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Abstract

Owing to the availability of data of one biological phenomenon at different levels/scales, modelling of biological systems is
moving from single level/scale to multiple levels/scales, which introduces a number of challenges. Coloured Petri nets
(ColPNs) have been successfully applied to multilevel, multiscale and multidimensional modelling of some biological sys-
tems, addressing many of these challenges. In this article, we first review the basics of ColPNs and some popular extensions,
and then their applications for multilevel, multiscale and multidimensional modelling of biological systems. This under-
standing of how to use ColPNs for modelling biological systems will assist readers in selecting appropriate ColPN classes for
specific modelling circumstances.
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Introduction

Systems biology [1, 2] studies the interactions between the com-
ponents of a biological system and how the interactions pro-
duce the behaviour of that system. Mathematical and
computational modelling plays a crucial role in achieving this
goal. So far, a variety of modelling approaches, including Petri
nets, Boolean networks and (ordinary or partial) differential
equations, have been applied to a wide field of biological sys-
tems (see [3, 4] for reviews). Among them, Petri nets are particu-
larly appropriate for describing and analysing the concurrent,
asynchronous and dynamic behaviour of complex biological
systems. Since Reddy et al. [5] introduced qualitative Petri nets
to model metabolic pathways, different types of Petri nets [e.g.
stochastic Petri nets (SPNs), timed Petri nets, continuous Petri
nets (CPNs) and hybrid Petri nets] have been proposed for mod-
elling biological systems [4, 6, 7]. However, as an

unparameterized method, these standard Petri nets do not
easily scale, and so they are usually applicable for representing
smaller (biological) systems only.

In the past few years, because of the availability of data of
one biological phenomenon at different levels/scales, modelling
of biological systems has moved from single level/scale to mul-
tiple levels/scales [8]. Multilevel/multiscale modelling integrates
information at different levels/scales into one model, which can
more accurately describe a system and thus provide more
insights into the system. Although ‘multi-level’ and ‘multiscale’
are often synonymously used, they are in fact distinct [9, 10]. In
this article, we wish to distinguish them, but do not intend to
provide a rigorous definition for them. Multilevel modelling con-
siders dynamic processes at multiple levels (e.g. subcellular, cel-
lular, tissue level) of biological systems, while multiscale
modelling incorporates multiple different temporal and spatial
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scales in one model, regardless of whether the model has multi-
ple levels. A multilevel model is not necessarily a multiscale
model, and vice versa. However, multiple levels usually coincide
with multiple spatial and temporal scales. Besides, apart from
multilevel and multiscale aspects, a biological model could also
be constructed as multidimensional [11]. For example, when
studying reaction–diffusion processes, we can model this phe-
nomenon in one-, two- or three-dimensional (shortly 1 D, 2 D or
3 D) space. The model involving more dimensions usually repre-
sents the system to be studied more accurately. Modelling
beyond one level/scale introduces plenty of challenges, e.g.
repetition of components (e.g. cells, tissues), (hierarchical)
organization, communication or movement of components,
differentiation, division or deletion of components or pattern
formation of a biological system. To address these challenges,
coloured Petri nets (ColPNs) have been used to construct
multilevel, multiscale and multidimensional models, and
gained increased popularity for a wide spectrum of applications
[12, 13].

ColPNs [14, 15] are an extension of standard Petri nets, which
were proposed to represent large complex systems. Using
ColPNs, a group of similar components of a system can be repre-
sented as one component, each of which is encoded as a
colour and thus distinguished by this colour. ColPNs offer
parameterized and compact representations of complex sys-
tems, without losing the analysis capabilities of standard Petri
nets thanks to automatic unfolding. Moreover, ColPNs provide
the possibility to easily increase the size of a model consisting
of many similar components just by adding new colours.
ColPNs have been widely applied to modelling protocols and
technical networks, software, workflows and business proc-
esses, hardware and manufacturing systems [16]. Recently,
ColPNs have been used for modelling biological systems, e.g. in
an early attempt, ColPNs were used for discriminating metabo-
lites, which follow different T-invariants [17]. Later, a ColPN-
based approach to multilevel/multiscale modelling of biological
systems has been presented in [12], and some successful appli-
cations appeared, e.g. modelling multicellular systems [18] and
spatial diffusion [11].

In summary, ColPNs have been proven to be appropriate to
construct multilevel, multiscale and multidimensional models.

• Multilevel modelling. The levels to be considered can be repre-

sented by the use of tuples within tuples. That is, each tuple enc-

odes a level. For example, in the fly wing, we use a colour tuple

(x, y) to represent the cell level, and another tuple (a, b) to repre-

sent each compartment of a cell. Thus, a nested tuple ðx; y; ða; bÞÞ
describes two levels of the fly wing model [19].

• Multiscale modelling. Multiscale modelling is often accompanied

with multilevelness. Thus, the encoding of multiscale models

with colours is similar to that for multilevel modelling. The map-

ping functions between spatial scales can be implemented via

media (auxiliary) nodes (places or transitions), which are then

used by rate functions at different scales [20]. The mapping func-

tions between temporal scales can be explicitly represented via

hybrid Petri nets [21].
• Multidimensional modelling. A multidimensional grid can be repre-

sented by the use of colour tuples, whose arity respects the num-

ber of dimensions: 1, 2 or 3. That is, a colour encodes a spatial

locality of the grid in 1D, 2D or 3D space. For example, in a 2D

grid, each grid cell can be defined as a colour tuple, e.g. (x, y), and

the connectivity between cells can be defined as a neighbour-

hood function of colours [11]. Furthermore, tessellation of

different shapes, e.g. hexagonal cells instead of rectangular cells,

can also be easily defined [22].

In this article, we will review the basics and some extensions
of ColPNs and also their applications for the modelling of bio-
logical systems in terms of the aforementioned three categories.
We hope this review will open the door for a wide use of ColPNs
in the systems biology area.

Coloured Petri nets

ColPNs offer a parameterized method for modelling a large sys-
tem, where a group of similar components of the system is
defined as and distinguished by a set of colours, thus presenting
a compact representation of that system. For example, Figure
1B gives a ColPN by defining the left and right components
(both components have the same structure) in Figure 1A as two
colours.

As standard Petri nets, ColPNs [12, 24] are directed bipartite
multi-graphs and consist of places, transitions and arcs connect-
ing places and transitions. In the biological scenario, places
may represent any species or chemical compounds, such as
genes, mRNAs, proteins, protein conformations or protein com-
plexes, while transitions may represent chemical reactions
(such as transcription and translation), molecular interactions
or intramolecular changes. Additionally, a group of colour sets is
defined for a ColPN. Each colour set is based on a data type,
which is a set of values (colours) that obey some properties of a
programming language [25]; common data types include inte-
ger, Boolean, string, enumeration and structure. Each place gets
assigned a colour set and may contain distinguishable tokens,
i.e. each token is associated with a specific colour. As there can
be several tokens of the same colour on a given place, the
tokens on the place are best described by a multiset over its
colour set. A specific distribution of tokens on all places consti-
tutes a marking of a ColPN. Each transition is associated with a
guard, which is a Boolean expression over defined variables,
constants and functions. The guard of a transition has to be
evaluated to true for enabling the transition. The trivial guard
‘true’ is usually not explicitly given. Each arc gets assigned an
expression; the result type of the expression is a multiset over
the colour set of the connected place. In Table 1, we briefly com-
pare properties of the elements in ColPNs and uncoloured Petri
nets, taking the models in Figure 1 as an example.

Each colour of a place corresponds to a place instance when
unfolded. Each transition is surrounded by a set of expressions,
including its guard and the expressions on its adjacent arcs,
which may involve a set of variables. Before the expressions are
evaluated, the variables must be assigned values of suitable
data types, which is called binding [24]. Each binding of a transi-
tion corresponds to a transition instance when unfolded. Enabling
and firing of a transition instance are based on the evaluation of
both its guard and related arc expressions. If the guard is eval-
uated to true and the preplaces have sufficient appropriately
coloured tokens after the arc expressions were evaluated for a
given binding, the transition instance that corresponds to the
binding is enabled and may fire. When a transition instance
fires, it removes appropriately coloured tokens from its prepla-
ces and adds appropriately coloured tokens to its postplaces, i.e.
it changes the current marking to a new reachable one. The col-
ours of the tokens that are removed from preplaces and added
to postplaces are decided by arc expressions. The set of mark-
ings reachable from the initial marking constitutes the state
space of a given net. These reachable markings and transitions
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instances between them constitute the reachability graph of the
net.

An uncoloured Petri net (Figure 1A) can be folded to a ColPN
(Figure 1B), either manually or in a semi-automatic way [26].
Vice versa, a ColPN (Figure 1B) can be automatically unfolded to
an uncoloured Petri nets (Figure 1A); afterwards all the simula-
tion algorithms or analysis techniques for uncoloured Petri nets
can be used for ColPNs [27].

Based on basic ColPNs, many extensions have been pro-
posed for different purposes, e.g. arc extensions [coloured Petri
nets with extended arcs (ColXPNs)], time extensions [coloured
time and coloured stochastic Petri nets (ColSPNs)] and state
space extensions [coloured continuous and coloured hybrid
Petri nets (ColHPNs)] [28]. In the following, we briefly review the
most important extensions, which have already been used or
potentially could be used for the modelling of biological
systems.

Coloured Petri nets with extended arcs

ColPNs have been extended to incorporate different special arc
types such as read arcs (often also called test arcs), inhibitor arcs
and reset arcs [12, 28]. These special arcs either make the model
representation more compact while keeping the modelling
power, or strictly extend the modelling power of the Petri net
formalism. All these special arcs are only allowed to go from
places to transitions. Read and inhibitor arcs add constraints on
the firing of a transition, but the connected places are not
affected on firing. A read arc allows to model that some
resource (e.g. enzyme in a chemical reaction) is required, but

not exclusively and it is not consumed on firing; hence, the
same token could be used at the same time by more than one
transition. An inhibitor arc reverses the logic of the enabling
condition of a place, i.e. it imposes a constraint that a transition
may only fire if the place contains less tokens than the weight
that the arc indicates. A reset arc empties the place connected
by this arc once the transition fires; the number of tokens on
the place does not matter for enabling. Besides, ColPNs can be
further enriched to include marking-dependent arcs, i.e. the arc
multiplicities are allowed to be marking-dependent expressions of
various types in terms of a transition’s preplaces [29], which
facilitates the modelling of some special biological scenarios
such as cell division [30, 31]. ColPNs and ColXPNs can be ana-
lysed using a variety of techniques, such as structural analysis
(confined to models without special arcs extending the model-
ling power) [12] or state space analysis based on computational
tree logic (CTL), which is a branching time temporal logic [32]
matching the needs for analysing reachability graphs (model
checking). See [12] for details on the use of these techniques for
the analysis of ColPNs. ColPNs and ColXPNs have been widely
used for modelling biological systems when kinetic data are not
available.

Coloured timed Petri nets

There are many different types of coloured timed (or time) Petri
nets (ColTPNs), but here we confine ourselves to the ColTPNs
implemented in CPN tools [24], which have gained wider use in
different fields. In a ColTPN, each token carries a second value
called a time stamp (a non-negative integer) in addition to the

(a) (b)

Figure 1. A ColPN example. (A) A prey–predator Petri net model with migration. (B) A ColPN model by folding the left and right components in (A). The declarations are

as follows: CS¼enumeration with a, b; variable x: CS. The successor operator ‘þ’ in the arc expression þx returns the successor of x in an ordered finite colour set; if x is

the last colour, then it returns the first colour. See [23] for the syntax of all declarations.

Table 1. A Comparison of properties of elements in ColPNs and uncoloured Petri nets

Elements ColPNs Uncoloured Petri nets

Declaration Colour sets, e.g. CS¼enumeration with a, b N/A
Variables, e.g. x: CS N/A

Place A colour set, e.g. CS for p1 N/A
Coloured tokens, e.g. 10�aþþ10�b on p1 Black tokens, e.g. 10 on place p1 a

Transition A guard, e.g. ‘true’ for r1 N/A
Arc A multiset expression, e.g. 2�x on the arc (r1, p1) A positive integer multiplicity, e.g. 2 on the arc ðr1 a; p1 aÞ
Marking A vector of multiset expressions A vector of non-negative integers

Note: N/A: Not applicable.
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token’s colour. The time stamp of a token tells us the time at
which the token can be moved from its associated place.
ColTPNs work in a similar way as event queues in many simula-
tion engines of discrete event simulation. Using ColTPNs, per-
formance measures of a system can be computed. In the
biological area, early applications were usually done with
ColPNs or ColTPNs supported by CPN tools or its predecessor
Design/CPN [33]; see [34, 35].

Coloured stochastic Petri nets

ColSPNs are a coloured version of stochastic Petri nets (SPNs)
[12]. A firing delay is introduced and associated with each tran-
sition, which is a random variable defined by an exponential
probability distribution. Therefore, the semantics of a ColSPN is
equivalent to a continuous time Markov chain (CTMC), which is
constructed from the reachability graph of the underlying quali-
tative Petri net by labelling the arcs between states with the
state transition rates. Thus, in addition to the analysis techni-
ques given above, we can further use such quantitative analysis
techniques as model checking continuous stochastic logic (CSL)

[36], a probabilistic counterpart of CTL, or probabilistic linear-
time temporal logic with numerical constraints (PLTLc) [37] for
analysing ColSPNs. Besides, we can adopt a Gillespie stochastic
simulation method [38] to simulate ColSPNs [28]. Nowadays,
ColSPNs have been extended to incorporate all special arc types
mentioned above, and also different kinds of transitions such
as immediate, deterministic and scheduled transitions [12, 28].
These features make ColSPNs a powerful tool to model and ana-
lyse large-scale biological systems in a stochastic way.

Stochastic well-formed nets

Stochastic well-formed nets (SWNs) [39] were introduced by
adding restrictions to general ColPNs to exploit symmetry prop-
erties to analyse large models. By restricting the syntax for the
model definition, SWNs can be simulated or analysed more effi-
ciently than general ColPNs with arbitrary and not well-formed
colour functions. That is, SWNs obtain a gain in simulation and
analysis speed at the cost of the loss in the modelling power
and convenience, which, however, hinders the application of
SWNs. Currently, SWNs are implemented in GreatSPN [40], and
mainly used for modelling technical systems.

Coloured continuous Petri nets

Coloured continuous Petri nets (ColCPNs) are a coloured version
of CPNs [12]. In ColCPNs, the discrete values on places are
replaced with continuous real values, which describe the overall
behaviour of species represented by places via concentrations.
A deterministic rate is associated with each transition, which
makes a CPN model representing a set of ordinary differential
equations (ODEs). Contrary to discrete Petri nets, the state space
of a ColCPN is continuous and linear, so we can analyse it using
a linear temporal logic (LTL) [41], e.g. linear temporal logic with
constraints (LTLc) in the manner of [42]. Of course, different
ODE numerical algorithms can be used for simulating ColCPNs
[28]. ColCPNs can be easily used to graphically model biological
systems traditionally described by a set of ODEs, without having
to write error-prone formulas, which should specifically be wel-
comed by biologists.

Coloured hybrid Petri nets

ColHPNs [43] represent a more recently introduced Petri net
class, obtained by combining generalized hybrid Petri nets [30]
with ColPNs. It supports both stochastic and deterministic proc-
esses in one model. The stochastic part can be explained as a
CTMC, and the deterministic part as a set of ODEs. Efficient sim-
ulation algorithms for ColHPNs have been developed and imple-
mented in Snoopy [28, 44]. ColHPNs are specifically appropriate
to accommodate systems with multiple spatial and temporal
scales. In [43], Herajy et al. illustrated the application of ColHPNs
for modelling and analysing biological systems.

Moreover, a unifying ColPN framework has been developed
and implemented in Snoopy, consisting of ColPNs, ColXPNs,
ColSPNs, ColCPNs and ColHPNs [12, 28], which can be conven-
iently converted into each other. This allows us to investigate
one and the same biological system with different modelling
abstractions in various complementary ways. See [12, 28] for
more details about the relationships among these net classes.

ColPN tools

There are a number of tools for ColPNs; Table 2 summarizes
some popular ones and related modelling and analysis capabil-
ities. Different tools vary a lot in the support of different net
classes and their analysis techniques. For example, Snoopy sup-
ports many net classes, while CPN tools and GreatSPN only sup-
port one or two net classes. Moreover, both Snoopy and CPN
tools support hierarchical modelling.

As described above, ColPNs enjoy rich analysis techniques,
which not only make use of all analysis capabilities of standard
Petri nets by means of automatic unfolding but also have their
own analysis techniques working directly on the coloured level.
The animation is equipped by many tools, which enables us to
experience the model behaviour by following the token flow,
thus establishing initial confidence in the model. Further, simu-
lation of each specific ColPN class (Table 2) strengthens this
confidence by allowing us to investigate specific simulation
traces. To gain deeper insights into the constructed models, for-
mal analysis techniques and related tools, e.g. state space anal-

ysis in CPN tools, have to be adopted (see Table 3 for more
details). For example, a ColPN model built in Snoopy can be
automatically unfolded to an uncoloured Petri net and then fed
into Charlie to obtain analysis results about its structural or
behavioural properties. In a similar way, a ColSPN model can be
subjected to CSL model checking by help of Marcie. For PLTLc
model checking, we can export Snoopy’s simulation traces and
feed them to MC2 to accomplish sophisticated analyses. A
detailed description of the use of these analysis techniques for
ColPNs can be found in [12, 45].

Early biological applications [34, 35, 48] of ColPNs and a few
current ones [49] resort to Design/CPN or its successor CPN
tools, which usually involve smaller models, and so the benefits
of the application of ColPNs might not be always obvious.
Moreover, neither tool was specifically designed with the
requirements of systems biology in mind. Thus, they are not
suitable in many aspects, e.g. they do not directly support sto-
chastic or continuous modelling nor the simulative analysis of
the models by stochastic or deterministic simulation. Keeping
these drawbacks in mind, the ColPNs for systems biology were
proposed and implemented in Snoopy, which are now widely
used by biologists [12].
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Applications

In this section, we will review applications of ColPNs for model-
ling biological systems in the aforementioned three categories.

Multilevel modelling

Multilevel modelling is still an open and challenging problem. A
typical application of multilevel modelling is the multicellular
pattern formation, which plays a central role in developmental
biology [50]. Recently, ColPNs have been applied to address this
issue and have shown promising results.

Liu et al. [51] used hierarchical ColPNs to build a multicellular
model of Caenorhabditis elegans vulval development. Here, a col-
our set with six colours is defined, encoding six vulval precursor
cells. They focused on illustrating the application of their ColPN
framework for modelling and analysing complex biological sys-
tems. At first, the C. elegans vulval development issue is repre-
sented as a hierarchical ColXPN model, for which animation
and structural analysis are done to assure the correctness of the
model. Then, rate information is assigned to the ColXPN model,
and thus the ColSPN and ColCPN models are obtained, depend-
ing on the interpretation of the rates (stochastic or determinis-
tic). The ColSPN model is stochastically simulated and analysed
by PLTLc model checking, while the ColCPN model is determin-
istically simulated and analysed by PLTLc model checking.
Thus, a biological system can be explored from three different
perspectives: qualitative, stochastic and continuous with this
framework. Besides, they gave a detailed procedure for con-
structing a ColPN model for a biological system. This work is a
good starting point for using ColPNs for the modelling and anal-
ysis of biological systems.

Gao et al. [18, 19, 52, 53] created a more complex multilevel
model of the planar cell polarity in Drosophila wing with

hierarchical ColSPNs and ColCPNs. The model considers an
array of hexagonal epithelial cells in the wing tissue, and each
cell is further divided into seven virtual compartments. This
model uses a colour set of a two-layer hierarchy, which is
implemented using two tuples. The first tuple represents the
coordinates of a cell in the epithelial tissue, and the second
tuple represents the position of a virtual compartment within
that cell. The size of the model simulated in their paper [19] is a
tissue of 400 cells, generating an underlying Petri net model of
164 000 places and 229 669 transitions. Such a huge model can-
not be easily handled by traditional modelling approaches (if at
all). Continuous and stochastic simulations together with
numerical model checking are used for analysing the behaviour
of the model. Note that this model illustrates many multilevel
challenges such as repetition of cells, hierarchical organization
of cells, communication between cells and pattern formation.

Carvalho et al. [54–56] created a multilevel ColPN model for
reproducing the dynamics of the steps that are involved in the
infection process and innate immune response. This model has
a hierarchical structure with four different levels (molecular,
intracellular, intercellular and the whole system). Three com-
pound colour sets, Bacteria, Macrophage and Granuloma, are
declared to represent the position and/or status of the individu-
als of Mycobacterium marinum bacteria, host macrophage
immune cells and granuloma with a number of infected macro-
phages, respectively. Animation and stochastic simulation were
used to analyse the model.

To facilitate the construction of ColPN models for complex
biological systems, Liu et al. [57] presented two methods for
automatically generating ColPN models for a given set of Petri
net networks (solutions) that can be obtained be help of net-
work reconstruction algorithms proposed in, e.g., [58]. In [26],
Liu et al. describe a compositional ColPN approach to aid the

Table 2. Selection of ColPN tools

Name Main functions (coloured-specific) Website

Snoopy [28] ColPN and ColXPN modelling, animation http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy
ColSPN modelling, animation, stochastic simulation
ColCPN modelling, deterministic simulation
ColHPN modelling, hybrid simulation
Hierarchical modelling
Export to external tools like Charlie and Marcie

CPN tools [24] ColPN modelling, animation http://cpntools.org/
ColTPN modelling, simulation
Hierarchical modelling
State space analysis

GreatSPN [40] SWN modelling http://www.di.unito.it/greatspn/
Coloured and symbolic reachability graph
Coloured and symbolic simulation

Table 3. Some analysis tools of Petri nets, which can be used for coloured petri nets

Name Main functions Website

Charlie [46] Structural analysis of Petri nets http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie
CTL/LTL model checking of Petri nets

Marcie [47] CTL model checking of Petri nets http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Marcie
CSL model checking of Petri nets
PLTLc model checking of simulation traces

MC2 [37] PLTLc model checking of simulation traces http://www.brunel.ac.uk/__data/assets/file/0003/380820/MC2v2.0beta2.zip
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automatic construction of multilevel models, where they
defined several composition operations such as sequential,
choice and synchronization operations. A ColPN model is
obtained by iteratively applying these operations to the given
components. Similarly, Gratie et al. [59, 60] proposed an algo-
rithm for building ColPN models, given a reaction-based model
with known compositional structure, which can be considered
as a ColPN modelling method at the intracellular level. Besides,
Pennisi et al. [61] gave a novel methodological approach mainly
based on ColPNs, and illustrated their approach with the
immune system response at the cellular level.

The applications summarized above illustrate that ColPNs
are capable of multilevel modelling and thus have become a
powerful tool for modelling and analysing multilevel systems.
For example, [19] shows how a tissue with 400 cells can be easily
modelled using ColPNs; however, [62] reports that it became
extremely difficult to build a Petri net model with 60 cells.

Multiscale modelling

Models of multiple spatial scales can be constructed with any
type of ColPNs. Moreover, ColHPNs offer a powerful tool for con-
sidering both multiple spatial and multiple temporal scales.

Liu et al. [20] used ColSPNs to model a large number of
coupled Ca2þ channels at different spatial scales to explore the
mechanisms of how coupled Ca2þ channels work in a stochastic
way. They first constructed a ColSPN model for single clusters
of coupled Ca2þ channels by arranging them in a regular or
irregular lattice, each lattice site being a colour and representing
a Ca2þ channel. They further created a ColSPN model for an
array of clusters of coupled Ca2þ channels, where a tuple colour
set is used to represent an array of clusters and another tuple
colour set to represent the Ca2þ channels in each cluster. Here,
a global place is used to count the number of activated channels
(cluster scale), which is then used by the rate function of each
channel (channel scale).

Heiner et al. [13] built a ColSPN model for the phase variation
in bacterial colony growth. They represented a 3 D colony using
a 2 D grid with a finite capacity on each grid position, and
assumed an equal maximal height over the whole cell colony
(i.e. all grid positions have the same capacity). The model high-
lights the following issues: multiple scales (from individual
scale to colony scale), mobility of components and 2 D pattern
formation. Further, Pârvu et al. [22, 63] explored the application
of two different geometries, rectangular and circular, for model-
ling the phase variation patterning using ColSPNs, and devel-
oped techniques for analysing the properties of the patterns
generated by phase variation. Besides, they developed a method
to verify multiscale models with spatio-temporal model check-
ing [64, 65].

Moreover, ColHPNs have been applied to the modelling of
biological systems at multiple spatial and temporal scales. For
example, Herajy et al. [43] demonstrated the application of
ColHPNs using as example a synthetic circuit, the repressilator.
Here, each gene is encoded as a colour. In the repressilator
model, the protein part is considered as deterministic, but the
gene part as stochastic. Although this model is simple, it illus-
trates an important issue, i.e. how to partition discrete and
deterministic components of a biological system. To further
illustrate the use of ColHPNs, Herajy et al. gave in [21] two more
case studies, the bistable switch model based on multisite phos-
phorylation, and the dendritic spine model describing calcium
dynamics. In the first model, the reactions guiding the perturba-
tion of the system are modelled and simulated stochastically,

and all others deterministically. In the second model, the diffu-
sion reactions are treated deterministically, and the others sto-
chastically. These works illustrate well the application of
ColHPNs for modelling biological systems at multiple temporal
scales. Besides, Herajy et al. [44] described all the hybrid simula-
tion algorithms used for ColHPNs in Snoopy and illustrated the
use of Snoopy to construct and analyse ColHPNs for biological
systems. This article provides an overview of how the simula-
tion of ColHPNs works.

Recently, whole-cell modelling has been presented, which is
expected to have a great impact on systems biology [66]. Whole-
cell modelling focuses on individual cells and thus needs to
represent every known cellular and gene function in different
compartments. However, so far, there are no well-established
approaches for whole-cell modelling. Considering the features
of whole-cell models, ColHPNs could be supportive for the sys-
tematic construction of whole-cell models at multiple spatial
and temporal scales.

Multidimensional modelling

Some biological problems can be studied in different dimen-
sional spaces. For example, reaction–diffusion is an important
phenomenon in developmental processes, which can be consid-
ered in 1 D, 2 D or 3 D space. If the diffusion of species is fast, the
involved biological processes can be seen as homogenous, and
the spatial effects can be ignored; otherwise, the spatial distri-
bution has to be taken into account [67]. Currently, widely used
approaches include deterministic partial differential equations
(PDEs) and spatial Gillespie’s stochastic simulation algorithm
[68]. But ColPNs offer an alternative approach for the modelling
of such systems with a user-friendly graphical interface.

Liu et al. [11] presented a ColPN approach for modelling and
simulating reaction–diffusion systems. They divided the whole
volume (the space that a biological system involves) into a num-
ber of subvolumes in 1 D, 2 D or 3 D space, and encoded each
subvolume as a colour (coordinate). The diffusion among subvo-
lumes is described as a corresponding neighbourhood function
over colours, and finally a ColPN model at different dimensional
space is obtained. Besides, a procedure for constructing a model
for this type of systems is given with different net classes like
ColSPNs, ColCPNs and ColHPNs. They also discussed how to
map a set of PDEs to a ColCPN and illustrated their approach
using the Brusselator example. This work shall serve as a tuto-
rial for those who are interested in using ColPNs for modelling
reaction–diffusion systems.

Besides, Blätke et al. [69, 70] briefly discussed the use of
ColPNs to represent a 3 D lattice of space, which can be fitted
with a topological 3 D model of an entire cell. In their approach,
they simulate biochemical reactions in a reaction–diffusion sys-
tem with the help of a localization component. Gilbert et al. [71]
discussed in detail how to use ColPNs to encode 2 D space,
which will be of much help to understand the coding mecha-
nism of multidimensional modelling.

Discussion

An intuitive graphical representation with execution semantics
is an invaluable asset in integrative research fields, typically
involving professionals with a diverse background. However,
while there are some approaches aiming at the support of mod-
elling of biological systems at different levels or scales, to our
knowledge none (besides Petri nets) come with a graphical rep-
resentation. Of these, two approaches closely related to ColPNs
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are Chromar [72], which is based on multisets, and the rule-
based approach described in [73].

ColPNs allow the modelling of large-scale systems in a
parameterized and scalable way, and thus are capable of multi-
level, multiscale and multidimensional modelling of biological
systems. For each category, we first need to encode the biologi-
cal components to be studied or the space, where a biological
system evolves, as colours in a similar way. Thus, colours
encode coordinates of components or spatial localities in 1 D,

2 D or 3 D grid or space; the connectivity between components is
defined as a neighbourhood function over colours. After that,
we obtain coloured models by applying the defined colours and
colour functions. Considering their powerful representation
capabilities, ColPNs have the power to become an ideal tool for
multilevel, multiscale and multidimensional modelling of large-
scale biological systems.

Moreover, a variety of ColPN extensions (from qualitative to
stochastic, deterministic and hybrid) greatly expand the appli-
cation ranges in the modelling and analysis of biological sys-
tems. Thus, the user can select the appropriate ColPN classes
for specific modelling circumstances. Further, in Snoopy, differ-
ent ColPN classes are integrated and can be conveniently con-
verted into each other, which enables the investigation of a
biological system using various complementary modelling
abstractions. Besides, ColHPNs are likely to achieve more and
more applications with the increasing interest in multilevel,
multiscale and multidimensional modelling of biological
systems.

Despite the potential and power of ColPNs for modelling
large-scale systems, we have to acknowledge their limits and
drawbacks, as they stand today. To improve the applicability of

ColPNs, we think at least the following research directions need
to be pursued.

Continue to improve the expressive power of ColPNs for
addressing emerging issues in the systems biology area

To model biological systems characterized by highly diverse
biological components, complex structures over levels, and
interactions between components at the same level or across
different levels, a more powerful and complex colour language
is needed. However, this will make the analysis of the con-
structed models more difficult. To develop a more powerful col-
our language, but at the same time improve the efficiency of
analytical techniques, we could adopt ideas from SWNs, and
consider a constrained syntax that takes symmetry into
account for colour expressions. It is unlikely that we could
expect the whole model to be symmetric as they do in SWN
models. Instead, a model could be divided into two parts, one

obeying the rules of symmetric colours and the other not. We
would expect that intra-level modelling belongs to the symmet-
ric part because components at the same level usually share a
similar structure, while inter-level relationships tend to exceed
the expressive power of symmetric colour sets.

Moreover, there are some multiscale challenges such
as compartment creation, division, merging or dissolving
or cell differentiation, which cannot be well addressed by the
current ColPNs with static colour sets. As discussed in [74],
dynamic colour sets could be a good solution, but this issue
needs further research.

Develop efficient analysis techniques

At present, to reuse existing analysis techniques of Petri nets,
ColPNs have to be unfolded to uncoloured Petri nets. Thus, the
unfolding efficiency heavily affects the efficiency of simulation
or other analyses. Although we can improve the unfolding effi-
ciency with a constraint satisfaction approach [27], parallel
computing techniques [75] or interval decision diagrams [47], all
three of which are supported by Snoopy, there is still room for
improvement. We could exploit the solution at the coloured
level, avoiding as much as possible the ‘brute force’ approach
implied by the unfolding of the coloured model. This analysis
can be done on the symmetric part of a model as described
above. A group of biological components, each sharing exactly
the same structure and distinguished by a colour, have similar
or even the same structural or behavioural properties, such as
P-invariants, T-invariants, reachability and boundedness [12].
In such a case, algorithms for structural analysis (as Kurt did in
[76]) and model checking methods can be developed at the col-
oured level to perform an efficient analysis of large-scale mod-
els. SWNs represent a compromise between expressive power
and computational complexity [39], and can be considered as a
good basis for further research to improve the simulation effi-
ciency of ColPNs without unfolding.

Strengthen statistical analysis of the simulation output

Although there are many analysis techniques for ColPNs, simu-
lation is always the primary analysis technique used to evaluate
multilevel and/or multiscale models. While simulation easily
conveys the feeling that the model faithfully represents the real
(biological) system, the statistical analysis of the simulation
output needs to be improved and refined to deal (safely) with
the huge state space characterizing the model; see for instance
[77, 78] for statistical analysis techniques and according formal
procedures for transit and steady-state analysis of simulation
outputs.

Model checking based on PLTLc offers another way for ana-
lysing stochastic/deterministic/hybrid simulation traces [12, 37].
With PLTLc, we can analyse not only the properties of one simu-
lation trace (time series of concentrations or reaction rates) but
also the correlation or similarity of multiple traces. Thus, we
can use PLTLc for analysing traces at one biological level or
across different levels for a multilevel model. A general frame-
work for model checking over multiple levels is described in
[65].

Modelling over multiple scales

This is a challenging area because multiscale models by their
very nature involve descriptions of systems, which are
characterized by phenomena, which occur over different time
and space scales and at different speeds. To integrate the com-
ponents of such a model, some kind of interfacing mechanism
must be used to map between the different time scales, often
involving lumping parameters from lower scales to higher
scales. This is exacerbated by the differing rates of observations
that may be taken at the different scales, e.g. hourly at one scale
as opposed to every millisecond at a lower scale, resulting
in the need to interpolate data at higher scales. This results
in difficulties in characterizing rate functions, and is
especially problematic when modelling a transient system to
predict transient behaviour. By their very nature, most
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biological systems are inherently multiscale, and hence, multi-
scale modelling of them is an important and challenging area
for future research.

Key Points

• Multilevel/multiscale modelling integrates information
at different levels/scales into one model, which can
more accurately describe a system and thus provide
more insights into the system.

• This article reviews applications of ColPNs for multile-
vel, multiscale and multidimensional modelling of bio-
logical systems.

• This article discusses in-depth research directions that
need to be pursued to improve the applicability of
ColPNs.

• This will assist readers in selecting appropriate ColPN
classes for specific modelling circumstances.
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