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Introduction

Concrete floor slabs play a key role for the fire resistance of
composite buildings. Floor slabs not only support gravity loading,
but are also important in forming membrane action within the floor
slabs (Bentley et al. 1996; Huang et al. 2003; Izzuddin and
Elghazouli 2004; Foster 2006; Bailey and Toh 2007). Especially
at very high temperatures, the floor slab becomes the main load-
bearing element, and the floor loads are carried largely because ten-
sile membrane forces developed mainly in the reinforcing steel bars
(Huang et al. 2003). However, under fire conditions, reinforced
concrete slabs are subjected to large deformation. This generates
large individual cracks within the floor slabs. This phenomenon
was reported from some slab’s fire tests (Bailey and Toh 2007).
Those large individual cracks within the floor slabs will affect
the fire exposure condition on the reinforcing steel bar of floor
slabs, resulting in the premature failure of those reinforcing steel
bars. Moreover, the integrity failure of the floor slabs results be-
cause of large individual cracks. And fire could spread from floor
to floor through such large cracks. Hence, for performance-based
fire safety design, it is important to predict the opening of large
cracks within the floor slabs for assessing the integrity of floor slabs
as well as structural stability of the whole building.

In the past, a large number of numerical studies have been car-
ried out to predict the behaviors of concrete slabs at both ambient
and high temperatures (Huang et al. 2003; Lim et al. 2004; Kodur
and Bisby 2005; Zhang and Bradford 2007; Yu and Huang 2008;
Shakya and Kodur 2015; Kodur and Shakya 2017). In these studies
the continuum approach was adopted for the most of the numerical

models, in which the cracks within the concrete slabs were assumed
to smear over thewhole slabs. For modeling concrete cracking, many
researchers adopted the smeared crack or discrete-cracking models.
However, it is obvious that the model using smeared cracking ap-
proach cannot identify individual cracks and calculate their openings
within concrete floor slabs. If the discrete-crackingmodel is used, the
cracks are assumed to form between the boundaries of meshes. This
can cause mesh bias, and remesh for the analysis is needed. In order
to avoid the remeshing, the extended finite-element method (XFEM)
was developed (Belytschko and Black 1999), which is based on the
theory of partition of unity (Melenk and Babuŝka 1996). In recent
years, XFEMmethod has been used for many numerical procedures,
such as cohesive-zone models (Wells and Sluys 2001), multiple
cracks in brittle materials (Budyn et al. 2004), and intersecting cracks
(Daux et al. 2000). An XFEM library was presented by Bordas et al.
(2007), and a software, PERMIX, for multiscale modeling of cracks
in material was developed by Talebi et al. (2014).

For modeling the strong discontinuity of a plate/shell element,
an XFEM Mindlin-Reissner plate element was introduced by
Dolbow et al. (2000). An XFEM shell formulation was employed
by Areias and Belytschko (2005) to trace arbitrary crack propaga-
tions in shell structures that include both geometrical and material
nonlinearities. The XFEM method for thin cracked plates with
Kirchhoff-Love theory was developed by Lasry et al. (2010).
Recently, Xu et al. (2013) adopted XFEM formulation for the yield
line analyses of RC floor slabs. A substructured finite-element
(FE) shell/extended finite-element–three-dimensional (XFE-3D)
formulation was proposed by Wyart et al. (2007) for crack analysis
in thin-walled structures, in which the FE-domain was discretized
with shell elements whereas the XFEM-domain was modeled with
3D solid elements so that the computational cost could be reduced
when compared with the complicated 3D XFEM. The authors
(Liao and Huang 2015) also developed a two-dimensional (2D)
XFEM model to predict large cracks in RC beams in fire.

As mentioned previously, for modeling plate/shell elements, all
XFEM models were limited to assume an initial through-the-
thickness crack presented within a plate (or shell). The models do
not have the capability to predict the cracks’ formation and propa-
gations within RC floor slabs. Also, these models do not consider
temperature’s influence. At present, very few XFEM models have
been developed for modeling reinforced concrete floor slabs in fires.
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The integrity failure of floor slabs may result from large indi-
vidual cracks formed within floor slabs when the slabs are de-
formed largely. Therefore, for structural engineers who carry out
the performance-based fire safety design for reinforced concrete
and composite buildings, it is highly desired to have numerical
models that can be used to predict the large cracks’ opening in
the floor slabs. Previous research (Huang et al. 2003; Izzuddin
and Elghazouli 2004; Foster 2006; Bailey and Toh 2007) indicated
that the smeared crack model can predict the large deformation of
floor slabs with reasonably good accuracy. However, concrete is a
brittle material; some individual large cracks can be generated
within the largely deformed floor slabs. The shortcoming of the
smeared crack model is that the model cannot calculate the large
cracks’ opening in floor slabs. At present, according to the authors’
knowledge, there are no available XFEM plate element models that
can be used to predict the formation and propagation of individual
large cracks in RC floor slabs. Also XFEM models are more com-
putationaly demanding.

Hence, the aim of the research is developing a nonlinear finite-
element model to predict the individual large cracks’ opening in RC
slabs at elevated temperatures. In this nonlinear procedure, a RC
slab is modeled as an assembly of three different elements, which
are plain concrete plate, reinforcing steel bar, and bond-link ele-
ments. In order to consider the temperature gradient along the
thickness of the slab, the plate element of plain concrete was sub-
divided into layers. In order to predict the cracks’ opening, a hybrid
numerical procedure was developed. The procedure combines a
smeared crack model with an XFEM model. The proposed model
has the advantages of both smeared crack and XFEM models for
modeling global structural behavior and localized cracking failure
of the floor slabs in fire. The original contributions of this paper are:
• A hybrid finite-element procedure, combining the advantages of

both smeared crack model and XFEM, was developed. For de-
fining the shift from the smeared crack model to delayed XFEM
(D-XFEM), a robust criterion is proposed. The new procedure
is computationally very efficient, because only the elements
accommodating the through-the-thickness cracks need to be
enriched.

• The model developed in this paper takes into account the
effects of temperatures induced under fire conditions. For the
D-XFEMplain concrete elements, a layer procedurewas adopted
for representing the temperature distribution along the thickness
of slabs. The model takes into account the thermal expansions of
materials, the properties of the bond between the concretes and
steel bars, and the material properties at elevated temperatures.

Nonlinear Numerical Procedure

Fig. 1(a) shows that a RC slab is represented as an assembly of
three different elements which are plain concrete, reinforcing steel
bar, and bond-link elements. For modeling plain concrete slabs, a
nine-node higher-order isoparametric thick plate element is used
(Huang et al. 2003). The model considers both geometric and
material nonlinearities. The reinforcing steel bar is modeled using
a three-node beam element. As shown in Fig. 1(b), a two-node
bond-link element is used for modeling the bond characteristics
between the reinforcing steel bar and concrete. One three-node steel
bar element is connected to the plain concrete element using three
bond-link elements. In this research, a common reference plane is
defined at the midsurface of the concrete slab element. All nodes
of different types of elements are located at the reference plane.
Position of reference plane is assumed to be fixed during the analy-
sis. The two connected nodes, a concrete node and a steel bar node,

originally occupy the same location at the reference plane in the
finite-element mesh of an undeformed structure [Fig. 1(a)].

For considering the temperature influence, the plain concrete
slab elements are divided into layers along the thickness direction
[Fig. 1(c)]. In this model, it is assumed that there is no slip between
each layer. The stress state within each layer is plane stress. There-
fore, each layer has different temperature and material properties
and thermal expansions.

As mentioned before, the nonlinear procedure presented here is
a hybrid FE procedure that combines the smeared crack model with
XFEM. For modeling of crack evolution at the earlier stage of the
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Fig. 1. Finite-element model of reinforced concrete slab: (a) layered
reinforced concrete slab element; (b) concrete, steel bar, and bond-link
element; (c) division of concrete slab element into layers
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analysis, the smeared crack model is used in which the cracks are
formed layer by layer along the thickness of the plain concrete slab
elements. At the later stage of the analysis, because the slab ele-
ments are largely deformed, the delayed XFEM (D-XFEM) is used
to calculate the individual through-the-thickness cracks’ opening
within the elements. The model cannot be used for predicting
the spalling of concrete for RC slabs in fire.

For the smeared crack model, a temperature-dependent biaxial
failure envelope of concrete was used (Fig. 2). The failure envelope
is based on the model proposed by Kupfer and Gerstle (1973) at
ambient temperature. The developed model was used to determine
the failure characteristics (such as cracking or crushing of concrete)
at each integration point. In this concrete failure envelope, the area
enclosed by the failure envelope decreased with increasing temper-
atures. As shown in Fig. 2, the failure surfaces of the biaxial
strength envelope were divided into four regions, which depended
on the stress state as represented by the principal stress ratio
α ¼ σc1=σc2. Compressive stresses were assumed to be negative
and tensile stresses positive, and the principal directions were
chosen so that σc1 ≥ σc2 algebraically. Within this model the ini-
tiation of cracking or crushing at any location occurred when the
concrete principal stresses reached one of the failure surfaces.

Before cracking or crushing occurs, the integral concrete was
assumed to be isotropic, homogeneous, and linearly elastic. A
smeared crack model was adopted in which a cracking at any Gauss
point was identified when the concrete principal stress reached one
of the failure surfaces, either in the biaxial tension region (Segment
AB) or in the combined tension-compression region (Segment BC)
shown in Fig. 2.

After the initiation of cracking in a single direction, the concrete
was treated as an orthotropic material with principal axes normal
and parallel to the crack direction. The concrete parallel to the crack
was capable of resisting both tensile and compressive stresses.
When it was subjected to tension, linear elastic behavior was as-
sumed, and when the concrete parallel to the crack was subjected
to compression, the uniaxial stress-strain relationship was applied.
Upon further loading of singly cracked concrete, a second set of
cracks could be formed in the direction normal to the first set of
smeared cracks. Therefore, if the stress in that direction was less
than concrete tensile strength f 0

t , then concrete remained singly
cracked. If it was greater than f 0

t , then the second set of cracks
was formed. After crushing, concrete was assumed to lose all stiff-
ness. Because the elements were subdivided into different layers
over the thickness, the layer-by-layer failure based on stress levels

at Gauss points could be simulated in the smeared crack model. The
details of the smeared crack model used in this study can be found
in Huang et al. (2003).

Layered Concrete Elements with D-XFEM Model

As previously mentioned, the D-XFEM model was introduced into
the plain concrete slab element for predicting the opening of large
cracks within the largely deformed RC floor slabs under fire
conditions.

Crack Model with D-XFEM

Stiffness Matrix of an Element, K. The development of an
element stiffness matrix K for the concrete slab element with
D-XFEM is presented in this section. For modeling the individual
large cracks within the plain concrete element, the partition of unity
was used. The field of displacement is represented as the sum of the
fields of regular displacement and enrichment displacement (Moës
et al. 1999). As shown in Fig. 3, a nine-node quadrilateral element
crossed by a crack (Γd) can be divided into two parts, which are
described as Ωþ and Ω− on the different sides of the crack. The
displacement field u has a continuous regular displacement field
ucont and a discontinuous displacement field udis:

u ¼ ucont þ udis ¼
X9
1

Niui þ
X9
1

NiΨiðxÞai ð1Þ

where Ni = shape function; ui = regular node displacement; ai =
additional node displacement to represent the discontinuity; and
ΨiðxÞ = enrichment function

ΨiðxÞ ¼ signðxÞ − signðxiÞ ði ¼ 1 ∼ 9Þ ð2Þ
where sign is the sign function, defined as

signðxÞ ¼
�þ1 if x ∈ Ωþ

−1 if x ∈ Ω− ð3Þ

The sign function given in Eq. (3) is shifted by signðxiÞ. Accord-
ing to Zi and Belytschko (2003), using the shifted sign function can
result in the vanishing of the enrichment displacement field outside
the enhanced element. In addition, the shifted enhancement func-
tion also allows the total nodal displacement to be obtained explic-
itly in the model, rather than only the regular part of XFEM
displacement. This makes the compatibility of total nodal displace-
ments of plain concrete element and steel bar element feasible.
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Fig. 2. Biaxial failure envelope of concrete at elevated temperatures
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Fig. 3. Nine-node quadrilateral element crossed by a crack Γd
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Hence, the bond-link element can be used to link the plain concrete
element and steel bar element in a conventional way.

As shown in Fig. 4, there are five degrees of freedom (DOFs) for
each node of the slab element: related to the local coordinates x, y,
z, the translational degrees of freedom are u, v, w, and rotational
degrees of freedom are θx, θy. Because the current model mainly
intends to predict the in-plane opening of individual cracks and
ignore the strong discontinuity in rotations, only two membrane
translational DOFs (u, v) were enriched and all other DOFs
(w, θx, θy) were assumed as regular. Hence, only two additional
DOFs (uai , v

a
i ) per node were added to the nodal displacement

vector. The following equations give node displacements ui and
ai as:

ui ¼ ûm þ ûp ¼ ½ûT
m ûT

p�T
¼ ½uu1vu1uu2vu2 : : : uu9vu9wu

1θ
u
x1θ

u
y1w

u
2θ

u
x2θ

u
y2 : : :w

u
9θ

u
x9θ

u
y9�T ð4Þ

ai ¼ âm þ âp ¼ ½âTm 0�T
¼ ½ua1va1ua2va2 : : : ua9va9000000 : : : 000�T ð5Þ

where uui and vui = regular in-plane nodal displacements; wu
i =

regular out-plane nodal displacements; θuxi and θuyi = regular nodal
rotations; and uai and vai = enriched in-plane nodal displacements,
respectively.

When a crack forms in a plate slab element, the plate displace-
ments (Fig. 4) can be calculated using Eq. (6) based on Mindlin-
Reissner assumptions:

u ¼ −βxzþ ðuu0 þ ua0Þ
v ¼ −βyzþ ðvu0 þ va0Þ
w ¼ w0 ð6Þ

where uu0 and vu0 = regular in-plane displacements; ua0 , va0 =
enriched in-plane displacements, respectively; βx and βy = regular
rotations with respect to y and x axes, respectively; and w0 =
regular out-of-plane displacement along the z coordinate
(Fig. 4).

If the Von Karman assumptions are introduced and the large
deformation is considered, the strain of a plate element with en-
riched in-plane displacements can be expressed as

ε ¼

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

−z ∂βx

∂x þ ∂uu0
∂x

−z ∂βy

∂y þ ∂vu0
∂y

−z
�∂βx

∂y þ ∂βy

∂x
�
þ
�∂uu0
∂y þ ∂vu0

∂x
�

−βx þ
∂w0

∂x
−βy þ

∂w0

∂y

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

þ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

1

2

�∂w0

∂x
�

2

1

2

�∂w0

∂y
�

2

∂w0

∂x
∂w0

∂y
0

0

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

þ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

∂ua0
∂x
∂va0
∂y

∂ua0
∂y þ ∂va0

∂x
0

0

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

¼ ðεu0 þ εuLÞ þ εa ð7Þ

where εu0 and ε
u
L = continuous strain related to small deformation and large deformation respectively; and εa = discontinuous strain. Because

only two membrane additional DOFs (uai , v
a
i ) are available, ε

a only has three items related to enriched in-plane displacements (ua0 , v
a
0), as

shown in Eq. (7). The strain rate can be represented as

dε ¼ Budui þBadai ð8Þ
in whichBu andBa = transformation matrixes of the regular and enriched strain-displacement, respectively. The details for calculatingBu can
be found in Huang et al. (2003). The enriched strain-displacement transformation matrix (Ba) having plane membrane item only can be
written as

Ba ¼
�
Ba

m 0

0 0

�
ð9Þ

in which Ba
m = enriched strain-displacement transformation matrix related to plane membrane as

Ba
m ¼ ΨiðxÞLN ¼ L

"
Ψ1ðxÞN1 0 Ψ2ðxÞN2 0 : : : : : : Ψ9ðxÞN9 0

0 Ψ1ðxÞN1 0 Ψ2ðxÞN2 : : : : : : Ψ9ðxÞN9

#
ð10Þ

where the matrix L contains differential operators; ΨiðxÞ = enrichment function; and Ni = shape function.
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Fig. 4. Notation used for plate element
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Considering the thermal expansion, the total strain (ε) is the sum
of both thermal and stress-related strains. As a result, the compo-
nents of the Piola-Kirchhoff stress vector can be calculated as

σ ¼

8>>>>>>><
>>>>>>>:

σx

σy

τ xy

τ xz

τ yz

9>>>>>>>=
>>>>>>>;

¼ Dðε − εTÞ ¼ DðBuui þBaai − εTÞ ð11Þ

where D = constitutive matrix of concrete. For the enriched
element, three different constitutive matrixes (Cela, C0 and Cs)
were used to form element stiffness matrix. The expressions of
Cela, C0, and Cs are written as follows:

Cela ¼ 1

1 − ν2

2
64

Ect νEct 0

νEct Ect 0

0 0 0.5ð1 − νÞEct

3
75 ð12Þ

C0 ¼

2
64
0 0 0

0 0 0

0 0 μGc

3
75 ð13Þ

Cs ¼

2
6664

0.5Ect

ð1þ νÞ 0

0
0.5Ect

ð1þ νÞ

3
7775 ð14Þ

where Ect, Gc and ν = Young’s modulus, shear modulus, and
Poisson’s ratio of concrete, respectively; and μ = shear retention
factor, with 0 < β ≤ 1.0.

For the enriched element, only two membrane translational
DOFs (u, v) were enriched and all other DOFs (w, θx, θy) remained
as regular. Hence, the element stiffness corresponding to two plane
membrane DOFs (u, v), which were enriched, the elastic constit-
utive matrix (Cela) was adopted because the XFEM formulations
introduced can automatically realize the loss of element stiffness
due to cracking. In such a way the compressive material nonlinear-
ity was ignored in the enriched element, which is justifiable after a
significant crack occurring. However, the enriched elements in the
current model could not deal with crack closure, which may arise
when the slab is under fire conditions. Because the enriched ele-
ments were used for those elements with extensive cracking and
under large deformation, the chance of large individual cracks to
be closed in the later stage of a fire was relatively remote. This
viewpoint is supported from previous experimental evidence
(Bentley et al. 1996; Bailey and Toh 2007). Hence, for simplicity,
in the current model the crack closure was ignored for the enriched
elements. For the element stiffness related to nonenriched DOFs
(w, θx, θy) the cracked constitutive matrix (C0) was employed to
account for the decrease of structural stiffness and tensile stress
after cracking happened. And, Cs was the constitutive matrix re-
lated to transverse shear.

Based on the principle of virtual work, the stiffness matrix and
internal force vector of an element can be represented as

ψðuÞ ¼
Z
V
B̄TσdV − fext ¼ 0 ð15Þ

where ψ = sum of external and internal generalized forces; and
B̄ = strain-displacement transformation matrix.

In this study, the concrete cracking at an early stage was repre-
sented using the smeared crack model. When the slab elements
were largely deformed, the XFEM formulations were adopted to
predict the opening of through-the-thickness cracks within the
element. At this stage, the concrete cracking within the element
was relatively significant. Therefore, for the element with extended
discontinuity (D-XFEM), it was reasonable to ignore the traction
force between two crack faces. Hence, in Eq. (15), the regular in-
ternal force (Qu) is balanced by the external force (fext), and the
enriched internal force (Qa) must be zero, that is

Qu ¼
Z
Ω
BuTσdΩ ¼ fext ð16Þ

Qa ¼
Z
Ωþ;Ω−

BaTσdΩ ¼ 0 ð17Þ

Based on the principle of virtual work, the stiffness matrix of an
element can be represented as

Kdû ¼
�
Kuu Kua

Kau Kaa

��
dui

dai

�
¼

�
fext

0

�
−
�
Qu

Qa

�
ð18Þ

whereKuu = stiffness matrix of an element that is related to regular
DOFs; Kaa = stiffness matrix of an element that is related to en-
riched DOFs; and Kua ¼ ðKauÞT is related to both.

The standard element stiffnessKuu only related to regular DOFs
is composed of Kuu

m , Kuu
p , Kuu

mb, and Kuu
mb as (Huang et al. 2003)

Kuu ¼
"
Kuu

m Kuu
mb

Kuu
bm Kuu

p

#
ð19Þ

where Kuu
m = stiffness matrix related to plane membrane stress;

Kuu
p = stiffness matrix related to bending and shear stresses; Kuu

mb
and Kuu

mb = stiffness matrixes related to both plane membrane and
bending stresses.

As mentioned above, three constitutive matrixes Cela, C0, and
Cs were used to deal with enriched plane membrane DOFs, non-
enriched DOFs, and transverse shear, respectively. Based on this
principle, the following rules were implemented in building
element stiffness matrixes: Cela was used for calculating element
stiffness matrixes that had plane membrane strain-displacement
transformation matrix (Bu

m, Ba
m) or the nonlinear one Bu

L; C0

was used for calculating element stiffness matrixes that had bend-
ing strain-displacement transformation matrix Bu

b only; and C
s was

used for calculating element stiffness matrixes that had shear strain-
displacement transformation matrix Bu

s only. By such way, Kuu
m ,

Kuu
mb, K

uu
mb, and Kuu

p can be formed as follows:

Kuu
m ¼

Z
Ω
Bu

m
TCelaBu

mdΩ ¼
ZZ

A
Bu

m
T

�Z
Celadz

�
Bu

mdxdy

ð20Þ

Kuu
mb ¼

Z
Ω
Bu

m
TzCelaBu

bdΩþ
Z
Ω
Bu

m
TCelaBu

LdΩ

¼
ZZ

A
Bu

m
T

�Z
zCeladz

�
Bu

bdxdy

þ
ZZ

A
Bu

m
T

�Z
Celadz

�
Bu

Ldxdy ð21Þ
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Kuu
bm ¼

Z
Ω
Bu

b
TzCelaBu

mdΩþ
Z
Ω
Bu

L
TCelaBu

mdΩ

¼
ZZ

A
Bu

b
T

�Z
zCeladz

�
Bu

mdxdy

þ
ZZ

A
Bu

L
T

�Z
Celadz

�
Bu

mdxdy ð22Þ

Kuu
P ¼

Z
Ω
Bu

b
Tz2C0Bu

bdΩþ
Z
Ω
Bu

s
TkCsBu

sdΩþ
Z
Ω
Bu

b
TzCelaBu

LdΩ

þ
Z
Ω
Bu

L
TCelaBu

LdΩþ
Z
Ω
Bu

L
TzCelaBu

bdΩþ
Z
V
ĜT σ̂ ĜdV

¼
Z Z

A
Bu

b
T

�Z
z2C0dz

�
Bu

bdxdy

þ
Z Z

A
Bu

s
T

�Z
kCsdz

�
Bu

sdxdy

þ
Z Z

A
Bu

b
T

�Z
zCeladz

�
Bu

Ldxdy

þ
Z Z

A
Bu

L
T

�Z
Celadz

�
Bu

Ldxdy

þ
Z Z

A
Bu

L
T

�Z
zCeladz

�
Bu

bdxdy

þ
Z Z

A
ĜT

�Z
σ̂dz

�
Ĝdxdy ð23Þ

In Eq. (23), σ̂ is calculated as

σ̂ ¼
� σx τ xy

τ xy σy

�
ð24Þ

and Ĝ is a matrix defined purely in terms of the coordinates as

Ĝ ¼

2
664

∂
∂x 0 0

∂
∂y 0 0

3
775 ð25Þ

In Eq. (18), Kua and Kau are the stiffness matrixes related to
both enriched DOFs and regular DOFs, and Kua is involved addi-
tional nodal displacements that only have two enriched plane mem-
brane items (uai , v

a
i ). Therefore, only Kua

m and Kua
bm corresponding

to uai , v
a
i were available, and other items in the matrix likeKua

mb and
Kua

p corresponding to wa, θax , θay should be zero, that is

Kua ¼
�Kua

m 0

Kua
bm 0

�
ð26Þ

where

Kua
m ¼

Z
Ωþ;Ω−

Bu
m
TCelaBa

mdΩ¼
ZZ

Aþ;A−
Bu

m
T

�Z
Celadz

�
Ba

mdxdy

ð27Þ

Kua
bm ¼

Z
Ωþ;Ω−

Bu
b
TzCelaBa

mdΩþ
Z
Ωþ;Ω−

Bu
L
TCelaBa

mdΩ

¼
ZZ

Aþ;A−
Bu

b
T

�Z
zCeladz

�
Ba

mdxdy

þ
ZZ

Aþ;A−
Bu

L
T

�Z
Celadz

�
Ba

mdxdy ð28Þ

In Eq. (26), the column of zeroes will multiply three zeroes addi-
tional DOFs [âp ¼ ½wa θax θay � ¼ ½0 0 0�, see Eq. (5)].

As shown in Eq. (18), Kau will multiply dui to obtain enriched
internal force Qa, which only has items related to membrane
stresses. Therefore, onlyKau

m andKau
mb are available and other items

like Kau
bm and Kau

p should be zero, that is

Kau ¼
�
Kau

m Kau
mb

0 0

�
ð29Þ

in which

Kau
m ¼

Z
Ωþ;Ω−

Ba
m
TCelaBu

mdΩ

¼
ZZ

Aþ;A−
Ba

m
T

�Z
Celadz

�
Bu

mdxdy ð30Þ

Kau
mb ¼

Z
Ωþ;Ω−

Ba
m
TzCelaBu

bdΩþ
Z
Ωþ;Ω−

Ba
m
TCelaBu

LdΩ

¼
ZZ

Aþ;A−
Ba

m
T

�Z
zCeladz

�
Bu

bdxdy

þ
ZZ

Aþ;A−
Ba

m
T

�Z
Celadz

�
Bu

Ldxdy ð31Þ

Kaa = stiffness matrix related to enriched DOFs. Because only
membrane DOFs were enriched

Kaa ¼
�
Kaa

m 0

0 0

�
ð32Þ

in which

Kaa
m ¼

Z
Ωþ;Ω−

Ba
m
TCelaBa

mdΩ

¼
ZZ

Aþ;A−
Ba

m
T

�Z
Celadz

�
Ba

mdxdy ð33Þ

Because the effects of elevated temperatures were included
in the model, all material stiffness matrixes are temperature-
dependent. As mentioned previously, in a layered slab element
the temperature and material property of each layer were different,
but within a layer they were constant for each temperature step.
Therefore, the inner integrations ∫ z2C0dz, ∫ zC0dz, ∫ zCeladz,
∫Celadz, and ∫ kCsdz in Eqs. (20)–(33) could be carried out
separately and replaced by summation over the layers along the
z-axis as Z

z2C0dz ¼
Xn
l¼1

1

3
ðz3lþ1 − z3l ÞC0

l ð34Þ

Z
zC0dz ¼

Xn
l¼1

1

2
ðz2lþ1 − z2l ÞC0

l ð35Þ

Z
zCeladz ¼

Xn
l¼1

1

2
ðz2lþ1 − z2l ÞCela

l ð36Þ

Z
Celadz ¼

Xn
l¼1

ðzlþ1 − zlÞCela
l ð37Þ

Z
kCsdz ¼

Xn
l¼1

kðzlþ1 − zlÞCs
l ð38Þ

where zl = distance from reference plane to the lth layer; Cela
l =

material stiffness matrix relating to plane stress for the lth layer;
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C0
l = material stiffness matrix relating to bending for lth layer;Cs

l =
material stiffness matrix relating to shearing for the lth layer; n =
total number of element layers; and k ¼ 5=6, a factor to take into
account the influence of the nonuniform shear stress along the
thickness of slabs.
Internal Force Vector of an Element, Qe. The internal force vec-
tors can be written as

Qe ¼
�
Qu

Qa

�
ð39Þ

where Qu and Qa = regular and enriched internal force,
respectively

Qu ¼
Z
Ω
BuTσdΩ ¼

Z
Ω
ðBu

0 þBu
LÞTσdΩ ¼

�Qu
m

Qu
p

�
þ
�

0

Qu
L

�

ð40Þ

where Qu
m = regular internal force related to membrane stresses;

Qu
p = regular internal force related to bending and shear stresses;

and Qu
L = regular internal force related to large deformation.

Because only two membrane additional DOFs (uai , vai ) were
enriched, the enriched internal force Qa only had the item Qa

m
related to membrane stresses and other enriched internal force vec-
tors corresponding to DOFs (wa, θax , θay) should have been zero.
That is

Qa ¼
Z
Ωþ;Ω−

BaTσdΩ ¼
�
Qa

m

0

�
ð41Þ

Let σp ¼ fσz; σx; τ zxgT and τ ¼ fτ zy; τ xygT , so σ ¼ fσp; τgT .
Then we have

Qu
m ¼

Z
Ω
Bu

m
TσpdΩ ¼

ZZ
A
Bu

m
T

�Z
σpdz

�
dxdy ð42Þ

Qu
p ¼

Z
Ω
Bu

b
TzσpdΩþ

Z
Ω
Bu

s
TτdΩ

¼
ZZ

A
Bu

b
T

�Z
zσpdz

�
dxdy þ

ZZ
A
Bu

s
T

�Z
kτdz

�
dxdy

ð43Þ

Qu
L ¼

Z
Ω
Bu

L
TσpdΩ ¼

ZZ
A
Bu

L
T

�Z
σpdz

�
dxdy ð44Þ

Qa
m ¼

Z
Ωþ;Ω−

Ba
m
TσpdV ¼

ZZ
Aþ;A−

Ba
m
T

�Z
σpdz

�
dxdy ð45Þ

where ∫ σpdz, ∫ zσpdz, and ∫ kτdz in Eqs. (42)–(45) can be ex-
pressed by summation over the layers and replaced as

Z
σpdz ¼

Xn
l¼1

ðzlþ1 − zlÞσpl ð46Þ

Z
zσpdz ¼

Xn
l¼1

1

2
ðz2lþ1 − z2l Þσpl ð47Þ

Z
kτdz ¼

Xn
l¼1

kðzlþ1 − zlÞτl ð48Þ

where σp
l = stress vector related to plane stress in the lth layer;

τ l = stress vector relating to shearing in the lth layer; and n = total
number of layers.

Constitutive Modeling of Concrete at Elevated
Temperatures

In the nonlinear procedure previously described, the compressive
strength of concrete is reduced at elevated temperatures. Fig. 5
shows the models proposed in EN1992-1-2 (Commission of the
European Communities 2004) to calculate the uniaxial compres-
sive strength of concrete subjected to high temperature. Also a
model specified in EN1992-1-2 (Commission of the European
Communities 2004) was adopted for calculating concrete thermal
expansion. It was assumed that there was no thermal shear strain for
concrete in the state of plane stresses. The shrinkage and creep of
concrete was not considered in the model. The uniaxial tensile and
compressive strengths were assumed to be related by f 0

t ¼
0.3321

ffiffiffiffiffi
f 0
c

p
MPa (Huang et al. 2003).

Concrete exhibits a linear elastic behavior up to its ultimate
tensile capacity. Beyond this the tensile stress decreases gradually
with increasing tensile strain, rather than dropping to zero abruptly
as would occur in a perfectly brittle material. This phenomenon is
known as tensile strain-softening. In this study, the bilinear curve
shown in Fig. 6 was adopted to represent tensile strain-softening
in which εcr ¼ f 0

t=Ec, εcu ¼ α1εcr and α1 ¼ 10–25 (Huang
et al. 2003).

0 1.0 2.0 3.0 4.0 5.0

1.0

0.8

0.6

0.4

0.2

0

Strain (%)

1000°C

800°C

600°C

400°C

200°C

20°C

Stress ratio (σc/fc'(20°C))

Fig. 5. Uniaxial concrete compressive stress-strain relationships at
high temperature

A

B

C

0

ft’

εcr

Stress

Strain
0.22εcu

εctεcu

0.33ft’

σt

ft’= 0.3321 fc’

“Cracking”

Fig. 6. Concrete tension curve used in the model
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Concrete experiences load-induced thermal strain (LITS) under
fire conditions. The LITS is the strain that cannot otherwise be ac-
counted for because of the decomposition of the cement paste. It
occurs under compressive stress as temperature increases, is essen-
tially permanent, unrecoverable, and only occurs under initial heat-
ing. The LITS is temperature-dependent and independent of time.
Previous research (Huang et al. 2009) indicated that the LITS has
significant impact on the structural behavior of reinforced concrete
column in fire. However, the effect of the LITS on the behavior
of reinforced concrete beam is considerably less compared to col-
umns. This is because, for the bendingmember, the LITS exists only
in the region subjected to compressive stresses (top part of the cross

section). Another issue is that at present a reliable model for calcu-
lating the LITS is lacking. Therefore, for reinforced concrete slabs,
the LITS has not taken into account in the current model.

Working Procedure of the Current Model

In this study, for modeling of crack evolution at the earlier stage of
the analysis, the smeared crack model was used. At the later stage
of the analysis, the delayed XFEM (D-XFEM) was used to calcu-
late the individual through-the-thickness cracks’ opening within the
largely deformed slab elements. Therefore, in order to combine the

END

Yes

START

Initialize system

Input structural, material properties

Input temperature, time step, load 
increment

Calculate material properties, free strain 
at each Gauss point

Start iteration procedure (j=0) for smear 
crack model

Calculate regular element stiffness 
matrices and internal force vectors

Calculate regular structural stiffness 
matrix and internal force vector

Calculate out-of-balance forces

Convergence check?

Criterial check:
Are all Gauss points in an element 

failed by cracking or crushing?

Start iteration procedure (j=0) 
for XFEM model

Calculate enriched element stiffness 
matrices and internal force vectors

Calculate enriched structural stiffness 
matrix and internal force vector

Calculate out-of-balance forces

Convergence check?

Store/Output results

Step end ?

Yes

No

Yes

No

j=j+1

Yes

j=j+1

i=i+1

No

No

Is the XFEM model used for an element?

No

Yes

Fig. 7. Flowchart of the current model
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smeared crack model with the D-XFEM model into a hybrid FE
procedure, a criterion was developed here to determine the shift
from the smeared crack model to the XFEM model. That is, when
all integration points within a slab element fail because of cracking
or crushing assessed by the smeared crack model, that element will
be enriched, and the extended strong discontinuity will be intro-
duced into that element. The reason for the proposed criterion is
that once all integration points have failed by cracking or crushing,
the slab concrete almost entirely loses its stiffness, and thus large
deformation will appear in the slab, so it is reasonable to assume
the through-the-thickness cracks have been formed in that slab
element. For the element enriched, the XFEM formulations were
used to calculate the element stiffness matrix and internal force vec-
tor. The working procedure of the current model is as the following:

Fig. 7 shows the flowchart of the current model. At the begin-
ning of the analysis, all plain concrete slab elements were modeled
regularly by using the smeared crack model. Each node was as-
sumed to have 12 DOFs including 6 regular DOFs and 6 additional
DOFs. For the smeared crack element, only regular DOFs were
activated, and all parameters related to additional DOFs were set
to zero. Over each incremental loading step, the regular slab ele-
ments (using the smeared crack model) were examined one by one,
and when all integration points within a certain regular slab element
failed by cracking based on the smeared crack model, then that
element was enriched by introducing an extended strong disconti-
nuity. All parameters of that element were replaced by the param-
eters of an XFEM element and two additional membrane’s DOFs
(uai , v

a
i ) per node were activated. The element stiffness matrix K

and internal force vector Qe of the enriched element were calcu-
lated using the model presented in previous sections.

In this study, for defining the orientation of an individual
through-the-thickness crack within an enriched element, it is rea-
sonable to assume that the crack orientations of each layer were
generally unchanged along the thickness of the slab and were con-
sistent with the initial crack orientation of the bottom layer. Hence,
the cracking orientation of an enriched element was defined as the
cracking orientation at the central fifth integration point of the bot-
tom layer of the element, predicted by the smeared crack model.

As mentioned before, in this research the shifted enrichment
function was used, the field of discontinuous displacement van-
ished outside the element that enclosed the crack. Hence, only
the elements cutting by the crack were enriched. Fig. 8 illustrates
the enriched elements and enriched nodes, in which the regular
elements using the smeared crack model are hollow, the enriched
elements are filled with grey color, the solid circles represent
the enriched nodes, and the hollow circles indicate regular nodes.
In the current model, only one crack was allowed in an element.
Fig. 9 illustrates the mechanism of a crack initiating and propagat-
ing. As shown in the figure, there are two ways that an initial crack
cut a quadrilateral element, Initial Crack 1 in Fig. 9(a) and Initial
Crack 2 in Fig. 9(b), each of which has possibly three crack propa-
gation paths within the next element when the initial crack extends
from the existing crack tip at Element 1 into Element 2.

For calculating the stiffness matrix of the regular slab element
using the smeared crack model, 9 Gauss integration points were
adopted. However, for the enriched slab element with the extended
strong discontinuity, conventional 9 Gauss integration points were
not sufficient to identify the enrichment function from a constant
function over different sides (Ωþ and Ω−) of a discontinuity (Wells
and Sluys 2001). Hence, the enriched elements were integrated sep-
arately on each side of the discontinuity. In this study, the element
was partitioned into subtriangles. As shown in Fig. 10, 7 Gauss
points were used for each subtriangle. And for an enriched element,
a total of 56 Gauss points were used. As shown in Fig. 10(a), a

quadrilateral element was cut by a crack into two subquadrilaterals,
and four subtriangles with 28 Gauss points were applied within each
subquadrilateral. Fig. 10(b) shows a quadrilateral element cut by a
crack into a pentagon and a triangle. In this case, 35 Gauss points
distributed over 5 subtriangles were applied within the pentagon,
and 21 Gauss points distributed over 3 subtriangles were applied
within the triangle.

Bond-Link and Reinforcing Steel Bar Elements

Fig. 1 shows a RC slab modeled as an assembly of three different
elements (plain concrete, reinforcing steel bar, and bond-link ele-
ments). A three-dimensional three-node beam element (Huang
et al. 2009) was adopted here to represent the reinforcing steel
bar, in which both material and geometric nonlinearities are
considered. Normally, in the numerical modeling of reinforced con-
crete members, a two-node truss element can be used to represent
the reinforcing steel bar. However, because the truss element
ignores the bending degrees of freedom, the steel bars are only ap-
proximately modeled using this kind of element. Hence, the beam

Strong discontinuity

Regular node

Enriched node

Regular element 
with smeared crack model

Enriched element 
with extended discontinuity

Fig. 8. Regular elements and enriched elements in the slab model

Centroid  
point 

Element 1 

Element 2 
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Initial 
crack1 
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2-1 
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2-3 

Centroid  
 point Initial 

crack 2 

Crack tip 

Initial crack 

Propagated crack 
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Fig. 9. Crack initiation and propagation
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element can more accurately model reinforcing steel bars compared
to the truss element. The cross section of the beam element was
divided into a matrix of segments, and each segment might have
different material, temperature, and mechanical properties. The
models defined in EN1992-1-2 (Commission of the European
Communities 2004) were used to calculate the steel mechanical
properties and thermal elongation. Fig. 11 shows the stress-strain
curve of reinforcing steel at elevated temperatures suggested by
EN1992-1-2 (Commission of the European Communities 2004),
in which the effect of creep of steel bar has been considered
implicitly.

For modeling the interaction between the reinforcing steel and
the concrete within the RC slabs, a bond-link element developed by
the second author (Huang 2010a) was used. As shown in Fig. 12,
the bond-link element links the nodes between a plain concrete slab
element and steel bar element. The bond element is a specialized
two-node element of zero length, which has three translational
degrees of freedom u, v, w and three rotational degrees of freedom
θx, θy, θz at each node, where x, y, z are local coordinates of a

reinforcing steel element in which x is the direction of the longi-
tudinal axis of the reinforcing steel element. It was assumed that the
slip between reinforcing steel and concrete was related only to the
longitudinal axis direction (x-direction). The effects of various
influencing factors such as the type of steel bar (ribbed or smooth)
and the concrete strength were considered in the model. Also the
bond strength was degraded at elevated temperatures. The detailed
formulations can be found in Huang (2010a).

In the current model a reinforced concrete slab was modeled as
an assembly of finite plain concrete slab, reinforcing steel bar, and
bond-link elements (Fig. 1). For the plain concrete slab elements,
after multiple cracks formed within the elements the forces origi-
nally resisted by the plain concrete slab elements could be trans-
ferred into the reinforcing steel bar element through bond-link
elements. Hence, the modeling behavior of a reinforced concrete
slab was much smoother compared to modeling of plain concrete
slab only. A load control with the full Newton-Raphon solution
procedure used in the current model is robust enough to deal with
these convergence problems. The numerical stability of the current
model is very good, and the analysis can be performed until the
fracture of reinforcing steel bars or the failure of bond-link
elements.

Thermal Analysis of Reinforced Concrete Slabs
in Fire

A computer program FPRCBC-Twas developed by the second au-
thor (Huang et al. 1996; Huang 2010b) for predicting the temper-
ature history across the cross sections of reinforced concrete

y 
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y 

 

x 

Integration point  

Integration point  

-
  

+
 

  

-
  

+
 

Sub-triangle 

Sub-triangle 

Crack 

Crack 

(a)

(b)

Fig. 10. Integration scheme for an enriched element: (a) crack cutting a
concrete element into two quadrilaterals; (b) crack cutting a concrete
element into a pentagon and a triangle
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Fig. 11. High temperature stress–strain relationships of reinforcing
steel
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members under fire conditions. This thermal model was based on a
two-dimensional nonlinear finite-element procedure. In this model,
the thermal properties of concrete were considered as temperature
and moisture dependent, and the thermal properties of steel were
temperature dependent. The effect of water evaporation in concrete
was considered in the model. In the thermal analysis, performed
using FPRCBC-T, the fire conditions were described by time-
temperature curves of the fire at some distance away from the
member. For this purpose, convection and radiation boundary con-
ditions were used to simulate the heat transfer between the fire and
the surfaces of the members that were exposed to the fires. For the
thermal analysis of the reinforced concrete slab, the slab could be
divided into layers along the thickness of the slab for predicting
the temperature distribution within the cross section of the slab.
The detailed formulations of the model can be found in Huang et al.
(1996).

Validations

Mesh Sensitivity Test

For investigating the influence of mesh size, a square reinforced
concrete slab with simply supported condition at room temperature
was analyzed using different sizes of mesh, i.e. coarser mesh
(36 plate elements of plain concrete, 72 elements of steel bar
and 156 bond-link elements) and finer mesh (144 plate elements
of plain concrete, 288 elements of steel bar and 600 bond-link
element), respectively. The slab with the dimension of 1,100 ×
1,100 × 19.1 mm was reinforced by single layer steel bars with
diameter of 2.42 mm at space of 50 mm. The yield strength of steel
bar was 732 MPa, and the concrete compressive strength at ambient
temperature used in the modeling was 38 MPa. The comparisons of
predicted loads versus deflection curve and cracking patterns by
using different meshes are given in Figs. 13 and 14, respectively.
It is evident that the current model is not very sensitive to the mesh
sizes in terms of both deflection and cracking pattern.

Modeling Reinforced Concrete Slabs in Fire

For validating the current model, four fire tests of RC slabs were
modeled. These fire tests on RC slabs conducted by Bailey and Toh
(2007) were carried out under a transient heating state with a

uniform working load (P) applied on the top surface of the slab.
The applied load remained constant during the heating process.
Here the four slabs, designated as MF1, MF2, MF3, and MF4,
were modeled. As shown in Fig. 15, all slabs were reinforced by
a single layer reinforcement in each direction and have 5 mm cover
to steel bars in long span. The measured concrete’s compressive
strengths at room temperature were f 0

cð20°CÞ ¼ 43.2 MPa (MF1),
f 0
cð20°CÞ ¼ 43.3 MPa (MF2), f 0

cð20°CÞ ¼ 39.1 MPa (MF3), and
f 0
cð20°CÞ ¼ 39.0 MPa (MF4). In the validations, the tested material

properties were used. All cases were modeled using both the
smeared crackmodel and the current model for comparison purpose.

Both Slabs MF1 and MF3 were rectangular slabs and had
dimensions of 1,700 × 1,100 mm with thicknesses of 19.7 mm
and 19.0 mm, respectively. Slab MF1 was reinforced by steel bars
with diameter of 2.43 mm and yield strength of 695 MPa in the long
span, and with diameter of 2.41 mm and yield strength of 722 MPa
in the short span, respectively. The spacing of reinforcing bars was
50.8 mm in both spans. Slab MF3 was reinforced by steel bars with
diameter of 1.54 mm and spacing of 25.4 mm in both spans. The
yield strength of reinforcing bars for MF3 was 695 MPa in the long
span and 722 MPa in the short span. The applied load P for MF1
and MF3 was 5.28 and 3.66 kN=m2, respectively.

The dimensions of square slabs MF2 and MF4 were 1,100×
1,100 mm, and the thicknesses were 23.1 mm and 19.8 mm, re-
spectively. Slab MF2 was reinforced by steel bars with diameter
of 2.41 mm and yield strength of 684 MPa in the long span,
and with diameter of 2.43 mm and yield strength of 780 MPa
in the short span, respectively. The spacing of reinforcing bars
was 50.8 mm in both spans. Slab MF4 was reinforced by steel bars
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Fig. 14. Predicted cracking patterns using different size of mesh:
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Fig. 15. Details of tested reinforced concrete slabs under fire condi-
tions (adapted from Bailey and Toh 2007)
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with diameter of 1.54 mm and space of 25.4 mm in both spans. The
yield strength of reinforcing bars for MF4 was 336 MPa in the long
span, and 349 MPa in the short span. The applied load P for MF2
and MF4 was 5.52 and 5.43 kN=m2, respectively.

For modeling a RC slab in fire, the thermal analyses of the slab
need to be done first. The results of the thermal analysis were then
used as the temperature inputs to conduct structural analysis. The
sizes of layers along the thickness of the slabs used for the thermal
analysis were also used for the structural analysis, and all modeled
slabs were subdivided into ten layers along the thickness of plain
concrete slabs for both thermal and structural analyses.

Fig. 16 illustrates the predicted temperatures against tested re-
sults for bottom surface and top surface of Slab MF1. Fig. 17 com-
pares the predicted and tested temperatures for reinforcing steel bar
layers, where Bar 1, Bar 2, and Bar 3 represent the temperatures of
the top surface, midsurface, and bottom surface of steel bar layers,
respectively (Fig. 15). Good agreements have been achieved be-
tween the tests and predictions for the temperatures of the bottom

surface of concrete and the reinforcing steel bars. The predicted
temperatures of the top surface of concrete are lower than the mea-
sured results after heating for about 120 min. This is probably be-
cause the effect of big individual cracks on heat transfer over the
thickness of the slab tended to cause the increase of temperature on
the top surface of concrete, and this phenomenon was not consid-
ered in the thermal analysis. However, because the structural re-
sponse of reinforced concrete slabs mainly relies on the capacity
of reinforcement at elevated temperatures, it is acceptable to use
the predicted temperature histories given in Figs. 16 and 17 for the
structural analysis of the slabs.

Figs. 18–21 show the comparisons of predicted and tested load-
central deflection curves for Slabs MF1, MF2, MF3, and MF4. The
deflections predicted by the current model are in good agreement
with the test data. The predictions of the current model are better
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than the predictions of the smeared crack model. Therefore, the
model presented in this paper is capable of predicting the global
response of reinforced concrete slabs in fire.

Figs. 22 and 23 present the predicted cracking patterns of Slabs
MF1 and MF2, respectively. The predicted cracking patterns are
similar to the tested results. The predicted cracking patterns are rea-
sonable as they basically agree with the yield-line pattern of the
slab. For Slab MF1, the predicted cracks near corners evolved
diagonally, and those near central area tended to propagate horizon-
tally, where the biggest crack (with an opening of 25 mm) occurred
near the central part of the slab, and the smallest crack (with an
opening of 1.8 mm) appeared near the corner. For Slab MF2,
the predicted cracks propagated diagonally and crossed through
the whole slab. The crack opening at the central part of the slab
reached around 41 mm although there were also some minor cracks
in the slab—for instance, a crack with a small opening of 3.4 mm

appeared near the corner of the slab. This shows that the opening of
localized cracks within a RC slab can be reasonably predicted by
the current model. Some predicted crack patterns show crack dis-
continuity over small offsets (Fig. 22, the upper side of left bottom
corner element). This is because, when two cracks originated from
different regions propagate toward each other and then intersect at
the common side of two neighboring elements, the predicted crack
orientations make the two crack tips slightly offset from each other
instead of intersecting at the same point.

Note that in the case of Slab MF1, the current model didn’t suc-
cessfully model the observed big crack crossing throughout the
short span of the slab. This is because the current model only allows
one strong discontinuity in each element; the elements that had
been enriched once to hold the horizontal strong discontinuity
couldn’t be enriched again to accommodate the second strong dis-
continuity (vertical crack). Previous research has been carried out to
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Fig. 20. Predicted and measured maximum deflections of Slab MF3
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Fig. 22. Predicted and measured cracking patterns of MF1 (unit: milli-
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Fig. 23. Predicted and measured cracking patterns of MF2 (unit: milli-
meters): (a) tested; (b) predicted
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model intersecting cracks by XFEM (Daux et al. 2000). However,
because there are often many cracks existing in a reinforced con-
crete slab, tracing the propagations of all intersecting cracks can be
very complex. This will be a subject of further research.

The validations show that the computational time of the current
model is efficient and has the same order compared to the original
slab model, which is based on the smeared crack approach. There-
fore it is feasible to use the currentmodel formodeling full-scale slab
fire tests. The original slab model has been adopted by the commer-
cial fire engineering design software VULCAN for structural fire
engineering design of steel-framed composite buildings. Hence,
for larger composite buildings in fires, both structural stability
and integrity of RC floor slabs can be assessed by the current model.

Conclusions

This paper presents a hybrid layered FE model for predicting the
initiation and propagation of individual large through-the-thickness
cracks within RC floor slabs at elevated temperatures. In this model
the reinforced concrete slabs were modeled as an assembly of three
different elements (plain concrete, reinforcing steel bar, and bond-
link elements). A hybrid FE procedure that combines the smeared
crack model with XFEM was developed. The early stages of crack
evolution were modeled by the smeared crack model. In the later
stages of the analysis, the individual big cracks within the largely
deformed RC floor slabs were captured using D-XFEM. For deter-
mining the shift from smeared crack model to XFEM formulations,
a robust criterion has been proposed.

The proposed hybrid nonlinear FE procedure has been validated
successfully against fire tests of RC slabs. It is reasonable to con-
clude that the current model provides for the first time a robustmodel
to assess both structural stability and integrity of RC slabs in fire.
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Notation

The following symbols are used in this paper:
Ba = enriched strain-displacement transformation matrix;
Bu = regular strain-displacement transformation matrix;
D = plain concrete constitutive matrix;

fext = external force vector of an element;
Qa = enriched internal force vector of an element;
Qu = regular internal force vector of an element;
Kaa = enriched stiffness matrix of an element;
Kuu = regular stiffness matrix of an element;

signðxÞ = sign function;
ucont = vector of continuous displacement field;
udis = vector of discontinuous displacement field; and

ΨiðxÞ = enrichment function.
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