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Abstract: This paper presents eight tests on the end-perforated RC frame beams with the different 

sizes of perforations and arrangement styles of strengthening carbon fibre (CFRP) sheets subjected 

to hybrid load-displacement control loading condition. The research focuses on the assessment of 

beams’ seismic performance. The ultimate load resistance, hysteretic performance, energy 

dissipation capability, ductility and stiffness degradation of the end-perforated RC frame beams 

with and without strengthening CFRP sheets have been investigated. The test results show that the 

beams strengthened with CFRP sheets can effectively improve their seismic performances. The 

perforation size of a beam has significant influence on its seismic behaviour. With the increase of 

hole diameter, the hysteresis performance, energy dissipation capacity and ductility of beams are 

decreased considerably.  
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1. Introduction 

In building construction sometimes it is needed to make holes in the webs of RC beams in order to 

pass some service pipes. However, the holes weaken the integrity, shear resistance and seismic 

performance of beams (Douglas and Gambrell 1974; Mansur et al. 1985; Wang et al. 2011; Aykac et 

al. 2014; Xue and Zheng 2014). In recent years, a considerable amount of research has been 

conducted to investigate the mechanical performance of the perforated beams with different 

strengthening methods under normal design loading conditions. For example: Xue and Zheng (2014) 

studied the mechanical behaviour of the perforated beams strengthened with various steel bars 

surrounding the holes. Aykac et al. (2014) investigated the influences of different parameters, such 

as the shape of perforation, stirrups between perforations, diagonal steel bars and the ratio of 

longitudinal steel bars, on the bending resistance of the beams. Mansur et al. (1985) tested a number 

of perforated beams to analyse the ultimate resistance of the beams. Mansur et al. (1991) conducted 

the tests on eight continuous RC beams with rectangular perforations and proposed a method to 

predict the load-deflection relationship of the beams.  

Grace and Ross (1996) studied the dynamic behaviour of the perforated post-stressed RC beams 

with rectangular T and I sections under cyclic loading without any strengthening. Anil (2008) 

performed an experimental study on the shear insufficient RC beams strengthened with carbon fibre 

(CFRP) sheets under cyclic loading. Ahmed et al. (2012) conducted a review on the structural 

characteristics of the perforated beams with variations on perforation position, shape of opening, the 

relevant design methods, and the researches on strengthening the openings with fibre materials, 

steel plates, etc. El-Maaddawy and El-Ariss (2012) carried out the tests on sixteen perforated beams 

strengthened with CFRP sheets, and analysed the effects of strengthening on the shear resistance 

and stiffness of the beams. Zhang and Hsu (2005) reported that CFRP sheets could significantly 

improve the ductility and ultimate shear resistance of beams.  

Previous research indicated that for strengthening the perforations of RC beams CFRP sheets have 

advantages of high strength, low self-weight, ease of construction, shortened construction period, 

etc. As the literature review presented above the most reported researches on perforated beams were 

http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=X2NBpzKnkEC9638rxf4&field=AU&value=Aykac,%20B&ut=827087&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=X2NBpzKnkEC9638rxf4&field=AU&value=Aykac,%20B&ut=827087&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=X2NBpzKnkEC9638rxf4&field=AU&value=El-Maaddawy,%20T&ut=5078387&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=X2NBpzKnkEC9638rxf4&field=AU&value=El-Ariss,%20B&ut=5027348&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
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focused on the structural behaviours of the beams under normal design loading conditions. The 

research on the seismic performance of the perforated RC beams strengthened with CFRP sheets is 

limited. Hence, the aim of this research is to experimentally study the seismic performance of the 

perforated RC beams strengthened with CFRP sheets. The main objectives of the research are: 

 Conduct the tests of eight end-perforated RC frame beams with the different sizes of 

perforations and arrangement styles of strengthening CFRP sheets to assess their seismic 

performance using hybrid load-displacement control loading method. 

 Investigate the ultimate load resistance, hysteretic performance, energy dissipation capability, 

and ductility and stiffness degradation of the end-perforated RC frame beams with and 

without the strengthening CFRP sheets. 

 Generate some valuable test data for enhancing the earthquake resistance design of the 

end-perforated RC frame beams using CFRP sheets.  

2. Experimental program 

2.1 Specimen design 

In this experimental study, eight RC beams were designed for the tests. The beam specimen was 

assumed to represent the part between the joint of beam-column to the mid-span of the beam within 

a planar RC frame. The dimensions of cross sections were 150 mm×300 mm for beams, and 

300 mm×400 mm for columns. Table 1 and Fig. 1 give the details of the beam specimens. Beam 

LA0 was intact without perforation for the purpose of reference. Beams LA1, LA2 and LA3 were 

the perforated beams without CFRP sheets strengthening. Other four beams in group B were the 

perforated beams with CFRP strengthening.  

Normal strength concrete, C25, was used for all beams. The tested compressive strength of concrete 

at 28 day was 28.5 MPa. As shown in Fig. 1, the stirrup of beam and column had the diameter of 6 

mm and spacing of 100 mm. The main reinforcing steel bar had the diameter of 18 mm. The tested 

material properties of reinforcement are listed in Table 2. 

In this research HITEX-C300 carbon fibre (CFRP) sheet (produced by Nanjing Haituo Composite 
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Material Ltd) was used. The material properties of CFRP sheets were: unit weight = 300g/m
2
, 

thickness = 0.167 mm, tensile strength = 4330 MPa, elastic modulus = 2.56×10
5
 MPa, elongation = 

1.7%. The structural adhesive glue used was Lica-100 modified epoxy resin. The properties of the 

glue were: tensile strength = 40 MPa, tensile modulus = 2500 MPa, compressive strength = 70 MPa, 

bending strength = 50 MPa, elongation = 1.5%.  

Two strengthening methods were employed for the perforated beams: (1) horizontal arrangement 

(Fig. 2 and Fig. 4(a)); (2) 45° diagonal arrangement (Fig. 3 and Fig. 4(b)). The amount of CFRP 

usage and applied strengthening procedure were based on the guideline described in the 

“Constructional detailing for structures” (The Editorial Board of the Building Structural Data Set 

1995). In this process, the structural adhesive glue was smeared evenly on the concrete surface then 

the CFRP sheets were attached to the concrete surface with fully flattening, along the fibre direction 

rolling compaction for several times.  After completing the strengthening procedure, the specimens 

were stored and cured for more than 3 days under the room temperature before the tests. The 

completed specimens are shown in Fig. 4. 

2.2  Loading scheme 

As shown in Figs. 5 and 6, horizontal cyclic loading scheme was adopted to carry out the tests. The 

servo actuator mounted on the reaction wall was connected to the end of the beam through four 

screws and two steel plates to apply cyclic load. The beam specimen was connected with the 

column (Fig. 1 and Fig. 6) in which the column was strongly bolted into the ground and 

horizontally jacked in position. Fig. 7 shows the locations of strain gauges on the stirrups and CFRP 

sheets surrounding the perforation. As shown in Fig. 8, six LVDT displacement meters were used to 

measure the horizontal displacement and rotation of the beam under cyclic loading.   

According to Chinese Standards of “Test method of concrete structure” (Chinese State Standard 

1992) and “Procedure of seismic test method for building” (Chinese Industry Standard 1996), in 

this research a hybrid load-displacement control loading method was adopted. As shown in Fig. 9, 

the details of the loading scheme are:  

(1) Before the yield load was reached, the loading procedure was load control in which for each step 
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one cyclic load was applied. 

(2) After the yield load was reached, the displacement control was adopted in which the servo 

actuator was reset to zero displacement. Then 5 mm of displacement increment was applied 

step by step (with three cycles for each step) until the load was down to 85% of the peak load. 

In the rest of the paper, the positive load and displacement are referenced to the pushout force and 

displacement, respectively. The negative load and displacement are referenced to the pulling force 

and displacement, respectively (Figs. 5 and 6).   

3. Test observations 

(1) Beam LA0 

LA0 was a non-perforated beam. Its failure pattern is shown in Fig. 10(a). In the test, when the 

beam was loaded to -9.0 kN, a crack was formed on the bottom of the beam, 150 mm away from the 

column. When the load was increased to -36.0 kN, an X-crack was seen, 350 mm away from the 

column. More cracks were appeared after further loading. When the load was increased to 50.0 kN, 

the specimen was yielded, after that the actuator was reset to zero and the loading scheme was 

switched to displacement control. At the loaded displacement Δ = -33 mm in the first cycle, the 

maximum resistance of the specimen was reached, that was -66.2 kN. The specimen was failed at 

Δ=38 mm. Then the test was terminated.  

(2) Beam LA1, LA2 and LA3 

The perforation diameter of LA1 was 90 mm (or 0.3h). Its failure pattern is shown in Fig. 10(b). 

The first crack was appeared at the top left corner of the perforation at the load of 7.0 kN. When the 

load was increased to 20.0 kN, a 45° diagonal crack was formed at the left bottom corner of the 

perforation. The two cracks were propagated with the increasing load. When the load was reached 

to -23.0 kN, a 45° diagonal crack was formed on the top left edge of the perforation. The two cracks 

were propagated with increasing load and finally formed a large crack. When the load was reached 

to -36.0 kN, an X-crack was formed at 300 mm away from the edge of the column. After the load 

was reached to -45.0 kN (with a maximum crack width of 0.3 mm), in order to avoid sudden brittle 
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failure of the specimen, the displacement control loading scheme was activated. The peak resistance 

of -63.9 kN was reached at Δ=17 mm. The specimen failed at the second cycle of loading with 

Δ = -32 mm. Then the test was stopped.  

The perforation diameter of LA2 was 120 mm (or 0.4h). Its failure pattern is shown in Fig. 10(c). 

The first crack, on the top of the specimen above the perforation, was appeared at a load of 5.7 kN. 

When the load was increased to 18.0 kN, diagonal cracks tangent to the edge of the perforation 

were formed. When the load was reached to -17.2 kN, 45° diagonal cracks were seen on the left top 

and bottom edge of the perforation. When the load was reached to -36.0 kN, the first X-crack was 

appeared at 300 mm away from the column edge. At the load of -55.7 kN, the crack previously 

appeared near the edge of the column was spread to the top edge of the perforation to form a 

diagonal crack. The specimen was yielded at the load of -58.8 kN then the loading scheme was 

shifted to displacement control. The peak load resistance of 63.0 kN was reached at Δ=19mm. The 

specimen failed at the second cycle of Δ=23.6 mm.  

The perforation diameter of LA3 was 150 mm (or 0.5h). Its failure pattern is shown in Fig. 10(d). 

When the load was reached to -9.0 kN, a 45° diagonal crack was appeared on the bottom right edge 

of the perforation. More cracks were formed with further loading. At 18.0 kN, a crack was seen 

tangent to the top edge of the perforation. At -18.0 kN, a crack was formed tangent to the bottom 

edge of the perforation. The two tangent cracks were developed to be large cracks. When the load 

was reached to 41.3 kN, the brittle failure of the beam suddenly happened with a loud cracking 

sound. The brittle failure of the beam happened before shifting to displacement control stage.  

It can be seen that Beams LA1, LA2 and LA3 all failed by shear at the position closed to 

perforation. The direction and the position of the cracks were consistently initiated tangent to the 

edge of the perforation and propagated later. This is due to the stress concentration after perforation, 

which consequently decrease the shear resistance of the beams. The bigger the perforation was, the 

sooner the cracks formed and propagated, and lower load resistance was.  

(3) Beams LC1, LC2-1, LC2-2 and LC3 

These four beams were strengthened with CFRP sheets. The perforation diameter of LC1 was 
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90 mm (or 0.3h), strengthened with CFRP sheets with horizontal arrangement. The failure pattern of 

LC1 is shown in Fig. 10(e). At 15.2 kN of load, a vertical crack was formed above the perforation. 

This crack was quickly propagated to the top edge of the perforation to form a normal crack. When 

the load was increased to 21.0 kN, a 45° diagonal crack was formed on the left down side of the 

perforation. The first X-crack appeared 550 mm away from the edge of the column when the load 

was reached to -45.0 kN. The specimen was yielded at the load of -51.0 kN. Then the loading was 

switched to the displacement control. The specimen was reached to its peak resistance of 69.3 kN at 

Δ=31 mm. With the increase of displacement, concrete surrounding the perforation was sloughing 

off successively and the CFRP sheets were gradually spalled off. At Δ=57 mm, the test was stopped 

due to the failure of the intersection between the beam and the column.  

The perforation size of LC2-1 was 120 mm (or 0.4h), strengthened with CFRP sheets with 

horizontal arrangement. The failure pattern of LC2-1 is shown in Fig. 10(f). A crack appeared at the 

bottom of the beam when the load was increased to 14.0 kN. At 18.7 kN, a diagonal crack was 

formed at the bottom edge of the hole. At -27.0 kN, a crack was seen on the top left edge of the hole. 

At -36.0 kN, an X-crack was formed at the position of 435 mm away from the column. More cracks 

were formed with the further loading. At -51 kN, the beam yielded. Then the loading was switched 

to displacement control. The beam reached its peak resistance of 68.5 kN at the first cycle of 

Δ=31.8 mm. Further loading caused more and more spalling of CFRP sheets and diagonal wrinkles 

were appeared in the sheets. When the beam was loaded to Δ= -31.8 mm, the longitudinal CFRP 

sheet on the right of the hole was suddenly tore off. This led to the failure of the beam and the test 

was then stopped.  

The perforation size of LC2-2 was 120 mm (or 0.4h) and strengthened with CFRP sheets with 45° 

diagonal arrangement. The failure pattern of LC2-2 is shown in Fig. 10(g). A crack appeared at the 

top of the hole when the load was increased to 18.0 kN. At -16.0 kN, a crack was formed at the 

bottom right edge of the hole. At -32.0 kN, an X-crack appeared at the position of 530 mm away 

from the column. A diagonal crack was also seen on the top left edge of the hole. When the beam 

was loaded to 45.5 kN, the 45° diagonal crack on the top right edge of the hole propagated through 

the CFRP sheets. The beam yielded at the load of -51 kN. Thus the loading procedure was switched 
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to displacement control. For the first cycle at Δ=16.5 mm, the beam reached its peak resistance of 

68.3 kN. CFRP sheets were spalled off successively with further loading. At the second cycle load 

of Δ=26.5 mm, the sheets BZS2 and BZX2 (see Fig. 7(c) for the positions) were spalled off 

completely with a sudden bang. At Δ=36.5 mm, a large amount of concrete was spalled off at the 

left side of the hole and the anchorage of the sheets failed suddenly. The test was then stopped. 

The perforation size of LC3 was 150 mm (or 0.5h), strengthened with CFRP sheets using horizontal 

arrangement. The failure pattern of LC2-2 is shown in Fig. 10(h). At 11.0 kN, cracks appeared on 

the left bottom edge and top edge of the hole and merged into one crack later. At -45.0 kN, an 

X-crack was formed at the position of 475 mm away from the column. The beam yielded at 49.9 kN. 

Then the loading procedure was switched to displacement control. The beam reached its peak 

resistance of 68.5 kN at the first cycle of Δ=14.7 mm and the CFRP sheets on the left of the hole 

spalled off. The beam failed at the second cycle of Δ=24.7 mm.  

It is evident from the test observations that the beams strengthened with CFRP sheets could 

effectively restrain the cracks’ development around the perforation, and hence improve the ultimate 

resistance and ductility of the beam. The failure of Beam LC1 happened at the junction of the beam 

and the column, while Beams LC2-1, LC2-2 and LC3 exhibited shear failure around the perforation. 

It is clear from the tests that the ductility of the beam strengthened with CFRP sheet could decrease 

significantly with the increased size of perforation. 

4. Analysis of test results 

Due to the limited number of the specimens tested in this research, there is no reliability analysis for 

the test results presented here. 

4.1 Load resistance 

The cracking loads, ultimate loads and ultimate displacements of the beams with and without CFRP 

sheets strengthening, together with the non-perforated beam LA0, are given in Table 3. 

It can be seen from Table 3 that the initial cracking loads of LA1 and LA2 were 7.0 kN and 5.7 kN, 

respectively, which were 22% and 37% lower than 9.0 kN of LA0; the normal cracking load of LA2 
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was 13.4 kN, which was 26% lower than 18.0 kN of LA1; the diagonal cracking loads of LA2 and 

LA3 were 17.2 kN and 9.0 kN, respectively, which were 14% and 55% lower than 20.0 kN of LA1. 

This indicates that perforation decreases the initial cracking load, and the initial, normal and 

diagonal cracking loads decrease with the increase of perforation size. In addition, the perforation 

size of LA3 was almost half of the depth of the specimen, the more significant stress concentration 

and greater shear stress caused the diagonal cracks appeared earlier and developed more quickly 

than other cracks, hence, the specimen failed without forming normal cracks.  

In Table 3, the ultimate resistance of the specimens LA1, LA2 and LA3 were respectively 63.9 kN, 

63.0 kN and 41.3 kN, which were 4%, 5% and 38% lower than 66.2 kN of LA0. This indicates that 

the resistance of the specimen to the load reduces with greater perforation.  

The initial cracking loads of LC1, LC2-1 and LC3 were respectively 15.2 kN, 14.0 kN and 10.0 kN, 

which were 117%, 146% and 11% higher than 7.0 kN, 5.7 kN and 9.0 kN of LA1, LA2 and LA3 

(without CFRP sheets strengthening ). The ultimate loads of LC1, LC2-1 and LC3 were 

respectively 69.3 kN, 68.5 kN and 68.5 kN，which were 8%、9%、66% higher than 63.9 kN, 63.0 kN 

and 41.3 kN of LA1, LA2 and LA3. The test results show that CFRP sheets’ strengthening improves 

the initial cracking resistance and the ultimate load resistance of the beams. The CFRP sheets 

compensate the weakening effect of perforation and restrain the cracks from propagating, and thus 

effectively improve the shear resistance of the beam.  

Specimen LC2-2 was strengthened with 45
o
 diagonal arrangements. Compared with LC2-1, 

strengthened with horizontal arrangement, their ultimate loads were nearly the same. However, the 

initial cracking load, normal cracking load and diagonal cracking load of LC2-2 were increased by 

14%, 25% and 71%, respectively compared to LC2-1. This indicates that strengthening method with 

different arrangements has a considerable influence on the development of cracks. Compared 

LC2-2 with LC2-1 the strengthening method with 45
o
 diagonal arrangements was a more effective 

way to restrain the development of cracks. However, more tests are needed before general 

conclusions can be drawn.  
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4.2 Strain distribution in the stirrups and CFRP sheets 

Fig. 11 shows the strain distributions in the stirrups and CFRP sheets of the specimens LA1, LA2, 

LA3 (without strengthening) and LC1, LC2-1 and LC3 (with strengthening) under positive loading 

conditions. As shown in Figs. 11(a), 11(b) and 11(c) (for LC1, LC2-1 and LC3) at the same load 

level the strains in the stirrups besides the perforation (G1, in Fig. 7(a) for the position) were 

smaller than those in the CFRP sheets (B1, in Fig. 7(b)). Also it is evident that the strains in the 

stirrups of the specimens LA1, LA2 and LA3 were significantly great compared to the specimens 

strengthened with CFRP sheets. This is because of under low frequency cyclic load, the crack 

propagation is firstly restrained by the CFRP sheets, then the stirrups. This mechanism improves the 

integrity of the concrete surrounding the perforation. Hence, the shear resistance of the specimen is 

effectively enhanced.  

Fig. 11(d) shows the influence of the perforation size on the strains in the stirrups of strengthened 

specimens LC1, LC2-1 and LC3. It can be seen that at the same load level, the strains in the stirrups 

besides the perforation were increased with the increase of perforation size. This is due to that the 

increase of perforation size decreases the effective concrete area to resist shear force. Hence, the 

crack restraining effect of CFRP sheets is reduced.  

4.3 Hysteresis performance and energy dissipation capacity 

4.3.1 Load-displacement hysteresis curves 

Fig. 12 shows the load-displacement hysteresis curves at the end of the beams. In the figure, the 

horizontal coordinates denote horizontal displacement Δ, the vertical coordinates denote the 

horizontal load applied. It can be seen from Figs. 12(c), (e) and (g) that for the beams without 

strengthening, LA1, LA2 and LA3 (with hole diameters of 0.3h, 0.4h and 0.5h), the satiation of the 

hysteresis curves of the beams were very significantly decreased with the increase of hole size.   

Also the area inside the curves was significantly shrunk. This indicates the decrease of energy 

dissipation capacity of the beams. The reduction of hysteresis performance is caused by the 

decrease of the effective beam section and the increase of stress concentration around the hole, 

leading to earlier spalling of the concrete.  
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Figs. 12(d), (f) and (h) show the hysteresis curves of LC1, LC2-1 and LC3 (with hole diameters of 

0.3h, 0.4h and 0.5h) strengthened with CFRP sheets. It is evident that the perforation size has 

significant impact on the satiation of hysteresis curves and the energy dissipation capacity of the 

beams. Hence, the hysteresis performance of the beams is deteriorated considerably with increased 

perforation size, especially when the perforation is large than 0.4h. 

The results show that the hysteresis performance of the beams with CFRP sheets strengthening is 

considerably improved. The reason is that the cracking of concrete is restrained from propagation 

by CFRP sheets and the integrity of concrete surrounding the hole is improved. Hence, the ductility 

and energy dissipation capacity of the beams are increased and consequently the seismic 

performance of the beams is enhanced.  

Compared Beams LC2-2 (strengthened with diagonal arrangement) and LC2-1(strengthened with 

horizontal arrangement), it can be seen from Figs. 12(b) and (f) that the satiations of hysteresis 

curves are similar, with almost the same enclosure area. This indicates that both beams have the 

similar energy dissipation capacity.  

4.3.2 Relative rotation of the beam 

Two LVDTs were installed (Fig. 8) to measure the relative displacement of the beam and the 

column for calculating the relative rotation (Dai and Yuan 2005). The calculated ultimate relative 

rotations of the beams are given in Table 4.  

It can be seen from Table 4 that the ultimate relative rotations of the perforated beams (LA1, LA2 

and LA3) were smaller than those of unperforated beam LA0. The ultimate relative rotations of 

LA1, LA2 and LA3 were 73%, 47% and 18% of that of LA0, respectively. This indicates that the 

relative rotation of the beam decreases with perforation size.  

It is also known from Table 4 that the ultimate relative rotations of LC1, LC2-1 and LC3 were 

103%, 53% and 149% larger than that of LA1, LA2 and LA3, respectively. This indicates that the 

beams strengthened with CFRP sheets have more ultimate relative rotation capacity. The use of 

CFRP sheets can effectively restrain the crack propagation around the hole and improve the 
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ductility and integrity of the perforated beams. In addition, the ultimate relative rotations of LC1, 

LC2-1 and LC3 were decreased significantly with the increase of the hole size. Therefore, based on 

the ultimate relative rotation and ultimate load, the perforation size should be limited, not exceeding 

0.4h. The ultimate relative rotation of LC2-2 was 0.044, 29% larger than 0.035 of LC2-1. 

According to Fig. 12 (also see Table 5), the ultimate displacement for both specimens “LC2-1” and 

“LC2-2” is nearly the same. Hence, the higher ultimate relative rotation of LC2-2 compared to 

LC2-1 may indicate the concentration of damage near the beam-column connection in specimen 

LC2-2 while for specimen LC2-1 the damage was distributed more evenly. This further indicates 

that the strengthening method with different arrangements has a considerable influence on the 

development of cracks. 

4.3.3 Energy dissipation capacity 

Under low frequency cyclic load, the amount of energy dissipated in one load cycle can be 

represented as the encompassed area of the load-displacement hysteresis curve in that cycle 

(Structural Engineers Association of California 1995). The energy dissipation capacity in each load 

cycle can be represented by the relationship between the area of the first hysteresis loop and the 

peak displacement Δ in that loop. Fig. 13 shows the energy dissipation capacity of the beams. 

It can be seen from Figs. 13(a), (b) and (c) that, at the same displacement, energy dissipation 

capacities of Beams LC1, LC2-1 and LC3 (with strengthening) are higher than Beams LA1, LA2 

and LA3 (without strengthening). As shown in Fig. 13(b), Beams LC2-1and LC2-2 have nearly the 

same energy dissipation capacities. This indicates that the two strengthening methods have the 

similar energy dissipation capacity. Fig. 13(d) shows the influence of the perforation size on the 

energy dissipation capacity of the beams. It can be seen that energy dissipation capacity decreases 

considerably with increase of the perforation size of beams. For the beams with the perforation size 

less than 0.4h, the energy dissipation capacity of strengthened perforated beams is comparable to 

non-perforated beam LA0. Hence, it is better to limit the size of perforation less than 0.4h.  
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4.4 Ductility 

In this study, the displacement ductility coefficient (Chinese State Standard 2010) is used to 

estimate the ductility of the beams. The displacement ductility coefficients calculated from the test 

results are given in Table 5. 

The ductility coefficients of strengthened Beams LC1, LC2-1 and LC3 were 59%, 79% and 117% 

larger than that of LA1, LA2 and LA3, respectively. This demonstrates that CFRP sheets’ 

strengthening could effectively improve the ductility of perforated beams. Compared to 

non-perforated beam LA0 the ductility coefficients of LC1, LC2-1, LC3, and LC2-2 were increased 

by 129%, 84%, 62% and 85%, respectively. Also it can be seen that large perforation size (>0.4h) 

decreases the ductility of strengthened beams considerably. Therefore, in engineering practice it 

seems reasonable to limit the perforation size less than 0.4h. It is also noted that both strengthening 

methods (LC2-1 and LC2-2) has the similar effect on the ductility of the beam.  

4.5 Stiffness degradation 

In this paper the change of the equivalent stiffness K of the beams under cyclic load is used to 

evaluate the stiffness degradation (Yin 1995) of beams. Fig. 14 shows the relationships between 

equivalent stiffness K and the average displacement Δ of the beams.  

It can be seen from Fig. 14 that, under cyclic loads, the stiffness of the beams was degraded 

significantly, which was mainly caused by the development of cracking in the concrete surrounding 

the hole. As shown in Figs 14(a), (b) and (c), the initial stiffness of strengthened Beams LC1, LC2-1 

and LC3 was greater than that of Beams LA1, LA2 and LA3 (without strengthening). This indicates 

that the stiffness of the beam was enhanced by the strengthening with CFRP sheets. The stiffness of 

the beams was decreased quickly under low frequency cyclic loading. However, the crack 

propagation in the concrete was restrained by CFRP sheets so that the stiffness degradation of 

Beams LC1, LC2-1 and LC3 was lagged behind Beams LA1, LA2 and LA3. With further loading 

the beams entered plastic stage. In the plastic stage, the stiffness degradation of the beams was 

slowed down, exhibiting gradually reduced slope of the curve. 
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In the period, nearly reaching the ultimate load capacity of the specimen, the stiffness degradation 

was almost proportional to the displacement increment. As shown in the figure, the stiffness of the 

strengthened beams was always greater and declined slower than that of the beams without 

strengthening. As shown in Fig. 14(b) the stiffness degradation curves of LC2-1 and LC2-2 

coincided with each other. That means there is not much difference between the two strengthening 

methods for improving the stiffness of the beams. Fig. 14(d) shows that the initial stiffness of LC1 

and LC2-1 was greater than that of LA0. However, the initial stiffness of LC3 was considerably 

lower than that of LA0. This indicates that for large perforation size (>0.4h), the stiffness loss 

caused by the large perforation cannot be compensated by strengthening with CFRP sheets. 

Therefore, it is suggested that the perforation size should not be more than 0.4h in engineering 

practice.  

5. Conclusions 

In this research, eight end-perforated RC frame beams with the three different sizes of perforations 

and two arrangement styles of the strengthening carbon fibre (CFRP) sheets were tested to assess 

their seismic performance using hybrid load-displacement control loading method. From the test 

results and observations some conclusions can be drawn as:  

(1) The cracking loads of the perforated beams strengthened with CFRP sheets can be 

effectively enhanced. The initial cracking loads of the specimens with CFRP sheets’ 

strengthening are 2 to 2.5 times compared to the specimens without strengthening. 

However, the cracking load decreases considerably with the increase of perforation size. 

(2) The perforated beams strengthened with CFRP sheets can effectively increase their ultimate 

load capacity up to 10%. After cracking of concrete surrounding the hole, CFRP sheets 

come into play before steel stirrups and restrain the propagation of cracks to improve the 

integrity and shear resistance of the beam. 

(3) Compared to the perforated beams without strengthening, the displacement ductility 

coefficient of the specimens strengthened with CFRP sheets is increased from 60% to more 

than 100%. Hence, the seismic performance of the perforated beams with CFRP sheets 
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strengthening around the hole can be significant improved in terms of hysteresis 

performance, energy dissipation capacity, ductility, and stiffness degradation.    

(4) Strengthening methods with horizontal and 45° diagonal arrangements have almost the 

same effects for improving hysteresis performance, energy dissipation capacity and 

ductility of perforated beams. However, 45° diagonal arrangement is better in restraining 

the propagation of cracks. Therefore, strengthening with 45° diagonal arrangement method 

is recommended to be adopted in engineering practice.  

(5) Perforation size of beam has significant influence on its seismic performance. With the 

increase of hole diameter, the hysteresis performance, energy dissipation capacity and 

ductility of beams are decreased considerably. Comparing the results of the specimens with 

and without CFRP strengthening, it can be seen that the strengthening with CFRP sheets is 

more efficient for weaker specimens (as the opening size increases, the effect of CFRP 

sheets increases too). However the overall performance of beams with great perforation is 

not desirable even with the improving effect of CFRP sheets. Therefore, it is suggested that 

the perforation size should not exceed 0.4h in engineering practice. 
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Table 1  List of beam specimens. 

Group Specimen number Diameter of 

perforation, d

（mm） 

Distance between the 

edge of the perforation 

to the edge of the 

specimen, S1 (mm) 

Strengthening method 

A LA0 - - - 

LA1 90（0.3h） 150（0.5h） None 

LA2 120（0.4h） 150（0.5h） None 

LA3 150（0.5h） 150（0.5h） None 

B LC1 90（0.3h） 150（0.5 h） CFRP (horizontal) 

LC2-1 120（0.4h） 150（0.5 h） CFRP (horizontal) 

LC2-2 120（0.4h） 150（0.5 h） CFRP (diagonal) 

LC3 150（0.5h） 150（0.5 h） CFRP (horizontal) 

Notes: h is cross-section height of the beam (h = 300 mm)  

 

Table 2  Properties of steel reinforcement. 

 

 

 

 

 

Steel bar Type Diameter 

(mm) 
Yield strength 

( ) 

Ultimate strength 

( ) 

Stirrup (Tie) HPB300 6 347.0 482.7 

Main steel 

bar 

HRB400 18 499.0 640.0 

ykf

2N/mm

ukf

2N/mm



19 

 

Table 3  List of cracking loads, ultimate loads and displacements of the specimens. 

Label 

Cracking load (kN) 

Ultimate load 

(kN)  

Ultimate 

displacement 

(mm) 

Initial crack at 

the edge of the 

beam 

Normal crack at 

the edge of the 

hole 

Diagonal crack 

around the hole 

LA0 9.0 — — 66.2 38.0 

LA1 7.0 18.0 20.0 63.9 35.5 

LA2 5.7 13.4 17.2 63.0 22.6 

LA3 — —  9.0 41.3 12.0 

LC1 15.2 18.0 21.0 69.3 56.5 

LC2-1 14.0 16.0 18.7 68.5 34.1 

LC2-2 16.0 20.0 32.0 68.3 24.3 

LC3 — 10.0 11.0 68.5 36.1 

 

Table 4  The ultimate relative rotation of strengthened beam specimens. 

Specimen number Ultimate relative rotation (radian) 

LA0 0.049 

LA1 0.036 

LA2 0.023 

LA3 0.009 

LC1 0.072 

LC2-1 0.035 

LC3 0.022 

LC2-2 0.045 
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Table 5  Ductility coefficients calculated from the test results. 

Specimen 
Yield displacement,  

Δy (mm) 

Ultimate displacement,  

Δu (mm) 

Displacement ductility 

coefficient, μΔ 

LA0 9.3 38.0 4.1 

LA1 10.8 35.5 3.3 

LA2 11.7 22.6 1.9 

LA3 10.2 12.0 1.2 

LC1 10.7 56.5 5.3 

LC2-1 9.9 34.1 3.5 

LC3 9.5 24.3 2.6 

LC2-2 10.3 36.1 3.5 
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Fig. 1  Details of the perforated beams (all dimensions in mm). 

 

 

 

Fig. 2  Strengthening method with horizontal arrangement (Beams LC1, LC2-1, LC3). 
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Fig. 3  Strengthening method with 45° diagonal arrangement (Beam LC2-2). 

 

 

        

(a) Strengthening with horizontal arrangement 
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(b) Strengthening with 45° diagonal arrangement 

Fig. 4  Two strengthening methods for the perforated beams. 

 

 

 

 

 

Fig. 5  Loading set up for the tests. 
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Fig. 6  Panorama view of the test. 

 

 

 

 

 

(a) 
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(b) 

 

 

 

 

(c) 

 

Fig. 7  Layout of strain gauges: (a) strain gauges on stirrups; (b) strain gauges on CFRP sheets 

(horizontal arrangement); (c) strain gauges on CFRP sheets (diagonal arrangement). 
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Fig. 8  Locations of LVDTs for displacement measurement. 

 

 

 

 

Fig. 9  Loading scheme. 
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(a) LA0 

 

(b) LA1 
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(c) LA2 

 

 

 

(d) LA3 
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(e) LC1 

 

 

(f) LC2-1 



30 

 

 

(g) LC2-2 

 

(h) LC3 

Fig. 10  Failure patterns of the specimens. 
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(c) 

 

 

(d) 

 

Fig. 11  Strains in the stirrup at G1 and CFRP sheets at B1 under positive loading (see Fig. 7 for 

G1 and B1 positions). 
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(a) Specimen LA0 

 

 

(b) Specimen LC2-2 
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(c) Specimen LA1 

 

 

 

(d) Specimen LC1 
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(e) Specimen LA2 

 

 

 

(f) Specimen LC2-1 
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(g) Specimen LA3 

 

 

(h) Specimen LC3 

 

Fig. 12  Load-displacement hysteresis curves of the beam specimens. 
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(c) 

 

 

 

(d) 

 

Fig. 13 Energy dissipation capacity of the beams. 
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(c) 

 

 

 

(d) 

 

Fig.14  Stiffness degradation of the beams under cyclic load. 
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