we did not consider the low quality nature of
NASA datasets. We also skipped the maturity test for them
as a large portion of the studies have used them in their
experiments and their effectiveness has been investigated
extensively. Hall et al. [1] excluded the models built on
NASA datasets as no maturity information is available for
them.

8 CONCLUSION

The main objective of this SLR was to summarize and
synthesize the existing CPDP studies in order to identify
what kind of independent variables, modeling techniques,
performance evaluation criteria, and approaches are used
in building CPDP models. Moreover, this study aimed to
explore the predictive performance of cross project defect
prediction models compared with that of within project
models.

A systematic literature review accompanied by meta-
analysis was conducted to fulfil the study objective and
answer the defined research questions. After a comprehen-
sive analysis by following a systematic series of steps and
assessing the quality of the studies, 30 studies were iden-
tified, of which 28 were about categorical models. Beside
the guidelines and recommendations for future research
presented earlier, the main findings obtained from this SLR
are summarized below according to the defined research
questions.

• The majority of the CPDP models are constructed us-
ing combinations of independent variables. The mod-
els that are trained with these combinations seem to
perform better than individual metric sets. OO, SCM,
and source code text metrics could have acceptable
performance in CP context, while process metrics show
comparatively low performance.

• NB and LR are the most widely used learning tech-
niques in CPDP. This is true for their use as is and in the
context of ensembles too. NB, which is one of the most
widely used techniques in CPDP, seems to have an av-
erage performance among other modeling techniques.
NN, SVM, and DTree are the modeling techniques with
the highest median f-measure performance values in
CPDP. Ensembles show a different behaviour with f-
measure and AUC, where they perform below average
for the former and best for the latter.

• Recall, precision, f-measure, pf, and AUC are the most
frequently used performance metrics in CPDP.

• The majority of the CPDP approaches address one or
more data related issues using various row and column
processing methods. Data approaches can increase f-
measure and recall performance measures, but they do
not seem to have a positive effect on precision.

• Even though in some cases CPDP and WPDP have
a comparable performance, WPDP still seems to be
better with respect to f-measure, precision, and AUC.
If there does not exist enough WP data, however, then
CPDP could be a reasonable replacement. Moreover,
CPDP models are mostly recall based while having low
performances toward precision. Datasets and learners
used for the verification of CPDP techniques may be
biased, especially NASA and Jureczko datasets.

To conclude, cross project defect prediction model per-
formance is influenced by the way it is built. Specifically,
the predictive performance of the model is associated with
the independent variables used, modelling techniques on
which CPDP models were built and the CPDP approaches
followed when building the models, as well as the bench-
mark datasets used for verification. Cross project defect
prediction still remains as a challenge due to its recall based
yet low precision performance, but it can potentially achieve
comparative predictive performance to within project mod-
els when the factors influencing the performance are opti-
mized. In this respect, we hope that this SLR will provide a
reference point for conducting future research and the rec-
ommendations provided will lead to higher quality research
in this area.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Olli-Pekka Pakanen
from M3S Oulu, who contributed to the initial phase of this
literature review by evaluating the primary studies, and the
anonymous reviewers, whose invaluable feedback resulted
in significant improvements over the initial version of the
manuscript. Data underlying this article can be accessed on
Zenodo at https://doi.org/10.5281/zenodo.833011

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 35

Primary Studies
[S1] O. Mizuno and Y. Hirata, “A cross-project evaluation

of text-based fault-prone module prediction,” in Em-
pirical Software Engineering in Practice (IWESEP), 2014
6th International Workshop on. IEEE, 2014, pp. 43–48.

[S2] S. Watanabe, H. Kaiya, and K. Kaijiri, “Adapting a
fault prediction model to allow inter languagereuse,”
in Proceedings of the 4th international workshop on Pre-
dictor models in software engineering. ACM, 2008, pp.
19–24.

[S3] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical
study on software defect prediction with a simplified
metric set,” Information and Software Technology, vol. 59,
pp. 170–190, 2015.

[S4] S. Uchigaki, S. Uchida, K. Toda, and A. Monden, “An
ensemble approach of simple regression models to
cross-project fault prediction,” in Software Engineering,
Artificial Intelligence, Networking and Parallel & Dis-
tributed Computing (SNPD), 2012 13th ACIS Interna-
tional Conference on. IEEE, 2012, pp. 476–481.

[S5] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An
investigation on the feasibility of cross-project defect
prediction,” Automated Software Engineering, vol. 19,
no. 2, pp. 167–199, 2012.

[S6] J. Wang and Q. Wang, “Analyzing and predicting
software integration bugs using network analysis on
requirements dependency network,” Requirements En-
gineering, pp. 1–24, 2014.

[S7] P. Singh, S. Verma, and O. Vyas, “Cross company and
within company fault prediction using object oriented
metrics,” International Journal of Computer Applications,
vol. 74, no. 8, 2013.

[S8] A. Panichella, R. Oliveto, and A. De Lucia, “Cross-
project defect prediction models: L’union fait la force,”
in Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), 2014 Software Evolution
Week-IEEE Conference on. IEEE, 2014, pp. 164–173.

[S9] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and
B. Murphy, “Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process,” in
Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering.
ACM, 2009, pp. 91–100.

[S10] B. Turhan, G. Kocak, and A. Bener, “Data mining
source code for locating software bugs: A case study
in telecommunication industry,” Expert Systems with
Applications, vol. 36, no. 6, pp. 9986–9990, 2009.

[S11] G. Canfora, A. D. Lucia, M. D. Penta, R. Oliveto,
A. Panichella, and S. Panichella, “Defect prediction
as a multiobjective optimization problem,” Software
Testing, Verification and Reliability, vol. 25, no. 4, pp.
426–459, 2015.

[S12] A. Pravin and S. Srinivasan, “Detecting software bugs
in source code using data mining approach,” National
Journal on Advances in Computing and Management,
vol. 3, no. 2, 2012.

[S13] B. Turhan, A. T. Mısırlı, and A. Bener, “Empirical
evaluation of the effects of mixed project data on

learning defect predictors,” Information and Software
Technology, vol. 55, no. 6, pp. 1101–1118, 2013.

[S14] Y. Liu, T. M. Khoshgoftaar, and N. Seliya, “Evolution-
ary optimization of software quality modeling with
multiple repositories,” IEEE Transactions on Software
Engineering, vol. 36, no. 6, pp. 852–864, 2010.

[S15] L. Yu and A. Mishra, “Experience in predicting fault-
prone software modules using complexity metrics,”
Quality Technology & Quantitative Management, vol. 9,
no. 4, pp. 421–434, 2012.

[S16] B. Ma, H. Zhang, G. Chen, Y. Zhao, and B. Baesens,
“Investigating associative classification for software
fault prediction: An experimental perspective,” Inter-
national Journal of Software Engineering and Knowledge
Engineering, vol. 24, no. 01, pp. 61–90, 2014.

[S17] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning
from open-source projects: An empirical study on
defect prediction,” in 2013 ACM/IEEE International
Symposium on Empirical Software Engineering and Mea-
surement. IEEE, 2013, pp. 45–54.

[S18] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Nega-
tive samples reduction in cross-company software de-
fects prediction,” Information and Software Technology,
vol. 62, pp. 67–77, 2015.

[S19] R. Premraj and K. Herzig, “Network versus code
metrics to predict defects: A replication study,” in 2011
International Symposium on Empirical Software Engineer-
ing and Measurement. IEEE, 2011, pp. 215–224.

[S20] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano,
“On the relative value of cross-company and within-
company data for defect prediction,” Empirical Soft-
ware Engineering, vol. 14, no. 5, pp. 540–578, 2009.

[S21] F. Rahman, D. Posnett, and P. Devanbu, “Recalling
the imprecision of cross-project defect prediction,”
in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering.
ACM, 2012, p. 61.

[S22] M. Jureczko and L. Madeyski, “Towards identifying
software project clusters with regard to defect predic-
tion,” in Proceedings of the 6th International Conference
on Predictive Models in Software Engineering. ACM,
2010, p. 9.

[S23] S. Herbold, “Training data selection for cross-project
defect prediction,” in Proceedings of the 9th International
Conference on Predictive Models in Software Engineering.
ACM, 2013, p. 6.

[S24] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learn-
ing,” in Proceedings of the 2013 International Conference
on Software Engineering. IEEE Press, 2013, pp. 382–
391.

[S25] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learn-
ing for cross-company software defect prediction,”
Information and Software Technology, vol. 54, no. 3, pp.
248–256, 2012.

[S26] D. Ryu, O. Choi, and J. Baik, “Value-cognitive
boosting with a support vector machine for cross-
project defect prediction,” Empirical Software Engineer-
ing, vol. 21, no. 1, pp. 43–71, 2016.

[S27] F. Peters, T. Menzies, and L. Layman, “Lace2: better
privacy-preserving data sharing for cross project de-
fect prediction,” in Proceedings of the 37th International

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 36

Conference on Software Engineering-Volume 1. IEEE
Press, 2015, pp. 801–811.

[S28] M. Jureczko and L. Madeyski, “Cross–project defect
prediction with respect to code ownership model:
An empirical study,” e-Informatica Software Engineering
Journal, vol. 9, no. 1, 2015.

[S29] P. He, B. Li, and Y. Ma, “Towards cross-project de-
fect prediction with imbalanced feature sets,” arXiv
preprint arXiv:1411.4228, 2014.

[S30] P. He, B. Li, D. Zhang, and Y. Ma, “Simplification of
training data for cross-project defect prediction,” arXiv
preprint arXiv:1405.0773, 2014.

[S31] N. Nagappan, T. Ball, and B. Murphy, “Using histori-
cal in-process and product metrics for early estimation
of software failures,” in 2006 17th International Sympo-
sium on Software Reliability Engineering. IEEE, 2006,
pp. 62–74.

[S32] M. Thongmak and P. Muenchaisri, “Predicting faulty
classes using design metrics with discriminant analy-
sis.” in Software Engineering Research and Practice, 2003,
pp. 621–627.

[S33] L. C. Briand, W. L. Melo, and J. Wust, “Assessing the
applicability of fault-proneness models across object-
oriented software projects,” IEEE transactions on Soft-
ware Engineering, vol. 28, no. 7, pp. 706–720, 2002.

[S34] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics
to predict component failures,” in Proceedings of the
28th international conference on Software engineering.
ACM, 2006, pp. 452–461.

[S35] A. E. Camargo Cruz and K. Ochimizu, “Towards
logistic regression models for predicting fault-prone
code across software projects,” in Proceedings of the
2009 3rd International Symposium on Empirical Software
Engineering and Measurement. IEEE Computer Society,
2009, pp. 460–463.

[S36] A. Nelson, T. Menzies, and G. Gay, “Sharing experi-
ments using open-source software,” Software: Practice
and Experience, vol. 41, no. 3, pp. 283–305, 2011.

[S37] J. Nam and S. Kim, “Heterogeneous defect predic-
tion,” in Proceedings of the 2015 10th joint meeting on
foundations of software engineering. ACM, 2015, pp.
508–519.

[S38] M. Chen and Y. Ma, “An empirical study on predict-
ing defect numbers,” in Proc. of SEKE, 2015, pp. 397–
402.

[S39] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita,
N. Ubayashi, and A. E. Hassan, “Studying just-in-
time defect prediction using cross-project models,”
Empirical Software Engineering, pp. 1–35, 2015.

[S40] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “To-
wards building a universal defect prediction model
with rank transformed predictors,” Empirical Software
Engineering, pp. 1–39, 2015.

[S41] X. Jing, F. Wu, X. Dong, F. Qi, and B. Xu, “Hetero-
geneous cross-company defect prediction by unified
metric representation and cca-based transfer learn-
ing,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ACM, 2015, pp.
496–507.

[S42] Y. Zhang, D. Lo, X. Xia, and J. Sun, “An empirical
study of classifier combination for cross-project de-

fect prediction,” in Computer Software and Applications
Conference (COMPSAC), 2015 IEEE 39th Annual, vol. 2.
IEEE, 2015, pp. 264–269.

[S43] D. Ryu, J.-I. Jang, and J. Baik, “A hybrid instance se-
lection using nearest-neighbor for cross-project defect
prediction,” Journal of Computer Science and Technology,
vol. 30, no. 5, pp. 969–980, 2015.

[S44] D. Ryu, J. I. Jang, and J. Baik, “A transfer cost-sensitive
boosting approach for cross-project defect prediction,”
Software Quality Journal, pp. 1–38, 2015.

[S45] Ç. Çatal, “The use of cross-company fault data for the
software fault prediction problem,” Turkish Journal of
Electrical Engineering & Computer Sciences, pp. 3714–
3723, 2016.

[S46] P. Singh and S. Verma, “Cross project software fault
prediction at design phase,” World Academy of Science,
Engineering and Technology, International Journal of Com-
puter, Electrical, Automation, Control and Information
Engineering, vol. 9, no. 3, pp. 800–805, 2015.

References
[1] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Coun-

sell, “A systematic literature review on fault pre-
diction performance in software engineering,” IEEE
Transactions on Software Engineering, vol. 38, no. 6, pp.
1276–1304, 2012.

[2] B. Kitchenham, R. Pretorius, D. Budgen, O. P. Brere-
ton, M. Turner, M. Niazi, and S. Linkman, “Systematic
literature reviews in software engineering–a tertiary
study,” Information and Software Technology, vol. 52,
no. 8, pp. 792–805, 2010.

[3] C. Catal and B. Diri, “A systematic review of software
fault prediction studies,” Expert systems with applica-
tions, vol. 36, no. 4, pp. 7346–7354, 2009.

[4] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič,
“Software fault prediction metrics: A systematic lit-
erature review,” Information and Software Technology,
vol. 55, no. 8, pp. 1397–1418, 2013.

[5] N. E. Fenton and M. Neil, “A critique of software de-
fect prediction models,” IEEE Transactions on software
engineering, vol. 25, no. 5, pp. 675–689, 1999.

[6] K. Herzig and N. Nagappan, “Empirically detecting
false test alarms using association rules,” in Proceed-
ings of the 37th International Conference on Software
Engineering-Volume 2. IEEE Press, 2015, pp. 39–48.

[7] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,
“Benchmarking classification models for software de-
fect prediction: A proposed framework and novel
findings,” IEEE Transactions on Software Engineering,
vol. 34, no. 4, pp. 485–496, 2008.

[8] M. Jureczko and D. Spinellis, “Using object-oriented
design metrics to predict software defects,” Models and
Methods of System Dependability. Oficyna Wydawnicza
Politechniki Wrocławskiej, pp. 69–81, 2010.

[9] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič,
“Software fault prediction metrics: A systematic lit-
erature review,” Information and Software Technology,
vol. 55, no. 8, pp. 1397–1418, 2013.

[10] C. Catal and B. Diri, “Investigating the effect of dataset
size, metrics sets, and feature selection techniques on

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 37

software fault prediction problem,” Information Sci-
ences, vol. 179, no. 8, pp. 1040–1058, 2009.

[11] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén, Experimentation in software
engineering. Springer Science & Business Media, 2012.

[12] T. Menzies, J. Greenwald, and A. Frank, “Data mining
static code attributes to learn defect predictors,” IEEE
transactions on software engineering, vol. 33, no. 1, pp.
2–13, 2007.

[13] B. Turhan, “On the dataset shift problem in software
engineering prediction models,” Empirical Software En-
gineering, vol. 17, no. 1-2, pp. 62–74, 2012.

[14] V. R. Basili, F. Shull, and F. Lanubile, “Building knowl-
edge through families of experiments,” IEEE Transac-
tions on Software Engineering, vol. 25, no. 4, pp. 456–
473, 1999.

[15] G. Boetticher, T. Menzies, and T. Ostrand, “Promise
repository of empirical software engineering data,”
West Virginia University, Department of Computer Sci-
ence, 2007.

[16] V. R. Basili, L. C. Briand, and W. L. Melo, “A val-
idation of object-oriented design metrics as quality
indicators,” IEEE Transactions on software engineering,
vol. 22, no. 10, pp. 751–761, 1996.

[17] N. Ohlsson and H. Alberg, “Predicting fault-prone
software modules in telephone switches,” IEEE Trans-
actions on Software Engineering, vol. 22, no. 12, pp. 886–
894, 1996.

[18] K. El Emam, W. Melo, and J. C. Machado, “The pre-
diction of faulty classes using object-oriented design
metrics,” Journal of Systems and Software, vol. 56, no. 1,
pp. 63–75, 2001.

[19] R. Subramanyam and M. S. Krishnan, “Empirical
analysis of ck metrics for object-oriented design com-
plexity: Implications for software defects,” IEEE Trans-
actions on software engineering, vol. 29, no. 4, pp. 297–
310, 2003.

[20] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical val-
idation of object-oriented metrics on open source
software for fault prediction,” IEEE Transactions on
Software engineering, vol. 31, no. 10, pp. 897–910, 2005.

[21] N. Nagappan and T. Ball, “Static analysis tools as early
indicators of pre-release defect density,” in Proceedings
of the 27th international conference on Software engineer-
ing. ACM, 2005, pp. 580–586.

[22] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics
to predict component failures,” in Proceedings of the
28th international conference on Software engineering.
ACM, 2006, pp. 452–461.

[23] N. Nagappan and T. Ball, “Use of relative code churn
measures to predict system defect density,” in Proceed-
ings. 27th International Conference on Software Engineer-
ing, 2005. ICSE 2005. IEEE, 2005, pp. 284–292.

[24] R. Moser, W. Pedrycz, and G. Succi, “A compara-
tive analysis of the efficiency of change metrics and
static code attributes for defect prediction,” in 2008
ACM/IEEE 30th International Conference on Software
Engineering. IEEE, 2008, pp. 181–190.

[25] H. He and E. A. Garcia, “Learning from imbalanced
data,” IEEE Transactions on knowledge and data engineer-
ing, vol. 21, no. 9, pp. 1263–1284, 2009.

[26] B. W. Yap, K. A. Rani, H. A. A. Rahman, S. Fong,
Z. Khairudin, and N. N. Abdullah, “An application of
oversampling, undersampling, bagging and boosting
in handling imbalanced datasets,” in Proceedings of
the First International Conference on Advanced Data and
Information Engineering (DaEng-2013). Springer, 2014,
pp. 13–22.

[27] N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer, “Smote: synthetic minority over-
sampling technique,” Journal of artificial intelligence
research, vol. 16, pp. 321–357, 2002.

[28] C. Wohlin, “Guidelines for snowballing in system-
atic literature studies and a replication in software
engineering,” in Proceedings of the 18th International
Conference on Evaluation and Assessment in Software
Engineering. ACM, 2014, p. 38.

[29] J. Cohen, “A coefficient of agreement for nominal
scales,” in Educational and Psychological Measurement,
1960, pp. 37–46.

[30] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Data
preprocessing for supervised leaning,” International
Journal of Computer Science, vol. 1, no. 2, pp. 111–117,
2006.

[31] J. L. Hintze and R. D. Nelson, “Violin plots: a box plot-
density trace synergism,” The American Statistician,
vol. 52, no. 2, pp. 181–184, 1998.

[32] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner,
and M. Khalil, “Lessons from applying the system-
atic literature review process within the software
engineering domain,” Journal of systems and software,
vol. 80, no. 4, pp. 571–583, 2007.

[33] S. J. Pan and Q. Yang, “A survey on transfer learning,”
IEEE Transactions on knowledge and data engineering,
vol. 22, no. 10, pp. 1345–1359, 2010.

[34] U. M. Fayyad and K. B. Irani, “Multi-interval dis-
cretization of continuous-valued attributes for classi-
fication learning.” in IJCAI, R. Bajcsy, Ed. Morgan
Kaufmann, 1993, pp. 1022–1029.

[35] I. Tomek, “Two modifications of cnn,” IEEE Trans.
Systems, Man and Cybernetics, vol. 6, pp. 769–772, 1976.

[36] B. Kitchenham and S. Charters, “Guidelines for per-
forming systematic literature reviews in software en-
gineering,” 2007.

[37] M. D’Ambros, M. Lanza, and R. Robbes, “An exten-
sive comparison of bug prediction approaches,” in
2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010). IEEE, 2010, pp. 31–41.

[38] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Re-
link: recovering links between bugs and changes,” in
Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software
engineering. ACM, 2011, pp. 15–25.

[39] A. Mockus, “Amassing and indexing a large sample of
version control systems: Towards the census of public
source code history.” in MSR, vol. 9, 2009, pp. 11–20.

[40] G. Liebchen and M. Shepperd, “Data sets and data
quality in software engineering: Eight years on,”
in Proceedings of the The 12th International Conference
on Predictive Models and Data Analytics in Software
Engineering, ser. PROMISE 2016. New York, NY,
USA: ACM, 2016, pp. 7:1–7:4. [Online]. Available:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 38

http://doi.acm.org/10.1145/2972958.2972967
[41] S. Hosseini, B. Turhan, and M. Mäntylä, “Search

based training data selection for cross project
defect prediction,” in Proceedings of the The 12th
International Conference on Predictive Models and Data
Analytics in Software Engineering, ser. PROMISE
2016. New York, NY, USA: ACM, 2016, pp.
3:1–3:10. [Online]. Available: http://doi.acm.org/10.
1145/2972958.2972964

[42] D. Bowes, T. Hall, and D. Gray, “Dconfusion: a tech-
nique to allow cross study performance evaluation of
fault prediction studies,” Automated Software Engineer-
ing, vol. 21, no. 2, pp. 287–313, 2014.

[43] S. Hosseini, B. Turhan, and M. Mäntylä, “A
benchmark study on the effectiveness of search-
based data selection and feature selection for
cross project defect prediction,” Information and
Software Technology, Jun 2017. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2017.06.004

[44] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting
defects for eclipse,” in Predictor Models in Software
Engineering, 2007. PROMISE’07: ICSE Workshops 2007.
International Workshop on. IEEE, 2007, pp. 9–9.

[45] T. Menzies, J. Greenwald, and A. Frank, “Data mining
static code attributes to learn defect predictors,” IEEE
transactions on software engineering, vol. 33, no. 1, pp.
2–13, 2007.

[46] J. Dougherty, R. Kohavi, M. Sahami et al., “Super-
vised and unsupervised discretization of continuous
features,” in Machine learning: proceedings of the twelfth
international conference, vol. 12, 1995, pp. 194–202.

[47] C.-M. Teng, “Correcting noisy data.” in ICML. Cite-
seer, 1999, pp. 239–248.

[48] E. Kocaguneli, T. Menzies, A. Bener, and J. W. Keung,
“Exploiting the essential assumptions of analogy-
based effort estimation,” IEEE Transactions on Software
Engineering, vol. 38, no. 2, pp. 425–438, 2012.

[49] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data
quality: Some comments on the nasa software defect
datasets,” IEEE Transactions on Software Engineering,
vol. 39, no. 9, pp. 1208–1215, 2013.

[50] L. Hedges and I. Olkin, Statistical Methods
for Meta-analysis. Academic Press, 1985. [On-
line]. Available: https://books.google.ca/books?id=
brNpAAAAMAAJ

[51] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Lay-
man, F. Shull, B. Turhan, and T. Zimmermann, “Local
versus global lessons for defect prediction and effort
estimation,” IEEE Transactions on software engineering,
vol. 39, no. 6, pp. 822–834, 2013.

[52] R. Malhotra and A. J. Bansal, “Fault prediction con-
sidering threshold effects of object-oriented metrics,”
Expert Systems, vol. 32, no. 2, pp. 203–219, 2015.

[53] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and
K. Matsumoto, “Automated parameter optimization
of classification techniques for defect prediction mod-
els,” in Proceedings of the 38th International Conference
on Software Engineering. ACM, 2016, pp. 321–332.

[54] T. Menzies and M. Shepperd, “Special issue on repeat-
able results in software engineering prediction,” 2012.

[55] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revis-

iting the impact of classification techniques on the
performance of defect prediction models,” in Proceed-
ings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 2015, pp. 789–800.

[56] J. Demšar, “Statistical comparisons of classifiers over
multiple data sets,” Journal of Machine learning research,
vol. 7, no. Jan, pp. 1–30, 2006.

[57] S. Wang, T. Liu, and L. Tan, “Automatically learning
semantic features for defect prediction,” in Proceedings
of the 38th International Conference on Software Engineer-
ing. ACM, 2016, pp. 297–308.

[58] K. Kamvar, S. Sepandar, K. Klein, D. Dan, M. Man-
ning, and C. Christopher, “Spectral learning,” in Inter-
national Joint Conference of Artificial Intelligence. Stan-
ford InfoLab, 2003.

[59] Y. Gao and C. Yang, “Software defect prediction based
on manifold learning in subspace selection,” in Pro-
ceedings of the 2016 International Conference on Intelligent
Information Processing. ACM, 2016, p. 17.

[60] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza,
R. Coelho, and A. Hassan, “A framework for evaluat-
ing the results of the szz approach for identifying bug-
introducing changes,” IEEE Transactions on Software
Engineering, 2016.

[61] J. Śliwerski, T. Zimmermann, and A. Zeller, “When
do changes induce fixes?” in ACM sigsoft software
engineering notes, vol. 30, no. 4. ACM, 2005, pp. 1–
5.

[62] T. Zimmermann, S. Kim, A. Zeller, and E. J. White-
head Jr, “Mining version archives for co-changed
lines,” in Proceedings of the 2006 international workshop
on Mining software repositories. ACM, 2006, pp. 72–75.

[63] C. Williams and J. Spacco, “Szz revisited: verifying
when changes induce fixes,” in Proceedings of the 2008
workshop on Defects in large software systems. ACM,
2008, pp. 32–36.

[64] S. Davies, M. Roper, and M. Wood, “Comparing text-
based and dependence-based approaches for deter-
mining the origins of bugs,” Journal of Software: Evo-
lution and Process, vol. 26, no. 1, pp. 107–139, 2014.

[65] M. DAmbros, M. Lanza, and R. Robbes, “Evaluating
defect prediction approaches: a benchmark and an
extensive comparison,” Empirical Software Engineering,
vol. 17, no. 4-5, pp. 531–577, 2012.

[66] J. E. Jackson, A user’s guide to principal components.
John Wiley & Sons, 2005, vol. 587.

[67] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and
Y. Jiang, “Implications of ceiling effects in defect pre-
dictors,” in Proceedings of the 4th international workshop
on Predictor models in software engineering. ACM, 2008,
pp. 47–54.

[68] N. J. Pizzi, A. R. Summers, and W. Pedrycz, “Soft-
ware quality prediction using median-adjusted class
labels,” in Neural Networks, 2002. IJCNN’02. Proceed-
ings of the 2002 International Joint Conference on, vol. 3.
IEEE, 2002, pp. 2405–2409.

[69] R. DerSimonian and N. Laird, “Meta-analysis in clin-
ical trials,” Controlled clinical trials, vol. 7, no. 3, pp.
177–188, 1986.

[70] R. E. Slavin, “Best-evidence synthesis: An alternative
to meta-analytic and traditional reviews,” Educational

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 39

researcher, vol. 15, no. 9, pp. 5–11, 1986.
[71] J. E. Hunter, F. L. Schmidt, and G. B. Jackson, Meta-

analysis: Cumulating research findings across studies.
Sage Publications, Inc, 1982, vol. 4.

[72] G. V. Glass, B. MacGaw, and M. L. Smith, Meta-analysis
in social research. Sage Beverly Hills, CA., 1984.

[73] R. Coe, “It’s the effect size, stupid: What effect size
is and why it is important,” in presented at the Annual
Conference of the British Educational Research Association,
2002.

[74] J. Cohen, “Statistical power analysis for the be-
havioural sciences (rev. ed.),” New York: Academic,
1977.

[75] A. P. Field, “Meta-analysis of correlation coefficients:
a monte carlo comparison of fixed-and random-effects
methods.” Psychological methods, vol. 6, no. 2, p. 161,
2001.

[76] M. Borenstein, L. V. Hedges, J. Higgins, and H. R.
Rothstein, “A basic introduction to fixed-effect and
random-effects models for meta-analysis,” Research
synthesis methods, vol. 1, no. 2, pp. 97–111, 2010.

[77] R. D. Riley, J. P. Higgins, and J. J. Deeks, “Interpreta-
tion of random effects meta-analyses,” Bmj, vol. 342,
p. d549, 2011.

[78] C. for reviews and dissemination (CRD), Systematic
reviews: CRD’s guidance for undertaking reviews in health
care. Centre for Reviews and Dissemination, 2009.

[79] B. Kitchenham, E. Mendes, and G. H. Travassos, “A
systematic review of cross-vs. within-company cost
estimation studies,” in Proceedings of the 10th interna-
tional conference on Evaluation and Assessment in Soft-
ware Engineering. British Computer Society, 2006, pp.
81–90.

[80] B. A. Kitchenham, E. Mendes, and G. H. Travassos,
“Cross versus within-company cost estimation stud-
ies: A systematic review,” IEEE Transactions on Software
Engineering, vol. 33, no. 5, 2007.

[81] B. W. Boehm, “Understanding and controlling soft-
ware costs,” Journal of Parametrics, vol. 8, no. 1, pp.
32–68, 1988.

[82] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and
B. Murphy, “Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process,” in
Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering.
ACM, 2009, pp. 91–100.

[83] B. Turhan, G. Kocak, and A. Bener, “Data mining
source code for locating software bugs: A case study
in telecommunication industry,” Expert Systems with
Applications, vol. 36, no. 6, pp. 9986–9990, 2009.

[84] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano,
“On the relative value of cross-company and within-
company data for defect prediction,” Empirical Soft-
ware Engineering, vol. 14, no. 5, pp. 540–578, 2009.

[85] B. Turhan, A. Tosun, and A. Bener, “Empirical eval-
uation of mixed-project defect prediction models,” in
Software Engineering and Advanced Applications (SEAA),
2011 37th EUROMICRO Conference on. IEEE, 2011, pp.
396–403.

[86] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto,

A. Panichella, and S. Panichella, “Multi-objective
cross-project defect prediction,” in Software Testing,
Verification and Validation (ICST), 2013 IEEE Sixth In-
ternational Conference on. IEEE, 2013, pp. 252–261.

[87] G. Boetticher, T. Menzies, and T. Ostrand, “Promise
repository of empirical software engineering data,”
West Virginia University, Department of Computer Sci-
ence, 2007.

[88] T. Menzies, E. Kocaguneli, B. Turhan, L. Minku, and
F. Peters, Sharing data and models in software engineering.
Morgan Kaufmann, 2014.

[89] “The promise repository of empirical software engi-
neering data,” 2015.

[90] “The seacraft repository of empirical software engi-
neering data,” 2017.

[91] A. T. Misirli, B. Caglayan, A. Bener, and B. Turhan, “A
retrospective study of software analytics projects: In-
depth interviews with practitioners,” IEEE Software,
vol. 30, no. 5, pp. 54–61, 2013. [Online]. Available:
https://doi.org/10.1109/MS.2013.93

[92] Y. Rafique and V. B. Misic, “The Effects of Test-Driven
Development on External Quality and Productivity:
A Meta-Analysis,” Software Engineering, IEEE Transac-
tions on, vol. 39, no. 6, pp. 835–856, Jun. 2013.

[93] K. Herzig and N. Nagappan, “Empirically detecting
false test alarms using association rules,” in
Proceedings of the 37th International Conference on
Software Engineering - Volume 2, ser. ICSE ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 39–48.
[Online]. Available: http://dl.acm.org/citation.cfm?
id=2819009.2819018

[94] J. E. Hannay, T. Dyb, E. Arisholm, and D. I.
Sjberg, “The effectiveness of pair programming: A
meta-analysis,” Information and Software Technology,
vol. 51, no. 7, pp. 1110 – 1122, 2009, special
Section: Software Engineering for Secure Systems.
[Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0950584909000123

[95] B. A. Kitchenham, D. Budgen, and P. Brereton,
Evidence-Based Software Engineering and Systematic Re-
views. Chapman & Hall/CRC, 2015.

[96] M. Borenstein, L. V. Hedges, J. P. T. Higgins, and H. R.
Rothstein, Criticisms of Meta-Analysis. John Wiley
& Sons, Ltd, 2009, pp. 377–387. [Online]. Available:
http://dx.doi.org/10.1002/9780470743386.ch43

[97] M. Lanza, A. Mocci, and L. Ponzanelli, “The
tragedy of defect prediction, prince of empirical
software engineering research,” IEEE Software, vol. 33,
no. 6, pp. 102–105, 2016. [Online]. Available:
https://doi.org/10.1109/MS.2016.156

[98] V. Nair, T. Menzies, N. Siegmund, and S. Apel,
“Using bad learners to find good configurations,”
CoRR, vol. abs/1702.05701, 2017. [Online]. Available:
http://arxiv.org/abs/1702.05701

[99] M. Rees-Jones, M. Martin, and T. Menzies,
“Better predictors for issue lifetime,” CoRR,
vol. abs/1702.07735, 2017. [Online]. Available:
http://arxiv.org/abs/1702.07735

[100] S. Hosseini, D. Gunarathna, and B. Turhan, “Cpdp
slr replication package,” Jul. 2017. [Online]. Available:
https://doi.org/10.5281/zenodo.833011

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, DECEMBER 2016 40

[101] “Scitools source code analysis and metrics,
understand for java, available at.” [Online]. Available:
http://www.scitools.com

[102] E. G. Jelihovschi, J. C. Faria, and I. B. Allaman,
“Scottknott: a package for performing the scott-knott
clustering algorithm in r,” TEMA (São Carlos), vol. 15,
no. 1, pp. 3–17, 2014.

[103] G. Macbeth, E. Razumiejczyk, and R. D. Ledesma,
“Cliff’s delta calculator: A non-parametric effect size
program for two groups of observations,” Universitas
Psychologica, vol. 10, no. 2, pp. 545–555, 2011.

[104] N. Mittas and L. Angelis, “Comparing cost prediction
models by resampling techniques,” Journal of Systems
and Software, vol. 81, no. 5, pp. 616–632, 2008.

[105] N. Nagappan and T. Ball, “Static analysis tools as early
indicators of pre-release defect density,” in Proceedings
of the 27th international conference on Software engineer-
ing. ACM, 2005, pp. 580–586.

