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Abstract—This paper investigates the statistical-queueing con-
straints and pilot contamination phenomenon in random or ir-
regular cellular massive multiple-input-multiple-output (MIMO)
system where base stations are Poisson distributed. Specifically,
analytical expressions for the asymptotic signal-to-interference-
ratio (SIR) coverage, rate-coverage and effective capacity under
quality of service (QoS) statistical-exponent constraint are pro-
vided for uplink transmission when each base station deploys a
large number of antennas. We show that the QoS constrained
capacity is in proportional to the path-loss exponent and inversely
proportional to the pilot reusing probability which in turn is a
function of cell load.

Our simulation results prove that, pilot reuse impairments
can be alleviated by employing a cellular frequency-reuse
scheme. For example, with unity frequency reuse factor, we see
that, 40% of the total users have SIR above −10.5dB , whereas,
with frequency reuse factor of Ω = 7, the same fraction of users
has SIR above 20.5dB. However, this can reduce the effective
bandwidth of overall system, e.g., for 15% level, the rate drop
is almost 10Mbps due to using reuse factor of Ω = 7.

Index Terms— Cellular massive MIMO, poisson process,
log-normal shadowing, coverage probability, effective capacity.

I. INTRODUCTION

The large scale multi-user multiple-input-multiple-output

(MU-MIMO) technique is introduced as a promising technique

for the fifth-generation (5G) radio systems [1]. Where recent

researches validate that base stations (BSs), deploy an order

of magnitude more antennas than scheduled-users, have great

capability to enhance the throughput and spectral-efficiency

(SE) of cellular systems and consequently, meet the fast

growth in wireless-traffic of various multimedia-applications.

However, the major challenge is the contamination of channel-

estimate due to reusing the same pilots in nearby cells and this

impairment is termed as pilot-contamination.

A. Related works

Most of the emerging real time applications imposed strin-

gent constraints on queue lengths or queuing delays of transmit

buffer. The effective capacity quantifies the maximum arrival

rate that can be achieved w.r.t a given service demands with

steady-state flow of data at buffer input. In this concern,

authors in [2] analysed the effective capacity in single-antenna

communication systems. In [3], the effective capacity of

Gaussian block-fading MIMO systems is investigated. More-

over, [4] examined in detail, the relationship between the

buffer-queuing constraints and MIMO spatial-dimensions. In

reference [5], the effective throughput of MIMO systems is

investigated over κ−µ fading channels under quality of service

(QoS) delay constraints.

On the other hand, many studies have been conducted

to address the impact of pilot contamination on statistical

distribution of SNR in forward and reverse radio links. The

authors in [6], studied the impact of pilot-contamination on

the asymptotic distribution of SIR. Thomas L. Marzetta, in

[7] considered regular hexagonal-cell topology and uniformly-

distributed users. Reference [8] proposed a user-Scheduling

algorithm in which the aged channel-state information (CSI)

can be used to enhance the spatial multiplexing-gain. Heath et

al, in [9], proved that, though bounded by pilot-contamination,

large scale MIMO systems can provide significantly higher

performance than the systems with single-antenna.

B. Contributions

Motivated by the fact that Pilot-contamination is the main

limiting-factor in large antenna regimes [7], we seek in this pa-

per to address the challenge as well as the statistical-queueing

constraints in uplink massive-MIMO wireless systems and

investigate some key metrics such as SIR-outage, rate-outage

and effective-capacity.

Unlike the regular topology considered in prior work [7], we

examine irregular topology of cellular massive MIMO which

is known to be closer to practical demand-based deployment

of BSs. Moreover, different from [9], we consider the QoS

constraints and the effective capacity performance which offers

a suitable metric to assess the implications that physical layer

design may have on link layer performance. Such cross layer

analysis could play a key role in 5G systems designing. The

specific contributions of this work can be summarized as

follows,

1) We characterise the uplink’s asymptotic SIR coverage

probability, rate coverage and effective capacity of a

large antenna-array regime when the BSs are deployed

according to poison point process (PPP) distribution. Cru-

cial expressions are obtained (closed-form or analytical

formula) in terms of benchmarking the performance of

a randomly selected user (typical user) in the cellular

network.

2) We evaluate the implications of channel and system

parameters on the uplink performance via numerical

analysis with remarkable comments. The provided precise

approximation results can replace the need for lengthy-
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Monte-Carlo simulations in designing of large scale

MIMO systems.

II. ASSUMPTIONS AND SYSTEM MODEL

We consider the uplink of a non cooperative cellular

multi user time division-duplex (TDD) massive-MIMO sys-

tem. In our mathematical-formulation, we leverage the follow-

ing assumptions. For the BSs layout, we assume homogeneous

Poisson Point Process (PPP) Φb of density λb on the plane

which provides further tractability from stochastic geometry

tools. Each BS is equipped with M antennas and randomly

allocated ,with equal probability, one of Ω different frequency

bands. The number of, one-antenna, users (UEs) associated

with a BS follow a homogeneous PPP Φu with intensity of λu.

The UEs’ locations are assumed to follow uniform distribution

in a disc of radius Ro and uncorrelated with the distribution

of other cells users.

A. ESTIMATING UPLINK-CHANNEL

For acquiring channel state information (CSI), we consider

pilot-based channel-estimation in which all the users send

pre-assigned training-sequences (from orthonormal pilot set

{Φp}Pp=1 ) each of length τ to their BSs. The pilot set is

assumed to be reused among all cells. Leveraging channel

estimates, BSs apply a maximum ratio combining (MRC) to

recover received uplink data. The received pilot signals at the

serving base station (BSb) can be written as

Yb =
√
pu

∑∞
l=1

∑P
p=1 αblGblpS

H
l χlp + nb (1)

where, M is the number of BS antennas, b is the typical or

serving BS index, l is the cell index, p is the pilot index, pu is

signal to noise ratio (SNR) of the pilot, Gblp = hblp

√
βblp/rνblp,

Gblp ∈ C
M×1 is the channel vector from interfering user

(UElp) to BSb, hblp ∈ C
M×1 models the small-scale fading

vector with i.i.d. zero mean and unit-variance entries,

rblp denotes the distance between UElb and BSb, ν is the

path-loss-exponent, βblp ∼ LogNormal(0, σ2
dB) is the long-term

shadow fading coefficients, Sl is the pilot symbol transmitted

by UElp, the superscript-H denotes conjugate-transpose and

nb ∼ CN (0, 1) denotes the AWGN-noise received at BSb’s

antennas. The factor αbl accounts for the frequency reuse

probability between the typical and interfering BSs,

αbl =

{

1 if BSb and BSl employ the same frequency band.

0 Otherwise .

The factor χlp in eq.(1) accounts for pilot reuse probability by

a particular interfering BSl,

χlp =

{

1 if BSl uses the p-th pilot sequence.

0 Otherwise .

According to the received signal (1), BSb estimates the chan-

nel gain of the terminal transmitting the p-th pilot sequence,

Ĝbbp =
1√
pu

YbSb

(a)
= GbbpS

H
b Sb +

∑∞
l=1

∑P
p=1 αblGblpS

H
b Sbχlp +

nbSb√
pu

(b)
= Gbbp +

∑∞
l=1

∑P
p=1 αblGblpχlp +

nbSb√
pu

(2)

where, Gbbp is the required or desired channel, (a) follows by

substituting for Yb from (1), (b) follows due to employing

orthogonal pilot sequences. The second term in (b) is the

contamination due to pilot reusing by the users associated with

other cells1 and the last term represents the background-noise.

B. REVERSE-LINK SIGNAL

The estimation phase is followed by uplink data transmis-

sion phase, where all the UEs transmit useful data-symbols

to their BSs. The reverse-link baseband signal at BSb can be

expressed as, yb =
√
pb

∑∞
l=1

∑P
p=1 αblGblpu

H
l χlp + n′

b, where, pb
is the signal SNR, ul represents uplink data symbols of cell-

l and n′
b ∼ CN (0, 1) denotes the AWGN-noise. Uplink data

can be recovered by left multiplying the received signal by the

conjugate transpose of the channel-estimate (2) of the required

terminal, i.e., passing through MRC-detector,

ûlb = lim
M→∞

Ĝ
H

bbp yb

M
√
pb

(a)
= lim

M→∞

1

M
√
pb

[

Gbbp +
∑∞

l=1

∑P
p=1 αblGblpχlp +

nbSb√
pu

]H

·
[√

pb
∑∞

m=1

∑P
n=1 αblGbmnuH

l χmn + n′
b

]

(3)

where (a) follows due to substituting for Ĝbbp and yb. Now,

we can simplify the expression in (3), leveraging the fact that

entries of nb and hblp are i.i.d. random variables with zero-mean

and unit-variance. Hence, exploiting the strong law of large-

numbers (SLLN), only the products of identical-quantities in

(3) remain significant [7]. So, for identical-quantities we have

lim
M→∞

GH
blp Gbmn

M
√
pu

=
(βblpβbmn)

1/2

(rblprbmn)ν/2
lim

M→∞

hH
blp hbmn

M
√
pu

=
αbl βblp

rνblp
δ(lm) (4)

where δ(x) is the Dirac-delta function. On the other hand, for

non-identical-quantities we have

lim
M→∞

nH
b hbmn

M
√
pu

= lim
M→∞

nH
b n′

b

M
√
pu

= lim
M→∞

hH
blp n′

b

M
√
pu

= 0 (5)

Using (4) and (5), we can simplify (3) as,

ûbp =
βbbp

rνbbp
ubp +

∑∞
l=1

∑P
p=1l 6=b

αbl βblp χlp

rνblp
ulp, which reveals the typi-

cal and appealing traits of massive-MIMO systems.

III. ASYMPTOTIC INTERFERENCE DISTRIBUTION

The typical BSb in consideration is assumed to be at the

origin of the plane as shown in fig.1. UEs are uniformly

distributed in each cell and the locations of all the interfering

users sharing the same pilot-sequence are assumed to form an

independent poison point process on R
2.

Fig. 1. System parameters of the adopted reverse link model. Where, Ylp ∈ R2

is the cartesian coordinates location of the interferening user UElp w.r.t its

basestation BSlp, Xl ∈ R2 is the cartesian coordinates location of basestation
BSlp w.r.t BSbp, rlbp is the polar coordinates representation of the distance
‖Xl + Ylp‖.

1Note that, since same set of pilot-sequences are reused among all the
BSs, so index subscript can be dropped from the symbol Sb.



LEMMA.1 (Interference Characteristic) Invoking the basic

formula of L.T, the uplink interference at the typical BS can

be characterised as follows

LIbp(s)= EIbp{e−sIbp}(a)= Eβblp,rblp

{

exp

[

−s
∑

l∈B\{b}

αbl β
2
blp χlp

r2νblp

]}

(b)
= Eβblp,rblp

{
∏

l∈B\{b} exp

[

−s
αbl β

2
blp χlp

r2νblp

]}

(c)
= exp

[−2πλb χ̄

Ω
Eβblp

{
∫

r∈R+ r

(

1− e−s β2
blpr

−2ν

)

dr

}]

(d)
= exp

[−πλb E{χlp} s
1

ν

Ω
E

{

β
2

ν
blp

}
∫

x∈R+

(
e−x−ν − 1

)
dx

︸ ︷︷ ︸

I1

]

(6)

where, (a) is obtained by substituting for Ibp which is the

inter-cell interference ICI, i.e., the sum of powers from all

interfering users of other cells except cell-b (orthogonal pilot

sequences assumption implies no intra-cell interference),

αbl ∈ {0, 1} is a Bernoulli random variable with mean

1/Ω, i.e., αbl ∼ Bernoulli( 1

Ω
). Which implies that αbl takes

value of one if the serving BSb and interfering BSl share

the specified frequency sub-band and B is the set of all the

cells in the cellular system. (b) follows since exponential

of a sum is a product of exponential. (c) follows from

probability generating function of the Poisson point process

(PGFL), given that E{∏x∈Φ v(x)} = exp
[
− λb

∫

R2

(
1− v(x)

)
dx

]
,

converting into polar coordinates gives,

E{∏x∈Φ v(x)} = exp
[
− 2πλb

∫

R+

(
1− v(r)

)
dr
]
, and then

averaging out the Bernolli r.v. αbl, where each cell is

randomly-allocated one of the Ω sub-bands (frequency reuse

factor), so the interference is thinned with a reuse-factor of Ω.

Finally, (d) is obtained by setting x = s−1/νβ
−2/ν
b r2, evaluating

the expectation over βblp, assuming {βi}∞i=0 is a set of i.i.d.

unit mean exponential random variables satisfy E[β
2/ν
blp ] < ∞.

LEMMA.2 (Pilot Reuse Probability) The expectation over

the probability of pilot reusing χlp can be obtain as follows

E{χlp} =
Ek ≥ P [k]

P
P{k < P}+ P{k ≥ P} (7)

where, k is the number of active users associated with base

station BSl. The first term accounts for the case when {k <
P} hence, there exists a probability that the interfering base

station BSl doesn’t use the kth pilot-sequence. The second

term stands for the case when {k ≥ P}, i.e., all the available

pilot-sequences will be used by the interfering base station.

It’s worthwhile to note that k is a r.v. associated with the

size-distribution of Voronoi-cell corresponding to BSl which

has no-known accurate distributions. However, the distribution

can be approximated using gamma distribution,accordingly,

(7) can be re-written as

E{χlp} =
∑P−1

k=1

1

P

(λuπR
2
o)

k

(k − 1)!
e−λuπR

2
o +

∑∞
k=P

(λuπR
2
o)

k

(k)!
e−λuπR

2
o

Next, we evaluate the integration I1 in (6-d) with

the help of the following identities, {Γ(1 + z) = z Γ(z)},

{Γ(1− z) = 1/Γ(1 + z) sinc(πz)} and

{
∫∞

0
xν−1(1− e−µxp

)dx = − 1

|p| µ
−ν/p Γ(ν

p
)}, which result in

I1 =
∫

R+

(
e−x−ν − 1

)
dx =

1

Γ(1 + 1

ν
) sinc(π

ν
)
, plugging again

into (6-d) yields

LIbp(s) = exp



−π λb E[β
2/ν
blp ] χ̄ s1/ν

ΩΓ(1 + 1

ν
) sinc(π

ν
)



 (8)

where, χ̄ = E{χlp} is the 1st moment or mean of the r.v χ which

can be set to one if we consider a scenario of interfering UEs

with full buffer such that all the interferers are always-active.

The common assumption for the distribution of shadowing

is the log-normal one, in which βblp = 10Xblp/10, given that

Xblp ∼ N (µblp, σ
2
blp) and µblp, σ

2
blp are, respectively, the "mean"

and "standard deviation" of the large-scale channel gain. In

this case, the 2/νth moment can be found, employing the

moment-generating function (MGF) of Gaussian-distribution,

which is E[β
2/ν
blp ] = exp[ ln(10)5

µblp

ν + 1
2 (

ln(10)
5

σblp

ν )2] and it is finite

for {µblp, σblp} < ∞. For exponential-distribution approxima-

tion, β2
blp ∼ exp(µblp) we have E[β

2/ν
blp ] = µ

−2/ν
blp Γ( 2ν + 1) and Γ( 2ν + 1)

is the 2/νth moment of unit-mean exponential-random vari-

ables. Plugging in (8) we obtain L.T of the interference

for exponential-approximation shadowing as an immediate

consequence of applying independent-thinning on Φb given

as, LIbp(s) = exp
[

−π λb χ̄ s1/ν

Ω sinc(π
ν )

]

, where this function can be used

for further system analysis.

IV. PERFORMANCE METRICS

In this section we are going to derive the mathematical

expression for some key metrics that characterised system

performance.

A. PROBABILITY OF COVERAGE

The probability of coverage can be formally defined as

the probability that the uplink SIRUL
b at the tagged base

station BSb is greater than the threshold (or target) SIRUL
th ,

P
{
SIRUL

b > SIRUL
th

}
.

THEOREM.1 For massive-antenna BS’s with a homogeneous-

ppp distribution of density λb and unit mean exponential

shadowing, the tail probability of uplink-SIR of a typical user

UE for SIR-threshold of T1 can be mathematically expressed

as

Pcov(T1, λb, ν) =
1

C1(T1, λb, ν)R2
o

[
1− exp(−C1(T1, λb, ν)R

2
o)
]
, (9)

where, C1(T1, λ, ν) =
π λb χ̄ T

1/ν
1

Ω sinc(π
ν
)

(10)

T1 is the target or level that the SIR must exceed in order to

establish a connection. Proof : see appendix A �

B. RATE COVERAGE PROBABILITY

Rate-coverage (Rcov) for a typical user UE can be defined

as the probability that the data rate of this user is larger than

a predefined threshold value (lowest-rate) required for a given

application.

THEOREM 2 For massive-antenna BS’s with a homogeneous-

ppp distribution of density λb and unit mean exponential



shadowing, the tail probability of uplink-rate of a typical user

UE for rate-threshold of T2 can be given by

RUL
cov(T2, λb, ν) =

1

C2(T2, λb, ν)R2
o

[
1− exp (−C2(T2, λb, ν)R

2
o)
]
, (11)

where, C2(T2, λb, ν) =
π λb χ̄ (e

ln(2)ΩT2

ϑB − 1)1/ν

Ω sinc(π
ν
)

(12)

and ϑ is the pilot and cyclic prefix (CP) overheads factor [7].

Proof : see appendix B �

C. EFFECTIVE-CAPACITY

It is noteworthy that the well known Shannon’s capacity

formula for wireless transmission, cannot account for the

quality of service demands. So, a significant figure of merit,

namely, effective capacity is introduced to incorporate statis-

tical delay QoS into capacity formula of wireless applica-

tions [10]. In this regard, a new parameter θ, relates to the

asymptotic decay-rate of the buffer-occupancy can be given by

θ = − lim
x→∞

ln(Pr{L > x}
x

, where, L is the queue length at steady-

state of the transmitter buffer, x is the delay bound, and Φ
is determined by the arrival state and service-processes [11].

According to this equation, θk quantities the equilibrium state

delay violation-probability of the k-th user. It should be noted

that a smaller θ indicates a looser QoS-constraint whereas a

larger θ imposes a more stringent constraints. Accordingly,

the effective capacity as a function of QoS exponent can be

defined as

Ceff (θ) = − lim
n→∞

1

nTθB
log2 ER

{

e
−TθB

n∑

i=1

R[i]
}

(13)

where T is frame-duration and Rk[i] is the transmission rate

in the i− th time slot. With no loss of generality, we assume

that the fading-process over wireless-channels is independent

of each other and holds invariant within a block length

T and the service-process is uncorrelated stochastic-process

(independent and identically distributed). Hence, Ceff in (13)

can be simplified to [10], [2] Ceff (θ) = − 1

TθB
log2 ER{e−TθBR},

where, B is system bandwidth and the expectation is taken

w.r.t the random variable Rk. Obviously, the effective capacity

coincides with the traditional Shannon’s ergodic-capacity in

case there is no delay-constraint i.e. θ → 0. Analytically, with

the assumption of steady state of the buffer input (stationary

and ergodic process), and after substituting for rate R from

Shannon’s formula, the effective capacity normalized by the

bandwidth, will be as follows,

CUL
eff(t, λb, ν, θ) = − 1

A
log2 E((1 + SIR)−A) (14)

where, A , θTB/Ω ln(2) and the expectation is taken over

the distribution of SIR.

THEOREM 3 For massive-antenna BS’s with a homogeneous-

ppp distribution of density λb and unit mean exponential shad-

owing, the asymptotic uplink effective-capacity of a typical

user UE for threshold of t and QoS exponent θ, can be given

by

CUL
eff(t, λb, ν, θ) = − 1

A
log2

[
1 − ∑N

i=1 ωi V (xi)
]
+ ON (15)

where, V (xi) is the coverage probability (9) replacing T1

by
(
t−1/A − 1

)
, the factor N is an integer, represents the

number of terms used in the approximation and determines

the accuracy of integration. ωi, xi are respectively, the weights

and abscissas which are determined by Hermite polynomial

according to the selected value of N . The symbol ON is a

remainder term.

Proof : see appendix C �

V. NUMERICAL-RESULTS AND DISCUSSION

This section presents the details of numerical validation for

the derived analytical results of section (IV) and gives insights

into how the various parameters impact the distribution of the

performance metrics in the cellular system. Table-I summa-

rizes the specific parameters used in the simulations unless

otherwise specified.

a) SIR Profile: First, fig.2-(a) compares the log-normal

Monte-Carlo simulated uplink-coverage with the correspond-

ing exponential-analytical formula given in (9) under various

frequency reuse factor Ω. We can see that the analytical

results almost matches the simulation ones, particularly at

large threshold-SIR. Average interferer-distance in the wireless

cellular system increases as Ω increases, this helps establish

an intuition of why a higher frequency reuse factor has a

better SIR tail-probability than lower ones. For instance, we

see that, 40% of the users have SIR above −10.5dB with unity

frequency reuse factor, whereas the same fraction of users has

SIR above 20.5dB with frequency reuse factor of Ω = 7.

The SIR-gain drops when we consider lower or higher-SIR

users, but is again significant. Noteworthy that low percentile

levels are for cell-edge users while high percentile levels are

for cell-center users.

b) Impact of Cell Load: Fig.2-(b) analyses different scenar-

ios based on cells load. It is noticeable that the complementary

cumulative distributions of the uplink-SIR degrade in case of

fully-loaded cells when each BS serving its maximum-capacity

of users, χ̄ = 1 forK = P (high contamination scenario).

This is consistent with simple intuition, since increasing the

number of served users K means increasing in the pilot reuse

probability between the typical and interfering BSs according

Table I. Numerical parameters used in the simulation.

PARAMETERS SETTING

BS coverage-radius Ro 1,500 m

Cellular area radius R 40 Km

Density of BSs λb 1/π R2
o

Frequency reuse factors Ω 1, 3 and 7

Path-loss-exponent ν 4.0

Large-scale shadowing βblp
∼ Log-normal(µ, σ2) for simulation

∼ exp(1) for analytical analysis

Log-normal shadowing µ, σ2

dB
0 , 7 dB respectively

Channel bandwidth 20 MHz

Monte-Carlo trials 105 system realizations.

OFDM symbol duration Ts 500/7 ≈ 71.4us, LTE standard [7]

Pilot training overhead Tov (Tslot − τ Ts)/Tslot = 3/7, [7].

Useful symbol duration Tu 1/15 ≈ 66.7us, LTE standard [7]



to the formula in (7). Consequently, this will decrease the aver-

age interferer-distance, i.e., increases aggregated interference

power. In contrast, best coverage performance is for χ̄ = 0.25
(low contamination scenario). On the other hand, the marginal-

gain in coverage performance increases with decreasing in cell

load.

c) Pilot-reusing Probability: Fig.3 considers the impact

of pilot number P used in channel training phase on the

probability of reusing the same sequence between the serving

and interfering BSs for different cell coverage-radius Ro. The

figure shows that for fixed user-density λu, the probability

of pilot reusing is relatively large for less number of pilot-

sequences or larger cell-coverage radius, e.g., when P =
8 pilots, coverage-radius extension from 0.5km to 1.0km
leads to nearly 50% increment in pilot-reuse probability χ̄.

d) Impact of Ω on Rate Profile: The effect of Ω on the

uplink rate coverage is investigated in fig.4-(a). Unlike the

SIR-tail probability, here the story is different, where the

average achievable rate doesn’t definitely increase with Ω
increasing. In the high reliability-regime when the rate outage-

probability goes to zero, the rate coverage gains increase

with Ω increasing. In contrast, in the high spectral-efficiency

regime, when the rate threshold goes to infinity, increasing

Ω will decrease the rate coverage gains. Although, larger

Ω means less average interference power, but also it means

smaller cell effective-bandwidth, hence, for Rth > 7Mbps
increasing Ω has negative effect on the rate performance, e.g.,

we see that, for 15% level the rate drop is roughly 10Mbps
due to using reuse factor of 7.

e) Impact of χ̄ on Rate Profile: Fig.4-(b), depicts the effect

of the pilot reuse probability on the rate-tail probability,

which is nearly the same effect as for the SIR-coverage

performance. As an example, for the 20th percentile users,

the rate performance drops by almost 75% for pilot reuse

probability of χ̄ = 1.0 as compared to the χ̄ = 0.25 scenario.

Similar to the SIR-coverage performance, the marginal-gain in

average rate increases with decreasing in cell load. The impact

of path-loss-exponent (PLE), ν is investigated in more detail

in fig.5 for SIR and rate coverages. As ν decreases, the UEs

farther-away from the typical BS have a greater contribution

to the aggregated interference-power at the this BS, and this

leads to a less uplink-SIR and consequently a smaller SIR and

rate-tail probability.

f) Effective Capacity: Fig.6-(a) simulates the normalised

effective capacity w.r.t different pilot reuse probability, as

expected, Ceff decreases with χ̄ increasing. Fig.6-(b), ac-

cording to the analysis of Theorem 3, compares the effective

capacities for various path-loss-exponent ν, where a better

Ceff performance is for larger values of ν for the same

reasons mentioned before. Moreover, fig.7 demonstrates the

functional-relationship among uplink normalized effective ca-

pacity CUL
eff , path-loss exponent ν and the QoS exponent θ.

g) Shannon Capacity: Finally, the comparison of the effec-

tive capacity with Shannon-capacity, θ −→ 0 is illustrated in

fig.8 for various PLE values. As expected, for all cases, the

effective-capacity decreases monotonically with the increase

of the QoS statistical-exponent θ (more stringent delay QoS-

requirements), while the curves tend to flatten and saturate to

the Shannon-capacity CSH when θ becomes small enough.
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VI. CONCLUSION

In this work we provided tractable-expressions for the

asymptotic SIR coverage, rate coverage and effective capacity

in the uplink of the interference limited cellular massive

MIMO. The expressions are based-on a Poisson point pro-

cess topology using stochastic geometry tools. The presented

results provide valuable insight into the impacts of key system-

features such as path-loss attenuation, shadowing and pilot-

contamination on the statistical distributions of various system

metrics. Simulations clearly illustrate that the SIR-coverage

performance improves as frequency reuse factor Ω increases

due to the increases of distances between the typical and

interfering UEs.

However, a trade off is required in Ω selection when a

guaranteed minimum-rate is required since increasing Ω will

decrease the effective bandwidth. Furthermore, we investigated

the impacts of path-loss exponent and the pilot reusing proba-

bility, which is a function of the cell-load, on the effective

capacity at a typical BS. In this aspect, results show that

path-loss in cellular system plays a key role in mitigating

the system overall interference and the effective capacity is

in proportion to the path-loss attenuation. More practical-

issues, like uplink power-control and dynamic frequency reuse

scheme, are expected to be addressed in the future analysis.

APPENDIX-A

Proof of theorem 1: Starting with the formal definition of

coverage probability, as the tail Probability of SIR, i.e., ccdf

of SIR averaged over the distribution of the users, we have

Pcov(T1, λb, ν) = Er

[

P
{
SIR > T1

}
]

(a)
=

∫ Ro

0
P
{
SIR > T1

}
fRo(r)dr

(16)

Now, we are going to characterize the statistical distribution

of SIR in (16) conditioned on user location rbbp

P
{
SIR > T1

} (a)
= P

{

β2
bbp > T1 r

2ν
bbp

∑

l∈B\{b}

αbl β
2
blp χlp

r2νblp

}

(b)
= EIbp,β2

{

exp

[

−T1 r
2ν
bbp

∑

l∈B\{b}

αbl β
2
blp χlp

r2νblp

]}



(c)
= EIbp,β2,r

{

e−T1 r2νbbp Ibp

}
(d)
= EIbp,β2

{

e−s Ibp

}
(e)
= LIbp(s), (17)

where, (a) is obtained by substituting for inter-cell interference

Ibp which is the sum of the powers from all the interfering

UEs placed farther than Ro (no intra-cell interference with

orthogonal pilot sequences assumption) and re-arrange the

inequality variables, (b) follows assuming {βi}∞i=0 is a set of

i.i.d. unit-mean exponential random-variables, i.e. β2 ∼ exp(1),

(c) follows assuming s = T1 r
2ν
bbp as a constant in Laplace equa-

tion and (d) is, by definition, the Laplacian of interference

w.r.t to the constant s. Next, substitute for LIbp(s) from (8)

yields, P
{
SIR > T1

}
= exp

[

−π λb χ̄ s1/ν

Ω sinc(π
ν
)

]

. Re-setting s = T1 r
2ν
bbp ,

averaging out the random variable rbbp and then plugging again

into (16) we obtain

Pcov(T1, λb, ν) = Erbbp

{

exp

[

−π λb χ̄ (T1 r
2ν
bbp)

1/ν

Ω sinc(π
ν
)

]}

(a)
=

∫ Ro

0

{
e−C1(T1,λb,ν) r

2

bbp
}
fR(r)dr

(b)
=

∫ Ro

0

{2rbbp
R2

o

e−C1(T1,λb,ν) r
2

bbp
}
dr

(18)

In (a), the expectation w.r.t the random variable rbbp ex-

pressed in integral form, where C1(T1, λb, ν) =
π λb χ̄ T

1/ν
1

Ω sinc(π
ν
)

, (b)

follows from substituting for fR(r), in our scenario, we have

uniform user-distribution within disc of radius Ro such that

fR(r) = (2r/R2
o) for r ∈ (0, Ro]. Finally, setting x = r2 and

evaluating the integration we arrive at (9) which completes

the proof.

APPENDIX-B

Proof of theorem 2: Starting from the definition of the

normalized average-rate we have [7]

RUL
cov(T2, λb, ν) = E

{ B Tov Tu

ΩTs
log2(1 + SIR)

}
(19)

Given that B is the bandwidth, Ts is the orthogonal-

frequency division-multiplexing (OFDM) symbol duration

Ts = slot duration/# of symbole per slot, Tov is the pilot

overhead or training efficiency, Tov =
(Tslot − Tpilot)

Tslot
= (Tslot − τ Ts)

Tslot
,

Tu is the useful symbol duration Tu = 1/subcarrier spacing =
1/∆f , and Ω is the frequency reuse factor (FRF). It’s worth

pointing out that the pre-log percentage factor (
B Tov Tu

ΩTs
) im-

plies that the useful data transmission only occupies a fraction

of the coherence-slot. The expectation in (19) can be expressed

in terms of integration as following (averaging over the SIR

distribution)

RUL
cov(T2, λb, ν) =

∫ Ro

r=0

∫ T2

0
P

{
[ϑB

Ω
log2(1 + SIR) > t|r

]
dt fR(r)

}

dr

(a)
=

∫ Ro

r=0

∫ T2

0
P

{
[
SIR >

(
e
ln(2)Ω t

ϑB − 1
)
|r
]

︸ ︷︷ ︸

SIR-ccdf

dt fR(r)

}

dr

(b)
=

1

C2(T2, λb, ν)R2
o

[
1− exp(−C2(T2, λb, ν)R

2
o)
]
, (20)

where, ϑ = Tov · Tu/Ts accounts for both pilot and cyclic

prefix (CP) overheads, the first equality follows exploiting

the fact that for a positive r.v. X , data rate in this case,

we have E[X] =
∫

t>0
P(X > t) dt, (a) is obtained after re-arrange

the inequality variables and (b) follows by substituting for

ccdf of SIR from appendix-A, setting T1 = exp(
ln(2)ΩT2

ϑB
) − 1,

substitute for fR(r) and changing of variables with x = r2,

note that C2(T2, λb, ν) is given by (10), which concludes the

proof.

APPENDIX-C

Proof of theorem 3: The normalised ef-

fective capacity in (14) can be expressed in

terms of the SIR distribution as following

CUL
eff(t, λb, ν, θ) = − 1

A
log2

∫ Ro

0

∫ 1

0
P

{
[
(1 + SIR)−A > t|r

]
dt

︸ ︷︷ ︸

I2

fR(r)

}

dr

Next, I2 after a simple manipulation will be

I2 =
∫ 1

0
P
{[
SIR <

(
t−1/A − 1

)]
dt
}(a)
= 1−

∫ 1

0
P
{[

SIR ≥
(
t−1/A − 1

)
|r
]

︸ ︷︷ ︸

SIR-ccdf

dt
}
,

where (a) follows since cdf = 1 − ccdf.

Now, substitute for ccdf from (13) with

T1 =
(
t−1/A − 1

)
we end-up with the following expression,

CUL
eff(t, λb, ν, θ) = − 1

A
log2

[
1−

∫ 1

0

(
[
1− e−C3(t,λb,ν,θ)R

2
o

])

C3(t, λb, ν, θ)R2
o

dt
]
,

where C3(t, λb, ν, θ) =
−π λb χ̄ (t−1/A − 1)1/ν

Ω sinc(π
ν
)

.

Finally, employing the Hermite approximation for the last

integral, we can conclude the proof.
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