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Abstract

The main objective of the research presented in this paper is the development

of efficient subdomain BEM solvers for the solution of steady-state and transient

bio-heat problems in biological tissue, particularly involving melanoma of different

sizes such as Clark II and IV. The short-term goal of the work is to investigate

which of the numerical schemes implemented here produces the highest accuracy

and efficiency, as a first step towards the long-term goal of solving inverse bio-heat

problems for tumour diagnostics, i.e. the detection of tumour size and tumour

parameters. The numerical results show that quadratic elements produce high ac-

curacy with coarser meshes, and are thus more computationally efficient for this

type of problem. It was also found that, for transient problems, a BEM formula-

tion using the time-dependent fundamental solution of the diffusion equation was

more efficient than the use of the fundamental solution of the Laplace equation

with a finite difference time discretisation scheme, as much larger time steps could

be used for the same accuracy. This work proposes that the subdomain BEM with

quadratic elements and a time-dependent fundamental solution provides high accu-

racy and reduced computational time, and is thus indicated for the inverse analysis

of bio-heat problems.

Keywords: Bio-heat, melanoma, subdomain Boundary Element Method, time-

dependent fundamental solution, quadratic elements.

1 Introduction

Heat and mass transport phenomena are generally relevant to numerous processes in
the field of mechanical engineering, energy, bioengineering, as well as medicine. This
work focuses on bio-heat transfer phenomena in biological tissue. The main applications
of this work are in tumour detection or blood perfusion reconstruction [1, 2, 3, 4, 5,

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362649546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


6, 7], cryosurgery [8, 9, 10, 11], hyperthermia [12, 13, 14, 15], laser treatment [16, 17,
18], thermoregulation simulations [19, 20, 21, 22], etc. We aim to simulate naturally
occurring problems of heat transfer in order to evaluate the tissue response. In the past,
we have shown [23, 24, 25] that the results of simulations depend on many factors such as
computational discretization, numerical method used, governing equations and model, yet
the numerical accuracy largely remains overlooked although it may significantly influence
the quality of the results.

This question, of course, is dependent on the nature of the problem under investiga-
tion. For example, we do not foresee the numerical accuracy of simulations posing an
important obstacle in thermal treatments like cryosurgery or hyperthermia, where the
error can be in the range of 5%. However, it is very important in the field of diagnostic
like tumour detection, where numerical simulations of heat transfer are compared to mea-
surements of an actual bio-heat problem. These types of problems, commonly referred
to as inverse problems, are solved by comparing results of a numerical model to actual
experimental measurements to obtain a set of initial parameters on which progress or
existence of the condition of the tissue can be ascertained. Of course, there is always
a difference between the model and experiment, such as numerical errors, measurement
noise and intrinsic model uncertainties. Hence, the problem transforms into one of opti-
mization, more precisely, the estimation of an objective function. Large numerical errors
result in erroneous estimated objective functions for a certain set of searched parameters.
Low numerical error, on the other hand,results in a smooth and well defined objective
function. In most cases, especially in the field of inverse bio-heat problems, the objective
function is determined numerically and is known only for discrete values of the searched
parameters. This presents yet another obstacle in the solution of inverse problems, espe-
cially if a deterministic optimization method is used where the objective function has to
be smooth in order to apply correct gradients to the solution.

The experimental work was based on thermal imaging. Nowadays, thermal imaging
cameras have a resolution of 640× 480 pixels with sensitivity of < 30mK, which means
that the thermal recording or measurement of skin surface temperature can be both fine
and precise. The sensitivity of measurements is lower than 0.03K, hence providing very
high accuracy.

This paper shows results of transient bio-heat problems where tissue is modeled with
different layers and melanoma of different sizes. The numerical technique adopted is the
Boundary Element Method (BEM), which allows for simultaneous evaluation of temper-
ature and heat flux. It should be noted that, in addition to an accurate solver, we are
looking for speed of calculation prompting the use of the subdomain approach which was
shown to be much faster than the classical BEM, see Ramšak and Škerget [24, 25] and
Ravnik et al. [26, 27]. Thus, another aim of this paper is to find an efficient solver sat-
isfying both the accuracy and the computational speed requirements. The BEM or the
Dual Reciprocity BEM for solving bio-heat problems has already been used in works of
Luna et al. [2], Partridge and Wrobel [4, 6], Multiple Reciprocity BEM has been used by
Paruch and Majchrzak [5], limited to steady-state conditions, and in our previous work
for solving inverse bio-heat problems [28]. This work is focused on presenting results
for transient bio-heat problems comparing different element types: linear and quadratic
elements, as well as different formulations: elliptic where the Laplace fundamental so-
lution is coupled with a finite difference (FD) time marching scheme, and a parabolic
formulation where the time-dependent fundamental solution to the diffusion equation is
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used. The time-dependent fundamental solution has already been used by Yan et al.
[29] for one dimensional inverse heat source problems, as well as by Young et al. [30]
and Johansson and Lesnic [31] in a MFS approach for general homogenous parabolic
problems. This work develops a fast and accurate numerical scheme by coupling the
subdomain BEM with a time-dependent fundamental solution for solving transient bio-
heat melanoma problems considering heterogeneous tissue. The paper also shows the
numerical accuracy of the results for simulating the cooling-rewarming test proposed by
Çetingül and Herman [3] and Cheng and Herman [32], where four test examples using
Clark II and Clark IV melanoma sizes and different melanoma blood perfusion rates are
proposed.

The paper is organized as follows: Section 2 presents the governing equation and
the framework for the melanoma test problems, Section 3 describes the subdomain BEM
approach and numerical schemes adopted, together with different numerical formulations,
Section 4 covers the transient test examples, material properties, computational mesh and
boundary conditions. Section 5 discusses steady-state and transient results, numerical
accuracy of the elements adopted and proposed formulations, as well as a comparison of
computational speed. The paper closes with Section 6 that summarizes this work and
emphasizes the importance of its results.

2 Governing equation

There are many bio-heat models that describe heat transfer in tissue, from the simplest
macro-scale models [33, 34] to more complex models [35, 36, 37] that include convection
or non-Fourier heat transfer effects. The most common bio-heat model is the Pennes
model due to its simplicity and robustness, as well as good agreement with experimental
and other research work.

The Pennes bio-heat model [33] is written as:

ρcp
∂T

∂t
= ~∇ ·

(

k~∇T
)

+ ωbρbcp,b (Ta − T ) + qm, (1)

where T represents tissue temperature, ρ, k and cp are the effective tissue density, thermal
conductivity and specific heat, respectively, ωb is blood perfusion rate, ρb blood density,
cp,b is specific heat of the blood, Ta is arterial blood temperature, t time and qm metabolic
heat source. The first term on the left side represents the accumulation of energy, whereas
the first term on the right side represents diffusion using a Fourier rheological model. The
term which includes the blood perfusion rate represents the heat transfer effect due to the
blood flow through the capillary network and can act like a heat source or sink, depending
on the correlation between the tissue temperature and arterial blood temperature. The
assumption here is that the heat transfer between the surrounding tissue and blood flow
happens at the capillary level, because of the very large interface. The last term in the
Pennes model represents heat generation due to cell metabolism, which is especially high
in the muscle tissue, and therefore acts like a heat source. Between the last two terms,
blood perfusion plays a major role in heat generation in the tissue. This is especially
noticeable for carcinogenic tissue like tumour that has a higher blood perfusion rate,
because of the increased oxygen and nutrition demand, and therefore a higher tissue
temperature that can also be observed on the skin surface [4, 2, 3, 7].
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The convection effect due to blood flow is captured in the heat source term. Therefore,
the Pennes model is written as a parabolic differential equation and can be described as
a diffusion model with a non-linear heat source. The blood flow is replaced by a blood
perfusion parameter, which represents the net blood flow rate on the capillary network
per tissue volume and does not have direction. The blood perfusion rate is usually treated
as constant, as will be in this work; however, it is known to be temperature dependent
[4]. The arterial blood temperature is often treated as the body core temperature, which
is mostly constant in resting condition. Otherwise, a thermoregulation model is needed
for the whole body, to determine the time-dependent body core temperature in various
conditions [19, 22]. In this paper, a constant arterial blood temperature will be considered.

This work considers bio-heat problems with skin melanoma together with the sur-
rounding tissue of different layers. The assumption here is that each layer has constant
material properties. Therefore, the non-homogeneous tissue will be treated as a number
of space-wise homogeneous components with constant material properties, for which the
governing equation (1) can be written in the following form:

1

a

∂T

∂t
= ∆T +

ωbρbcp,b
k

(Ta − T ) +
qm
k
, (2)

where a = k/ρcp represents the thermal diffusivity of the tissue and ∆ is the Laplace
operator. In this case, the computational domain Ω(~r) has to be divided into several
subdomains Ωs(~r) that are interconnected through the equilibrium and compatibility
interface conditions:

Ti (~r, t) = Ti+1 (~r, t) , ki ·
∂Ti (~r, t)

~ni

= ki+1 ·
∂Ti+1 (~r, t)

~ni+1

(3)

where ~r represents the space vector, ~n a normal to the subdomain boundary and in-
dices i and i + 1 represent adjoining subdomains. Therefore, the bio-heat transfer for
the whole computational domain is described with the set of equations (2), which are
written for each individual layer of tissue, and the subdomains are connected through the
compatibility and equilibrium conditions (3).

3 Boundary Element Method

The Boundary Element Method (BEM) is used to solve the direct bio-heat problem. The
main reason for choosing this method is its advance treatment of boundary conditions and
the availability of fundamental solutions for its implementation. For instance, Neumann
boundary conditions are directly incorporated in the formulation without any additional
approximation, which increases the accuracy of the numerical solution. The fundamental
solution adopted for the governing equation influences the numerical accuracy, because
the parts of the differential equation that are not included in the fundamental solution
have to be approximated. The level of accuracy of the BEM is therefore related to the
chosen fundamental solution and interpolation functions, which will be discussed in this
work.

This paper shows a comparison between the use of steady and transient fundamental
solutions and also how different interpolation functions affect the numerical solution and
computational time. The subdomain BEM approach has already been discussed in detail
in [24, 25, 27], therefore only a brief description of this technique is presented here.
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3.1 Elliptic formulation

The governing equation (2) written for each subdomain Ωs(~r) can be treated as a non-
homogeneous elliptic equation in the form of a Poisson equation, which for the tempera-
ture field T = T (~r) is written as:

∆T (~r) = b(~r), (4)

where b(~r) represents the source term or the non-homogeneous part of the equation.
Starting with the integral form of Green’s second identity, which in the case of the Poisson
equation (4) can be written in the following form:

c(~ξ)T (~ξ) =
∫

Γs

q(~R)u∗(~ξ, ~R)dΓ−
∫

Γs

T (~R)q∗(~ξ, ~R)dΓ +
∫

Ωs

b(~r)u∗(~ξ, ~r)dΩs, (5)

where Ωs represents the computational domain and Γs its boundary, ~R is the spatial vector
of the boundary, q = ∂T/∂n is the normal derivative of the temperature, ~ξ represents

the position of the source point, c(~ξ) the free coefficient that depends on the position of
the source point, and u∗ and q∗ = ∂u∗/∂n are the fundamental solution and its normal
derivative, respectively.

The fundamental solution for the 2D Laplace equation is:

u∗(~ξ, ~r) = − 1

2π
· ln

[∥

∥

∥

~d(~ξ, ~r)
∥

∥

∥

]

, (6)

where ~d(~ξ, ~r) represents the distance vector between the source point and an arbitrary
space point, and ‖·‖ the absolute-value norm. Therefore, the normal derivative of the
fundamental solution is:

q∗(~ξ, ~r) =
~n · ~d(~ξ, ~r)

2π
∥

∥

∥

~d(~ξ, ~r)
∥

∥

∥

2 . (7)

As can be seen from the integral equation (5), we have to evaluate the boundary integrals
as well as the domain one, which cannot be avoided in the case of a non-homogeneous
elliptic equation. In the case of a homogeneous elliptic equation, the domain integral
vanishes and only boundary integrals remain. However, it is possible to transform the
domain integral to an equivalent boundary integral by introducing radial basis functions
usually adopted in the Dual Reciprocity BEM (DRBEM) [4, 38, 2]. In this case, the
accuracy of the numerical solution depends on the chosen radial basis function, the gov-
erning equation, as well as the number of boundary and internal points [4, 6]. In this
work, we will evaluate the domain integral directly since the cost for this is not high as
we have to evaluate the domain and boundary integration only once, as the mesh is fixed
in space and time.

The value of the free coefficient c(~ξ) depends on the position of the source point ~ξ,
and is defined as

c(~ξ) = 1, ~ξ ∈ Ωs,

c(~ξ) = β/(2π), ~ξ ∈ Γs.
(8)

where β represents the solid angle at point ~ξ.
To solve the integral equation (5), the computational domain Ωs and the boundary

Γs have to be discretized. Four-node linear cells have been used, and consequently two-
node linear elements for the boundary. To test the numerical accuracy of the proposed
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methodology, we tested different interpolation functions for the temperature field, its
normal derivative and the source term, as described in subsection 3.3, together with
the subdomain BEM approach. The global system of equations for the elliptic Poisson
equation (4) is written as

[He] {T} = [Ge] {q} − [Se] {b} . (9)

where [He], [Ge] and [Se] are the matrices obtained using the Laplace fundamental so-
lution, {T} is the vector of discrete values of the temperature field, {q} is the vector
of discrete values of the temperature normal derivative and {b} is the vector of discrete
values of the non-homogeneous part.

We now apply the above procedure to the bio-heat equation (2), where at first we
rewrite the equation in the form of a Poisson equation:

∆T =
1

a

∂T

∂t
− ωbρbcp,b

k
(Ta − T )− qm

k
, (10)

where the non-homogeneous part b(~r) is now:

b =
1

a

∂T

∂t
− ωbρbcp,b

k
(Ta − T )− qm

k
. (11)

The temperature time derivative is estimated with a second-order finite diference (FD)
scheme as [28]:

∂T

∂t
≈ 3T (tF )− 4T (tF−1) + T (tF−2)

2dt
, (12)

where tF , tF−1 and tF−2 represent different time steps and dt is the time difference
between two adjacent time steps. For the first time step, the following assumption has
been made; T (tF−1) = T (tF−2), because we do not know the temperature field before the
initial conditions, which reduces the FD time marching scheme to first-order. Including
the approximation (12) into equation (10) and using a fully implicitly scheme (T = T (tF ),
q = q(tF )), equation (9) is rewritten as:

(

[He] +
{

3

2adt
+

ωbρbcp,b
k

}

[Se]
)

{T (tF )} = [Ge] {q(tF )}+
{

4

2adt

}

[Se] {T (tF−1)}

−
{

1

2adt

}

[Se] {T (tF−2)}+ [Se]
{

ωbρbcp,b
k

Ta +
qm
k

}

. (13)

As can be seen, the non-linear part of the perfusion term is now included in the system
matrix, which give us the advantage of solving the system of equations only once per time
step. This numerical scheme has been used for solving the bio-heat problem discussed in
section 4, treating the bio-heat equation as a non-homogeneous elliptic equation.

3.2 Parabolic formulation

We can also treat equation (2) for each subdomain as parabolic, in the following general
form:

∆T (~r, t) + b(~r, t) =
1

a

∂T

∂t
, (14)
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where a represents a constant thermal diffusivity and b(~r, t) the heat source. Starting
with the integral form of Green’s second identity, which in the case of equation (14) can
be written after the time integration in the following form [38]:

c(~ξ)T (~ξ, tF ) = a
∫ tF

t0

∫

Γs

q(~R, t)u∗

t (
~ξ, ~R, tF , t)dΓdt− a

∫ tF

t0

∫

Γs

T (~R, t)q∗t (
~ξ, ~R, tF , t)dΓdt

+a
∫ tF

t0

∫

Ωs

b(~r, t)u∗

t (
~ξ, ~r, tF , t)dΩsdt+

∫

Ωs

T (~r, t0)u
∗

t (
~ξ, ~r, tF , t0)dΩs, (15)

where t0 is the initial time and tF the final simulation time, T (~r, t0) represents the initial
temperature field, and u∗

t and q∗t the time-dependent fundamental solution and its normal

derivative, respectively. The free coefficient c(~ξ) remains the same as in the elliptic
formulation and is defined by equation (8).

The time-dependent fundamental solution for 2D diffusion problem is defined as [38,
31]:

u∗

t (
~ξ, ~r, tF , t) =

1

4πaτ
· exp





−
∥

∥

∥

~d(~ξ, ~r)
∥

∥

∥

2

4aτ





 , (16)

where τ = tF −t is the time difference between the final and current time, and the normal
derivative is [38, 31]:

q∗t (
~ξ, ~r, tF , t) =

~n · ~d(~ξ, ~r)
8π(aτ)2

· exp





−
∥

∥

∥

~d(~ξ, ~r)
∥

∥

∥

2

4aτ





 . (17)

In this work, we adopt a formulation that integrates only over the current time step and
not the whole time domain. Therefore, tF represents the final time in each individual
time step and t0 = tF−1, thus tF − t0 = dt. The advantage is that the time integration
can be done only once if the time step remains constant during the simulation, otherwise
the time integrals have to be evaluated again. In our case, because the computational
mesh does not change with time, the time and space integrals have to be evaluated only
once.

The temperature field, its normal derivative, as well as the heat source in equation
(15) all depend on time, for which we have to introduce time interpolation functions. We

use constant time interpolation for the temperature normal derivative q(~R, t) = q(~R, tF )
and the source part b(~r, t) = b(~r, tF ) , while for the temperature field we use a linear
interpolation function [38], written as:

T (~r, t) =
tF − t

dt
· T (~r, t0) +

t− t0
dt

· T (~r, tF ). (18)

The integral equation (15), considering the time interpolation functions and changing the
order of integration, can now be rewritten in the following form:

c(~ξ)T (~ξ, tF ) =
∫

Γs

q(~R, tF )a
∫ tF

t0
u∗

t (
~ξ, ~R, tF , t)dtdΓ

−
∫

Γs

T (~R, t0)
a

dt

∫ tF

t0
(tF−t)·q∗t (~ξ, ~R, tF , t)dtdΓ−

∫

Γs

T (~R, tF )
a

dt

∫ tF

t0
(t−t0)·q∗t (~ξ, ~R, tF , t)dtdΓ
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+
∫

Ωs

b(~r, tF )a
∫ tF

t0
u∗

t (
~ξ, ~r, tF , t)dtdΩs +

∫

Ωs

T (~r, t0)u
∗

t (
~ξ, ~r, tF , t0)dΩs. (19)

The time integration of each term inside the boundary and domain integrals can be
evaluated analytically [38]:

U∗

t (
~ξ, ~R) = a

∫ tF

t0
u∗

t (
~ξ, ~R, tF , t)dt =

1

4π
E1(a0), (20)

Q∗

t1(
~ξ, ~R) =

a

dt

∫ tF

t0
(tF − t) · q∗t (~ξ, ~R, tF , t)dt =

~n · ~d(~ξ, ~r)
8πadt

E1(a0), (21)

Q∗

t2(
~ξ, ~R) =

a

dt

∫ tF

t0
(t− t0) · q∗t (~ξ, ~R, tF , t)dt =

~n · ~d(~ξ, ~r)
8πadt

[

1

a0
exp(−a0)− E1(a0)

]

, (22)

where E1 represents the exponential integral function and a0 is a parameter defined as:

a0 = a0(~ξ, ~r) =

∥

∥

∥

~d(~ξ, ~r)
∥

∥

∥

2

4adt
. (23)

The initial value of the fundamental solution u∗

t (
~ξ, ~r, tF , t0) can be written in a similar

manner as in equation (16):

U∗

t0(
~ξ, ~r) = u∗

t (
~ξ, ~r, tF , t0) =

1

4πadt
· exp(−a0). (24)

To evaluate the domain and boundary integrals in equation (19) analytically, we use
the following approximation of the exponential integral function E1 [39]:

E1(a0) ≈
exp(−a0) · ln

[

1 + G
a0

+ 1−G
(v+za0)2

]

G+ (1−G) · exp
(

−a0
1−G

) , (25)

where G is a parameter defined as: G = exp(−γ), γ = 0.5772156649015328606 is the

Euler constant, z is a constant defined as z =
√

2(1−G)/(2G−G2) and v = v(a0) is a
function defined as:

v(a0) =
1

1 + a0
√
a0

+
v∞m

1 +m
, (26)

where m = m(a0) is

m(a0) =
20

47
a

√
31/26

0 , (27)

and v∞ is

v∞ =
(1−G)(G2 − 6G+ 12)

3G(2−G)2z
. (28)

Including the expressions (20)-(22) and (24) into the integral equation (19) we obtain:

c(~ξ)T (~ξ, tF ) =
∫

Γs

q(~R, tF )U
∗

t (
~ξ, ~R)dΓ−

∫

Γs

T (~R, t0)Q
∗

t1(
~ξ, ~R)dΓ

−
∫

Γs

T (~R, tF )Q
∗

t2(
~ξ, ~R)dΓ +

∫

Ωs

b(~r, tF )U
∗

t (
~ξ, ~r)dΩs +

∫

Ωs

T (~r, t0)U
∗

t0(
~ξ, ~r)dΩs. (29)

8



Integral equation (29) is very similar to equation (5), where only boundary and domain
integration is needed as in the elliptic formulation. The domain and boundary discretiza-
tion schemes remained the same as for the elliptic formulation, as well as the subdomain
BEM approach, producing the following global system of equations:

[Hp2] {T (tF )}+ [Hp1] {T (t0)} = [Gp] {q(tF )}+ [Sp] {b(tF )}+ [Sp0] {T (t0)} , (30)

where [Hp2], [Hp1], [Gp], [Sp] and [Sp0] are matrices obtained by using the time-dependent
fundamental solution, {T (tF )} and {T (t0)} are vectors of discrete values of the temper-
ature field at the end and at the beginning of the time step, respectively, {q(tF )} is the
vector of discrete values of the temperature normal derivative at the end of the time step
and {b(tF )} is the vector of discrete values of the heat source at the end of the time step.

We can now apply the numerical scheme (30) to the bio-heat equation (2), where
b(~r, t) is defined as:

b(~r, t) =
ωbρbcp,b

k
(Ta − T (~r, t)) +

qm
k
. (31)

Implementing the source term in equation (31) into the system of equations (30) and sub-
stituting the initial time t0 of each individual time step by tF−1, we obtain the system of
equations that solves bio-heat problems using the time-dependent fundamental solution:

(

[Hp2] +
ωbρbcp,b

k
[Sp]

)

{T (tF )} = [Gp] {q(tF )}

+
(

[Sp0]− [Hp1]
)

{T (tF−1)}+ [Sp]
{

ωbρbcp,b
k

Ta +
qm
k

}

. (32)

As can be seen, part of the temperature-dependent heat source is included in the system
matrix, similarly to the elliptic formulation, therefore the system of equations only needs
one iteration for each time step. The matrices are evaluated only in the first time step
and do not change during the simulation, as the time step is kept constant, otherwise the
matrices should be calculated again, which will increase the computational time. The
number of operations is similar to the elliptic formulation.

The numerical scheme (32) generated the best results for the bio-heat problem. How-
ever, we also tested different time interpolation schemes for the temperature normal
derivative, as well as for the temperature-dependent source term, which did not produce
the same accuracy and are therefore omitted from this paper.

3.3 Subdomain BEM approach

A detailed description of the subdomain BEM approach is given in the work of Ramšak
and Škerget [24, 25]; here, only a brief description of the method will be given. The
reason for using this approach is that it provides a much faster computational time than
the classical BEM where the matrices are fully populated. The system matrix in the sub-
domain BEM approach becomes sparse and diagonally dominant. The idea behind this
approach is treating each cell of the computational mesh as one subdomain and writing
the discrete system of equations for every cell individually. Therefore, the source point
~ξ is placed only on the nodes of the cell and the discrete form of the governing equation
is written just for the observed cell; the boundary and domain in this case represent
the boundary and the area of the cell, respectively. The systems of equations for every
cell of the computational mesh are then connected together through compatibility and
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equilibrium conditions on the boundary between two adjoining cells. The main difference
between the classical BEM and the subdomain BEM approach is in the treatment of the
boundary and domain, where in the classical approach the source point has information
about the whole computational domain, while in the subdomain approach it has only
information about the individual cell.

To evaluate the boundary and domain integrals in equations (5) and (29) the inter-
polation functions have been introduced for the boundary approximation of temperature
and its normal derivative, as well as for the domain approximation of the source term.
To evaluate which numerical scheme works best for the tested problems, we used two
different sets of interpolation functions. The first one uses linear continuous interpola-
tion for the boundary temperature T (~R) and domain source function b(~r), and constant

interpolation for the temperature normal derivative at the boundary q(~R), representing
a linear element. The second set of interpolation functions has the same interpolation for
q(~R), but quadratic continuous interpolation for T (~R) and b(~r), representing a quadratic
element. The linear and quadratic 2D elements are shown in Figure 1, together with the
discrete points for the source, temperature and its normal derivative.

1 5 2

6

374

8

a)

1

8

b)

9

2 3

4

57 6

Figure 1: Element types: a) linear and b) quadratic element. Black points indicate the
locations of discrete values of T (~r) and b(~r), while crosses indicate the locations of discrete
values of q(~r).

The constant interpolation function for the approximation of the normal derivative
of the temperature has been chosen to avoid the corner problem and has been used for
both elements.

Therefore, the matrix coefficients of system (9) are:

hn
e,i,j =

∫

Γj

φnq
∗dΓj, ge,i,j =

∫

Γj

u∗dΓj, sne,i,j =
∫

Ωj

φnu
∗dΩj, (33)

where φn represent the interpolation functions and indices i and j the position of the
source point and element or cell number, respectively. Similarly, the matrix coefficients
of system (30) can be written as:

hn
p1,i,j =

∫

Γj

φnQ
∗

t1dΓj, hn
p2,i,j =

∫

Γj

φnQ
∗

t2dΓj, gp,i,j =
∫

Γj

U∗

t dΓj, (34)

snp,i,j =
∫

Ωj

φnU
∗

t dΩj, snp0,i,j =
∫

Ωj

φnU
∗

t0dΩj . (35)
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Applying the interpolation functions and evaluating the integrals, the algebraic or
discrete form of the integral equation is obtained. In order to obtain the local system
of equations for a given cell or element, the discrete equation is written by positioning
the source point in every discrete point for the temperature field. For the linear element,
these points are 1-4 and for the quadratic element 1-9. Applying this rule to every cell,
the system of equations for the computational domain Ω or subdomain Ωs is obtained
by using the compatibility and equilibrium conditions for adjoining cells. In the final
step, the systems of equations obtained for every subdomain Ωs are combined in the
global system of equations (9) or (30) through the interface conditions between adjoining
subdomains.

4 Computational examples

The aim of this work is to investigate how different numerical schemes affect the nu-
merical accuracy of solution of direct bio-heat problems under steady-state and transient
conditions. We aim to reduce the numerical error to a minimum when solving inverse
bio-heat problems by developing robust, accurate and fast numerical schemes suitable for
this task.

The computational examples of melanoma problems are based on the works of Luna
et al. [2], Bhowmik and Repaka [1] and Çetingül and Herman [3] to provide for a solid
comparison basis. Unfortunately, all authors treated the melanoma problem a little differ-
ently, by using different boundary conditions, computational domain, as well as material
properties and size of the melanoma, therefore a direct comparison is not always feasi-
ble. We tested the proposed numerical approach on 2D melanoma problems, including
different tissue layers, different melanoma size and different physiological melanoma prop-
erties under steady-state conditions and a transient cooling-rewarming test introduced
by Çetingül and Herman [3].

The representative computational domain is shown in Figure 2, while global dimen-
sions and thicknesses (dimension in y direction) of different tissue layers are gathered in
Table 1. The numerical accuracy has been tested on two different sizes of melanoma,
Clark II and Clark IV, which were placed in the middle of the horizontal direction of
the computational domain. The size of melanoma is gathered in Table 1, where Clark II
melanoma lies in the papillary dermis while Clark IV is already protruding into the fat
layer, as can be seen from Figure 2.

Table 1 also contains the material properties, which are taken from Çetingül and Her-
man [3] and Luna et al. [2]. These authors also discuss the accuracy of data for melanoma,
especially for blood perfusion rate and metabolic heat generation, which are not available
in the literature and cannot be measured directly. For these reasons, they also made
different simulations by changing the melanoma blood perfusion rate and metabolic heat.
They noticed that metabolic heat generation does not have such a strong influence on the
change of skin surface temperature as blood perfusion rate. Therefore, in this paper, we
also investigate the numerical accuracy of the proposed numerical schemes with different
blood perfusion rate for melanoma; ωb,m1 = 0.0063s−1 and ωb,m2 = 0.0315s−1 [3].

This work not only investigates subdomain BEM numerical schemes but also pro-
poses benchmark tests in this field. There are in total four test cases with different
sizes of melanoma and different melanoma blood perfusion rates. It also covers the skin
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tumor x
yepidermis

Figure 2: Computational domain: a) Clark II and b) Clark IV size of melanoma.

material x[mm] y[mm] ρ[kg/m3] cp[J/kgk] k[W/mK] ωb[1/s] qm[W/m3]
epidermis 12 0.1 1200 3589 0.235 0.0 0.0

papillary dermis 12 0.6 1200 3300 0.445 0.0002 368.1
reticular dermis 12 0.1 1200 3300 0.445 0.0013 368.1

fat 12 1.2 1000 2674 0.185 0.0001 368.3
muscle 12 6.0 1085 3800 0.510 0.0027 684.2

tumour - Cl. II 2.0 0.44 1030 3852 0.558 0.0063; 0.0315 3680
tumour - Cl. IV 2.5 1.1 1030 3852 0.558 0.0063; 0.0315 3680

blood – – 1060 3770 – – –

Table 1: Material properties with tissue dimensions [2],[3].

temperature steady-state condition, as well as transient skin temperature response to a
cooling-rewarming test described by Çetingül and Herman [3].

For a steady-state simulation, we prescribe the Dirichlet boundary condition on the
bottom assuming the body core temperature T = Ta = 37◦C, while on the sides the Neu-
mann or adiabatic boundary condition q = 0W/m2 is prescribed. On the skin surface the
Robin boundary condition has been chosen, where the heat transfer coefficient takes into
account natural convection, evaporation and radiation; α = 10W/m2K, T∞ = 22.4◦C.
We obtain the steady-state results using the proposed transient schemes by applying a
large time step; dt = 1030s, and zero value initial conditions; T0 = 0◦C.

The arterial blood temperature has been taken equal to the mean body core tem-
perature, which is in the range of 36.5◦C − 37.5◦C and mostly constant under resting
conditions. Therefore, the arterial blood temperature is assumed to be constant during
the steady-state and cooling-rewarming tests.

To simulate the cooling-rewarming test, the boundary conditions are the same as for
the steady-state simulation, with the exception of the prescribed boundary condition on
the skin surface. For the first 60s we cool the skin by applying the constant surface

12



temperature of T = 13◦C, and after that the skin is exposed to the surrounding en-
vironment, which means prescribing the Robin boundary condition of α = 10W/m2K
and T∞ = 22.4◦C. We simulate the rewarming time of 10min = 600s. For the initial
conditions of the cooling-rewarming test, the solution of the steady-state simulation has
been used.

A structured mesh generator has been developed to discretize the computational do-
main shown in Figure 2, which builds up the computational mesh according to the char-
acteristic element size in both directions; dx and dy. Figure 3 shows a representative
computational mesh, together with a detailed view of the melanoma region. As can be
seen, the very thin layers of epidermis and reticular dermis are described with a minimum
of two elements, regardless of the element size dy, otherwise the temperature distribution
would be described as linear when using linear elements.

magnification

Figure 3: Representative computational mesh of Clark II melanoma using an element
size of x = 0.5mm.

5 Results and discussion

Herein, the results of previously discussed problems are given and their discussion is
presented. We decided to focus on skin temperature distribution for both the steady-
state and transient simulations, as temperature is the actual parameter resulting from
diagnostic efforts [1, 2, 3]. Therefore, the results will be presented as graphs for the skin
surface temperature, analyzing the numerical accuracy and computational speed for a
given test case based on numerical scheme, computational mesh and time step.

The complexity of problems prevent comparison with analytical results. We believe,
however, that if a numerical solution is found to be invariant on further refining domain
and time discretization this could be used as a basis for comparison, and we call that
”near analytical results”. The analysis of numerical schemes is divided into two sections,
steady-state and transient simulations. In steady-state simulations we test the effect of
the chosen element type and element size, while for the transient conditions we test time
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step and the difference between the elliptic and parabolic formulations with quadratic
elements.

The CPU time of each simulation is also recorded to investigate the speed-up by using
different formulations or different domains and time discretizations. All calculations have
been made on a single processor i7−920@2.76GHz, therefore the results are comparable.

5.1 Steady-state results

The elliptic and parabolic formulations gave the same steady-state results, therefore the
results presented in this section are obtained using the elliptic formulation. The main
focus of this analysis is to determine the appropriate computational mesh to get mesh-
independent solutions, which can then be used for the transient simulations.

Figure 4 shows the skin temperature results using linear elements for all four test
cases, while using different element sizes where dx = dy. There is a distinct difference in
the results for elements larger than dx = 0.2mm, otherwise the difference is not visible
and is omitted in the figure. Smaller element sizes have also been used, as can be seen in
Table 2, where mesh statistics are presented for Clark II and Clark IV melanoma using
linear and quadratic elements.

dx Clark II Clark IV
[mm] linear quadratic linear quadratic

number of number of number of number of number of number of
elements nodes nodes elements nodes nodes

1.0 192 271 938 170 257 846
0.5 576 734 2,614 552 708 2,512
0.2 2,880 3,248 12,250 2,726 3,073 11,590
0.1 10,800 11,524 44,642 10,472 11,158 43,252
0.05 42,000 43,437 170,868 41,760 43,132 169,776
0.03 115,818 118,172 468,028 116,508 118,792 470,592

Table 2: Computational mesh properties using linear and quadratic elements for Clark
II and Clark IV test cases.

Results using quadratic elements are presented in Figure 5, where we can observe
that even the element size of dx = 1.0mm produces good results. Comparing results
with Figure 4, we can conclude that results using quadratic elements are much more
mesh independent. The reason is in the parabolic behaviour of the solution, which is
described more accurately by using quadratic interpolation functions.

Figure 6 compares linear and quadratic elements for all four test cases using a small
element size; dx = 0.05mm, which produced mesh-independent results. As can be seen,
there is a noticeable difference between linear and quadratic elements, especially for
smaller melanoma size or lower blood perfusion rate.

As could be seen from the results, the temperature difference between the tumor and
healthy tissue is in the range of 0.03◦C − 0.2◦C which is a small variation. Therefore,
the temperature gradients are very small in the proximity of the boundary, confirming
that the Neumann boundary conditions does not affect the results or that the size of
computational domain in x-direction is appropriate for the problem.
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Figure 4: Skin surface temperature using linear elements of different sizes: 1mm, 0.5mm
and 0.2mm, for all test cases; a) Clark II – ωb,m1, b) Clark II – ωb,m2, c) Clark IV – ωb,m1

and d) Clark IV – ωb,m2.

To better represent the results or to see the numerical difference between element
types and mesh sizes, we calculated the RMS error as:

RMS =

√

√

√

√

1

nj

·
nj
∑

j=1

(Tj − Ta,j)
2

T 2
a,j

, (36)

where nj represents the number of discrete values of temperature, Tj is the numerically
obtained temperature at point j and Ta,j the near analytical solution. Table 3 shows
the RMS error based on the results obtained using quadratic elements of size dx =
0.03mm (best numerical solution). The RMS error for using linear elements is in the
range of 10−5 and reduces when using smaller element sizes; < dx = 0.1mm, while for
quadratic elements the error is substantially lower; 10−7–10−6, which shows the superior
performance of quadratic elements. As can be seen from Table 3 the RMS error for
linear elements is not convergent, while quadratic elements show uniform convergence
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Figure 5: Skin surface temperature using quadratic elements of different sizes: 1mm,
0.5mm and 0.2mm, for all test cases; a) Clark II – ωb,m1, b) Clark II – ωb,m2, c) Clark IV
– ωb,m1 and d) Clark IV – ωb,m2.

apart from a small and almost negligible difference from the Clark II tumor. It can
also be seen from Figure 6 that the linear element solution underestimates the quadratic
solution in all the cases.

Table 4 compares the computational time using linear and quadratic elements. The
computational time for quadratic elements is longer due to the larger number of BEM
nodes. However, a good numerical accuracy is obtained using larger element sizes. If we
compare quadratic elements with two times smaller linear elements, the computational
time for quadratic elements is around two times shorter while the number of computa-
tional nodes is similar.

To summarize, both element types are suitable for solving bio-heat melanoma prob-
lems and can give accurate results using appropriate domain discretization. However,
if the combination of accuracy and reduced computational time is the prevailing factor,
quadratic elements are preferred.
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Figure 6: Skin surface temperature comparing linear and quadratic elements for the same
element size of 0.05mm; a) Clark II – ωb,m1, b) Clark II – ωb,m2, c) Clark IV – ωb,m1 and
d) Clark IV – ωb,m2.

5.2 Transient results

From the steady-state analysis, we concluded that quadratic elements can achieve greater
numerical accuracy and are therefore chosen for the transient simulations. In this section,
we will be testing the time domain discretization and the difference between elliptic and
parabolic formulations.

Figure 7 shows the transient skin surface temperature response for the Clark II and
IV melanoma at higher blood perfusion rates and surrounding tissue, using the elliptic
formulation, element size of dx = 0.5mm and different time steps; dt = 5s and dt = 1s.
As can be seen, the difference between the temperature in the melanoma region and
surrounding skin is noticeable, especially in the case of higher blood perfusion. This is
one of the reasons why Çetingül and Herman [3] proposed the cooling-rewarming test for
melanoma detection. However, from the numerical point of view, the difference between
calculated responses using different time steps is minimal, and in this form (curves are
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dx Clark II Clark IV
[mm] RMS (10−5) RMS (10−5)

lin. quad. lin. quad. lin. quad. lin. quad.
ωb,m1 ωb,m1 ωb,m2 ωb,m2 ωb,m1 ωb,m1 ωb,m2 ωb,m2

1.0 1.6857 0.2231 3.3106 0.6449 2.7274 1.0112 11.1390 1.6191
0.5 1.7290 0.1159 1.6782 0.2510 1.4820 0.2689 4.3256 0.3497
0.2 2.2272 0.0526 2.7623 0.0761 2.0607 0.1201 1.9873 0.0834
0.1 2.1336 0.0389 2.7888 0.0331 2.5613 0.0484 3.2497 0.0283
0.05 2.0925 0.0391 2.7487 0.0265 2.3246 0.0314 2.9424 0.0052
0.03 1.9572 – 2.5144 – 1.9949 – 2.5005 –

Table 3: RMS error of skin surface temperature compared to the solution obtained by
quadratic element size dx = 0.03mm.

dx Clark II Clark IV
[mm] linear quadratic linear quadratic

1.0 0.33 0.91 0.31 0.84
0.5 0.77 2.27 0.75 2.18
0.2 5.10 19.01 5.00 20.01
0.1 40.64 229.1 45.87 210.3
0.05 587.7 3088.2 614.2 3077.6
0.03 4344.5 22110 4527.1 22422

Table 4: CPU time in seconds [s] for steady-state simulation.

practically identical) is not appropriate for evaluating the numerical accuracy of the
individual formulations or time steps. Therefore, the effect of different time steps will
be presented in the form of skin temperature distribution at different times; t = 70s and
t = 150s, as can be seen in Figures 8 and 9. In this form, the temperature difference using
different time steps can be easily observed and a time step analysis can be made. As can
be observed, when reducing the time step, the numerical solution converges towards the
near analytical one. This is especially visible at time t = 150s, where the time derivative
of temperature is smaller compared to the time t = 70s, because the solution is converging
toward the steady-state condition.

We also investigated the effect of element size on time-dependent solutions, keeping the
time step constant. The graphical representation of results is omitted here, because the
solution difference is minimal and not visible. Therefore, we can conclude that the time-
dependent solution is independent of the domain discretization. However, the analysis
of the RMS error compared to the smaller element size, shown in Table 5 for time steps
dt = 1s and dt = 0.1s, shows this difference. For the transient results the RMS error has
been calculated using the following equation

RMS =

√

√

√

√

1

nj · nt

·
nj
∑

j=1

nt
∑

k=1

(Tj,k − Ta,j,k)
2

T 2
a,j,k

, (37)

where nt represents the number of time steps or the number of evaluated temperatures in
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Figure 7: Skin surface temperature response at the center of melanoma (mel.) and for
the surrounding tissue (skin); a) Clark II and b) Clark IV melanoma.

time. As can be seen from Table 5, the RMS error is reduced when using smaller element
sizes for both time steps and is in the range of 10−5, which means numerical accurate
results even for the element size of dx = 0.5mm.

dt dx Clark II Clark IV
[s] [mm] RMS (10−5) RMS (10−5)

ωb,m1 ωb,m2 ωb,m1 ωb,m2

1.0 0.5 1.8589 5.9859 3.6398 10.5990
0.2 0.3189 0.8346 0.6542 1.4264

0.1 0.5 2.1012 6.7056 3.7519 11.0470
0.2 0.3680 0.9367 0.6494 1.5065

Table 5: RMS error of skin surface temperature compared to the solution obtained by
element size dx = 0.1mm.

Figures 10 and 11 show the time step analysis using the parabolic formulation for
all four cases, at times t = 70s and t = 150s. We can quickly observe the numerical
advantage and accuracy of the parabolic formulation, as the solution is less sensitive to
the time step compared to the elliptic formulation. Comparing the elliptic and parabolic
formulation results, we observe that the same numerical accuracy can be obtained using a
larger time step for the parabolic formulation, which means much shorter computational
times for direct transient bio-heat problems.

A detailed analysis comparing different formulations is shown in Figures 12 and 13,
together with the numerically best solution. The results have been obtained for element
size of dx = 0.5mm and time step dt = 1s, while the numerically best solution has been
obtained using the parabolic formulation and the finest domain and time discretization
used in this study; dx = 0.1mm and dt = 0.1s. As seen from the comparison of Figures 10
and 8, we can also observe the numerical advantage of using the parabolic formulation,
where for the time step of dt = 1s we nearly obtained the numerically best solution,
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Figure 8: Skin surface temperature at time t = 70s using elliptic formulation and different
time steps; a) Clark II – ωb,m1, b) Clark II – ωb,m2, c) Clark IV – ωb,m1 and d) Clark IV
– ωb,m2.

especially for later times t > 100s.
Under the cooling-rewarming test, the temperature difference at the skin surface above

the tumor and healthy tissue is now much larger than from the steady-state conditions,
producing larger temperature gradients. Therefore, the domain size or prescribed bound-
ary condition can affect the numerical accuracy of the simulation. A domain size analysis
is omitted from this paper as the focus is on assessing the performance of subdomain
BEM elliptic and parabolic approaches.

The difference between numerical solutions for Clark IV melanoma and higher blood
perfusion rate (Figure 13 d) can be deceiving, because of the different temperature scale.
Therefore, a detailed analysis of the numerical accuracy of different time steps, element
sizes and formulations is presented through the calculated RMS error in Table 6 for the
elliptic formulation and Table 7 for the parabolic formulation, and the related computa-
tional time in Table 8. The RMS error has been calculated based on the best numerical
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Figure 9: Skin surface temperature at time t = 150s using elliptic formulation and
different time steps; a) Clark II – ωb,m1, b) Clark II – ωb,m2, c) Clark IV – ωb,m1 and d)
Clark IV – ωb,m2.

results obtained by the parabolic formulation with the finest domain and time discretiza-
tion. The RMS error lies in the region of 10−3–10−4 for the time discretization, therefore
the RMS error shown in Table 5 for certain time steps indicates mesh independent re-
sults, as can be seen from Tables 6 and 7. The RMS error does not change by reducing
the element size, however it reduces by reducing the time step. Table 7 shows that the
RMS error slightly increases in some cases when the element size is reduced. The reason
for this increase can be traced to the comparison between the numerical solution and the
best obtained numerical solution. Although that numerical solution is mesh independent
for the same time step, some slight deviation is obtained. If we could compare the nu-
merical solutions to the exact one, the RMS error would show uniform convergence when
reducing the element size for a given time step. By comparing the RMS error achieved
by the elliptic and parabolic formulations, we observe a lower error for the parabolic
formulation or, for the same level of error, the time step can be ten times larger than
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Figure 10: Skin surface temperature at time t = 70s using parabolic formulation and
different time steps; a) Clark II – ωb,m1, b) Clark II – ωb,m2, c) Clark IV – ωb,m1 and d)
Clark IV – ωb,m2.

the time step for the elliptic formulation. Therefore, the speed-up for achieving the same
level of error is between 11–22, looking at Table 8 for element size of 0.5mm. This is
a large saving in computational time, which is especially important for solving inverse
problems. Comparing the numerical accuracy and computational time, we suggest the
use of element size 0.5mm and time step of 1s, because even by lowering the time step,
the RMS error does not decrease drastically.

6 Conclusion

This work focuses on solving the direct bio-heat melanoma problem as a step to providing
a useful diagnostic tool, taking into account the numerical accuracy of solutions and their
computational speed. The numerical solvers derived in this work are to be used for solving
different inverse bio-heat problems, such as non-invasive determination of the tumours to
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Figure 11: Skin surface temperature at time t = 150s using parabolic formulation and
different time steps; a) Clark II – ωb,m1, b) Clark II – ωb,m2, c) Clark IV – ωb,m1 and d)
Clark IV – ωb,m2.

optimize hyperthermia or cryogenic treatments, for which an accurate and fast numerical
solver is needed. The numerical accuracy of direct bio-heat solutions is especially needed
in the case of deterministic (gradient based) optimization techniques, where the objective
function has to be as smooth as possible. Unconditionally smooth objective functions can
only be obtained in the case of known analytical solutions for the direct problem, while
in most cases an analytical solution is not known and is therefore obtained numerically.
In our case, the objective function is discrete resulting in incorrect gradients unless the
numerical error is minimized, this being the main aim of this study.

The proposed numerical solver is based on the subdomain BEM approach, where dif-
ferent elements have been used as well as different BEM formulations of the governing
equation. The elliptic formulation is based on the use of the Laplace fundamental solution
and a FD scheme for the time derivative approximation, while the parabolic formulation
uses the time-dependent fundamental solution of the diffusion equation with linear time
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Figure 12: Skin surface temperature at time t = 70s using element size of dx = 0.5mm,
time step of dt = 1s and different formulations together with numerically best solution;
a) Clark II – ωb,m1, b) Clark II – ωb,m2, c) Clark IV – ωb,m1 and d) Clark IV – ωb,m2.

interpolation for the temperature and constant time interpolation for the normal deriva-
tive and heat source. Numerical accuracy is evaluated for two different elements; linear
and quadratic. Linear elements use a linear interpolation function for the temperature
and heat source, while quadratic elements use quadratic interpolations; however, both
element types use constant interpolation for the normal derivative of the temperature
field. For the parabolic formulation, we evaluated the time integrals analytically. Both
formulations need a single evaluation of the domain and boundary integrals during the
simulation, therefore they are equally computational demanding.

The proposed approaches using different BEM formulations and element types with
mixed interpolation functions have been tested on steady-state as well as transient bio-
heat melanoma problems, considering different tissue layers. Four test cases have been
analyzed, using different sizes of melanoma; Clark II and Clark IV, as well as different
blood perfusion rates. The main aim was to evaluate the numerical accuracy of different
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Figure 13: Skin surface temperature at time t = 150s using element size of dx = 0.5mm,
time step of dt = 1s and different formulations together with numerically best solution;
a) Clark II – ωb,m1, b) Clark II – ωb,m2, c) Clark IV – ωb,m1 and d) Clark IV – ωb,m2.

element types and proposed formulations, and to assess which numerical scheme is the
most accurate and fast, and is thus appropriate for solving inverse problems.

The elliptic and parabolic formulations gave essentially the same results for steady-
state problems, therefore only the element type and domain discretization have been
analyzed. The results showed that quadratic elements achieved more accurate numeri-
cal results using larger elements than linear ones, for which the computational times are
smaller. Therefore, quadratic elements have been used in the transient simulation analysis
where we assessed the time and domain discretizations but, most importantly, the elliptic
and parabolic formulations. The results show superior performance of the parabolic for-
mulation, as the target numerical accuracy can be achieved using much larger time steps
which translates into faster computational times. The results also showed that quadratic
elements gave nearly mesh-independent transient results for which larger element sizes
could be used.
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ωb,m1 ωb,m2

dt[s] dt[s]
dx[mm] 5.0 1.0 0.5 0.1 5.0 1.0 0.5 0.1

1.0 8.1783 2.0019 1.0648 0.2165 8.5443 2.1599 1.1945 0.4126
Clark II 0.5 8.1939 2.0101 1.0698 0.1997 8.5396 2.1293 1.1415 0.2280

0.2 8.1997 2.0138 1.0729 0.2025 8.5426 2.1276 1.1379 0.2144
0.1 8.2014 2.0152 1.0741 0.2019 8.5443 2.1283 1.1383 0.2121
1.0 8.2458 2.0748 1.1326 0.3028 9.0951 2.4718 1.4582 0.6657

Clark IV 0.5 8.2737 2.0716 1.1160 0.2226 9.0558 2.3627 1.2922 0.2849
0.2 8.2910 2.0773 1.1197 0.2241 9.0518 2.3487 1.2758 0.2479
0.1 8.2945 2.0788 1.1207 0.2509 9.0575 2.3507 1.2763 0.2547

Table 6: RMS error (·10−3) of skin surface temperature response using elliptic formulation
compared to the numerically best available solution.

ωb,m1 ωb,m2

dt[s] dt[s]
dx[mm] 5.0 1.0 0.5 0.1 5.0 1.0 0.5 0.1

1.0 1.2297 0.3865 0.4247 0.1263 1.6723 0.4868 0.4990 0.1146
Clark II 0.5 1.7620 0.3950 0.1876 0.1642 2.1615 0.4802 0.2312 0.1429

0.2 2.2372 0.5257 0.2450 0.0146 2.6183 0.6070 0.2849 0.0159
0.1 2.3961 0.6209 0.3159 – 2.7736 0.7005 0.3529 –
1.0 1.1352 0.5745 0.5367 0.6882 2.3555 0.7499 0.6217 0.5601

Clark IV 0.5 1.6426 0.4015 0.2723 0.3191 2.7486 0.6165 0.3113 0.1861
0.2 2.2742 0.5273 0.2438 0.0378 3.2127 0.7562 0.3596 0.0307
0.1 2.4572 0.6413 0.3256 – 3.3718 0.8534 0.4275 –

Table 7: RMS error (·10−3) of skin surface temperature response using parabolic formu-
lation compared to the numerically best available solution.

Clark II Clark IV
dt[s] dt[s]

dx[mm] 5.0 1.0 0.5 0.1 5.0 1.0 0.5 0.1
1.0 0.0041 0.0243 0.0533 0.2842 0.0035 0.0224 0.0503 0.2160

Elliptic 0.5 0.0130 0.0745 0.1593 0.7807 0.0129 0.0716 0.1484 0.7388
0.2 0.1570 0.7786 1.5043 8.0013 0.1517 0.7472 1.5216 7.7555
0.1 1.9833 9.6309 19.545 95.67 1.8649 9.3336 18.779 93.94
1.0 0.0019 0.0062 0.0108 0.0481 0.0015 0.0047 0.0087 0.0367

Parabolic 0.5 0.0089 0.0345 0.0643 0.2928 0.0078 0.0304 0.0569 0.2580
0.2 0.1678 0.7088 1.4302 6.5647 0.1497 0.6396 1.2453 6.0005
0.1 2.4071 10.934 21.188 109.98 2.2847 10.308 20.120 105.05

Table 8: CPU time in [h] using elliptic or parabolic formulations.
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Based on the results of this work, we propose the use of the BEM parabolic for-
mulation with quadratic elements for solving direct bio-heat melanoma problems. The
corresponding results showed that coarser discretizations can be used for the same level
of accuracy to the linear element type and elliptic formulation.

In conclusion, this work provides a detailed analysis of various bio-heat melanoma
problems that can be used for benchmarking numerical formulation and serve as a basis
for our future work in the field of bio-heat transfer simulations, from direct problems to
inverse ones such as non-invasive tumour detection and parameter evaluation.
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