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Abstract—Fairness, low latency, and high throughput with low
energy consumption are desired attributes for Medium Access
Control (MAC) protocols. The IEEE 802.15.4 standard defines
the MAC and physical (PHY) layers standard for IPv6 over
Low power Personal Area Network (6LoWPAN). When non-
appropriate parameter setting is used, the default MAC parame-
ters generate excessive collisions, packet losses, and high latency
under high traffic when a large number of 6LoWPAN nodes being
deployed. A search of the literature revealed few studies which
investigate the impact of optimising these parameters to achieve
high throughput with minimum latency. This paper proposes
a new intelligent approach to select the optimal 6LoWPAN
MAC layer parameters set, the introduced mechanism depends
on Artificial Neural Networks (ANN), Genetic Algorithm (GA)
or Particles Swarm Optimisation (PSO) to select and validate
the optimised MAC parameters. The obtained simulation results
showed that utilising the optimal MAC parameters improved
6LoWPAN network throughput by 52-63% and reduced the end-
to-end delay by 54-65% in which the enhancement percentage
depends on the number of deployed sensor nodes in the network.

Index Terms—6LoWPAN; Artificial Neural Network; Genetic
Algorithm; Particle Swarm Optimization; MAC Parameters.

I. INTRODUCTION

HERE are many different trends that need to be taken

into account when considering the development of the
Internet-of-Things (IoT) [1], which include the IEEE 802.15.4
compliant protocols [2], future Internet [3], and Machine-to-
Machine (M2M) networks [4]. Nowadays, the IEEE 802.15.4
is a common standard used by the Low power Wireless
Personal Area Network (LoOWPAN) devices for lower protocol
layers. However, problems emerge when presenting the upper
layers of the protocol stack. To address this, ZigBee Alliance
[5], an industrial group, developed the ZigBee protocol in
2003 as an IEEE 802.15.4 compliant protocol and specified
the vertical upper layers of the protocol stack. The Zig-
Bee protocol has suffered from many limitations including
the dependency on a single wireless link and application
profile, along with scalability and Internet integration. The
term future Internet was introduced in [6] [7] to depict the
Internet architecture and protocols research in the next 20
coming years. There are several European projects targeting
future Internet research (i.e., EU 4WARD [8]), but are not
focusing on embedded Internet devices and LoWPANSs. In-
ternet integration was not considered in traditional LoWPAN,
because it was thought to be completely isolated. However,
the EU SENSEI project [9] has focused on the integration
of embedded devices with IPv6 over Low power Personal
Area Network (6LoWPAN) functionality in the current and
future global Internet. M2M networks are cognitive systems

that have the ability to communicate with each other without
human intervention [10]. The traditional M2M devices include
cellular modems along with an Internet based back end system
for IP communications. Recently, the M2M gateway has been
used to bridge local embedded networked device with IP based
networks. 6LoWPAN can be connected to the Internet via
M2M gateway and encouraged both the research community
and industry to become involved with the IoT revolution [11].

The IEEE 802.15.4 standard defines the Medium Access
Control (MAC) and Physical (PHY) layers characteristics for
low-data rate and low-power wireless devices [12]. Internet
Engineering Task Force (IETF) working group introduced the
6LoWPAN [13] in order to adopt the implementation of In-
ternet protocols over wireless embedded devices that are char-
acterised by limited memory size, being power constrained,
and having relaxed throughput. The 6LoWPAN protocol stack
is similar to the TCP/IP stack. However, there are a few
differences between them because of the large size of IPv6
packet compared to the IEEE 802.15.4 packet. Accordingly,
the IETF working group added an extra layer to 6LoWPAN
protocol stack, which is called the adaptation layer. This
layer is responsible for header compression, fragmentation and
reassembly of an IPv6 packet when it is sent or received over
the IEEE 802.15.4 standard.

Wireless M2M sensor networks are usually composed of
hundreds to thousands of energy constrained and short range
communication devices. These limitations affect the selection
of one protocol stack over the others. In fact, the increasing
interest in M2M sensor networks has led to the development
of a range of different communication protocols, but their
diversity has limited the integration of different networks.
Regarding the MAC and PHY layers, a widely used solution
has been offered by the IEEE 802.15.4 standard and the IPv6
because the IP layer will cope the isolated network integration
problems. This paper focuses on optimising the MAC layer
parameters of the 6LoWPAN protocol stack based on the
specifications released by IETF working group [13].

Any MAC protocol for M2M sensor network should ensure
prudent energy consumption in all M2M nodes in order to pro-
long the network lifetime. This paper motivated from the work
developed by Zayani et al. [14] which is an enhance work
inspired from the work presented by Park et al. [15]. In both
works [14] and [15], the analytical model for the main char-
acteristics of IEEE 802.15.4 standard was studied and verified
using Markov chain model and Monte-Carlo simulation. The
level of contention at the MAC layer influences the network
throughput and end-to-end delay. In addition, the performance
indicators at MAC and PHY layers showed that the selection
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of appropriate MAC parameters led to minimise the energy
consumption, enhance reliability and reduce the end-to-end
delay. The core contribution of the proposed approach is to
select the optimal MAC layer parameters, the selection was
carried out by using a) artificial neural networks; b) intelligent
optimiser scheme. Moreover, the results are validated using
Generic Algorithm (GA) and Particle Swarm Optimisation
(PSO) to verify the selected MAC layer parameters sets.

The rest of this paper is organised as follows. Section II
reviews the relevant recent works of the literature. Section III
gives an overview of the basic soft-computing techniques. The
methodology and proposed approach are illustrated in Section
IV. In Section V, the interactions between MAC parameters
are studied, in addition to the numerical evaluations of the
proposed approach. Finally, Section VI concludes this paper.

II. RELATED WORKS

The IEEE 802.15.4 MAC layer standard of 6LoWPAN has
received much attention, with a focus on its performance
in terms of successful packet reception probability, packet
delay, throughput, and energy consumption. Nowadays, IEEE
802.15.4 standard is a key technology for the development
of M2M and IoT. Consequently, many works in the literature
are generally verified by simulation tools such as MATLAB,
NS-2, NS-3, OPNET, or OMNET. These studies have studied
the performance of Carrier Sense Multiple Access/Collision
Avoidance (CSMA/CA) mechanism of the IEEE 802.15.4
standard and proposed different algorithms either to enhance
the end-to-end delay or improve the energy consumption. The
energy consumption and end-to-end delay in WSN are affected
by a variety of MAC parameters and the challenge of opti-
mising WSN networks in terms of a low-energy consumption
with minimum latency has been a difficult problem need to be
addressed by research community.

Ergen et al. [16] presented a novel approach for min-
imising the energy consumption of un-slotted IEEE 802.15.4
MAC protocols using optimisation techniques. The objective
function was related to the total energy consumption in the
transmit, receive, listen, and sleep states, in addition to the
delay and reliability of the packet delivery. While the decision
variables were the sleep and wake time of the receivers.
Storing light look-up tables in the receiver nodes represented
the optimal solution and made it easy to implement on existing
IEEE 802.15.4 hardware platforms.

Fischione et al. [17] conducted an analysis of un-slotted
IEEE 802.15.4 MAC, the expressions of which were repre-
sented as a function of sleep time, listening time, traffic rate
and MAC parameters. The analytical results were then used
to optimise the duty cycle of the nodes and MAC protocol
parameters. The authors reported that significant reduction
of sensor node energy consumption compared to existing
solutions was achieved.

Marco et al. [18] provided an analysis of the fundamental
MAC and routing protocols for Low-power and Lossy Net-
works (LLNs): IEEE 802.15.4 MAC and IETF IPv6 Routing
Protocol for Low-power and lossy networks (RPL). The char-
acterisation of their cross layer interactions was presented in

the form of a mathematical description, with a protocol selec-
tion mechanism being implemented to select the appropriate
routing metric and MAC parameters for given specific perfor-
mance constraints. Both the analytical and experimental results
showed that the behaviour of the MAC protocol affected the
performance of the routing protocol and vice versa, unless
these two were carefully optimised together.

Wallace et al. [19] proposed a fuzzy CSMA/CA MAC
protocol with two separate fuzzy logic controllers. The first
controller was used to optimise the MAC parameters and
sleeping schedule duty-cycle, whilst the second controller was
aimed at optimising the size of the contention window using
three performance metrics as inputs. These two fuzzy logic
controllers were deployed to ensure maximum power effi-
ciency achievement while utilising the optimised parameters
in sensor network.

Liu and Li [20] proposed a Collision-Aware Backoff al-
gorithm (CABEB) to improve the performance of a slotted
CSMA/CA for the IEEE 802.15.4 standard. The CABEB
algorithm provided dynamic selection of a backoff period
depending on the current collision probability of the network.
The proposed approach was able to configure the MAC layer
parameters autonomously based on the available channel state
information. The analytical results were based on Markov
chain modelling, while the simulation results were based on
OMNET++ simulation software. The obtained results showed
that the CABEB algorithm performed better that the default
IEEE 802.15.4 standard and the knowledge-based exponential
backoff algorithm.

Abdeddaim et al. [21] applied models that led to the
idle sensing access method of IEEE 802.11 to the slotted
CSMA/CA of IEEE 802.15.4 standard. They were taking into
account the central role of the coordinator as well as the burst
nature of the traffic. The contention window was adjusted
depending on optimal values to achieve high throughput along
with low duty cycles and minimum energy consumption in
sensor nodes.

Pinto et al. [22] proposed a Genetic Machine Learning
Algorithm (GMLA) for Wireless Sensor Network (WSN) data
fusion applications, with the aim of improving communication
efficiency. Random topologies were used in the simulation and
GMLA presented almost 13% of gain over IEEE 802.15.4 in
1,000 simulation rounds.

Brienza et al. [23] compared off-line computation, model-
based adaptation, and measurement-based adaptation by sim-
ulation in to select the optimal MAC parameter setting to
provide reliability with minimum energy consumption with the
IEEE 802.15.4 standard. The adaptive algorithms performed
well compared to other models, that were unsuitable in prac-
tical scenarios, where the transmission errors could not be
neglected.

Li and Sikdar [24] developed a queueing model to evaluate
the delay of a class of discrete-time, throughput-optimal MAC
protocols. Then, the queuing model was used to derive the
optimal parameter settings for the MAC protocol. The pa-
rameters selection and the delay model were validated using
simulation tools. Their approach addressed the problem of
selecting parameters that minimise the average packet delay.



IEEE ACCESS JOURNAL, VOL. PP, NO. 99, MONTH 2017

Elshaikh et al. [25] focused on optimising WSN protocols
using the Ichi Taguchi (Taguchi) optimisation method. That
is, the energy consumed by sensor nodes were optimised
using the Taguchi method to predict network topology design
parameters. The simulation results were obtained using an
OMNET++ simulator, with the results showing the impact of
the network protocols on energy consumption.

Francesco et al. [26] proposed the Adaptive Access Parame-
ters Tuning (ADAPT) algorithm for dynamically adjusting the
MAC parameters, based on the desired level of reliability and
actual operating conditions experienced by the sensor nodes.
The simulation results showed that the ADAPT algorithm was
able to provide the desired reliability with a very low energy
expenditure, even under operating conditions that dynamically
change with time during network operation.

Park et al. [27] proposed an adaptive tuning mechanism for
IEEE 802.15.4 MAC layer parameters. their proposed protocol
was adjusted dynamically to minimise the sensor node energy
consumption using a constrained optimisation scheme that run
on each device in the network.

Akbar et al. [28] proposed a Tele-Medicine Protocol (TMP)
based on beacon-enabled IEEE 802.15.4 standard. The TMP
optimised the sensor node duty-cycle and tuning MAC layer
parameters to conserve sensor node energy.

As seen in the above literature review, many studies have
shown that IEEE 802.15.4 may suffer from severe limitations
in terms of network reliability and energy efficiency, if non-
appropriate parameter settings are used. Many efforts have
been made regarding MAC layer’s parameters selection in
terms of achieving better power consumption and overcoming
delay constraints: optimised proposals for beaconless-enabled
IEEE 802.15.4 standard conducted in [16]-[18]. Alternatively,
the beacon-enabled IEEE 802.15.4 standard proposals con-
ducted in [19]-[28]. Most of the aforementioned proposals
tried to optimised the sensor node duty-cycle and tuning
MAC parameter settings for minimising sensor node energy
expenditure. However, less attention has been paid to optimis-
ing these parameters and selecting the exact optimal set that
provide high reliability with minimum energy consumption.
This issue is solved in this paper by proposing an intelligent
scheme for optimal MAC parameters set evaluation. The
evaluation technique is based on Artificial Neural Network
(ANN) and optimisation techniques to achieve high throughput
with minimum delay. Also, a comparison between Genetic
Algorithm (GA) and Particles Swarm Optimisation (PSO) was
conducted to choose the best intelligent optimiser that provides
the optimal set for 6LoWPAN MAC layer parameters.

To the best of our knowledge, there are several important
areas where this work makes several noteworthy original
contributions. This paper contributes to existing knowledge of
6LoWPAN MAC layer optimisation by:

1) Predicting the 6LOWPAN network behaviour using ANN
with exhaustive search to select optimal ANN topology
and LevenbergMarquardt (LM) learning algorithm. The
trained neural network is ease the understanding of MAC
layer parameters using non-parametric model while most
of statistical methods in the literature are parametric
model that need higher background of statistic;

2) Introducing an intelligent optimiser for 6LoWPAN net-
work to maximise the reliability and minimise the end-
to-end delay with relative to MAC parameters set.
Two evolutionary algorithms (EA) are used to find the
optimal MAC parameter set: PSO and GA. Both EA
algorithms are compared in terms of effectiveness (find-
ing the true global optimal solution) and computational
efficiency. The performance comparison of the GA and
PSO is conducted using MATLAB 2017a;

3) Providing comprehensive comparisons between the de-
fault MAC parameters setting suggested by the standard
and the optimal parameters settings achieved from the
proposed approach in this paper.

III. SOFT-COMPUTING TECHNIQUES

Soft-Computing (SC) is one of the possible ways for
building intelligent and wiser machines. It aims to model and
provide solutions for existing problems that are not modelled
or not easy to modelled mathematically. Accordingly, SC
will achieve a robust, tractable and low-cost solution from
uncertainty and approximate reasoning [29]. The techniques of
SC are nowadays being used successfully in many applications
and three are used in the proposed approach to determine the
optimal MAC layer parameters for 6LoWPAN networks, these
being:

A. Artificial Neural Networks

Artificial Neural Networks (ANN) are a family of models
inspired by biological neural networks, which can be viewed as
a network of simple processing elements called neurons. These
neurons work in harmony to provide the solution for scientific
problems, such as pattern recognition or data classification,
through a learning process. In general, they are composed of
three layers, which are an input layer, some hidden layers and
an output layer. The pool of neurons or simple processing
elements communicate by sending signals to each other over
a large number of weighted connections. These connections
have numeric weights that can be tuned based on experience,
making the ANN adaptive to inputs and capable of learning
system behaviour [30].

ANN are typically organised in layers, these being com-
posed of a number of interconnected neurons, which contain
an activation function. The input data are presented to the
ANN via the input layer, which is linked to one or more
hidden layers for actual data processing through a system of
weighted connections. The hidden layers are then linked to an
output layer where the predicted output is found. The predicted
output can be found by minimising the error between the ANN
output(s) and the actual output(s).

The most efficient and accurate learning process in ANN
is the Feed-Forward (FF) and the selection of proper ANN
topology depends on the number of neurons in the input,
hidden and output layers. Moreover, there are two main
approaches to make the topology selection: a) evolutionary
algorithms (EAs), such as a GA or PSO; and b) exhaustive
search, which is based on the neurons prediction number in
each layer. This paper is based on exhaustive search method
in order to build the optimal ANN topology.
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B. Genetic Algorithm

A Genetic Algorithm (GA) is a method for solving both
constrained and unconstrained optimisation problems based
on a natural selection process. It evolves a set of individuals,
also called chromosomes, which constitutes the generational
population and produces a new population. These individuals
are developed according to selection rules and other genetic
operators, such as mutation and crossover, with each individual
receiving a measure of fitness. The selection rules focus on
the individuals that have high fitness. Mutation and crossover
provide an attempt to simulate the natural breeding process
that simulates the reproduction process [31].

GA is implemented through the procedure described in
Algorithm 1, where ps, ef and gn are the population size, the
expected fitness of the returned solution and the maximum
number of generations allowed, respectively. The procedures
are repeated until the particular fitness is accepted (termination
criterion is reached), or the predetermined number of iterations
(generations) have been run.

Algorithm 1 Genetic algorithm

Require: population size ps, expected fitness ef,
generation number gn,
Ensure: the problem solution
generation = 0
population = initialPopulation()
fitness = evaluate(population)
repeat
parents = select(population)
population = mutate(crossover(parents))
fitness = evaluate(population)
generation = generation + 1
until (fitness[i] = ef , 1 < i < ps) or generation > gn

C. Farticle Swarm Optimization

Particle Swarm Optimisation (PSO) is a computational
method that tries to solve complicated problems using an
iterative approach to optimise a candidate’s solution with
regard to a given performance. The main steps of the PSO
algorithm are described in Algorithm 2, where each particle
has a velocity and an adaptive direction that determines its
next movement within the search space. The particle is also
endowed with a memory that makes it able to remember the
best previous position that it passed by [32].

The PSO is formed by a set of particles, each one of
which represents a potential solution to the given problem.
The particle has a velocity value to indicate how much the data
can be changed across position coordinates in n-dimensional
search space. The PSO algorithm keeps track of three global
variables to reach the target:

1) Target value or condition;

2) Global best value indicates which particle’s data is
currently closest to the target;

3) Stopping value indicates when the algorithm should stop
if the target is not found.

Algorithm 2 Particle swarm optimisation algorithm

for i = 1 to n-particles do
Initialize the information of particle i
Random initialize position and velocity of particle i
end for
repeat
for i = 1 to n-particles do
Compute the F'itness; of particle i
if Fitness; < Pbest then
Update Pbest using the position pf particle i
end if
if Fitness; < Gbest then
Update Gbest using the position pf particle i
end if
Update the velocity of particle i
Update the position of particle i
end for
until Stopping condition is true
return Gbest and corresponding position

To update the position of each particle ¢, there is a set of
velocities, each of which is the element that promotes the
capacity of particle location and can be computed as described
in (1), where w is called the inertia weight, r; and ry are
random numbers in the interval [0,1], ¢; and ¢y are positive
constants, y;; is the best position (Pbest) found by the particle
1 with respect to dimension j, and finally y; is the best position
(Gbest) with respect to dimension j. The position of each
particle is updated according to the formula in (2).

vij(t + 1) =wvi;(t) + e1r1(yij — 245(t))
+eara(yi; — iz (1)) (1)

it + 1) = vi(t +1) + i (2) 2)

while x;;(t+1) is the current position and x;;(t) is the
previous position.

IV. PROPOSED OPTIMAL MAC PARAMETERS SELECTION

In this section, a brief and clear explanation for the proposed
mechanism of optimal MAC parameters selection will be
given. As stated earlier, this paper is motivated and based on
the mathematical models introduced by Zayani et al. [14] that
was inspired from Markov chain analytical model developed
by Park et al. [15].

Low energy consumption is vital in M2M sensor networks
and nodes can achieve high throughput by extending the
network lifetime or reducing packet drops. Packets are dropped
either because the channel is busy or the maximum number of
retries limit has been reached. Extension of network lifetime
with reduced delay can be achieved by selecting the optimal
MAC parameters set as depicted in Fig. 1 and the detailed
steps for the proposed optimisation scheme are as follows:

1) Data Collection: complete data sets were collected from

the proposed mathematical model in [14] for different
network sizes;
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Fig. 1. Intelligent based MAC layer parameter selection

2) Data Analyses: collected data were analysed and pre-
processed prior to the training stage. The datasets are
separated into inputs and outputs, and divided randomly
into three subsets: training set (70%), testing set (15%),
and validation set (15%);

ANN Training: the analysed data (training set) were fed
as inputs to the ANN for complete output prediction
prior to optimisation stage. The MAC layer parameters
set represented by input data while the throughput and
latency represented the output of the ANN;

Data Post-Processing and Testing: the predicted ANN
output was verified with unseen raw data (validation
set) to validate ANN training and determine its accuracy
using the testing data set;

Data Optimisation: once the ANN output was verified,
two optimisation techniques (PSO and GA) were run
individually to choose the optimal MAC parameters of
6LoWPAN network with different network size. These
EAs were compared among each others to give more
certainty to the optimal selected parameters of the MAC
layer, and which one is more efficient than the other
when it being deployed in the developed approach.

3)

4)

5)

The performance of an ANN is dependent on the number
of hidden layers and hidden neurons in each layer. The
latter determines the neural network architecture design. On
one hand, a smaller number of hidden neurons restricts the
competence of the ANN to model the problem. Such ANN
may not train properly to obtain a reasonable error. On the
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other hand, a larger number of hidden neuron forces the ANN
to memorise the data rather than learning them and may result
in high computational time.
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Fig. 2. Exhaustive searching scheme of optimal ANN topology selection

ANN Structure

The Levenberg Marquardt algorithm (LM) was used to
train the ANN. During the training phase, the data set was
first tested using a single hidden layer but, unfortunately, the
training failed to give a good performance in terms of Mean
Square Error (MSE). Multiple ANN layers were studied to
determine the best number of neurons in both the first and
second hidden layers in a nested loop fashion, as depicted in
Fig. 2. Hence, the optimal topology for ANN was selected
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by conducting an exhaustive search. The number of hidden
neurons is determined by altering the number of neurons,
starting with a few hidden neurons, and then adding neurons
until the computed MSE for the training patterns comes to a
minimum. The number of hidden neurons at that point is taken
as the optimal. Owing to the random initialisation of the ANN
parameters (weights and biases), every selected topology was
trained ten times to ensure that the network was not trapped
in the local minima. The performance of the network as MSE
versus the network architecture for single and double layers
are shown in Fig. 3 and Fig. 4, respectively.
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The IEEE 802.15.4 [12] is a standard for low-rate, low
power, and low-cost Personal Area Networks (PANs). It de-
fines two different channel access methods, namely a beacon-
enabled mode and a non-beacon-enabled mode. This paper
will focus on the non-beacon-enabled mode only, since it is the
channel access mechanism for 6LoWPAN that use un-slotted
carrier sense multiple sense/collision avoidance (CSMA/CA).

Fig. 1(b) shows the proposed optimising scheme for se-
lecting the optimal MAC layer parameter set of a 6LoOWPAN

network. The optimiser suggested the following input param-
eters in order to achieve maximum throughput with minimum
end-to-end delay:

o Backoff exponent (BE) is a random number determines
the random backoff interval before sensing the channel.
The macMinBE and macMaxBE represent minimum and
maximum BE for the IEEE 802.15.4 MAC layer;

e Maximum CSMA backoff (macMaxCSMABackoffs) is
the number of times that the node stays in the backoff
stage after unsuccessful channel sensing before the packet
being dropped;

e Maximum frame retries limit (macMaxFrameRetries) is
the number of the retransmissions limit when there is
no acknowledgement received and the packet will be
dropped.

These MAC parameters were fed into the ANN as inputs in
addition to the desired network size (number of nodes), while
the outputs were throughput and delay. As stated earlier in this
subsection, the ANN was trained in order to predict the actual
output and to prepare data for the optimisation stage. The
objective function attempts to obtain the optimised MAC layer
parameters set that gives maximum throughput with minimum
delay for a given nodes number.

In this study, a novel optimisation scheme is proposed to
select optimal 6LoWPAN MAC layer parameters set for ade-
quate and reliable communication while reducing the energy
consumption in 6LoWPAN nodes. A constrained optimisation
problem is utilised to evaluate the optimised sets. The objective
function (Econsumed) 1S related to the total energy consumed
by the 6LoWPAN nodes during transmitting and receiving of
IPv6 packets over IEEE 802.15.4 standard. The optimisation
constraints are given by the channel throughput and mean
service time. For a transmitting 6LoWPAN sensor node, the
constrained optimisation problem can be expressed as:

7%” Econsumed(M) (3)
s.it. TH(M) > THpin 4)
sit. MST(M) < MSTqz 5)
My <M < My, (6)

where TH is the channel throughput and TH,,,;;, is the minimum
in demand channel throughput. MST is the mean service
time for a successful transmitted packet, and MST,,,, is the
maximum desired latency at the MAC layer of the 6LOWPAN
node. The constrained optimisation variable My < M < M,
follows the IEEE 802.15.4 default values for the MAC pa-
rameters that are given in Table I. The symbol ~ indicates
that the throughput, mean service time, and 6LoWPAN node
energy consumption are approximated by the ANN. These
approximations enhance the proposed approach accuracy and
reduced optimisation computational complexity. The optimal
6LoWPAN MAC layer parameters set represents the solution
of the constrained optimisation problem that each 6LoWPAN
nodes utilises to minimise its energy consumption. The de-
cision variables of the 6LoWPAN optimiser are denoted by
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the vector M = (mg, m1,m,n) and each variable is given
in Eq. (7a-d) which are subjected to network throughput and
end-to-end delay constraints.

mo & macMinBE (7a)

mi1 £ macMaxzBE (7b)

m £ macMaxCSM ABackof fs (7c)
n £ macM azFrameRetries (7d)

The optimisation problem becomes combinatorial as the
decision variables adopts only discrete values. The vector
of decision variables M is practical if and only if the net-
work throughput and the end-to-end delay constraints are
true. In other words, the optimal solution can be reached
by analysing every combination of the vector M elements
that leads to minimum objective function. It is obvious that
this approach suffers from high computational complexity
and time-consuming processes: there are 8x6x7x8 = 2688
combinations of 6LoOWPAN MAC layer parameters that have
to be analysed and checked. The scope of this study is to
introduce an intelligent algorithm based on ANN to evaluate
the objective function of optimiser more quickly, and hence
reduce the computational complexity and processing time.

V. PERFORMANCE EVALUATION RESULTS

After investigating the performance of different ANN archi-
tectures using an exhaustive search method, the best trained
ANN with two hidden layers was reached by 15 neurons in the
first and 12 in the second. This ANN topology demonstrated
that the MSE is less than 1.29x10722, Fig. 5 and Fig. 6
show the performance of the network in terms of MSE versus
the number of samples in the training and testing phases,
respectively. The results of the linear regression of the trained
and tested samples are shown in Fig. 7, with their verifying
the validity of the trained ANN and its ability to.
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MATLAB has been used as a simulator for medium and
large scale M2M sensor networks to implement the 6LoWPAN
MAC layer represented by the IEEE 802.15.4 standard. A
6LoWPAN network with 50 and 100 M2M sensor nodes are
considered, with the impact of each single MAC parameter
being evaluated in terms of node throughput. In the conducted
simulation scenario, it is assumed that the message generation
process is periodic to evaluate saturated and unsaturated traffic.
Fig. 8 and Fig. 9 are for 50 and 100 sensor nodes, respectively
and the MAC parameters observations are:

1) Impact of macBE:
Fig. 8(a)(b) and Fig. 9(a)(b) show the impact of the
macMinBE and macMaxBE on throughput, respectively.
macMinBE is in the range between 0 and 7, macMaxBE
is in the range between 3 and 8, while the other param-
eters with their default values are shown in Table 1. For
a fixed value of maxMacBE, the throughput tends to be
improved when increasing minMacBE, because a larger
initial backoff window reduces the collision probability
in the first backoff stages;

2) Impact of macMaxCSMABackoffs:
Fig. 8(c) and Fig. 9(c) show the impact of macMaxCS-
MABackoffs on network throughput. This parameter is in
the range between 0 and 5, whilst the others, are with
their default values, as shown in Table I. When max-
MacCSMABackoffs value increases, the node’s through-
put will increase to some extends in medium size
network as shown in 8(c), after that the throughput
decreased when the traffic increases as multiple nodes
try to access the channel many times and collisions occur
frequently. Fig. 9(c) shows the impact of maxMacCS-
MABackoffs in large networks, whereby the throughput
decreases as its value increases, because nodes have a
high probability of sensing the channel and it is busy in
dense networks;

3) Impact of macMaxFrameRetries:
Fig. 8(d) and Fig. 9(d) show the impact of mac-
MaxFrameRetries on network throughput. This parame-
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ter is in the interval between O and 7, while the others
have the default values shown in Table I. The throughput
remains constant for the values equal to or greater than
2 in medium size networks, as shown in Fig. 8(d) and
to or greater than 3 in larger networks Fig. 9(d).

Table I shows the optimal MAC layer parameter values
obtained from the two optimisation techniques (GA and
PSO). The input and output sets of the ANN fed back to
an optimiser running GA and PSO to predict the input set
that provides maximum throughput and minimum delay. The
optimiser outputs are the optimal 6LoWPAN MAC parameters
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The effect of MAC layer parameter for 100 node network size and offered load 1000 packet/node

given in the last column of Table I. To summarise, from the
above analysis it is concluded that macMaxCSMABackoffs and
macMaxFrameRetries should set to the optimal values (not the
default MAC parameters setting suggested by the standard) as
the sensor nodes need to adapt optimal BE to increase the
throughput and minimise the latency.

Rather than setting the default values of the 6LoWPAN
MAC layer, the optimised parameters achieve highest through-
put and less service delay for a given node number, as
shown in Fig. 10 and Fig. 11, respectively. The optimised
MAC parameters enhance network throughput by 52 — 63%
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depending on the 6LoWPAN network size. The range of
optimised macMaxFrameRetries in Table 1 means that the
retransmission would not affect the optimisation process of
the other parameters because when the macMaxFrameRetries
equal to 0 means that 6LoWPAN network runs User Datagram
Protocol (UDP) while the macMaxFrameRetries has certain
value means that 6LoWPAN network runs Transfer Control
Protocol (TCP).

TABLE I
6LOWPAN MAC LAYER PARAMETER VALUES

Value | Default | Optimised
Parameters
Range | Value Value
macMinBE 0-7 3 2
macMaxBE 3-8 5 6
macMaxCSMABackoff | 0 -5 4 3
macMaxFrameRetries 0-7 3 0-5
x 10* A
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Fig. 12 shows the access channel probability versus different
node numbers in 6LOWPAN network. The most obvious
finding to emerge from the analysis is that the reduction
in access channel probability and mean service time led to
enhancement of the network throughput as more packets were
successfully delivered to the destination. In addition, This
reduction reduces the end-to-end delay by 54 — 65% depending
on the 6LoWPAN network size.
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Extensive simulations were carried out to find the optimal
initial parameters for GA and PSO, like population size, initial
condition, weight, etc. Due to the randomness of the initialisa-
tion stage, 10 simulation runs were performed independently
of each algorithm. The performance for both GA and PSO
are shown in Table II. Clearly, the performance of the PSO-
based optimisation indicates better achievement regarding the
convergence speed as well as computation time than with GA.

TABLE I
GA AND PSO EXECUTION TIME

Algorithm Total Convergence | Computation
Iterations Iterations Time (sec)
GA 1000 327 7
PSO 1000 85 39

The 6LoWPAN nodes are generally battery powered, and
hence, energy efficiency is one of the key issues of 6LoOWPAN
network. As the Internet traffic increases, the energy utilisation
becomes one of the most important factor that need to be
considered in order to improve energy efficiency and reduce
energy waste. Fig. 13 shows the total remaining energy versus
simulation rounds for a 6LoWPAN network consists of 100
nodes with 0.5J per node. Compared with the default MAC
layer parameters set, it is obvious that the optimised MAC
layer parameters effectively prolong the nodes’ operational
time and hence, the overall lifetime of the network will
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be extended. The proposed MAC layer optimisation scheme
succeeded in prolonging the 6LoWPAN network lifetime by
40%, whilst enhancing its throughput and reducing the end-to-
end delay compared to a traditional 6LoWPAN network with
default MAC layer parameters set.
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Fig. 13. Residual network energy

VI. CONCLUSION

In this paper, a simple optimised analytical model for
the IEEE 802.15.4 MAC layer standard has been developed,
also investigated the MAC parameters effects in medium and
large size networks. An ANN has been proposed to find
the correlation between the most effective MAC parameters
inputs and throughput as output. The various topologies of
the ANN were tested by applying one and two hidden layers
with different numbers of neurons. Moreover, LM was used
as learning algorithm in the feed-forward ANN structure.
Moreover, LM was used as learning algorithm in the feed-
forward ANN structure. Two optimisation techniques used to
optimise the 6LOWPAN MAC layer parameters for a given
channel throughput and the number of nodes in the network.
GA and PSO algorithms used for deriving the optimal settings
of IEEE 802.15.4 MAC layer in 6LoWPAN networks in order
to guarantee the reliability requirements of the application
with minimum computational complexity and both algorithms
performed well.

The obtained results showed that the optimal MAC parame-
ters were feasible for both unsaturated and saturated conditions
with or without retransmission option. The obtained results
were validated by simulation and showed that the channel
throughput can be increased by setting the MAC layer with
the optimised parameters for a given number of nodes in the
network. Moreover, the optimised MAC parameters showed
that the throughput was considerably higher than the network
set by the default MAC parameters of IEEE 802.15.4 standard.
Hence, the future extension of this paper will be carried out
by implementing the optimal parameters in real 6LoWPAN
network and validated the simulation results by experimental
indoor testbed.
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